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Equilibrium bridge solution from a sessile drop
partially covered by another fluid
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We study the equilibrium solutions of a fluid bridge that connects a horizontal solid
substrate with a fluid phase (typically, air) while surrounded by another immiscible liquid.
The shape of each interface is considered as a single curve with axial symmetry and
constant curvature. The interface between the bridge and the air phase is a spherical cap,
while the one between the external liquid and the air has zero curvature. Finally, the
liquid-liquid interface corresponds to portions of onduloids or nodoids. The equilibrium
solution must satisfy the boundary conditions given by Neumann’s at the three fluids
junction (triple point) and Young’s law at the two fluids-solid contact line (at the substrate).
For given fluids, we find that the solution control parameter is the γ angle, which is
the slope of the surrounding interface respect to the horizontal at the triple point. Using
this procedure, we are able to find the γ regions where different kinds of solutions are
possible. In order to assess which solution is more likely to be found in nature, we
compare their surface energies looking for that corresponding to the lowest one. Finally,
we find numerical solutions that consider the presence of a vessel wall containing the
fluids, by using the analytical results to provide guess values needed to initiate the required
iterative process.

DOI: 10.1103/PhysRevFluids.9.033601

I. INTRODUCTION

The knowledge of a drop shape when it is surrounded by other immiscible liquids and/or in
contact with solid bodies is a subject that has always raised interest in fluids mechanic [1]. A
nonexhaustive list of examples includes the shapes of a sessile drop under different wettability
conditions on a solid substrate [2] as well as on another liquid [3–6], or that of a fluid bridge that
connects two solid surfaces such as disks or rings [7–13]. The solution of these basic problems,
even if they seem to have only an academic appeal, can lead to the development of new techniques
to manipulate tiny droplets with application in several fields of industry [14–16].

All of the above-mentioned configurations involve two fluids (usually a liquid and a gas) and a
solid substrate. The inclusion of another liquid phase has also raised interest in the literature [17,18],
as it is the case of compound or multiphase drops. These are comprised of two (or more) immiscible
fluid drops that share an interface with one another, surrounded by a third immiscible fluid. Such
drops exist in several areas, such as multiphase processing, biological interactions within cells, and
atmospheric chemistry. While in the previous cases, the solid substrate does not play a crucial role
in determining the equilibrium shapes, it is essential in a four-phases configuration, consisting of
two liquids, one gas, and a solid, such as the one studied here.

We consider a sessile drop of fluid A with volume VA that rests on planar solid, which is partially
surrounded by a fluid B, so that the contact angle at substrate is θs. The top of the sessile drop is in
contact with another fluid C (see Fig. 1). All fluids are immiscible and, at least, two of them must
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FIG. 1. Schemes of the fluid bridge of volume VA that connects the solid substrate with the free surface.
The configuration has symmetry of revolution around the central axis.

be liquids. Here, we focus on finding the static equilibrium configuration, and not on the dynamics
of the evolution towards it.

The paper is organized as follows. In Sec. II, we formulate the basic problem in a nondimensional
way, and we describe the mathematical procedure used to determine the equilibrium solutions for
the three surfaces. In Sec. III, we analyze different types of solutions showing their characteristics,
number of necks, and their corresponding variations in angle γ . Since, for some specific values of
γ , there are several solutions, we evaluate and compare the surface energies associated with each
one of them, looking for the one with minimum energy. In Sec. IV, we analyze the effects related
to the wettability of the substrate by considering a wide range of contact angles, θs. In Sec. V, we
present numerical results for the problem with boundary walls for fluid B. Section VI is devoted to
summarize the results and discuss their implications.

II. FORMULATION OF THE PROBLEM

In order to obtain a relatively simple equilibrium solution, we restrict our study to axial symmetry
so that each surface, S , can be reduced to a single curve in the r-z plane. A schematical shape is
depicted in Fig. 2. Curve 1 corresponds to SAC (surface of the interface between fluids A and C),
curve 2 to SAB and curve 3 to SBC . At the solid substrate, we consider that curve 2 has a contact
angle θs, which depends on the degree of wettability of the solid by fluid A when surrounded by
fluid B. We also use SAS and SBS to denote the contact surfaces between fluids A and B, respectively,
with the substrate S.

At equilibrium, the angles (α, β, γ ) at the triple point (A-B-C) of coordinates (r∗, z∗) (see Fig. 2)
must satisfy Neumann’s conditions

α + β = arccos

(
σ 2

1 − σ 2
2 − σ 2

3

2σ3σ2

)
, α + γ = π − arccos

(
σ 2

2 − σ 2
3 − σ 2

1

2σ3σ1

)
, (1)

where the subscripts in the surface tensions, σ ’s, account for the corresponding interface. The
scheme in Fig. 2 shows these angles when they are positive. In the special case of a floating lens
(i.e., when fluid A does not touch the substrate) on a liquid B of infinite extension [6,19], we have
γ = 0. If the lens were in contact with the substrate, the interface BC would no longer be flat and
then γ �= 0 at the triple point. As we will discuss later, the value of γ defines the shape of the
equilibrium solutions. It can be shown that the relations in Eq. (1) can be satisfied if the surface
tensions satisfy [6]

−2 min (σ1, σ2) < S = σ3 − σ1 − σ2 < 0, (2)
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FIG. 2. Scheme of the equilibrium solution: A fluid bridge (curve 2) connects the triple point (r∗, z∗) with
the solid substrate where the contact angle is θ . Curve 1 corresponds to the interface between the upper part of
fluid A and fluid C while curve 3 is the interface between fluids B and C. The arrows indicate the increasing
direction of the arc length, q. The angles α, β, and γ are positive in this scheme.

where S is the spreading parameter of A laying on B and surrounded by C. The minimum value
of S assures that the angles (α, β, γ ) can actually be computed, while its maximum value (S = 0)
implies that these angles are null (i.e., A spreads indefinitely over B). Then, under these constraints,
the force balances at the triple point in the horizontal and vertical directions are

σ1 cos α + σ2 cos β − σ3 cos γ = 0, (3a)

σ1 sin α − σ2 sin β + σ3 sin γ = 0. (3b)

Each curve, representing the interfaces, is defined by the Laplace pressure jump condition:

�pi = σiκi = σi

(
1

R‖,i
+ 1

R⊥,i

)
, (4)

where κi is the curvature of the ith curve and R‖,i and R⊥,i are the curvature radii in the r-z plane
and in the perpendicular plane that contains the normal to the curve i at the point, respectively.
Besides, the pressure equilibrium implies that the sum of the pressure jumps, �pi = σiκi at the
three interfaces, must be zero, so that

σ1κ1 + σ2κ2 + σ3κ3 = 0. (5)

Note that these curvatures are constant along the curves, since gravity effects are neglected.
We define the radius of a spherical shape of volume VA

R0 =
(

3VA

4π

)1/3

(6)

as a characteristic length, where

VA =
∫ z∗

0
πr2(z2)2 dz2 +

∫ z1(r1=0)

z∗
πr1(z1)2 dz1. (7)

As a consequence, the dimensionless volume of fluid A is VA = 4π/3.
Also, by considering σ1 as the reference surface tension, we define the following dimensionless

ratios:

η = σ2

σ1
, ζ = 1

2

(
1 + η − σ3

σ1

)
. (8)
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Thus, the restrictions in Eq. (2) imply

η > 0, 0 < ζ < min(1, η). (9)

Therefore, Eqs. (3a), (3b), and (5), can be written in dimensionless form as

cos α + η cos β − (1 + η − 2ζ ) cos γ = 0, (10a)

sin α − η sin β + (1 + η − 2ζ ) sin γ = 0, (10b)

κ1 + ηκ2 + (1 + η − 2ζ )κ3 = 0, (10c)

where the κi’s are now in units of R0.
In order to obtain the shape of each curve, we have to solve [6,19]

κi = z′
i

ri
(
1 + z′

i
2)1/2 + z′′

i(
1 + z′

i
2)3/2 = const., (11)

where zi = zi(r) and prime stands for d/dri. Since the curve 3 extends to infinity, we consider [see
Eq. (5)],

κ3 = 0, ⇒ κ1 = −σ2

σ1
κ2 = −ηκ2. (12)

In the following, we proceed to calculate the solutions for each curve with curvatures κi, i = 1, 2, 3.

A. Solution for curve 1

In this case, since the curve passes through the symmetry axis, we have R‖,1 = R⊥,1 ≡ R1, so
that κ1 = 2/R1. Its value is given by

κ1 = 2 sin α

r∗
, (13)

where r∗ is the radius of the triple point (see Fig. 1). Therefore, curve 1 corresponds to the
circumference

z1 =
[( r∗

sin α

)2
− r2

1

]1/2

+ zd , (14)

where zd is to the vertical displacement of the center of the spherical cap needed to meet the
circumference with the other two curves at (r∗, z∗).

B. Solution of curve 3

By considering both Eqs. (11) and (12), the ordinary differential equation (ODE) for curve 3
takes the form:

z′′
3

1 + z′
3

2 = − z′
3

r3
. (15)

This equation can be easily integrated to yield:

ψ√
1 + ψ2

= λ1

r3
, (16)

where λ1 is a constant and ψ = z′
3. Solving for ψ , we have

ψ = dz3

dr3
= λ1√

r2
3 − λ2

1

. (17)
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Here, we have taken the positive square root, so that the sign of λ1 determines that of ψ . By
performing a second integration, we find

z3 = λ1 ln

(
r3 +

√
r2

3 − λ2
1

)
+ λ2, (18)

with λ2 = const. Note that this equation can be inverted to:

r3 = λ1 cosh

(
z3 − λ3

λ1

)
, (19)

where λ3 = λ2 + λ1 ln λ1. Thus, the shape of curve 3 is that of a catenary. In the triple contact point,
(r∗, z∗), we have ψ = tan γ , so that the constants are given by:

λ1 = r∗ sin γ ,

λ2 = z∗ − r∗ sin γ ln [r∗(1 + cos γ )] = z∗ − r∗ArgCosh

(
1

sin γ

)
.

(20)

As a result, we observe that the shape of curve 3 is determined for given (r∗, z∗, γ ), as well as
that of curve 1, since both α and β depend on γ [see Eq. (3)]. Therefore, we focus now on obtaining
curve 2, which together with curve 1 enclose the dimensionless volume of fluid A, VA = 4π/3.

C. Solution for curve 2

In order to calculate curve 2, it is convenient to rewrite Eq. (11) in terms of its slope defined as

z′
2 = dz2

dr2
= − tan θ. (21)

Thus, we obtain

cos θ
dθ

dr2
+ sin θ

r2
= −κ2, (22)

or equivalently,

1

r2

d

dr2
(r2 sin θ ) = −κ2. (23)

By using Eqs. (5), (8), and (13) with κ3 = 0, we have

1

r2

d

dr2
(r2 sin θ ) = 2

η

sin α

r∗
. (24)

Upon integration, we find

r2 sin θ = 1

η

r2
2 sin α

r∗
+ C1, (25)

where C1 is an integration constant. This solution can be written as a quadratic expression for x =
r2/r∗ as

x2 − η
sin θ

sin α
x + η

C1

r∗ sin α
= 0. (26)

Note that this is an ODE for x(y) with y = z2/r∗. In fact [see Eq. (21)],

sin θ = 1√
1 + x′2

, (27)
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FIG. 3. Typical shapes for real and positive values of xm and xs: (a) onduloid, (b) nodoid. The final solution
that fulfills the boundary conditions is given by a portion of these curves.

where x′ = dx/dy. For each sign of the square root, we obtain a different ODE for x(y), namely,

x2 ± η

sin α

x√
1 + x′2

+ η
C1

r∗ sin α
= 0. (28)

Interestingly, the solution of this equation is an onduloid, xO(y), for the minus sign, and a nodoid,
xN (y), for the plus sign [20]. Schematic representations of these types of curves are shown in Fig. 3.

In order to calculate C1, we apply the boundary condition at the substrate:

θ = θs at x = xs, (29)

where xs = rs/r∗. Thus, from Eq. (26) we have (including the two possible signs):

C1 = r∗ sin α

η
xs

(
−xs ± η

sin θs

sin α

)
, (30)

and, consequently, the quadratic expressions for both the onduloid, xO(y), and the nodoid, xN (y),
are (see Fig. 3):

xO

(
xO − η

sin θ

sin α

)
− xsO

(
xsO − η

sin θs

sin α

)
= 0, (31a)

xN

(
xN + η

sin θ

sin α

)
− xsN

(
xsN + η

sin θs

sin α

)
= 0. (31b)
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These equations must also be satisfied at the other extreme of the curve 2, namely, the triple
contact point, where xN = xO = 1 and θ = π − β:(

1 − η
sin β

sin α

)
− xsO

(
xsO − η

sin θs

sin α

)
= 0, (32a)

(
1 + η

sin β

sin α

)
− xsN

(
xsN + η

sin θs

sin α

)
= 0. (32b)

The roots of these quadratic equations yield the values of xsO and xsN for each type of solution.
Both α and β are determined by Eqs. (10a) and (10b), and can be considered functions of γ for
given values of the parameters η and ζ . Therefore, these roots are determined solely by the pair
(θs, γ ). Moreover, the solutions (either onduloid or nodoid) can exist only for both real and positive
values of xsO and xsN .

Interestingly, the solution x(y) may have turning points (i.e., maximum or minimum x values) as
it connects the extremes x = xs and x = 1. The x coordinates of these points, xm, are given by the
condition sin θ = 1, and they satisfy:

xmO

(
xmO − η

sin α

)
− xsO

(
xsO − η

sin θs

sin α

)
= 0, (33a)

xmN

(
xmN + η

sin α

)
− xsN

(
xsN + η

sin θs

sin α

)
= 0. (33b)

Thus, xmO and xmN can be obtained after xsO and xsN have been calculated from Eq. (32). In
Fig. 3, we show the characteristic shape of onduloids and nodoids bounded by the xm values. Note
that only a portion of the onduloid or nodoid will be of interest to build up curve 2.

Finally, the expression for the ODE of the onduloid (nodoid) can be obtained by replacing
Eq. (27) and Eq. (32a) [Eq. (32b)] into Eq. (31a) [Eq. (31b)], and solving for x′

O (x′
N ). Thus, we

have

zO = r∗yO = r∗
∫ x

xsO

dx

x′
O

= r∗
∫ x

xsO

η sin β + (x2 − 1) sin α√
(η x)2 − [η sin β + (x2 − 1) sin α]2

dx, (34a)

zN = r∗yN = r∗
∫ x

xsN

dx

x′
N

= r∗
∫ x

xsN

η sin β − (x2 − 1) sin α√
(η x)2 − [η sin β − (x2 − 1) sin α]2

dx, (34b)

which can also be written in terms of elliptical integrals of the first and second kind. The resulting
expressions are quite cumbersome, we solve them numerically. As we will see below, they must be
restricted to z intervals where the slope x(z) is monotonously increasing or decreasing.

In Fig. 4, we schematically show the possible shapes for xs smaller, larger and between the xm

values. If xm < xs, two solutions exist: one with β < 90◦ that presents a neck [blue line in Fig. 4(a)],
while the other with β > 90◦ does not [red line in Fig. 4(a)]. For xm1 < xs < xm2 [see Fig. 4(b)],
curve 2 is bounded by two turning points, so that onduloids can have different number of necks.
Finally, for xs < xm [see Fig. 4(c)], there are solutions only for β > 90◦.

III. EQUILIBRIUM SOLUTIONS

In order to obtain the full equilibrium solution of a fluid bridge, we need to characterize the
fluids involved in the problem by giving η and ζ (i.e., the relations between the surface tensions of
the three fluids), as well as the wettability of the solid substrate, the contact angle, θs. Once these
parameters are given, Eqs. (31)–(33) determine the γ intervals where solutions can exist, i.e., where
xs is real and positive. Despite the fact that they can be found for all γ within (−180◦, 180◦), here
we focus only 0◦ � γ � 90◦, since this is the γ range where curve 3 (the catenary) is physically
meaningful.
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FIG. 4. Schemes of possible shapes of curve 2 (onduloid or nodoid) for real and positive values of xm and
xs. (a) For xm < xs, two solutions are possible depending on angle β at the triple point. For β < 90◦, it is given
by the blue curve, which connects xs with the triple contact point through a neck. Instead, for β > 90◦, it is
given by the red curve which is shorter than the blue one and monotonously connects xs with the triple point.
(b) For xm1 < xs < xm2, the solution is bounded by xm1 and xm2 (see Fig. 3). The conditions at the triple point
(x = 1) can be satisfied at different y’s, which are determined by the value of β. (c) For xs < xm, the solution
must be monotonous so that the only possibility is to meet the triple contact point with β > 90◦, analogously
to the red curve in (a).

In Fig. 5, we show the positive roots xs and xm for both onduloids [Fig. 5(a)] and nodoids
[Fig. 5(b)] as a function of γ for (η, ζ , θs) = (0.8, 0.2, 45◦). In the case of the onduloid, it can be
seen in Fig. 5(a) that the solutions do no exist within the interval 7.29◦ < γ < 26.75◦ (gray zone),
where real and positive xsO’s cannot be found. Instead, Fig. 5(b) shows that no nodoid solution
exists for 40.81◦ < γ < 70.30◦ (gray zone), where real and positive xsN ’s can neither be found.
Interestingly, both types of solutions exist in γ regions where Eqs. (31a) and (31b) yield at least one
real and positive root. By combining the results shown in Figs. 5(a) and 5(b) (see the vertical lines),
we summarize the types of possible solutions for each γ in Table I.

For given γ , it is possible to find the complete shape of the fluid bridge by solving Eqs. (14)
and (34). In Fig. 6, we show the solutions for γ = 3◦, 30◦, 38◦, and 75◦ (see Table I). These values
correspond to regions where three equilibrium solutions are possible. On the one hand, Figs. 6(a)
and 6(b) show the cases for γ smaller than the asymptotic value γ = 34◦ where two onduloids and

FIG. 5. Radius of the foot bridge, xs = rs/r∗, and radius with vertical slope, xm = rm/r∗, in units of the
triple point radius, as a function of γ (see Fig. 2) for (η, ζ , θs ) = (0.8, 0.2, 45◦). (a) Onduloids: There is no
solution for γ < 0 since xmO > xsO as well as for 7.9◦ < γ < 26.7◦ (between dashed lines) because xsO is not
real and positive. (b) Nodoids: There is no solution for 40.8◦ < γ < 70.3◦ because xsN is not real and positive.
Both the vertical solid lines (asymptotes of the curves) and the dashed lines are the borders of the γ regions
indicated in Table I.
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TABLE I. Types of solutions within intervals of the angle γ for (η, ζ , θs ) = (0.8, 0.2, 45◦).

Zone γ interval Solutions In Fig. 6

I (0◦, 7.9◦) 2 onduloids, 1 nodoid (a) γ = 3◦

II (7.9◦, 26.7◦) 1 nodoid
III (26.7◦, 34◦) 2 onduloids, 1 nodoid (b) γ = 30◦

IV (34◦, 40.8◦) 1 onduloid, 2 nodoids (c) γ = 38◦

V (40.8◦, 70.3◦) 1 onduloid
VI (70.3◦, 77.1◦) 1 onduloid, 2 nodoids (d) γ = 75◦

VII (77.1◦, 90◦) 1 onduloid

one nodoid can occur. On the other hand, Figs. 6(c) and 6(d) show two nodoids and one onduloid
that can exist for γ > 34◦. It should be mentioned that, for 60.35◦ < γ < 90◦, the curve 1 with the
onduloid touches the bottom (z = 0) before reaching the symmetry axis and, therefore, it does not
have physical meaning. This fact can be seen in Fig. 6(d) at zb

O (black line) for γ = 75◦, so that this
onduloid (even if it exists) is meaningful only for γ < 60.35◦. Nevertheless, we still have two valid
solutions of the nodoid type corresponding to zone VI in Table I.

FIG. 6. Equilibrium solutions for (η, ζ , θ ) = (0.8, 0.2, 45◦) and different values of γ (see Table I). (a) Zone
I, γ = 3◦ (α = 31.05◦; β = 47.41◦), (b) Zone III, γ = 30◦ (α = 4.05◦; β = 74.41◦), (c) Zone IV, γ = 38◦

(α = −3.95◦; β = 82.41◦), (d) Zone VI, γ = 75◦ (α = −40.95◦; β = 119.41◦). In (a) and (b), we have two
onduloids (za

O and zb
O) and one nodoid (zb

N ). In (c) and (d), we have one onduloid (zb
O) and two nodoids

(za
N and zb

N ).
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FIG. 7. Different equilibrium solutions for the same set of physical parameters (η, ζ , θ ) = (0.8, 0.2, 45◦)
and γ = 3◦. Onduloid solutions for: (a) one neck, (b) two necks, and (c) three necks.

Furthermore, if γ is within a region where 0 < xmO,1 < xsO < xmO,2, several periods of the
onduloid may occur before it reaches the triple point, x = 1. As one considers an increasing number
of periods, i.e., more necks, the solution must become narrower and higher due to the conservation
of the bridge volume An example of this case is shown in Fig. 7 for γ = 3◦. On the contrary, this
kind of periodic construction cannot be performed with the nodoids since it would require to include
regions with loops [see Fig. 3(b)].

A. Energetic analysis

As noticed in the previous sections, it is possible to obtain different solutions for the shape of
the bridge depending on the value of γ for given (η, ζ , θs). Here, we consider the surface energy of
each solution, since we expect that the one with the lowest energy is more likely to be observed in
nature. Therefore, we focus only on one neck solutions, since a higher number of necks increases
the bridge surface, and consequently, its energy.

The surface energy of the bridge can be calculated as:

Eb = σ1SAC + σ2SAB + σ4SAS + σ0(SS − SAS ) + σ3SBC, (35)

where σ0 and σ4 are the fluid B substrate and fluid A substrate surface tensions, respectively, and SS

is the area of the substrate surface.
In order to define a reference energy, we consider a configuration consisting of a single drop of

fluid A sitting on the substrate and completely covered by fluid B, so that its energy is given by

E0 = σ1Sd + σ4S ′
d + σ0(SS − S ′

d ) + σ3SS, (36)

where Sd and S ′
d stand for the free and footprint surfaces of the fluid A drop, respectively. Therefore,

the net energy of the bridge is

�E = Eb − E0 = σ1(SAC − Sd ) + σ2[SAB − cos θs(SAS − S ′
d )] + σ3(SBC − SS ), (37)

where we have used Young’s law:

cos θs = σ0 − σ4

σ2
. (38)

In dimensionless form, we have

�E = �E
σ1R2

0

= (SAC − Sd ) + η[SAB − cos θs(SAS − S′
d )] + (1 + η − 2ζ )(SBC − SS ), (39)
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FIG. 8. Capillary energy of the bridge, �Er , as a function of the angle γ . The solid vertical lines separate
the zones named in Table II. The minimum energy solution as γ increases is a nodoid [black line, (0◦, 29◦),
zone I], an onduloid [blue line, (29◦, 34◦), zone II], a nodoid [black line, (34◦, 38.7◦), zone III], an onduloid
[blue line, (38.7◦, 60.35◦), zone IV], a nodoid [black line, (70.3◦, 77.1◦), zone VI]. There is no solution with
physical meaning in zones V (60.35◦, 70.3◦), and VII (77.1◦, 90◦).

where

SAC = 2πr2
∗

1 − cos α

sin α
, SAS = πr2

s , Sd = 2πr2
d

1 − cos θs

sin θs
, S′

d = πr2
d , (40)

SBC =
∫ rw

r∗
2πr

(
1 + z′

3
2)1/2

dr, SS = πr2
w, (41)

rw is the radius of the vessel (wall) containing the fluids, and

rd = 2 cos (θs/2)

[sin (3θs/2)]1/3 (42)

is the fluid A sessile drop radius.
The surface SBC in Eq. (41) turns out to be:

SBC = π
[
r2
wδ(rw ) − r2

∗δ(r∗)
] + log

[
rw

r∗

1 + δ(rw )

1 + δ(r∗)

]
πr2

∗ sin2 γ , (43)

where

δ(r) =
√

1 − r2∗
r2

sin2 γ , (44)

Note that SBC − SS in Eq. (39) gives −πr2
∗ for γ = 0. However, for γ �= 0 and rw → ∞, this

difference is not finite but diverges logarithmically, even if SBC/SS tends to one for rw → ∞. This
means that, even if the slope z′

3 in Eq. (41) decreases as 1/rw, the area SBC increases for large rw.
Therefore, we will not consider the last term in Eq. (43), which accounts for the divergence in order
to preserve the information about the energy of the bridge surfaces. Instead, we retain only the
first term, so that SBC − SS → −πr2

∗ cos γ for rw → ∞. Thus, the definition of the reduced system
difference energy is

�Er = (SAC − Sd ) + η[SAB − cos θs(SAS − S′
d )] − (1 + η − 2ζ )πr2

∗ cos γ . (45)

In Fig. 8 we show �Er (γ ) for 0 � γ � 90◦ where different regions can be observed. The gray
regions correspond to onduloid solutions that have z1 < 0, which invalidates them, so that �Er (γ )
is not calculated for these γ ranges. Note also that the onduloid and nodoid solutions for γ = 34◦
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TABLE II. Lowest-energy solutions in the interval 0◦ � γ � 90◦ for (η, ζ , θs ) = (0.8, 0.2, 45◦).

γ interval Lowest-energy solution

I (0◦, 29◦) nodoid
II (29◦, 34◦) onduloid
III (34◦, 38.7◦) nodoid
IV (38.7◦, 60.35◦) onduloid
V (60.35◦, 70.3◦) no solution
VI (70.3◦, 77.1◦) nodoid
VII (77.1◦, 90◦) no solution

[at the asymptote of x(y) in Fig. 5] are coincident, and therefore, have the same energy. In Table II,
we indicate the type of solution with the lowest energy for each γ region.

In order to determine if the lowest-energy solution is prone to be unstable under perturbations,
a stability analysis would be required, analogously to what was done for bridges between axisym-
metric bodies [21]. This task is out of the scope of the present work.

IV. EFFECTS RELATED WITH DIFFERENT CHOICES OF THE PARAMETERS

In the previous section, we have focused our attention on obtaining detailed solutions for a set of
parameters (η, ζ , θs). Here, we consider the effects of varying the wetting conditions at the substrate
as given by the contact angle, θs. As shown above, the existence of solutions is basically determined
by the fact that positive real values of xs can be found. Moreover, the shapes of the solutions depend
on the relation between xm, xs and θs.

Different θs’s define the γ regions where the solutions are possible. In Fig. 9, we show xs and
xm as a function of γ for both the onduloid and the nodoid solutions by considering some values
of θs < 90◦. Blue lines correspond to xm(γ ) and red ones to xs(γ , θs), while arrows indicate the
increasing direction of θs. Interestingly, for θs = 60◦ both roots of xs [see Eq. (32)] are coincident
and this fact corresponds to the crossing point of the red curves in Fig. 9. For θs > 60◦, the red
curves xs(γ , θs) approach to the blue lines xm(γ ), and are coincident for θs = 90◦.

FIG. 9. Effects of contact angle, θs, for (η, ζ ) = (0.8, 0.2). The blue lines correspond to xm(γ ) and the red
ones to xs(γ , θs ) for 0 < θs < 90◦. (a) Onduloids and (b) nodoids. The arrows indicate the increasing direction
of θs for θs = 0◦, 10◦, 20◦, 30◦, 40◦, 50◦, 59◦, 60◦, 61◦, 65◦, 70◦, 90◦. In particular, for θs = 60◦ both roots of
xs [see Eq. (32)] are coincident and corresponds to the crossing point of the red curves.
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TABLE III. Boundary conditions for the six equations in Eq. (46).

Curve 1 Curve 2 Curve 3

r(qi = 0) 0 rs rw

r′(qi = 0) L1 −L2 cos θs −L3

z(qi = 0) h1 0 hw

z′(qi = 0) 0 L2 sin θs 0

As indicated in Fig. 4, the relation between xs and xm is a key issue in order to assert which
type of solution is to be found (onduloid or nodoid), before performing the integration of Eq. (34).
Therefore, Fig. 9 allows us to determine the values of xs and xm for given γ and θs. The same
procedure applies when parameters like η or ζ are changed.

V. NUMERICAL SOLUTION

The previous analytical solution is very helpful to describe all possible configurations when
gravity is negligible. Moreover, it constitutes a good starting point to analyze more complex
situations, as we will discuss in this section. However, it has some drawbacks that must be borne
in mind. In fact, the imposed zero curvature of surface 3 implies an unbounded height as radius
increases. Therefore, this solution does not take into account the finite size of the vessel containing
the liquids. Another drawback of the present analytical solution is that it precludes the addition of
gravity effects, which requires surfaces of nonconstant curvature. In order to overcome these issues,
one must resort to numerical methods to solve the complete problem. Here, we present numerical
results for the problem within a finite vessel and leave for future work the inclusion of gravity
effects.

The methodology is a modified version of that we used for liquid lenses in Ref. [6]. It consists of
an iterative scheme that solves six coupled nonlinear second-order ODE’s and their corresponding
12 boundary conditions with nine unknown constants to be consistently determined. The main phys-
ical differences between the analytical and numerical approaches are that the constant curvatures of
each surface are free parameters to be determined in the numerical case, and that curve 3 has zero
slope at a fixed and large enough value of r. The latter is equivalent to a 90◦ contact angle at the
distant wall of the containing vessel, r = rw.

The expressions of Eq. (11), which give the Laplace (capillary) pressure jumps along the curves
1, 2, and 3 in terms of zi(ri ), can be written [6,19] in a parametric form as

r′′
i (qi ) = z′

i(qi )

[
z′

i(qi )

ri(qi )
− Li�Pi

]
, (46a)

z′′
i (qi ) = −r′

i (qi )

[
z′

i(qi )

ri(qi )
− Li�Pi

]
, (46b)

where [ri(qi ), zi(qi )] are the dimensionless cylindrical coordinates in units of R0 and �Pi =
R0�pi/σi are the dimensionless pressure jumps. Here, qi = s/Li is the scaled arc length along
the curves, where s is the arc length and Li is the dimensionless total arc length of the ith curve.
Consequently, we have

L2
i = r′

i (qi )
2 + z′

i(qi )
2 = const. (47)

Since we define qi = 1 at the triple point where all curves meet and end up, the point where they
begin corresponds to qi = 0. Note that the coordinates [ri(0), zi(0)] are (0, h1) for curve 1, (rs, 0)
for curve 2, and (rw, hw ) for curve 3 (see Fig. 2).

In Table III, we summarize the 12 boundary conditions needed for the integration of the six
second-order differential equations in Eq. (46). However, these equations have six unknowns,
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namely, three �Pi’s and three Li’s. Moreover, the conditions listed in Table III add the following
three additional parameters: rs, h1, and hw, while the contact angle θs is given. Therefore, we have
nine unknowns in total:

U = (�P1,�P2,�P3, L1, L2, L3, rs, hw, h1), (48)

so that we need nine constraints to solve the problem.
The first four constraints come from the fact that all three curves must meet at the triple point of

coordinates (r∗, z∗). Thus, we have

r∗ = r1(q1 = 1) = r2(q2 = 1) = r3(q3 = 1), (49a)

z∗ = z1(q1 = 1) = z2(q2 = 1) = z3(q3 = 1). (49b)

Other three constraints are given by the slopes of the curves at q = 1, as:

dz1

dr1
= − tan α,

dz2

dr2
= tan β,

dz3

dr3
= tan γ . (50)

The last two conditions come from the pressure balance, Eq. (10c), and the volume conservation of
fluid A, which in dimensionless and parametric form is [see Eq. (7)],

VA = π

(∫ 1

0
r2

2z′
2dq2 +

∫ 1

0
r2

1z′
1dq1

)
= 4π

3
. (51)

Therefore, the problem can be completely solved by means of Eqs. (10c), (49)–(51) for given values
of η, ζ , θ , γ , and rw.

In order to obtain the solution, we develop an algorithm that numerically integrates Eq. (46)
by using Runge-Kutta methods inside a Newton-Raphson routine that iteratively changes the set
of parameters U in Eq. (48) to satisfy all the constraints. This procedure requires to start the
iteration with a guess value of U . The analytical solution, ri(zi) or zi(ri), obtained in the previous
sections provides a good starting point for this initial guess. In fact, for given η, ζ , θs, γ , and rw we
obtain:

�P1 = −κ1, L1 = r∗αl/ sin αl , rs = r2(z2 = 0),

�P2 = ηκ2, L2 = L̃2, hw = z3(r3 = rw ),

�P3 = ε, L3 = rw − r∗, h1 = z1(r1 = 0), (52)

where L̃2 is the length of curve 2 of the analytical solution. We typically use ε = 10−5 and rw = 30.
Since several solutions may be possible for given (η, ζ , θs, γ ) (see Table I), we must consider their
corresponding set of guess values.

In Fig. 10, we show the analytical and numerical solutions for (η, ζ , θ, γ ) = (0.8, 0.2, 45◦, 3◦),
where it can be seen that they are very similar for both the onduloid and nodoid case. The main
differences are observed in curve 3 where the zero slope condition at r = rw in the numerical
solution generates a slight change of its shape. We also note that, despite being small, the numerical
curvature κ3 is not strictly zero. These differences are a consequence of the addition of the
constraints at the wall. If the wall is sufficiently far from the bridge, they are small enough to
be neglected.

Note that the numerical solution yields a finite VB for given rw. Therefore, this volume of fluid
B should be used in an experiment if one wishes to obtain the same solution for the same rw.
Conversely, for arbitrary values of VB and rw, no solution might exist for the problem. This may
happen when there are no analytical solutions for certain γ ranges (see Table I), as we have actually
checked in our own numerical scheme since it does not converge.
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FIG. 10. Comparison between numerical and analytical solutions for (η, ζ , θ, γ ) = (0.8, 0.2, 45◦, 3◦):
(a) onduloid case and (b) nodoid case. The main differences between the solutions are in curve 3 because
the numerical solution is obtained with a finite volume of fluid B as well as with dz/dr = 0 at r = rw = 30.

VI. SUMMARY AND CONCLUSIONS

In this work, we obtain families of equilibrium solutions for the problem of a fluid volume VA in
contact with a solid substrate and partially emerging from a surrounding immiscible fluid B, while
a third one, C, completely covers both of them. These solutions are obtained analytically from the
physical constraints given by the Neumann’s equilibrium equations, the matching of all three curves
at the triple point, the wetting condition at the substrate and the conservation of volume VA.

We show that the solution is determined by four parameters, namely: (i) the ratios of two surface
tensions η, (ii) the spreading factor, ζ , (iii) the contact angle at the solid substrate, θs, and (iv) the
γ angle at the triple contact point. Only γ is neither determined by the type of liquids nor the
solid substrate, so that it becomes the control parameter of the problem. In particular, the analytical
equilibrium solution is composed by a spherical cap for curve 1, a catenary for curve 3, and either
an onduloid or a nodoid for curve 2. Interestingly, we find that several solutions coexist for the same
set of physical parameters and the same γ in some cases, while in others, there is no solution at all.

Through a first integration of the governing equations and applying the boundary conditions, we
are able to determine which kind of solutions are possible for given γ . This is done by comparing the
relative positions of the solid contact line, rs, the turning points of curve 2, rm, and the triple contact
line, r∗. Thus, we were able to perform the second integration to obtain the final shape of curve 2.
We also calculate the surface energy of the solutions in order to assert which one is more likely to be
observed in nature when more than one theoretical solution can be found. We consider the effects of
changing the solid substrate wettability by varying θs and describe a graphical methodology to infer
which kind of solution is to be obtained, before performing the second integration of the ODE’s.

Finally, we implement an algorithm with an iteration procedure that numerically solves the six
coupled equations with more realistic boundary conditions, such as a real vessel containing the
fluids and a 90◦ contact angle at the vessel border. We implement an iterative scheme leading to a
converged numerical solution that uses the analytical results for the infinite vessel as a starting guess.
We find that there no significant differences between them when the vessel radius is sufficiently
large. Looking forward, we plan to use this numerical scheme to approach more complex scenarios
where gravity effects are taken into account, since they can be included straightforwardly in
the scheme.
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