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By virtue of self-propulsion, active particles impart intricate stresses to the background
fluids. We propose that this active stress can be utilized to greatly control evaporation
dynamics of active drops. We discover a new phenomenon of puncturing of the active
drops, where the air-liquid interface of the drop undergoes spontaneous tearing and there
occurs a formation of a new three-phase contact line due to the liquid-air interface hitting
the liquid-solid interface through evaporation-driven mass loss. Post puncturing, we see
an inside-out evaporation of the drop, where the new contact line sweeps towards the
pinned outer contact line of the drops, contrasting regular drops that straightaway shrink to
zero volume with self-similar shape. Furthermore, we describe how the activity inside the
drops can manipulate the three-phase contact-line dynamics, which for contractile drops
can result in an up to 50% enhanced lifetime of the drop and 33% quicker evaporation
for extensile drops. By analyzing the flux distribution inside the drop, we gain insights on
nonintuitive deposition patterns (e.g., ring galaxy type deposits that demonstrate control-
lable spatial gradients in the concentrations of the deposited particles) of active particles,
which are oftentimes biological substances or bimetallic nanoparticles of interest. Finally,
we argue that such unique evaporation and particle deposition dynamics can be leveraged
for altering the lifetime of drops for bioapplications and for creating customized thin-film
deposits with potential three-dimensional printing applications.
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I. INTRODUCTION

Active drops are liquid drops consisting of particles that derive energy from their surroundings
to produce mechanical work, typically by self-propulsion or induction of active stresses [1–4].
Multiple studies have focused on understanding the fundamentals of active drops [5–14], and
found applications in developing active emulsions [15–18] and droplet microswimmers [19–21],
enhancing liquid-liquid mixing [22], explaining biolocomotion [23], triggering molecular-scale
assembly [24], providing growth models for protocells [25], enforcing control of cargo delivery
[26], etc.

While it is fundamental to understand the physics of self-assembly of active particles, the natural
progression should be the ability to control the patterning of these particles. Towards this end,
researchers have employed vesicles filled with suspension of active particles [27], micropatterning
the substrate [28], and chemotaxis [29,30] among other techniques to control the self-assembly
of active particles. However, leveraging the fluid flux induced by the evaporation, coupled with
active stress, remains an unexplored territory in the context of self-assembly-driven patterning of
active particles. Furthermore, recognizing that evaporation serves as a natural endpoint for any
unattended fluid drop or film, it becomes crucial to understand the interplay between active stress
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FIG. 1. Experimental relevance for the proposed system. (a) Zero-force swimmer (active particles) produc-
ing stress as force dipole (nematic shakers) at far field (reproduced from Drescher et al. [37]). (b)–(d) Active
swimmers moving in vortex defect (reproduced from Peng et al. [31] with permission from AAAS).

and evaporation. In this paper, we describe a hitherto unexplored topic of the evaporation of an
active drop [with vortex/pure bend/(1,π /2) defect [31–35]; see Figs. 1(b)–1(d)] and the associated
particle deposition pattern formation. The findings of this study apply to drops laden with particles
that produce stress in the background fluids described by σa = −ξ pp. Examples of such particles
are melanocytes (or nematic shakers) [36] and polar swimmers such as spermatozoa, Escherichia
coli, biflagellated algae, etc., which generate force dipoles (i.e., shakers) like stress to leading order
[37] [see Fig. 1(a)]. For such systems, first, we discover the formation of punctured drops: the active
stresses coupled with evaporation-triggered mass loss, force the air-liquid interface of the drop to
descend and hit the substrate. The result is the formation of a new contact line (inner contact line, or
ICL) and a doughnut-shaped drop. Second, unlike regular drops, active stress constrains the outer
contact line (OCL) to remain pinned, while the ICL sweeps at a receding contact angle triggering
an inside-out evaporation. Third, such specific drop shape and evaporation dynamics causes particle
deposits of a ring galaxylike pattern, characterized by an outer ring and an inner diffuse zone of
particles. Such unique punctured drop dynamics and the particle deposition pattern are realized for
extensile drops with a certain combination of dimensionless parameters characterizing the activity,
aspect ratio, and the receding contact angle. Finally, a comparison with contractile and regular
drops demonstrates that activity strongly controls evaporation times and can aid in manipulating
contact-line dynamics.

II. MATHEMATICAL FRAMEWORK

We consider the evaporation of a drop laden with active particles. Figure 1 provides the schematic
of such a drop as well as the definition of different quantities used to describe the problem.
Considering the evaporation to be diffusion dominated [38–41], the equations describing the
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evaporation of the active drop can be expressed as (modifying the equations for nonevaporating
active drops [3])

∂t h + ∇⊥ · (�hū⊥) + Jz/ρ = 0, (1a)

ū⊥ = (�h)2

3μ

[∇⊥γ∇2
⊥h − (∇ · σa)⊥

]
, (1b)

∇2c = 0, (2a)

J = D∇c. (2b)

Here, h is the local drop height, �h is the film thickness (�h = h when the substrate is at z = 0;
see Fig. 1), ū⊥ is the average in-plane velocity, and ∇⊥ represents gradient in the normal plane.
γ , μ, and ρ are the surface tension, dynamic viscosity, and drop density. Furthermore, Jz is the
evaporation flux in z direction and σa = −ξ (r, t )pp is the nematic stress tensor [3,4,42–44] (p and
ξ are the polarization field and the effective particle concentration). We consider vortex defect, i.e.,
p = θ̂ , which is one of the stable topological defects of nematic field and satisfies the anchoring
boundary condition by default [3,4,45–47]. Lastly, c is the water vapor concentration (see Fig. 1)
and D is the diffusivity of vapor in air.

Since we consider slow, natural evaporation, we solve Eqs. (1) and (2) under the assumption
that at a given time, ξ (r, t ) remains uniform in space [i.e., ξ (r, t ) = ξ (t )]. Such uniformity, as
will be explained below, is possible for low Peclet number, i.e., Pe = u0R/Dξ � 1, where Dξ is
the diffusivity of active particles, u0 is the characteristic velocity (we consider volume-averaged
radial velocity for our problem), and R is the radius of the drop. Let us now look into the situation
where this assumption of Pe � 1 will hold. Pe � 1 implies that the flow of the background fluid
is arbitrarily slow, while the diffusion of the particles and particle-particle interactions becomes
dominant. For typical evaporation of a 1-mm water drop (R ∼ 1 mm) under ambient conditions,
one obtains u0 ∼ 10−7 m/s, except in the vicinity of the three-phase contact line at the very late
stages of evaporation [38]. Also, one can consider Dξ ∼ 10−9 m2/s, which is the typical diffusivity
of active particles like bacteria [48]. Under such conditions, Pe = u0R/Dξ ∼ 0.1 � 1. Under such
circumstances of Pe � 1, there occurs an even distribution of particles inside the drop, i.e., one
can ensure a constant density of active particles inside the drop. At increasing velocities, on the
other hand, the flow inside the drop will drive the particles towards the edges of the drop, while
the diffusive flux will “push” the particles against the concentration gradient. Please note that
our assumption of spatially constant density strengthens with increasing humidity and decreasing
ambient temperature. Under such circumstances, if the drop is not saturated with particles, the total
particles in the drop stays constant, i.e.,∫

V (t )
ξ (�r, t )dV = ξ0V0 ⇒ ξ (t ) = ξ0V0

V (t )
, (3)

where ξ0 represents the initial concentration of the particles inside the drop (of initial volume V0).
Typical to studies on drop evaporation, in Eq. (1b), the magnitude of ū⊥ is assumed to be much
smaller than the speed at which the drop relaxes when perturbed. In other words, at timescales
of evaporation, the drop appears to be quasistatic (i.e., in stress equilibrium at all times). This
stems from the fact that the change in the shape of the drop is triggered by the volume loss due
to the drop evaporation. If the drop attains the new stress-equilibrium state corresponding to the
new volume and the new particle concentration much faster than the rate at which the volume
changes, we will observe the drop in a stress-equilibrium state at all times. From Eqs. (1a) and (1b),
we compare the characteristic time τevap (associated with the change in drop height due to evapo-
ration) with the characteristic times τsurface tension (dictating the stresses due to the surface tension
effect) and τactive stress (timescale associated with the active stresses). For reference, we assume a
drop of water showing activity at ambient conditions and find that τevap > τsurface tension × 104 and
τevap > τactive stress × 103–105 (see Appendix D for detailed calculations). These conditions imply
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that the quasistatic drop assumption remains valid. Under such circumstances, for axisymmetric
drop, Eq. (1b) reduces to (see Appendix A for the detailed derivation)

γ
∂

∂r

[
1

r

∂

∂r

(
r
∂h

∂r

)]
+ ξ (t )

r
= 0. (4)

Equation (4) can be solved analytically (see Appendix A) in the presence of the condition
h[r = R(t ), t] = 0 [R(t ) is the drop radius; see Fig. 3(k)] yielding

h(r, t ) = −ξ (t )

4γ

[
r2 ln

(
r

R(t )

)
+ [R(t )2 − r2]

]
+ 
(t )

2R(t )
[R(t )2 − r2] + C(t ) ln

(
r

R(t )

)
. (5)

To satisfy Eq. (1a), constants of integration in Eq. (5) [namely, 
(t ) and C(t )] and the unknown
drop spreading radius, R(t ), must be functions of the evaporation timescale. Using thin-film
approximation and assuming initial pinned-contact-line evaporation stage, we can employ the
volume conservation condition to evaluate 
(t ) [38]:

V̇ = d

dt

∫ R

rin

h(r, t )2πrdr = −
∫ R

rin

J (r)2πrdr

ρ
. (6)

For the pinned CL stage, rin = 0 and R(t ) = R. For continuity at h(0, t ) during the pinned stage,
C(t ) = 0. Using Eqs. (3) and (6), Eq. (5) can be rewritten to provide the dimensionless height, H,
as (see Appendix A for the details)

H (a, T ) = − �

1 − T
(a2 ln(a) + (1 − a2)) +

(
�

2
(1 − T ) + 3�

4

1

1 − T

)
(1 − a2). (7)

Here H = h/R, T = −tV̇ /V0, a = r/R, � = 4V0/πR3 (aspect ratio), and � ξ0R/4γ (dimension-
less activity).

Equation (7) is valid until the time T < TP; for T > TP (TP = 1−√
�/2� is the dimensionless

puncturing time), for extensile drops (i.e., � > 0), Eq. (7) yields H (a = 0, T ) < 0, i.e., the air-
liquid interface of the drop goes below the substrate and hence the solution no longer holds. We must
resolve this issue as the solution must remain physical until the drop evaporates to zero volume.

According to the contact-angle hysteresis (CAH) model proposed by [49,50], contact lines with
contact angles θ , such that θR < θ < θA (θR and θA are receding and advancing contact angles),
remain pinned. Equation (7) shows that at T = TP, the drop surface (air-liquid interface) touches
the ground (at a = 0) tangentially (this is the drop puncturing event), and hence the contact angle
made by the ICL (caused by puncturing) is zero. This is energetically unfavorable under the CAH
model and the contact line at the center must follow a receding motion until θ (aP, T +

P ) = θR (aP is
the nondimensional puncturing radius of the drop) [see Fig. 3(c)]. Since we assumed slow, diffusion-
driven evaporation, the drop will attain its new stress-equilibrium position almost instantaneously
after the puncturing, and we represent this time (nondimensionally) as T +

P . This gives us our
complete set of boundary conditions, θ [ain(T ), T +

P ] = θR [ain is the dimensionless inner radius;
see Fig. 2(e)], H[ain(T ), T ] = 0, and H (1, T ) = 0: these conditions can be used to solve Eq. (1b)
[a third-order ordinary differential equation (ODE)] to obtain the drop dynamics post puncturing.

We see that if θ [ain(T ), T ] = θR, where T > T +
P , for any volume or activity, then it is always true

that θ (1, T ) > θR, which implies that the OCL must remain pinned for a quasistatic extensile drop.
We must employ a numerical solution (see Appendix B) for the drop profile after puncturing

(T > TP) as we cannot find an analytical solution to Eq. (2) for a punctured geometry. Therefore,
we find 
(t ) and C(t ) numerically (see Appendix A for details) such that the boundary conditions
are satisfied along with Eqs. (2a), (2b), and (6). Lastly, we must consider the conservation of
particles, i.e., account for the rate of deposition of active particles at inner and outer contact lines to
determine ξ (t ): this, of course, necessitates solving the transport equation for the polarization field
p [51], which may depend on the exact geometry of active particles. We assume that the density
of the active particles remains constant in the late stage of the evaporation, i.e., ξ (T � Tp) = ξ (Tp)
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FIG. 2. Schematic of the active evaporating liquid drop having a profile defined by the drop height h(r, t )
(with ∂⊥h � 1). The drop evaporates on a substrate defined by profile g(r). c denotes the local liquid vapor
concentration distribution and n is the local unit normal vector to the substrate.

post puncturing. In other words, we assume that the reduction in the drop volume is followed by
an appropriate deposition of the particles. This is an assumption that is straightforward to let go
of, and we can indeed solve the problem even by relaxing this assumption and using a similar
analysis for a much more realistic physical solution. The late-stage evaporation (runaway stage)
and residual pattern are dictated by the number of particles deposited on the drop edges versus
the rise in the concentration of the particles within the drop. The most physical assumption here
would be where we set a cutoff or saturation concentration of the particles. Below this saturation
concentration, we would see a rise in the particle concentration inside the drop, while above the
saturation concentration, the particles would precipitate out of the receding drop.

The reason we made this simplifying assumption of density remaining constant (the drop
density being in the saturated zone) during contact-line receding is because introducing saturation
concentration for active particles would introduce a new free parameter (and hence a new nondi-
mensional parameter) to our solution, which for the most part, will obscure the main physics of
the problem without adding any new insights. To be more specific, all the effects reported in
this paper, namely, the puncturing of the drops, increase/decrease in evaporation time, inside-out
evaporation of the drop, etc., still occur for any (high or low) value of saturation concentration, and
the consideration of the saturation concentration would only act as a correction term. For the clarity
of understanding, and since constant density during the runaway stage is an acceptable simplification
in the community [52], we introduce this assumption to our study (see Appendix B for the details
on the corresponding numerical approach).

It is important to note here that the nondimensional time T (identified above) is the time
corresponding to physical time t normalized by the time the drop would have taken to evaporate
if the rate of evaporation V̇ was constant throughout the evaporation process. Since depinning or
puncturing causes a reduction in the surface area available for the evaporative flux to exit through,
V̇ becomes smaller during these stages. Therefore, typically, we will see that the dimensionless
evaporation time is greater than 1. This is further discussed in greater detail in Fig. 4.

III. RESULTS AND DISCUSSIONS

A. Dynamics of puncturing-vs-nonpuncturing extensile drops

Figures 3(a) and 3(b) show the time-dependent evaporation dynamics of an extensile drop
corresponding to the combination of �, �, and θR that ensures drop puncturing. Figure 3(a) shows
the drop profile for the conditions when the contact line (CL) remains pinned during the evaporation.
The very last profile in Fig. 3(a) denotes the profile (at T = Tp) that corresponds to the onset
of puncturing that forms an ICL [see Fig. 3(e)]. Post puncturing, under CAH, the active stress
ensures that θ at the ICL becomes equal to a critical value (θR) at T = T +

P and the corresponding
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FIG. 3. (a), (b) Height of an evaporating extensile drop undergoing puncturing (for � = 0.05, � = 0.1,
θR = 3◦) for (a) time instants (prepuncturing) when the CL is pinned and (b) time instants (postpuncturing)
when the puncturing-induced ICL recedes but the OCL remains pinned. (c) Transition from the profile at the
onset of puncturing [last profile in 2(a)] to the profile where θ= θR = 3◦ and the ICL starts to recede [first
profile in 2(b); with dimensionless puncturing radius ap]. (d), (e) 3D drop profiles corresponding to (d) a
prepunctured drop profile (T = 0.5) and (e) a postpunctured drop profile (T = 0.65). In (e), dimensionless and
time-dependent inner radius, ain = rin/R0 is noted. In (a) and (b), the dimensionless times associated with the
drop profiles have been identified.

drop profile (from which the ICL starts to recede at evaporation timescales) is the first profile in
Fig. 3(b). Figure 3(c) shows this instantaneous transition. Post puncturing, therefore, the motion
of the drop [of “doughnut” shape; see Fig. 3(e)], occurs with the ICL receding towards the pinned
OCL. Figure 3(b) shows the time evolution of these drop profiles post puncturing. Figures 3(d) and
3(e) respectively provide the three-dimensional (3D) profiles corresponding to the separate drop
profiles at prepuncturing (pinned CL) and postpuncturing (receding ICL but pinned OCL) stages.
Figures 4(a) and 4(b) provide the evaporating drop profiles for �, �, and θR corresponding to no
puncturing for the extensile drop. Figure 4(a) shows the profile for the drop undergoing evaporation
with pinned CL. This leads to a progressive decrease in the contact angle eventually leading to the
contact angle being equal to θR enforcing a subsequent evaporation with the CL receding towards

FIG. 4. (a), (b) Time evolution of the profiles of an evaporating extensile nematic drop undergoing no
puncturing (for � = 0.01, � = 0.1, θR = 3◦) for (a) time instants when the contact line is pinned and (b) time
instants when the contact line recedes. In (a) and (b), the drop profile demarcating the transition between pinned
and receding contact-line cases is shown by a dashed line. (c), (d) 3D drop corresponding to the no-puncturing
case for (c) T = 0.603 (pinned CL case) and for (d) T = 1 (receding CL). In (a) and (b), the dimensionless
times associated with the drop profiles have been identified.
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FIG. 5. Parameter space (for parameters �, �, and θR) for determining whether the drop will undergo
puncturing or not.

the drop center [shown in Fig. 4(b)]. In the absence of puncturing, the ICL does not form; hence the
receding CL motion ensures a progressive shrinkage of the drop [see the corresponding 3D images
in Figs. 4(c) and 4(d)]. Finally, in Fig. 5, we provide the parameter space that determines whether
the evaporating active drop will undergo puncturing: larger � and � and smaller θR seem to promote
drop puncturing.

B. Formation of ring galaxylike deposits

Puncturing of the drop leads to the formation of two separate CLs. As a result, there will be
evaporation-driven liquid fluxes in two separate directions (towards each CL). Figure 6(a) provides
the direction and magnitude of these fluxes at a time after puncturing for the case studied in
Figs. 3(a)–3(e). The fluxes at the ICL and the OCL approach −∞ and +∞, respectively, for
T > Tp, suggesting particles just adjacent to the CLs are strongly pulled towards the CL by the
evaporation-driven mass loss (see [41] for flux distributions for other parameters). Figure 6(b) shows
the evaporative flux, Jz, which induces the liquid fluxes: maximum evaporative fluxes occur at the
locations of the ICL and the OCL with the ICL progressively receding towards the OCL, which
corresponds to increasing ain(T ) [Fig. 3(e) defines ain(T )]. Correspondingly, the active particles
self-assemble and deposit as a single “ring” at the OCL, but they spread out as a diffuse and
continuous band (via self-assembly) with progressively decreasing concentration in the direction of
motion of the ICL. The eventual result, therefore, is a ring galaxylike deposit [Fig. 6(c)]. The relative
concentration of the deposited particles constituting the ring and the diffuse zone depends on (i) the
time of the drop puncturing (since the quicker the puncturing, the greater will be the time span for
which the ICL exists and recedes, thereby leading to a larger concentration of the particles in the
diffuse zone); (ii) the radius of the ICL immediately after puncturing; and (iii) the speed at which
the inner contact line recedes (the lesser this speed the greater will be the time that the particles have
to get deposited). Figure 6(d) provides the numerical results for the trajectory of the ICL [variation
of ain vs T] as functions of � and �. From this figure, one can also obtain the ICL receding velocity
(by estimating the slope). The variation of ap and the corresponding drop puncturing time (TP; see
inset), as functions of � and �, are separately plotted in Fig. 6(e). Finally, Fig. 6(f) provides the
schematic of the expected ring galaxy deposition pattern for different combinations of � and �.
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FIG. 6. (a) Top view of the punctured drop showing the liquid fluxes [quantified in terms of the dimen-
sionless velocity field Uavg = ( ∂a

∂T )
avg

] directed towards the ICL and the OCL. Results are shown for � = 0.25,
� = 0.50, θR = 3◦, and T = 0.95. (b) Flux of vaporized liquid corresponding to different locations of the
receding ICL (which correspond to different values of ain) and fixed OCL. (c) Schematic of the ring galaxylike
particle deposit pattern. (d) Variation of ain vs T for different � and �. Nondimensional puncturing time (Tp)
and puncturing radius (ap) [ap = (ain )T =Tp

] has been indicated for one of the curves. (e) Variation of ap and
Tp (see inset) with � and �. (f) Anticipated ring galaxy deposition patterns for different combinations of �

and �.

C. Extensile-versus-contractile drops

In Figs. 3–6, we have considered the dynamics of an extensile drop and the expected particle
deposition pattern resulting from the evaporation of such drops. Figure 7(a) provides the time
evolution of the drop profiles for the contractile drop characterized by negative activity, i.e., � < 0.
There is no puncturing of the drops and the evaporation-driven drop dynamics first occurs with
the CL pinned, followed by the receding CL. Contractile drops undergo much slower evaporation
(evaporation time can be up to 50% more) as compared to extensile drops. Figure 7(b) shows the
dimensionless evaporation time, Tevap (time needed for the drop volume to reach zero) as functions
of � and �. For extensile drops that puncture, the evaporation time is significantly small, i.e.,
much smaller than the nonactive drops (� = 0) with the same aspect ratio. On the other hand, for
contractile drops (� < 0), Tevap is significantly higher with Tevap increasing with −�. The contractile
drop contracts and pulls the liquid away from the three-phase contact line and towards the drop
center. This reduces the contact angle forcing the contact angle to reach θR much earlier, thereby
enforcing a quicker onset of the drop dynamics with receding CL. Consequently, the drop wetted
radius, R, starts to reduce much earlier for the contractile drops and hence evaporation for contractile
drops predominantly occurs at smaller R values. A corollary to this, the depinning is delayed by
positive, or extensile activity. Evaporation at a smaller R (for the case of the contractile drop) will
lead to a smaller rate of evaporation [as suggested by Eq. (6)], enforcing a greater evaporation time
for contractile drops as compared to the extensile and nonactive drops.
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FIG. 7. (a) Time evolution of the profiles of an evaporating contractile drop (� = −0.04, � = 0.2,
θR = 3◦). At T = 0.53, the contact angle becomes equal to θR (profile shown by dashed line). For T < 0.53,
the drop dynamics occur with pinned CL, while for T > 0.53, the drop dynamics occurs with receding CL.
(b) Variation of the dimensionless evaporation time, Tevap, for different values of � and �. Cases with � � 0
correspond to contractile drops. Tevap for extensile drops that undergo puncturing and nonactive drops (� = 0)
have been separately indicated. In (a), the dimensionless times associated with the drop profiles have been
identified.

IV. CONCLUSIONS

In summary, we reveal that the dynamics of active drops under vortex defects is characterized
by the formation of punctured drops, ring galaxylike deposits of the nematic particles, and a wide
variation in the drop evaporation lifetime. More generally, this study points to the residual structure
formed by biological cell organelles/bacteria that show herd behavior and induce active stress.
Previously, active stresses have been known to trigger small drop motion; here, we show the use
of such active stresses to regulate drop evaporation and evaporation-driven particle patterning. This
is the most significant finding of this paper, which also points to possibilities of achieving the
desired deposition pattern by engineering the polarization field. The unique ability to control the
drop lifetime by changing the nature of the activity (extensile versus contractile) can be leveraged
for applications ranging from slow evaporation-driven crystal growth [53] to fast evaporation-
driven rapid cooling [54,55] and faster stimulation of bacterial osmoregulation for cell viability
assessment [56]. On the other hand, the ability to ensure a ring galaxylike deposition pattern will
enable self-assembly-driven fabrication of components (e.g., superhydrophobic surfaces [57], 3D
nanostructures [58], photonic crystals [59], etc.) that can have a controllable spatial gradient in the
concentration of the constituent materials.

APPENDIX A: ANALYTICAL SOLUTION FOR THE EVAPORATION DROP
DYNAMICS PRIOR TO PUNCTURING

The evaporation-driven evolution of the drop height (h) can be expressed by coupling the
kinematic boundary condition and the continuity, as expressed below:

∂t h = (uz )z=h − (u⊥)z=h · ∇⊥h − Jz/ρ (kinematic boundary condition), (A1)

∇⊥ · u⊥ + ∂zuz = 0 (continuity). (A2)

Here, u⊥ is the in-plane velocity vector field, ∇⊥ represents the gradient in the normal plane,
Jz is the evaporation flux in z direction, and ρ is the density of the drop. Integrating Eq. (A2) with
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respect to z between the limit z = g to z = h (see Fig. 2), and using Eq. (A1), we can write

∂t h + ∇⊥ ·
∫ h

g
u⊥dz + Jz/ρ = 0 ⇒ ∂t h + ∇⊥ · (�hū⊥) + Jz/ρ = 0. (A3)

In Eq. (A3), ū⊥ is the average in-plane velocity vector that can be expressed as

ū⊥ = ∫h
g u⊥dz

h(r, t ) − g(r)
= ∫h

g u⊥dz

�h
. (A4)

Please note that Eq. (A3) is Eq. (1a) in this paper.
We now go to the governing equations for the fluid flow inside the drop. Using the Stokes

equation under lubrication approximation, we can write

μ∇2u − ∇P − ∇ · σ = 0, ⇒ μ∂2
z

[
u⊥
0

]
− ∇P + ∇ · σa = 0. (A5)

In Eq. (A5), P is the pressure, μ is the dynamic viscosity of the liquid, and σa is the active stress
tensor.

The in-plane (r̂) component of Eq. (A5) can be expressed as

μ∂2
z u⊥ − ∇⊥P + (∇ · σa)⊥ = 0. (A6)

We assume a parabolic profile for u⊥ in the z direction [3], i.e.,

u⊥ = α(r, t )
z(2�h − z)

(�h)2 r̂, (A7)

where α(r, t ) is an unknown constant.
Using Eq. (A7) in Eq. (A6), we can obtain

α(r, t ) = (�h)2

2μ
[∇⊥P − (∇ · σa)⊥]. (A8)

The complete velocity vector field, therefore, can be obtained from Eqs. (A7) and (A8). This
velocity vector field, u⊥, can next be used to obtain the average in-plane velocity vector ū⊥, i.e.,

ū⊥ = ∫h
g u⊥dz

h(r, t ) − g(r)
= ∫h

g u⊥dz

�h
= 2

3
α(r, t ). (A9)

Using Eq. (A9) to replace α(r, t ) in terms of ū⊥, one can write

ū⊥ = (�h)2

3μ
[∇⊥P − (∇ · σa)⊥]. (A10)

Under lubrication approximation, the pressure inside the drop is impinged from the surface, and
its variation along the height of the drop (i.e., the z direction) is negligible. The impinged pressure
is given by the Laplace pressure due to surface tension in the fluid “γ ”, i.e., P ≈ γ∇2

⊥h. Hence,
Eq. (A10) reduces to

ū⊥ = (�h)2

3μ
[∇⊥γ∇2

⊥h − (∇ · σa)⊥]. (A11)

Please note that Eq. (A11) is Eq. (1b) in this paper.
We now assume the case where the particles are aligned circumferentially, i.e., p = θ̂ . This leads

to

σa = −ξ (r, z, t )pp ⇒ (∇ · σa)⊥ = −ξ (r, z, t )

r
r̂. (A12)
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We assume ξ (�r, t ), which is the effective concentration of the nematic particles inside the drop,
to be uniform in space at all times; however, we track its value at any given time. The simplest, yet
effective model of doing that is by conserving the total amount of particles inside the drop, i.e.,∫

V (t )
ξ (r, z, t )dV = ξ0V0 ⇒ ξ (t )

∫
V (t )

dV = ξ0V0 ⇒ ξ (t ) = ξ0V0

V (t )
. (A13)

This expression for σa [obtained by using Eq. (A13) in Eq. (A12)], along with the expression for
ū⊥ [see Eq. (A11)], when substituted in Eq. (A3) gives us our final equation of motion:

∂t h + 1

3μ
∇⊥ ·

{
(�h)3

[
∇⊥γ∇2

⊥h − −ξ (t )

r
r̂
]}

+ Jz/ρ = 0. (A14)

The magnitude of ū⊥ is assumed to be much smaller than the speed at which the drop relaxes
when perturbed. In other words, at timescales of evaporation, the drop appears quasistatic (i.e., in
stress equilibrium at all times). Under such circumstances [and using Eq. (A11) to express ū⊥] one
can write

∇⊥γ∇2
⊥h + ξ (t )

r
r̂ = 0. (A15)

Equation (A15) is Eq. (3) in this paper.
The angular component of Eq. (A15) is identically satisfied by putting h(r, θ ) = h(r). On the

other hand, considering the radial component of Eq. (A15), one can write

γ
∂

∂r

(
1

r

∂

∂r

(
r
∂h

∂r

))
+ ξ (t )

r
= 0. (A16)

Please note that Eq. (A16) is Eq. (4) in the main paper.
The drop height can be obtained by integrating Eq. (A16) thrice with respect to r in the presence

of the boundary condition, h(R, t ) = 0, yielding

h(r, t ) = −ξ (t )

4γ

[
r2 ln

(
r

R(t )

)
+ [R(t )2 − r2]

]
+ 
(t )

2R(t )
[R(t )2 − r2] + C(t ) ln

(
r

R(t )

)
, (A17)

where 
(t ) and C(t ) are (to be determined) constants of integration and R(t ) is the unknown drop-
spreading radius.

Please note that Eq. (A17) is Eq. (5) in the main paper.
For the pinned CL evaporation stage, R(t ) = R is a constant. Also, the condition that h(0, t ) is

finite during the pinned CL evaporation stage enforces C(t ) = 0.
We, therefore, now only need 
(t ) to fully obtain the height profile.
To calculate the evolution of 
(t ), we need an additional equation, which we get from the rate

of evaporation and conservation of the drop volume. Following Marín et al. [38], we can write

dV (t )

dt
= V̇ = − 1

ρ

∫ R

0
J (r)2πrdr = −4RDc

ρ
. (A18)

In Eq. (A18), V̇ is the rate of change of drop volume due to evaporation-driven mass loss, D is
the diffusivity of the vapor in air, and c is the vapor concentration at the drop surface.

Using Eq. (A18), one can write (with V0 being the initial volume of the drop)

V (t ) = V0 + V̇ t . (A19)

Also,

V (t ) =
∫ R

0
h(r, t )2πrdr ⇒ dV (t )

dt
= d

dt

∫ R

0
h(r, t )2πrdr. (A20)
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Using Eq. (A17) to express h(r, t) and using Eq. (A13) to replace ξ (t ), one can use Eq. (A20) to
obtain the constant 
(t ) in terms of V̇ [note V̇ is expressed using Eq. (A18)] as

V̇ (t ) = − ξ0V0π

32γV (t )2 V̇ R4 + ξ0V0π

8γV (t )2 V̇ R4 + d


dt

πR3

4
⇒ d


dt
(t ) = V̇

4

πR3

(
1 − 3ξ0V0π

32γV (t )2 R4

)

⇒ 
(t ) = 
(0) + V̇
4

πR3

(
t − 3ξ0πR4

32γ

(
t

V0 + V̇ t

))
. (A21)

Equations (A21) and (A18) ensure that we have a closed-form expression of the drop height using
Eq. (A17). Finally, by trivial algebra, one can reduce the drop height expression to dimensionless
form as

H (a, T ) = − �

1 − T
(a2 ln(a) + (1 − a2)) +

(
�

2
(1 − T ) + 3�

4

T

1 − T

)
(1 − a2), (A22)

where these different dimensionless quantities can be expressed as

H = h

R
, T = −t

V̇

V0
, a = r

R
, 
(t ) = �(1 − T ) + 3�

2

(
1

1 − T

)
, � = 4V0

πR3
, � = ξ0R

4γ
.

(A23)

Please note that Eq. (A22) is Eq. (7) in the main paper.

APPENDIX B: NUMERICAL (SEMIANALYTICAL) SOLUTION
FOR THE POSTPUNCTURING STAGE

One can easily solve the problem of the evaporating drop with the active stresses entirely
numerically by adding the active stress as the body force in the Navier-Stokes equation and by
utilizing the contact angles hysteresis model in the employed numerical package. Nevertheless, for
the present case, it suffices to obtain just the rate of change of volume as a function of inner radius
numerically (by employing Computational Fluid Dynamics just one time).

We solve the dynamics of the punctured drop in two steps. First, we get the drop shape (and hence
the inner punctured radius, rin) as a function of the drop volume V , the active particle concentration
ξ , and the receding contact angle θR. This can be done independently of any rate of change of
volume. Hence, from the first step, we shall get rin(V ).

In the second step, again independently, we can numerically solve (using COMSOL) the rate of
change of drop volume, V̇ , as a function of rin. Hence, from the secoond step, we can get V̇ (rin ).
This will mean that by combining the outputs of steps 1 and 2, we can get V̇ [V (t )].

With this, we have an easy-to-solve ODE:
dV (t )

dt
= V̇ [V (t )], (B1)∫ V (t )

V0

dV

V̇ [V (t )]
= t (V ). (B2)

As already pointed out, the first step aims to obtain rin = rin(V, ξ , θR). For this we need to fix

(t ), R(t ), and C(t ) in Eq. (A17), such that the overall drop volume is V and the contact angle at the
ICL is θ [rin(t ), t] = θR. We see that if θ [rin(t ), t] = θR for any volume or activity, then it is always
true that θ [R(t ), t] > θR, which implies that the OCL must remain pinned, and hence R(t ) = R.

Moving further, mathematically, we have three conditions that we must satisfy:
First condition: h[rin(t ), t] = 0.
Second condition: The drop volume is V .
Third condition: θ [rin(t ), t] = θR.
We have three free variables, namely, 
(t ), rin(t ), and C(t ), to ensure that these three conditions

are satisfied.
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FIG. 8. (a) Zoomed-in snippet of the simulation geometry employed in COMSOL. The bounding box is 50
units×50 units, and the drop is a disk of radius R = 1 unit with the hole of radius rin = 0.4 unit. A boundary
condition of c = 0 has been imposed on the top and right edges of the box, which are at a distance of 50 units
from the center. (b) Zoomed-in plot of Jz(r) vs r for rin = 0.4 for different sizes (length units) of the edge
elements. We find that negligible difference in the results of the flux variation between the cases with edge
elements of sizes 5×10−5 units and 1×10−5 units.

We can get 
(t ) = 
(rin,V, C) by integrating Eq. (A17), i.e.,

V (t ) =
∫ R

rin (t )
h(r, t )2πrdr, (B3)

and subsequently, isolating 
(t ), as shown below:


(rin,V, C) =
(−4C

[−R2 + r2
in − 2r2

in ln
( rin

R

)] + 8V
π

+ ξ

4γ

[
r4

in − R4 − 4r4
in ln

( rin
R

)]
(
R2 − r2

in

)2 + ξ

γ

)
R

2
.

(B4)
This above form of 
(t ) guarantees the volume conservation for all V (t ), C(t ), and rin(t ).

However, it does not necessarily satisfy h[rin(t ), t] = 0.
For any given volume V (t ), and the constant C(t ), there exists a unique rin(t ) such that

h[rin(t ), t] = 0. We solve for this rin(t ) by fixed-point iteration. In this method, we first guess a
radius rg and find the root of h(rg, t ) = 0 for given C and the above-prescribed 
 in Eq. (B4).
We update rg = rg new. We repeat this process until the desired tolerance is reached, i.e., h(rg, t ) <

10−5R. Lastly, we adjust C(t ) by linearly varying it until we satisfy our last boundary condition
θ [rin(t ), t] = θR. Hence, we have a framework to find our drop profile corresponding to any volume
V (t ) and receding angle θR, and the corresponding rin[V (t )]. In other words, this first step yields
rin[V (t )]. Of course, we have to now get this volume V = V (t ). The second step, which is a
numerical exercise, yields this V (t ).

For this second step, to find V (t ), we utilize the partial differential equation solving capabilities
of COMSOL to solve

∇2c = 0, J = D∇c. (B5)

Equation (B5) will be solved numerically with the boundary conditions suggested in Fig. 1.
Please note that Eq. (B5) is the same as Eqs. (2a) and (2b) of this paper. Using the axisymmetric
nature of the problem, we set up Eq. (B3) in COMSOL [with these boundary conditions (see Fig. 1)]
in cylindrical coordinates [see Fig. 8(a)].

We perform our grid convergence and settle with the maximum edge element size of 1×10−5

units; as shown in Fig. 8(b), there is negligible difference in the results of the flux variation between
the cases with edge elements of sizes 5×10−5 units and 1×10−5 units.
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FIG. 9. Numerical simulation result for the flux (shown by arrows) and vapor concentration (shown by
color map) distribution across the punctured drop for the time instant when rin = 0.4 units and R = 1 unit. The
dark green represents zero saturation of vapor at a distance far away from the drop, while white represents
100% saturation that is near the drop surface.

Figure 9 provides the flux and vapor concentration distribution at different cross-sectional
locations of the punctured drop, obtained from this numerical procedure.

Finally, Fig. 10 provides the numerically obtained rate of change of drop volume as a function
of rin, i.e., we get V̇ (rin ). Now from step 1, we have rin(V ). Hence, we can combine these two
outputs to obtain V̇ (V ). This V̇ (V ) can be used in Eq. (B2) to complete the integration and get V (t ).
Once V (t ) has been obtained, we can accordingly obtain 
(t ), rin(t ), and C(t ), and hence h(r, t )

FIG. 10. V̇ (rin )−vs−rin variation. V̇ (rin ) is in units of RD�c/ρ.
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(see step 1). We also have Jz(r) for all values of rin, which can be substituted in Eqs. (1b) or (A3) to
find flux distribution inside the drop [see Fig. 6(b) of this paper].

This completes our derivation required to get the drop height profiles for any punctured drop.

APPENDIX C: SEMIANALYTICAL SOLUTION FOR THE DEPINNING
STAGE (WITHOUT PUNCTURING)

As evident in Figs. 4(c) and 4(d) and Fig. 7(a), extensile drops (for certain combinations of
parameters) and contractile drops will not undergo any puncturing; rather they undergo depinning
and the subsequent evaporation with receding OCL. Such an occurrence becomes possible since the
drop attains the critical receding angle (θR) at the OCL before the drop punctures (or the liquid-air
interface of the drop hits the substrate), i.e., Tdp < Tp (where Tdp is the dimensionless time for
depinning of the OCL). Obviously, for the case of punctured drops, Tdp > Tp, and hence there is
drop puncturing, formation of the ICL, and the occurrence of evaporation with a receding ICL but a
pinned OCL.

These two dimensionless quantities, Tdp and Tp, can be expressed as

Tdp =
2� − θR −

√
−2�� + θ2

R

2�
, Tp = 1 −

√
�

2�
. (C1)

Note that this expression for Tdp is obtained by employing ( ∂H
∂a )

a=1
= θR in Eq. (A22).

We now solve for the depinning case, where Tdp < Tp [i.e., corresponding to the conditions
delineated in the purple region indicated in Fig. 1(j) in the main paper for the extensile drops as
well as for contractile drops]. At T = Tdp, the OCL reaches the receding contact angle (θR), starts
receding, and maintains the receding contact angle at the OCL throughout its lifetime. The form of
the drop profile that satisfies this constant contact-angle condition, for any spreading radius R(t ), is

h(r, t ) = −ξ (Tdp)

4γ

[
r2 ln

(
r

R(t )

)
+ R(t )2 − r2

]
+

(
ξ (Tdp)R(t )

4γ
+ θR

)
R(t )2 − r2

2R(t )
. (C2)

Here, similar to the situation described in Appendix B, ξ (Tdp) represents the activity concen-
tration at the time of depinning, which we assume stays constant by appropriate deposition of the
particles along its receding contact line. At this stage the volume V is given by

V [R(t )] =
∫ R(t )

0
h(r, t )2πrdr = πR(t )3

32

(
8θR − ξ (Tdp)

γ
R(t )

)
, (C3)

which can be inverted to get R[V (t )].
Also, using Eq. (A18), we have the rate of change of volume as a function of the outer radius.

Therefore, we can apply a similar procedure as Eq. (B4) to get t (R), which in turn will provide
the radius as a function of time, i.e., R(t ). This will eventually enable us to solve h(r, t ) for the
depinning stage. As already noted, this solution is valid for both extensile drops (which undergo
depinning without puncturing) and contractile drops.

APPENDIX D: QUASISTATIC DROP CALCULATION

We identify τsurface tension as the timescale dictating the stress associates with the surface tension
effect, τactive stress as the timescale associated with the active stress, and τevap as the characteristic
time associated with the change in drop height due to evaporation. Given that the scaling goes as
h ≈ θRR, and ∇ ≈ 1/R, from Eqs. (1a) and (1b),

τsurface tension ≈ μR

θ3
R γ

, (D1)

τactive stress ≈ μ

θ2
Rξ

, (D2)

τevap ≈ R2ρθR

D�c
. (D3)

033603-15



CHANDEL, SIVASANKAR, AND DAS

We now consider the ratio between τevap and either of the two timescales (associated with the
stresses) separately. If for both the cases, τevap is found to be much larger, one can comment that the
timescale for stress equilibrium is much faster than the timescale for evaporation and hence we can
assume that the quasistatic drop is an excellent assumption for drop evaporation studies.

The ratio of these timescales can be expressed as

τevap

τactive stress
≈ ρRθ3

R(ξR)

μD�c
, (D4)

τevap

τsurface tension
≈ ρRθ4

Rγ

μD�c
. (D5)

For reference, we use the properties of water at room temperature to calculate the characteristic
times, i.e., c = 0.012 kg/m3, D = 2.4×10−5 m2/s, ρ = 1 g/cc, μ = 0.001 Pa s, γ = 0.072 N/m,
and θR = 5◦ = 5π

180 . Additionally, the results in the paper are provided for Rξ ≈ 0.01γ to 0.5γ .
Under these conditions, these stress ratios become

τevap

τactive stress
∼ 2×103–105 (smallest value is for Rξ = 0.01γ ; greatest is for Rξ = 0.5γ ), (D6)

τevap

τsurface tension
∼ 1.45×104. (D7)
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