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Analysis of coupled energy and helicity spectra in stratified turbulence:
Theory and balloon measurements
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In this study, we propose a new theoretical approach to describe the spectra of kinetic
energy and helicity under the influence of stratification. We introduce a scaling parameter
m and perform the scaling analysis, which allows us to consider the effect of stratification
on the spectra. It becomes possible to categorize the spectral properties of energy, helicity,
and dual cascades in stratified turbulent flows based on the energy- and helicity-dominated
cascade scenarios. New scaling laws for dual cascade scenarios in flows with a strong
stratification are formulated as well. The comparison of the theoretical results against
atmospheric balloon-borne observations reveals that slopes of the energy cascades are
typically steeper than the helicity ones. This is an indication of the energy-dominated
cascade behavior at considered scale ranges and altitude segments.
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I. INTRODUCTION

Sheared turbulent flows are ubiquitous in nature, applications of fluid mechanics, and environ-
mental flows. Moreover, under the influence of gravity, these flows exhibit the effect of stratification.
Thus, the comprehensive description of stratified and sheared flow is crucial for understanding the
main aspects of the physics shaping our environment.

The multiscale nature of turbulent flows enhances their complexity. Turbulence develops dis-
tinctive nonlinear dynamics with complex, chaotic, and intermittent behavior. The Navier-Stokes
equations, which describe the stratified turbulent flows, are analytically nonresolvable and require
simplification for further investigation. One of the most useful tools to explore stratified turbulence
is the energy spectrum, which is based on the well-known turbulence property of the energy cascade

*Previously at Physics Department, University of Rostock, Rostock, Germany and Leibniz Institute of
Atmospheric Physics Kühlungsborn, Germany.

†Previously at Leibniz Institute of Atmospheric Physics, Kühlungsborn, Germany; victor.avsarkisov@uni-
hamburg.de

‡Previously published under the name Jens Söder.

2469-990X/2024/9(3)/033801(19) 033801-1 ©2024 American Physical Society

https://orcid.org/0009-0006-4199-818X
https://orcid.org/0000-0001-5747-2525
https://orcid.org/0000-0002-5382-4017
https://orcid.org/0000-0002-5717-1623
https://orcid.org/0000-0001-6869-545X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.9.033801&domain=pdf&date_stamp=2024-03-06
https://doi.org/10.1103/PhysRevFluids.9.033801


NIKLAS DUSCH et al.

through the scales within the flow. This method describes how conserved energy is spectrally
distributed in the wave-number space.

In flows with a direct cascade, the energy is transferred from large to small length scale
structures. This mechanism is a so-called Richardson’s energy cascade [1]. For homogeneous
isotropic turbulence (HIT) flows, this direct cascade process results in E (k) ∼ k− 5

3 [2–4] spectral
behavior, whereas, under the influence of stratification, the direct cascade prediction exhibits a k−3

spectrum [5–7]. The physical mechanism that builds the spectrum of stratified turbulence is still
not sufficiently understood, and the latter spectral prediction requires experimental and numerical
confirmation [3,6,8]. Thus, it is tempting to ask whether the spectral representation of the kinetic
energy can be complemented by an additional conserved parameter that may provide further insights
into the dynamics of stratified turbulence. In the present study, we evaluate if the kinetic helicity can
serve as such quantity.

As first discovered in the 1960s by Moreau [9] and Moffatt [10], kinetic helicity is a conserved
quantity under certain conditions, and it became a powerful tool for fluid mechanical descriptions.
In another fundamental study by Moffatt and Tsinober [11], the significance of kinetic helicity for
turbulent flows is investigated by describing the behavior and the evolution of vortices affected
and shaped by it. Brissaud et al. [12] made essential considerations on how helical dynamics
can contribute to the description of turbulent flows and analyzed their dynamical properties. The
concept of treating cascades of energy and helicity in a similar way was introduced in this context.
Numerous studies have examined the properties of kinetic helicity in rotating and stratified turbulent
flows [13–18]. Analogously to the kinetic energy, one key aspect of interest in these studies was
the analysis of the spectrum of kinetic helicity in the wave-number space to describe the spectral
behavior of kinetic helicity throughout the scales as proposed in Brissaud et al. [12].

In atmospheric physics, a parametrization of the helical turbulence was proposed by Levina [19]
to analyze the influence of small-scale helical turbulence on tropical cyclones. Adding an extra
forcing term into the equation of thermal convection in the Boussinesq approximation allowed
authors to model some typical features of atmospheric vortices, such as the generation of intense
azimuthal circulation and intensification of vertical circulation. An extensive analysis of the role
of helicity in the Ekman boundary layer was performed in the last 30 years [13,20–26] as well.
Yet, there is still no comprehensive theory of kinetic helicity and its spectral properties in stratified
turbulence. Furthermore, the question arises whether the kinetic helicity could serve as a tool to
determine and explain characteristic dynamics in the presence of stratification, such as turbulent
layered pancakelike vortical structures (LPS) and internal gravity waves (GWs) in the layered
anisotropic stratified turbulence (LAST) regime.

In the second section, we formulate the scaling approach to describe general forms for the
spectra of kinetic energy and kinetic helicity in stratified turbulent flows and present the obtained
theoretical results. Our approach employs the idea of distinct helicity transfer timescale in dual
cascading systems, introduced for three-dimensional HIT by Kurien et al. [27] and applies it to
vertically anisotropic stratified turbulence. The analysis of experimental balloon data, including the
computation of kinetic energy and kinetic helicity spectra in different flow conditions, is performed
in the third section. In the final section, we discuss the results and summarize the main conclusions.

II. SPECTRA OF KINETIC ENERGY AND KINETIC HELICITY FOR STRATIFIED
TURBULENT FLOWS

In the following, we consider only flows that obey the stationary Boussinesq equations without
rotation

(�u · ∇)�u = −∇p

ρ̄
+ ρ ′

ρ̄
�g + ν��u. (1)

Here �u is the three-dimensional velocity, p is the pressure, ρ̄ the mean density, ρ ′ is the density
fluctuation, and ν is the kinematic viscosity of the flow. The gravity force acts in vertical z direction,
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hence �g = −g�ez. Here �ez denotes the unit vector in the vertical direction and g is the gravitational
acceleration. We omit any further external force; thus, the anisotropy of the flow solely occurs as a
buoyancy force effect.

The magnitude of stratification is characterized by the dimensionless parameters of the Froude
number

Fr = U

Nl
, (2)

depicting the ratio of inertial forces to the buoyancy force, and the Richardson number

Ri = N2

(∂u/∂z)2 + (∂v/∂z)2 , (3)

relating buoyancy and vertical velocity shear. The relationship between the nondimensional param-
eters Ri and Fr in shear-dominated turbulence is expressed as Ri = Fr−2, but this relationship does
not hold in more general cases. Here, l and U are the characteristic length and velocity scales,
respectively, and ∂u/∂z and ∂v/∂z are the vertical gradients of the horizontal velocity components.
The Brunt-Väisälä frequency N is defined as

N =
√

− g

ρ̄

dρ0

dz
. (4)

The kinetic energy, helicity, and enstrophy contained in the volume V are defined as

Ev =
∫
V

�u · �u d3r, (5)

Hv =
∫
V

�u · �ωd3r, (6)

Zv =
∫
V

�ω · �ω d3r (7)

with �ω = ∇ × �u denoting the flow vorticity. The so-called relative helicity can be defined as

σ = Hv√
Ev Zv

. (8)

From the Cauchy-Schwarz inequality, it follows that −1 � σ � 1. In the case of zero relative
helicity σ = 0, the total amount of the kinetic helicity is zero too. The maximum relative helicity
σ = 1 corresponds to a case with maximal kinetic helicity. Unlike the energy (Ev), kinetic helicity
(Hv), or kinetic enstrophy (Zv), σ is independent of the flow volume. Considering, for instance, a
system with constant velocity, the kinetic energy will be proportional to the integration volume.
Similarly, a flow of high kinetic helicity may be either strongly helical or have a large volume.
Hence, the three quantities: Ev , Hv , and Zv are so-called extensive quantities. The relative helicity,
in contrast, is independent of the system volume, which makes it a powerful measure to compare
different flows.

A. Approach

In the present study, it is assumed that the spectra of kinetic energy E and kinetic helicity H are
functions of a wave number k in the form of power laws [18,28]

E (k) ∼ k−κE , (9)

H (k) ∼ k−κH . (10)

Here κE and κH are the corresponding slope constants, and the wave number k represents either the
total wave number k = |�k| in the HIT case or the vertical wave number kz in the LAST case.
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According to Brissaud et al. [12], it is possible to describe three different cascade scenarios in
three-dimensional HIT.

(i) Pure energy downward cascade with no helicity cascade

εE ≡ εE (k) ∼ kE (k)

τtr (k)
= const., (11)

εH = 0. (12)

This process is characterized by a constant rate of transfer of kinetic energy εE through the scales.
(ii) Joint energy and helicity downward cascade

εE ≡ εE (k) ∼ kE (k)

τtr (k)
= const., (13)

εH ≡ εH (k) ∼ kH (k)

τtr (k)
= const., (14)

a simultaneous dual cascade of both quantities through the scales.
(iii) Finally they did not exclude the theoretical possibility of pure helicity cascade with no energy

cascade

εE = 0, (15)

εH ≡ εH (k) ∼ kH (k)

τtr (k)
= const., (16)

indicating the complexity of the system with these cascading properties and not specifying the
direction of the helicity cascade.

Perhaps the main limitation for authors of Brissaud et al. [12] in characterizing these different
cascading scenarios was an assumption of the energy-dominated (energy-driven) transfer time τtr

(the distortion time therein and in Kraichnan [29]) for energy and helicity transfer

τtr (k) ∼
(∫ k

0
p2E (p)d p

)−1/2

∼ [E (k)k3]−1/2 ∼ τE . (17)

They proposed the transfer time τtr as a measure of the characteristic timescale of the energy cascade
assuming that in all three cases cascades are governed by τtr defined as (17).

In their seminal paper Kurien et al. [27] proposed the helicity-dominated (helicity-driven) joint
cascading scenario [case (ii)] with the characteristic timescale

τtr (k) ∼
(∫ k

0
p2E (p)d p

)−1/2

∼
(

1

2
|H (k)|k2

)−1/2

∼ τH (18)

for both kinetic energy and helicity cascades. The result of this consideration is a shallow spectrum
with k−4/3 scaling in both energy and helicity. Authors also suggested that k−5/3 scaling must be
observed at large scales within the inertial subrange, while the former k−4/3 scaling characterizes
small scales of the inertial subrange.

In the present study, we consider the competing cases of dynamics governed by kinetic energy
according to (17) or kinetic helicity according to (18) that have been discussed in the context of
HIT. These timescales are applied to stratified, hence characteristically anisotropic flows. In the
following, we denote them as the energy-dominated or the helicity-dominated cases. However,
consideration of the stratification effect requires an additional assumption.

The phenomenology of weak turbulence theory [30,31] allows us to decompose the flow into
fast and slow velocity manifolds. To estimate the effect of stratification on the transfer timescale,
we consider that the temporal scale of the buoyancy force effects is proportional to the Brunt-Väisälä
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frequency N , namely τGW = N−1. In the atmospheric flows, this assumption is valid for the small-
scale (typically hundreds of meters horizontal scales down to the Ozmidov scale) motions, namely,
gravity waves.

Thus, under the influence of stratification, relations between τtr and τE , τH [see Eq. (17), (18)]
require the following modification:

τtr = τE
τE

τGW
or τtr = τH

τH

τGW
, (19)

where τGW denotes the period of small-scale gravity waves. A similar approach is used in Ref. [28]
for the case with rotating turbulence.

The ratio τEτ−1
GW can be represented as the multiplicative inverse of the Froude number Fr. This

number is below unity in stratified flows and decreases as stratification increases. Thus, the transfer
time increases in the presence of stratification and indicates the slowdown of the energy cascade. In
other words, the dynamics related to stratification inhibit the transfer process.

We now introduce an additional generalization to the transfer timescale definitions, namely

τtr = τEδm
E = τ 1+m

E Nm, (20)

τtr = τHδm
H = τ 1+m

H Nm, (21)

with

δE = τE

τGW
, (22)

δH = τH

τGW
, (23)

for the energy-dominated (20), (22) and helicity-dominated (21), (23) cases, respectively. The
introduction of m as a nondimensional parameter enables quantification of the stratification effect.
For m = 0, stratification has no direct impact on the cascading process, while for increasing m, δm

becomes large and increases the transfer time. Moreover, it enables us to extend the assumption
concerning the form of the spectra analogously to Ref. [28]

E (k) ∼ ε
aE
E ε

bE
H NcE k−κE , (24)

H (k) ∼ ε
aH
E ε

bH
H NcH k−κH . (25)

In the following section, we analyze all possible cascade scenarios (energy cascade, helicity
cascade, and joint cascade), as proposed in Brissaud et al. [12], for two competing cases of either
kinetic energy domination or helicity domination. Moreover, variation of m enables us to consider
different impacts of stratification on cascades.

In some cases, the proposed method does not suffice to make a statement on the spectra of
kinetic energy and kinetic helicity. Nevertheless, for these cases, it is helpful to consider that the
rate of transfer of kinetic helicity should go to zero for large wave numbers in energy-dominated
cases [12]

kH (k)

τtr (k)
→ 0 for k → ∞. (26)

Analogous condition should hold for the kinetic energy cascade in helicity-dominated cases

kE (k)

τtr (k)
→ 0 for k → ∞. (27)
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B. Energy-dominated distortion (τtr = τEδm
E )

1. Energy cascade (εE = const.)

In case of energy-dominated scenario, for the cascade of energy with constant energy flux (11)
and the transfer time (20) we obtain

E (k) ∼ εE
1

k
τ 1+m

E Nm ∼ εE
1

k
[k3E (k)]−

1+m
2 Nm ∼ εE Nmk− 5+3m

2 E (k)−
1+m

2 , (28)

which provides

E (k) ∼ ε
2

3+m
E N

2m
3+m k− 5+3m

3+m (29)

with

κE = 5 + 3m

3 + m
. (30)

For case without stratification (m = 0) one retrieves Kolmogorov’s k−5/3 spectrum [2]

E (k) ∼ ε
2/3
E k−5/3. (31)

However, if m → ∞, we obtain the spectrum for the buoyancy subrange in stratified turbulence of
the form [5,32–34].

E (k) ∼ N2k−3. (32)

For the kinetic helicity spectrum, (26) provides

εH ∼ kH

τtr
∼ k1−κH [k3k−κE ]

m+1
2 → 0 (k → ∞)

⇒ 0 > −κH + 5

2
+ 3

2
m − κE

1 + m

2
(33)

and thus

κH >
5 + 3m

3 + m
. (34)

Hence, dimensional analysis implies that the spectrum of kinetic helicity should be steeper than that
of kinetic energy in the energy-dominated regime.

2. Helicity cascade (εH = const.)

For a helicity cascade, we can rearrange expression (16) to obtain

H (k) ∼ εH k− 5+3m
2 NmE− 1+m

2 . (35)

With (9) and (10), this is equivalent to

κH = 5 + 3m

2
− 1 + m

2
κE ⇔ κE = 5 + 3m

1 + m
− 2

1 + m
κH . (36)

One thus obtains a condition linking the spectrum of kinetic helicity to the spectrum of kinetic
energy. Moreover, with (27), one obtains

κE >
5 + 3m

3 + m
, (37)

which according to (36) is equivalent to

κH <
5 + 3m

3 + m
. (38)
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Hence, there are no explicit expressions for κE and κH in this cascade scenario, but a condition
that links constants and respective limits. Although the exponents have no fixed values, the corre-
sponding spectral slope constants for kinetic energy and helicity are coupled. It follows from the
derived inequalities that the spectrum of kinetic energy has to be steeper than the one of kinetic
helicity.

3. Dual cascade (εE = const., εH = const.)

For the dual cascade case, both transfer rates (εE and εH ) are constant. Thus, the kinetic energy
spectrum is derived in the same way as for the energy cascade scenario in Sec. II B 1 [see (29) with
(30)].

The expression (36) for κH is the same for both the dual cascade and helicity cascade, as they
both depend on κE . Combining this expression with (30) results in

κH = 5 + 3m

3 + m
. (39)

Thus, both spectra have the same dependence on k. Using (35) with (29) one obtains

H (k) ∼ ε
− 1+m

3+m
E εH N

2m
3+m k− 5+3m

3+m . (40)

For m = 0, the spectra found for the energy and the helicity correspond to the dual cascade scenario
from Brissaud et al. [12]

E (k) ∼ ε
2/3
E k−5/3, (41)

H (k) ∼ εHε
−1/3
E k−5/3. (42)

By setting m = 2 we recover the Bolgiano-Obukhov scaling,

E (k) ∼ ε
2/5
E N4/5k−11/5, (43)

H (k) ∼ εHε
−3/5
E N4/5k−11/5. (44)

Finally, for m → ∞ we obtain the spectral relation for the energy-dominated dual cascade scenario
with strong stratification.

E (k) ∼ N2k−3, (45)

H (k) ∼ εHε−1
E N2k−3. (46)

This dual cascade scenario has not yet been presented in the literature and requires further verifica-
tion.

C. Helicity-dominated distortion (τtr = τHδm
H )

1. Energy cascade (εE = const.)

Analogously to the energy-dominated energy cascade from Sec. II B 1, the helicity-dominated
energy cascade is characterized by (11). However, the transition time in the present case is based on
the helicity-dominated distortion time according to (21).

Using the definition of τH , one obtains

E (k) ∼ εE k−2−mH (k)−κH
1+m

2 Nm. (47)

Assuming E (k) ∼ k−κE and H (k) ∼ k−κH , we obtain the coupling property between κE and κH .

κE = 2 + m − 1 + m

2
κH (48)

⇔ κH = 4 + 2m

1 + m
− 2

1 + m
κE . (49)
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This property allows us to infer the value of m (or the magnitude of stratification) if the coupled
slope constants are known.

Moreover, using (26), the conditions

κH >
4 + 2m

3 + m
, (50)

κE <
4 + 2m

3 + m
(51)

are obtained. Hence, the exponents of both spectra are limited to some values. It also follows that
the kinetic helicity spectrum is always steeper than the kinetic energy one in the helicity-dominated
energy cascade scenario. This result is the opposite of the exponent conditions (37) and (38) for an
energy-dominated helicity cascade (see Sec. II B 2).

2. Helicity cascade (εH = const.)

For a pure helicity cascade with the constant rate of helicity transfer (16) one obtains

H ∼ ε
2

3+m
H k− 4+2m

3+m N
2m

3+m , (52)

κH = 4 + 2m

3 + m
. (53)

The value of the exponent of the spectrum (κH ) is smaller than the limit for the respective value
for the energy-dominated helicity cascade (38) and smaller than the corresponding values for the
energy-dominated energy cascade (34) and dual cascade (39). Thus, the spectrum of kinetic helicity
tends to be shallower in the helicity-dominated helicity cascade.

Moreover, (27) provides an expression for κE as

κE >
4 + 2m

3 + m
. (54)

This suggests that the spectrum of kinetic energy is steeper than that of kinetic helicity in a helicity-
dominated scenario.

3. Dual cascade (εE = const., εH = const.)

For the case of a helicity-dominated dual cascade, we again assume the constant rate of transfer
of kinetic helicity (14) and obtain the helicity spectrum in the following form:

H ∼ ε
2

3+m
H k− 4+2m

3+m N
2m

3+m , (55)

κH = 4 + 2m

3 + m
. (56)

Since for the dual cascade, the energy transfer rate is also constant and follows (13), one obtains
equation (48). With (56), the latter condition is equivalent to

κE = 4 + 2m

3 + m
. (57)

Thus, the values for the exponents of the spectra of kinetic energy and kinetic helicity are equal.
The spectra of the helicity-dominated dual cascade scenario are shallower when compared to the
energy-dominated ones.

Using (47) and inserting (55), one obtains

E (k) ∼ εEε
− 1+m

3+m
H N

2m
3+m k− 4+2m

3+m . (58)
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TABLE I. Different cascade cases are distinguished, based on the cascading quantity (kinetic energy,
kinetic helicity, or both) and the quantity determining the transfer time (τE for dominant kinetic energy, τH

for dominant kinetic helicity). κE is the exponent for an energy spectrum of the form E (k) ∼ k−κE . Columns
consider differences in the magnitude of the influence of stratification. The m column represents the general
form of κE . The condition m = 0 is equivalent to the absence of an influence of stratification whereas m → ∞
represents a maximum influence of stratification.

κE

m 0 1 2 ∞
Energy cascade (τE ) 5+3m

3+m
5
3 2 11

5 3

Helicity cascade (τE ) > 5+3m
3+m > 5

3 >2 > 11
5 >3

5+3m
1+m − 2

1+m κH 5 − 2κH 4 − κH
11
3 − 2

3 κH

Dual cascade (τE ) 5+3m
3+m

5
3 2 11

5 3

Energy cascade (τH ) < 4+2m
3+m < 4

3 < 3
2 < 8

5 <2

2 + m − 1+m
2 κH 2 − κH

2 3 − κH 4 − 3
2 κH

Helicity cascade (τH ) > 4+2m
3+m > 4

3 > 3
2 > 8

5 >2

Dual cascade (τH ) 4+2m
3+m

4
3

3
2

8
5 2

In the absence of stratification (m = 0), expressions (55) and (58) reproduce the spectrum of kinetic
energy from Kurien et al. [27]

E (k) ∼ εEε
−1/3
H k−4/3, (59)

H (k) ∼ ε
2/3
H k−4/3. (60)

In the presence of strong vertical stratification (m → ∞), new scaling laws are obtained for energy
and helicity spectra.

E (k) ∼ εEε−1
H N2k−2, (61)

H (k) ∼ N2k−2. (62)

These dual cascade scaling relations, analogously to (45) and (46), have not yet been reported in the
literature and require careful analysis in the future.

D. Possible spectral properties of stratified turbulence

The results of the considerations of the previous subsections are summarized in Tables I and
II. We present three different cascade scenarios (pure energy, pure helicity, and dual cascade) for
energy-dominated and helicity-dominated cases. All six cascade scenarios are characterized by
expressions for the exponents κE and κH of the powers of the wave number k. Considering the role
of stratification, both their general forms (m-dependent), examples for HIT (m = 0), and various
stratification rates (m = 1, 2,→ ∞) are combined in these tables.

A first conclusion to be drawn concerns the limits for values of κE and κH . After analyzing
Tables I and II, we obtain that the limits for values κE and κH increase with a higher level of
stratification. This means that larger limits are observed for larger m. There is a steepening of the
spectrum for both kinetic energy and helicity. As discussed in Sec. II A, the slowing down of the
transfer process affects this spectral steepening.

Another significant result becomes evident from comparing energy-dominated and helicity-
dominated cases for either the energy, helicity, or dual cascade scenarios. For the energy-dominated
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TABLE II. Different cascade cases are distinguished, based on the cascading quantity (kinetic energy,
kinetic helicity, or both) and the quantity determining the transfer time (τE for dominant kinetic energy, τH

for dominant kinetic helicity). κH is the exponent for a helicity spectrum of the form H (k) ∼ k−κH . Columns
consider differences in the magnitude of the influence of stratification. The m column represents the general
form of κH . The condition m = 0 is equivalent to the absence of an influence of stratification whereas m → ∞
represents a maximum influence of stratification.

κH

m 0 1 2 ∞
Energy cascade (τE ) > 5+3m

3+m > 5
3 >2 > 11

5 >3

Helicity cascade (τE ) < 5+3m
3+m < 5

3 <2 < 11
5 <3

5+3m
2 − 1+m

2 κE
5
2 − κE

2 4 − κE
11
2 − 3

2 κE

Dual cascade (τE ) 5+3m
3+m

5
3 2 11

5 3

Energy cascade (τH ) > 4+2m
3+m > 4

3 > 3
2 > 8

5 >2
4+2m
1+m − 2

1+m κE 4 − 2κE 3 − κE
8
3 − 2

3 κE

Helicity cascade (τH ) 4+2m
3+m

4
3

3
2

8
5 2

Dual cascade (τH ) 4+2m
3+m

4
3

3
2

8
5 2

case, the spectra and their limits are always steeper than the corresponding spectra for helicity
domination. Hence, the former appears to steepen, and the helicity domination shallows spectra.

In the present study, we examined the general scaling forms of energy and helicity cascades
in dual cascading scenarios. Comparison of Eq. (29) with (40) and (55) with (58) suggests the
emergence of another relevant length scale

lh ∼ εE/εH . (63)

The existence of the lh was first proposed by Moiseev and Chkhetiani [35] (see also Ref. [36]) in
their seminal paper on the helical scaling of turbulence. In particular, the authors predict that the
length scale lh marks the transition of the energy spectrum from the k−5/3 for k > l−1

h to k−7/3 for
k < l−1

h in HIT. Although the effect of stratification was considered in their work, the authors did
not specify its role in the emergence of lh. Our analysis of the general scaling forms can confirm
that the relation (63) turns out to be universal for the dual cascade scenarios in such a way that
the form of the spectra in the energy-dominated regime is equal to the form of the spectra in the
helicity-dominated regime if k = l−1

h . Hence, lh marks the transition between these two regimes.
Additionally, for dual cascades and irrespective of the value of m, the spectrum of kinetic helicity
differs from the spectrum of energy only by a factor of εH/εE

E (k) ∼ εE

εH
H (k). (64)

The effect of vertical stratification (m → ∞) provides us with another significant insight
into these dynamics. Equations (45), (46) (the energy-dominated case) and Eqs. (61), (62) (the
helicity-dominated case) suggest that the vertical cascade of horizontal helicity (energy) is only
possible in the presence of nonzero helicity flux εH (nonzero energy flux εE ) in strongly stratified
energy-dominated (helicity-dominated) case.

III. BALLOON MEASUREMENTS

To analyze the energy and helicity spectra in stratified turbulence, we investigate experimental
wind data from balloon measurements. These soundings were conducted using normal radiosondes
of type Vaisala RS41 SG in a flight configuration for enhanced wind resolution. This special
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FIG. 1. Vertical profiles of zonal (blue line) and meridional (red line) components of the horizontal velocity
for the 2021 dataset. Dashed lines highlight different altitude segments.

configuration is described in detail in Ref. [37]. In summary, the wind measurements are performed
on the downleg path of the flight. A constant descent rate was achieved by utilizing a partly inflated
balloon instead of a parachute. Radiosonde and balloon were connected by a rope of only 9 m
(instead of 55 m used for upleg soundings). This short rope results in a comparatively fast pendulum
motion, i.e., the spectral response maximizes at scale sizes smaller than analyzed in this study.
Self-induced motions are suppressed by the choice of balloon size and descent speed, resulting in
a flow around the balloon at subcritical Reynolds numbers. With the wind measurements not being
disturbed by balloon or payload motions, we were able to calculate the wind speed directly from
high-resolved position measurements instead of using the filtered standard data product. Practically,
wind measurements were usable at scale sizes larger than 50 m. We consider two datasets, measured
on 20th May 2021 (labeled as 2021) and 28th February 2022 (labeled as 2022). The data provides
the two horizontal velocity components u and v measured as functions of the vertical coordinate z
and time t . For the following computations, the remaining distortions from the pendulum motions
of the gondola and GPS noise were removed using a low-pass filter. The velocity components
represent the zonal and meridional wind, respectively. The datasets also contain profiles of pressure
and temperature.

A. Measurements

Each dataset is divided into three altitude segments governed by distinct flow dynamics. The
position of these segments is determined heuristically based on the wind profiles provided in Figs. 1
and 2. Thus, the vertical partition is done at heights where the velocity profiles significantly alter

FIG. 2. Vertical profiles of zonal (blue line) and meridional (red line) components of the horizontal velocity
for the 2022 dataset. Dashed lines highlight different altitude segments.

033801-11



NIKLAS DUSCH et al.

their behavior and are highlighted with dashed lines. The 2021 dataset starts at 5147 m above the
ground and reaches up to 18073 m altitude, while the 2022 dataset covers the range from 4067 m
up to 14977 m altitude.

Characteristic quantities provided by the measurement data are used to compute the kinetic
energy, helicity, and enstrophy inside the altitude segments, defined as

ES =
∫
S

(u2 + v2) dz, (65)

HS =
∫
S

(−u ∂zv + v ∂zu) dz, (66)

ZS =
∫
S

[
(∂zv)2 + (∂zu)2

]
dz, (67)

where S is the altitude segment. These definitions support the properties of stratified flows [38], i.e.,
(i) the horizontal velocity components are much larger than the vertical ones u2, v2 � w2, (ii) the
horizontal length scales are much larger than the vertical ones so that the vertical gradients are much
larger than the horizontal ones. The latter feature explains why we assume the horizontal gradients
to be negligibly small.

Definitions (65)–(67) allow us to calculate the relative helicity as

σ = H√
E Z

. (68)

Along with the ratio |H |/E , the relative helicity σ serves as a measure to estimate the dominance
of kinetic helicity. In the framework of this study, a large ratio of kinetic helicity to kinetic energy
and σ ≈ 1 suggest a helicity-dominated regime. The small values of the ratio of kinetic helicity to
kinetic energy and σ ≈ 0 represent energy-dominated dynamics.

Both the kinetic energy, the kinetic helicity and the kinetic enstrophy are, concerning the extent
of the altitude segments, extensive quantities. Therefore, the mean densities, ē, h̄, and z̄, for these
quantities were calculated for each altitude segment by dividing the respective quantity by the
vertical extent of the altitude segment.

As a measure for the magnitude of stratification, the Brunt-Väisälä frequency is calculated
pointwise using (4) and subsequently averaged to obtain the Brunt-Väisälä frequency of the altitude
segment. The pointwise mass density of the flow is obtained from the vertical profiles of the pressure
p(z) and the temperature T (z) contained in the balloon data, assuming the flow to behave as an ideal
gas.

The Brunt-Väisälä frequency, along with the vertical gradients ∂zu and ∂zv of the horizontal
velocity components, enabled us to calculate the Richardson number Ri for each altitude segment,
as well. A complete set of flow parameters for each altitude segment is given in Table III.

The kinetic energy spectrum E (k) and the kinetic helicity spectrum H (k) were defined as

E (kz ) = F{u} F{u}∗ + F{v} F{v}∗, (69)

H (kz ) = |−F{u} F{∂zv}∗ + F{v} F{∂zu}∗|, (70)

with F denoting the Fourier transform operator. The Fourier transforms of the respective functions
are obtained using MATLAB’s fft function [39]. To reduce the noise in the spectra, all functions were
multiplied by a Blackman-Harris window [40] before being Fourier transformed.

B. Results

The spectra for kinetic energy and kinetic helicity in different altitude segments of both datasets
are shown in Figs. 3 and 4. Each altitude segment is represented by a kz axis that starts from the
wave number kmin = 2πL−1

z , where Lz is the vertical extent of the segment. The spectra are confined
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TABLE III. The table presents a summary of calculated characteristic values for six predefined altitude
segments. It contains estimations for the Brunt-Väisälä frequency N , the Richardson number Ri, as well as
integral calculations for the kinetic energy E , kinetic helicity H , and kinetic enstrophy Zv along with their
respective mean densities ē, h̄, z̄v and the relative helicity σ . κE and κH are obtained from a fit as the exponents
of kz are obtained from spectral fits of kinetic energy E (kz ) and kinetic helicity H (kz ).

2021 2022

[5 km, 8.5 km] [8.5 km, 13 km] [13 km, 18 km] [4 km, 8.5 km] [8.5 km, 12 km] [12 km, 15 km]

N [s−1] 0.0381 0.0402 0.0389 0.0361 0.0383 0.0448
Ri 0.17 0.63 1.81 1.35 0.80 0.42
E [m3 s−2] 11.06 × 105 11.92 × 105 1.17 × 105 4.93 × 105 4.11 × 105 2.84 × 105

ē [m2 s−2] 330.3 264.6 23.1 111.2 117.2 95.4
H [m2 s−2] 212.4 −29.2 207.6 −18.0 29.1 73.0
h̄ [m s−2] 0.0630 −0.0070 0.0410 −0.0040 0.0080 0.0250
Zv [m s−2] 2.2 6.3 6.4 7.6 7.2 8.1
z̄v [s−2] 6.49 × 10−4 13.94 × 10−4 12.65 × 10−4 17.17 × 10−4 20.60 × 10−4 27.26 × 10−4

|H |/E 1.92 × 10−4 0.25 × 10−4 17.70 × 10−4 0.37 × 10−4 0.71 × 10−4 2.57 × 10−4

[m−1]
|σ | 0.1370 0.0110 0.2390 0.0090 0.0170 0.0480
κE 2.0 2.4 3.2 2.6 2.4 2.4
κH 1.1 1.2 2.4 1.4 1.2 1.4

within the wave number kmax = 2π l−1
min, where lmin = 50 m that denotes the effective maximum

resolution of the data.
The power-law exponents κE and κH are obtained by fitting the spectrum of kinetic energy and

kinetic helicity for each altitude segment. The spectral fits are depicted in Figs. 3 and 4 with orange
lines. Each fit is performed in the scale range between lmin = 50–75 m and lmax = 1100–1300 m.
Table III provides a summary of κE and κH values. Several spectra exhibit a plateau at large scales
and increased energy below the resolution scale due to instrumental noise. Trends on the raw data
cause spectral leakage on the FFT data that induces the plateau at large scales. The technical
distortions on the balloon data, such as pendulum motions and GPS noise, cause the overshoot
at small scales. We exclude both spectral effects from performed fits.

For the 2021 data, the stratification increases with altitude, as evidenced by the increase in Ri.
The kinetic energy E in the altitude segment between 8.5 km and 13 km is slightly higher than in the
segment [5 km, 8.5 km], which is likely to be caused by the difference in altitude coverage, with the
former covering 4.5 km and the latter covering 3.5 km. As kinetic energy is a quantity that increases
with the size of the segment, it is typically large for wide altitude ranges. Due to the decrease in the
absolute value of horizontal velocities, mean kinetic energy density ē and locally contained kinetic
energy E significantly decrease in the upper segment, as seen in Fig. 1. The absolute values of the
kinetic helicity |H | and its mean density h̄ are the largest for the lowest altitude segment. The relative
helicity σ in the altitude segment ranging from 13 km to 18 km is the highest among the 2021 data.
This observation correlates with a decrease of ē. Unlike the lowest segment, where a significant
decrease of enstrophy induced high σ values, the decrease of σ in the upper segment is dominated
by the kinetic energy. The altitudinal behavior of the ratio |H |/E approximately correlates with the
behavior of σ in the middle and upper segments. As shown in Table III, an increase in κE and κH

can be observed with altitude for all the observations, indicating that the spectra tend to become
steeper with altitude, as can also be seen in Fig. 3.

For the 2022 dataset shown in Table III, the Richardson number decreases with altitude, which
is qualitatively different from what we had seen in the 2021 dataset. The decrease in total kinetic
energy with height is due to decreasing altitude segment size. However, the mean density ē remains
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FIG. 3. Kinetic energy (left column) and kinetic helicity (right column) spectra (blue) for the three different
altitude segments of the 2021 data along with the fit functions (orange). The data describing the fits is given in
Table III. The slopes of the fits for the kinetic energy and the kinetic helicity, respectively, increase throughout
the altitude segments so that the spectra become steeper.
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FIG. 4. Kinetic energy (left column) and kinetic helicity (right column) spectra (blue) for the three different
altitude segments of the 2022 data along with the fit functions (orange). The data describing the fits is given
in Table III. The slopes of the fits for the kinetic energy and the kinetic helicity, respectively, hardly differ
throughout the altitude segments.

033801-15



NIKLAS DUSCH et al.

approximately constant. The kinetic helicity H and its mean density h̄ already visibly increase in
their absolute values for the altitude segment between 8.5 km and 12 km compared to the lower
altitude segment and are of about one order of magnitude higher in the upper segment. The extending
role of kinetic helicity is also visible by the relative helicity σ and |H |/E ratio, which increase with
the altitude. There is no clear trend for the spectral slopes of kinetic energy and helicity throughout
the three altitude segments of the 2022 dataset, as seen in Table III. Finally, it is relevant to note that
the fits of κE and κH values obtained from the 2021 and 2022 datasets have remaining ambiguity
caused by the length of the dataset statistics and the fitting ranges.

C. Discussion

Despite these data shortcomings, we can draw general conclusions from these datasets. First, as
to the data in Table III, comparing all six segments, a higher Richardson number Ri seems to be
related to higher values for κE and κH . Sorting all six altitude segments by Ri, this tendency is valid
for κE . For κH , there is only a deviation concerning the [12 km, 15 km] altitude segment of the
2022 dataset. This segment has a lower Richardson number than the [8.5 km, 13 km] segment of
the 2021 dataset and the [8.5 km, 12 km] segment of the 2022 dataset but a higher value of κH .

A growing value of Ri indicates an increasing stratification of the flow. Following the results of
Sec. II, it also suggests a change of the eddy distortion time and a higher value of m. The theoretical
results from Sec. II support the observation of steepening spectra of kinetic energy and kinetic
helicity with increasing stratification and extended distortion time of the flow.

Another relevant observation concerns the role of kinetic helicity. Analysis of all altitude seg-
ments reveals that higher values of σ and |H |/E can be the reason for the spectra shallowing.
Thus, two main dynamic characteristics affect the cascading properties of the flow. These are
stratification, which steepens spectra of kinetic energy and helicity, and helicality, which shallows
them. Perhaps the most peculiar effect of the interplay of these different characteristics is obtained
in the [13 km, 18 km] segment of the 2021 dataset. Here, the stratification dominates over the
significant helical shallowing, and both spectra exhibit distinct stratification dynamic effects.

A slight deviation from the proposed dynamic interplay is observed in the kinetic helicity
spectrum of the [12 km, 15 km] altitude segment of the 2022 dataset, which is not explicable
based on the compiled quantities. Apart from that, the role of kinetic helicity appears to affect the
spectra such that altitude segments with a lower value of σ and weaker influence of kinetic helicity
have steeper spectra of kinetic energy and helicity, and segments with larger relative helicity have
shallower spectra.

Observing that the change of shape of the spectra would be explicable both based on the effects
of stratification and kinetic helicity, the question arises whether or how these effects interact in some
way. Indeed, Ref. [14] provides the relation

〈H〉⊥,z = N

f

〈
θ
∂w

∂z

〉
⊥,z

. (71)

Here, the volume-averaged kinetic helicity in the approximation based on the scaling of stratified
flows on the left-hand side is balanced by the combination of the Brunt-Väisälä frequency N , the
Coriolis parameter f , the buoyancy θ and the vertical gradient of the vertical component of the
flow velocity on the right-hand side. Therefore, following the statements formulated above, Eq. (71)
suggests that the effects of kinetic helicity, stratification, and rotation are coupled. Nevertheless, a
quantitative analysis of this relation would go beyond the scope of the discussion of the underlying
data of this study and should be the subject of future considerations.

The influence of the density change with altitude on the calculated spectra was analyzed in the
present study, as well. In particular, we analyzed spectra of kinetic energy and helicity obtained
using the normalized velocity profiles u(z) · ρ(z) and v(z) · ρ(z). An insignificant shallowing of the
spectra was observed at the largest scales, while for wave numbers of about kz = 10−2, the density
effects were unrecognizable.
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The improvements in the balloon measurements are indispensable for our study due to their
enhancement in effective wind data resolution by a factor of six compared to a standard radiosonde
[37].

IV. CONCLUSION

In this study, we analyzed the role of kinetic helicity in stratified turbulent flows. Based on the
idea that the interplay of stratification and kinetic helicity can influence the spectral properties of
the flow, it became possible to derive generalized spectral expressions for various energy- and
helicity-dominated cases. This study merges and extends the theoretical approaches from Kurien
et al. [27], concerning the different time scales relevant to the turbulent flow, and Pouquet and
Mininni [28], concerning an equivalent consideration for rotating turbulence. As these studies only
refer to isotropic or rotational flows, the present study provides new theoretical results for the
flows with vertical stratification. Introducing the scaling parameter (m) to quantify the effect of
stratification on the distortion of turbulent eddies, we were able to cover various cascading scenarios
considering different levels of stratification.

In addition to the influence of stratification, we distinguished cases of either energy- or helicity-
dominated regimes for energy-only, helicity-only, and joint cascade scenarios. Based on this
theoretical consideration, it was possible to reproduce well-known forms of the spectra and to
deduce general statements on how an increasing dominance of either kinetic energy or helicity
and different strengths of stratification could influence the spectra of kinetic energy and helicity.
The emergence of the Moiseev-Chkhetiani scale (lh = εE/εH ) in the dual cascading scenarios for
cases with strong stratification (m → ∞) highlights the importance of the coupled consideration
for the kinetic energy and helicity spectra. This part of the study concludes that the kinetic helicity
domination appears to flatten these spectra compared to the dominance of kinetic energy, and an
increasing influence of stratification steepens both helicity and energy spectra.

An analysis of measurement datasets was performed to test the results from Sec. II. Wind data in
different atmospheric altitude segments between 4 km and 18 km acquired by balloon measurements
were employed to calculate spectra of kinetic energy and helicity and characteristic parameters of
the altitude segments. It was possible to make general statements on the impact of stratification on
the spectra at various altitude segments and to derive trends that are related to a different influence of
these quantities. The primary result of this part of the study is that the observations made in the data
analysis follow the theoretical consideration from Sec. II. In particular, the observation that kE >

kH in all altitude segments suggests that the energy-dominated cascades prevail in the considered
datasets. Considering vertical resolution, size of statistics, and other dataset shortcomings, such as
the lack of measurements of vertical velocity and its horizontal gradients, we propose that high
kE , kH values obtained in the [13 km, 18 km] segment of the 2021 dataset are signs of the newly
found energy-dominated dual cascade scenario with strong stratification [see Eqs. (45), (46)].

In conclusion, from the theoretical considerations and the results from the analysis of the
measurements, kinetic helicity seems to be a quantity that can extend our understanding of stratified
turbulence and its spectral properties. The present study proposes a coupled consideration approach
(kinetic energy and helicity spectra) to explore the physical properties of stratified turbulent flows.
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