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In convective fluids, small vortices develop between neighboring convective cells. Fa-
miliar in the atmosphere in the form of dust devils and water spouts, these convective
vortices have been seen in simulations of oceanic convection where the vortices exhibit an
unexplained bias towards cyclonic rotation despite having a large Rossby number. Here we
use large eddy simulations (LES) of an idealized oceanic convective mixed layer and vary
independently the Coriolis acceleration and the surface buoyancy flux to investigate the
development of the cyclonic bias of convective vortices. While large convective vortices
are biased for sufficiently large values of the Coriolis parameter, small convective vortices
do not exhibit a clear bias. Using Lagrangian particles, we find that the large convective
vortices develop through the merger of many small convective vortices. We propose a
statistical theory to predict the cyclonic bias of large convective vortices composed of
many small unbiased convective vortices and test the theory using LES results. We apply
the theory to typical convective conditions and find that convective vortices in upper ocean
mixed layers are expected to exhibit a bias, while convective vortices in the terrestrial and
Martian atmospheres are expected to be largely unbiased.

DOI: 10.1103/PhysRevFluids.9.033503

I. INTRODUCTION

Thermal convection can occur when a fluid is heated from below or cooled from above, leading
to an unstable density configuration. Convection is characterized by a regular, often hexagonal [1,2],
pattern with narrow and intense convergent plumes surrounding large, weak areas of horizontally
diverging fluid. Small “convective vortices” with a vertical axis of rotation develop in convective
flows, particularly in the vertices joining two or more convective cells. In the terrestrial [3–5] and
Martian atmosphere [4,6–8], convective vortices are sometimes made visible by entrained dust
and sand and are commonly referred to as dust devils (or water spouts if they form over a body
of water). On Earth, dust devils significantly increase the airborne transport of particles [9–13],
which has potential to impact the weather and climate [14] or be hazardous to aircraft [15,16]. For
similar reasons, Martian convective vortices with a high dust load could pose challenges towards
future exploration of Mars [4]. Recent computational studies have observed convective vortices in
the ocean surface boundary layer [17,18]. Here convective vortices trap buoyant material such as
microplastics and oil droplets which are preferentially accumulated in small clusters at the surface
[17,18], with implications for marine life and safety [19–21].
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It is often assumed that planetary rotation does not have a direct influence on convection in
boundary layers in the atmosphere and ocean [22–24]. The relative importance of the nonlinear
advection and Coriolis terms in convective flows is set by the convective Rossby number, Ro∗ =
|B0|1/2 f −3/2H−1, where B0 is the surface buoyancy flux driving convection, f is the Coriolis pa-
rameter, and H is the height of the convective layer [25–28]. Laboratory and numerical experiments
suggest that rotational effects become important when Ro∗ � 0.1–0.7 [29–31]. The well-studied
problem of turbulent, Rayleigh-Benard convection under steady rotation has revealed asymmetric
behavior of cyclones and anticyclones [32–35]. However, symmetry-breaking largely arises in the
case of rapid rotation and relatively small Rossby numbers (Ro∗ < 1), whereas flows with larger
Ro∗ are typically dominated by convective plumes which do not display a bias [32]. In atmospheric
convection for a height of H = 1–2 km, Ro∗ � 10 [25], and despite some initial debate [36,37], the
general consensus is that there is no significant rotational bias for dust devils [4,38,39].

In the upper ocean when convection develops in the top 10–100 m [40] and the heat flux is
O(100 Wm−2) [25], Ro∗ typically ranges between 0.5 and 10. Surprisingly, Dingwall et al. [18]
found a strong bias towards cyclonic convective vortices in simulations with Ro∗ = 2.6. Similar
reports of an unexpected rotational bias exist in other flows. For example, Frank et al. [41],
Sutherland et al. [42] observed a bias in the rotation of buoyant plumes in experiments with a
large Rossy number. By diagnosing the evolution of vorticity along particle paths, Dingwall et al.
[18] found that vortex stretching amplifies the planetary vorticity to generate the observed cyclonic
bias in relative vorticity. However, this approach was purely diagnostic. Here one of our primary
objectives is to develop a prediction for the vorticity bias of convective vortices in terms of the bulk
parameters of the flow.

In this study, we propose a mechanism to explain the rotational bias of convective vortices and
make a prediction for the bias in terms of the bulk parameters of the flow. Throughout this study, we
assume f > 0, which leads to a cyclonic bias (while f < 0 would give an anticyclonic bias). Our
analysis is based on large eddy simulations (LES) of free convection in an idealized domain. LES
has been used to investigate terrestrial [38,43], Martian [44–46], and oceanic [17,18] convective
vortices.

II. LARGE EDDY SIMULATIONS

We use large eddy simulations to solve a low-pass filtered version of the nonhydrostatic incom-
pressible Boussinesq Navier-Stokes equations (1) and (2) in terms of the low-pass-filtered velocity
u = (u, v,w), low-pass-filtered pressure p, and buoyancy θ ,

∂u
∂t

+ u · ∇u + f × u = − 1

ρ0
∇p + ν∇2u − ∇ · τ + θk, (1)

∂θ

∂t
+ u · ∇θ = κθ∇2θ − ∇ · λ. (2)

Buoyancy is treated as a single scalar variable under the assumption of a linear equation of state and
neglecting double diffusive effects. In Eq. (1), ρ0 is the reference density, k is the unit vector in the
vertical direction, ν is the molecular viscosity, τ is the subgrid-scale stress tensor, and f = (0, 0, f )
is the Coriolis force accounting only for the vertical component of the angular velocity vector using
the so-called traditional approximation. In reality, the horizontal component of Earth’s rotation may
have an effect, particularly at low latitudes, but here we neglect the horizontal component to simplify
the analysis and focus only on the influence of the vertical component of rotation on convective
vortices. In Eq. (2), λ is the subgrid-scale scalar flux and κθ is the molecular diffusivity. Both τ and
λ are calculated using the anisotropic minimum dissipation model [47,48].

The simulations are configured to represent an idealized ocean surface boundary layer cooled
from the top, and we report dimensional values that are typical of the ocean, but the idealization
of our simulations makes the results more broadly relevant. The domain is 125 m in the horizontal
directions with periodic boundary conditions and 120 m in the vertical. Convection is driven using a

033503-2



MODEL FOR THE CYCLONIC BIAS OF CONVECTIVE …

constant buoyancy loss at the surface with values ranging between B0 = −4.24×10−10 m2/s3 (about
1 Wm−2) and B0 = −4.24×10−7 m2/s3 (about 1000 Wm−2), and a zero flux bottom boundary
condition for buoyancy. A no-stress boundary condition is applied at the top and bottom of the
domain where the vertical velocity is zero. The Coriolis parameter is varied from f = 10−6 s−1

to f = 10−4 s−1. Buoyancy is initialized with a mixed layer of depth 80 m (where ∂θ/∂z = 0 s−2)
overlying a region with stable stratification (∂θ/∂z = 9×10−6 s−2). Velocity is initialized as random
white noise with an amplitude of 10−4 m/s. The molecular viscosity is ν = 10−6 m2/s and the
molecular diffusivity is κθ = 10−6 m2/s (Pr = 1), although both are small compared to the subgrid-
scale terms and hence do not have a direct impact on the simulations. The Rayleigh number based on
the molecular viscosity and diffusivity varies between Ra = O(1016) and Ra = O(1018). We neglect
transient effects by starting our analysis after the simulated flow has reached a fully developed
turbulent state (approximately 4 h). Time averages are calculated over one inertial period, starting
after 4 h, which is sufficient time for convection to develop into a statistically steady state.

The numerical code uses a pseudospectral method to calculate derivatives in the horizontal
directions and second-order finite differences for the vertical direction. The timestepping algorithm
is a mixed implicit-explicit scheme using third-order Runge-Kutta and Crank-Nicolson methods.
Further details of the code can be found in Taylor [49]. In all simulations, resolved fields are
discretized on a 512×512×65 grid. This gives a horizontal grid spacing of 0.25 m. The vertical grid
spacing is variable between 0.95 and 2.57 m with higher resolution near the surface. The domain size
is large enough to accommodate one at least one convective cell. Although the large-scale convective
dynamics may be constrained by the box size, the focus of this study is on the small-scale vortices,
for which we need high resolution. As discussed in Appendix A, the number, intensity, and bias of
the convective vortices do not change with increasing domain size or resolution.

We also include 16 000 noninertial Lagrangian surface particles advected with the surface
horizontal velocity field and vertically fixed at the first grid point below the surface. These follow
the simplified Maxey-Riley equations [50] with all terms except for flow advection and Brownian
motion neglected. The particle equations of motion are

xp(t + dt ) = xp(t ) + u(xp, t )dt + xsgs(xp, t ), (3)

xsgs,i = ∂νsgs

∂xi

(
xp, t

)
dt + {2[νsgs(xp, t )]+} 1

2 dξi, (4)

where u is the resolved velocity interpolated at the particle position and xsgs is the displacement
due to subgrid-scale motion, although this only has a small effect on particle motion. In Eq. (4),
the subscript i indicates the spatial dimension, νsgs is the subgrid-scale viscosity interpolated at
the particle position, dξi is Gaussian white noise with variance dt , and (·)+ = max(·, 0). We
interpolate the velocity onto the particle position using cubic B splines [51] and time-step the
particle position using the third-order Runge-Kutta method alongside the main LES code. Details
of particle intialization are given later in the text when particles are used.

In Fig. 1(a), distinct convective cells are visible where large areas of weak upwelling are
surrounded by small areas of strong downwelling in a simulation with f = 10−4 s−1 and B0 =
−4.24×10−8 m2/s3 at t = 16.5 h. A twofold structure can be seen with a spokelike pattern of small
convective cells (horizontal scale approximately 25 m) in the upper portion of the convective layer
[Fig. 1(a)], and larger convective cells (horizontal scale approximately 50 m) which penetrate deeper
into the upper mixed layer [Fig. 1(b)]. This structure is consistent with similar simulations of the
ocean [52] and atmosphere [53].

The pressure field highlights convective vortices as areas with a local pressure minima. The
convective vortices can be grouped into two classes. Large convective vortices are found in the
downwelling bands of large convective cells at the nodes between convective cells, and smaller
convective vortices are seen populating the large- and small-scale downwelling bands. Similar
convective vortices were reported for idealized simulations of a convective atmospheric boundary
layer by Raasch and Franke [38]. The small convective vortices are short lived and extend to a depth
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FIG. 1. Horizontal cross sections at t = 16.5 h of the vertical velocity at z = −1m (a), vertical velocity at
z = −10 m (b), pressure at z = −1 m (c), and a vertical cross section of pressure isosurfaces for δp < 3×σp Pa
(d) in a simulation with B0 = −4.24×10−8 m2/s3 and f = 10−4 s−1. Circles highlight locations of the largest
four convective vortices [(a)–(c)] and the dashed line indicates the bottom of the mixed layer (d).

of about 5 m, while the large convective vortices are much more persistent and extend up to 40 m,
which can be seen in Fig. 1(d), which shows a vertical cross section of pressure isosurfaces (see
Appendix B for three-dimensional visualization).

Figure 2(a) shows the vertical vorticity field, ζ , averaged over the top 5 m (to reduce numerical
noise near the surface) for the same B0, f , and t as in Fig. 1. The four convective vortices with the
lowest pressure and largest area (circled) are all cyclonic but the small convective vortices show a
roughly even mix of positive and negative vorticity.

We identify convective vortices following Dingwall et al. [18] based on algorithms used to detect
dust devils in the atmosphere [38,43]. Specifically, we find the vortex center by identifying local
minima in pressure and local maxima in the magnitude of filtered vorticity (we apply a Gaussian
filter to the vorticity field to eliminate small-scale noise). Here local minima and maxima are defined
as points where the pressure and vertical vorticity is smaller or larger than all points within a
stencil of 15×15 neighboring grid points. This stencil size has been determined empirically to
avoid detecting multiple vortex centers within one convective vortex. We use the pressure and
vorticity fields evaluated at z = −1 m (the first grid cell below the surface) to ensure that the small,
shallow vortices are captured. We additionally require the pressure minimum to be located within
two horizontal grid points of the filtered vorticity maximum. The pressure minima must be less
than 5 times the standard deviation of pressure (pmax < −5σp) for the large convective vortices
and between 0.5 and 5 times the standard deviation of pressure for the small convective vortices
(−5σp < pmax < −0.5σp). Similarly, we require the filtered vorticity extremum to be greater than 5
times the standard deviation of filtered vorticity (|ζ max| > 5σζ ) for the large convective vortices and
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FIG. 2. (a) Horizontal cross sections at time t = 16.5 h of the vertical vorticity averaged over the top
5 m in a simulation with B0 = −4.24×10−8 m2/s3 and f = 10−4 s−1. (b) Probability density function of
vertical vorticity at z = 0 for points identified as large (solid) and small (dashed) convective vortices for
B0 = −4.24×10−8 m2/s3 and f = 10−4 s−1 (red) and f = 10−6 s−1 (blue).

between 2.5 and 5 times the standard deviation of filtered vorticity (2.5σζ < |ζ max| < 5σζ ) for small
convective vortices. Here the standard deviation for both pressure and filtered vorticity is calculated
using horizontal cross sections taken at the analysis height and averaged over one inertial period.
This threshold aims to eliminate as much noncoherent turbulence as possible, while still capturing
sufficient information for analysis.

Figure 2(b) shows probability density functions (PDF) of ζ for two simulations with the same
surface buoyancy flux but different values of f for all large and small convective vortices detected
within one inertial period. To remove turbulent fluctuations, the vorticity at each vortex center is
averaged over a 15×15 box (3.75×3.75) m centered at the vortex center. Both simulations exhibit a
distinct peak at ζ = ±0.02 s−1 for the large convective vortices (solid) and a peak at ζ = ±0.007 s−1

for the small convective vortices (dashed). When f = 10−4 s−1 the large convective vortices have
a distinct bias towards positive vorticity, but the distribution is relatively symmetric (with a slight
positive bias) for the small convective vortices. When f = 10−6 s−1, the large convective vortices
do not show a clear bias. The PDF for small convective vortices is very similar and nearly symmetric
in both cases.

Our simulations reveal that the large convective vortices are composed of a large number of small
convective vortices. We seed a collection of Lagrangian surface particles in a 5×5 m box inside
each small convective vortex (both cyclonic and anticyclonic) detected by the algorithm at t = 5 h
in a simulation with B0 = −4.24×10−8 m2/s3 and f = 10−4 s−1 (when there is not a large vortex
present) and track them until a large vortex forms at t = 5.5 h. Initially, the particles are distributed
along the downwelling bands [Figs. 3(a) and 3(c)]. The small vortices quickly merge and particles
accumulate in a much smaller area within the downwelling bands. As the vortices get closer to the
node which joins nearby large-scale cells, they interact nonlinearly and eventually merge into one
large vortex [Figs. 3(b) and 3(d)].

III. STATISTICAL THEORY FOR VORTICITY BIAS

Here we propose a statistical theory to quantitatively predict the cyclonic bias of the large
convective vortices which is based on the observation above that large convective vortices are
formed through the merger of many relatively unbiased small convective vortices. Statistically, the
vorticity bias for large convective vortices can be predicted by averaging the absolute vorticity of
many unbiased small convective vortices whose relative vorticity is sampled from an unbiased uni-
form distribution. Below we demonstrate this mechanism using simulations of idealized convective

033503-5



JENNY DINGWALL AND JOHN R. TAYLOR

FIG. 3. Horizontal slices of pressure at z = −1 m with surface particle position (magenta) superimposed
for t = 5 h [(a) and (c)] and t = 5.5 h [(b) and (d)]. Panels (c) and (d) show a zoomed in section of (a) and
(b) containing the large convective vortex.

cells seeded with small random vortices. We then describe how to apply this prediction to forced
convective flows using a scaling analysis and test it using the LES described above.

To explore the mechanism leading to a bias in the sign of the vorticity of the large convective
vortices, we ran a suite of idealized LES, initialized with several overturning circulation cells
superimposed with smaller vortices with random amplitude and an equal probability of cyclonic and
anticyclonic vorticity. This simplified initial value problem allows us to control the structures and
parameters in the flow much more closely and provides an ideal setting to introduce our mechanism
and predictive analysis. The numerical method is the same as above, so here we only note changes
and additions to those simulations. The initial vertical velocity is

w = w0 cos

(
4πx

LX

)
cos

(
4πy

LY

)
× −(z2 + H0z)

H0
(5)

in a 250×250×120 m domain. This forms eight circulation cells, each of which mimic a convective
cell. To model the small convective vortices, we superimpose a streamfunction composed of
Gaussian vortices, each with radius r = 2 m and depth d = 15 m:

ψ =
∑

i

∑
j

ξi j exp

[
− (x − xi )2

r2
− (y − y j )2

r2

](
z + d

d

)
, (6)

where xi and y j denote the centers of the vortices and ξi j denotes the vorticity at the center of a
given vortex, which is randomly sampled from a continuous uniform distribution on the interval
[−ξ, ξ ]. We systematically vary ξ and the Coriolis parameter, f . Since the convective cells are
prescribed in the initial condition, we do not cool the surface and the surface buoyancy flux is
B0 = 0 m2/s3. Figure 4(a) shows the initial condition of small vortices with uniformly distributed
amplitude when ξ = 0.025 m2/s and f = 2×10−5 s−1. After t = 0.8 h, the small vortices have
been advected towards the nodes joining neighboring circulation cells and the small vortices merge
to form a large vortex. By design of the circulation cells, each large vortex has a distinct basin of
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FIG. 4. Horizontal slice at z = −1 m of vertical vorticity when t = 0 h (a) and t = 0.8 h (b) and of vertical
velocity when t = 0.8 h (c) with boundaries of basins of attraction superimposed (black dashed line) for
ξ = 0.025 m2/s and f = 2×10−5 s−1.

attraction (marked with a dashed black line). We focus on the time period from the start of the
simulation until the large vortex forms at approximately 1 h. This ensures that the eight convective
cells remain distinct and do not merge or interact with one another.

In order to quantify the change in vorticity as the small vortices merge into a large vortex, we
seed Lagrangian surface particles at the center of each small vortex at the start of the simulation, and
we track the vorticity along particle paths. The behavior of merging vortices is illustrated in Fig. 5

FIG. 5. Horizontal slices of vertical vorticity at z = −1 m with the position of four surface particles
(A, B, C, and D) superimposed in a simulation with ξ = 0.025 m2/s and f = 2×10−5 s−1 at t = 10 min,
(a), t = 20 min, (b), t = 30 min, (c) and t = 40 min (d). The sequence shows the interaction and merging of
four small vortices of opposing signs into one larger cyclonic vortex. In (c), particles C and D are at the same
location and in (d) particles A, B, C, and D are all colocated.
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which shows zoomed-in snapshots of the vertical vorticity field and tracks the position of four
surface particles throughout the merger. Initially the particles are located at the center of four small
Gaussian vortices (see Fig. 4 for the initial condition) of which three are cyclonic (with particles B,
C, and D) and one anticylonic (with particle A). By t = 10 minutes, the vortices begin to interact
with one another [Fig. 5(a)], which results in the three small cyclonic vortices merging into one
larger cyclonic vortex. The interaction distorts the anticyclonic vortex and causes it to reduce in size
and strength [Figs. 5(b) and 5(c)]. Eventually, the cyclonic vortex envelopes the weaker anticyclonic
vortex, so that by t = 40 min, all particles are contained inside a single, cyclonic vortex. This vortex
is advected towards the node of the circulation cell and may undergo subsequent merging events.

At the stress-free upper surface (z = 0), the vertical component of the absolute vorticity (ζ + f )
satisfies:

D(ζ + f )

Dt
= (ζ + f )

∂w

∂z
+ ν∇2ζ︸ ︷︷ ︸

ζdiff

, (7)

where D/Dt is the material derivative, w is the vertical velocity, and ν is the molecular diffusivity.
The right-hand side comprises vortex stretching and diffusion. Hence, if diffusion is negligible and
there are no vortex merging events, then the sign of the absolute vorticity is preserved along the
particle paths. In the absence of vortex stretching, we might expect the vorticity of the large vortices
to be small since the large vortices are formed through the merger of many small vortices with
opposing sign. For example, in Fig. 5, the three cyclones and one anticyclone will still merge, but
the resulting cyclonic vortex will be be broader and weaker. Without vortex stretching, the vorticity
would not increase in magnitude following the merger. Similarly, in a merger of three anticyclones
and one cyclone (which is equally likely given our initial conditions), we could expect a broad and
weak anticyclone to form. Because f does not play a role when there is no vortex stretching, the
distribution of cyclones and anticyclones would be symmetric.

In our convective regime, the sign of ∂w/∂z can be both positive and negative, but it is positive
in the downwelling regions where the large convective vortices are found. When ∂w/∂z > 0, vortex
stretching increases the magnitude of ζ + f , leading to strong large vortices whose sign (after
merging) is preserved. This effect can be seen in Fig. 5. The resultant cyclonic vortex contracts
and its strength steadily increases between 20 and 40 min (at t = 40 min, the maximum vorticity
is 0.08 s−1). In the absence of any further mergers, this vortex remains cyclonic (since the sign of
absolute vorticity is preserved) and vortex stretching continues to amplify its magnitude. Eventually,
diffusion balances vortex stretching after the large vortex has formed. In a comparable merger
between three anticyclones and one cyclone, the resultant vortex would initially have weak, negative
vorticity. The magnitude of ζ + f would be smaller than the cyclonic case (since f is positive and
ζ is negative) and so vortex stretching would be less effective at amplifying the vortex. If ζ were
negative but very small (for example, if a larger number of small vortices merge), then ζ + f could
be positive and amplification of ζ + f through vortex stretching could lead to a large cyclone,
despite the vortex being composed of more anticyclones than cyclones.

Figure 6(a) shows statistics of the vorticity sampled along Lagrangian particle paths as a function
of time for two cases with ξ = 0.01 m2/s and ξ = 0.025 m2/s. The upper (and lower) quartile
curves highlight the three stages by which small vortices merge into a large convective vortex:
amplification of small vortices by vortex stretching (initial increase), nonlinear interactions between
small vortices (slight decrease) followed by the amplification of the large vortex by vortex stretching
(large increase). For both ξ = 0.01 m2/s and ξ = 0.025 m2/s the maximum positive vorticity of
the 75th percentile is higher than the minimum negative 25th percentile due to the the rotational
bias of convective vortices (where particles are preferentially located), and the bias is larger for
ξ = 0.1 m2/s. The small vortices begin to merge at about 0.6 h, after which there is a significant
cyclonic bias [median line in Fig. 6(a)]. The cyclonic bias is weaker when the amplitude of the small
vortices, ξ , is larger.

In our idealized simulations, the number of convective vortices that merge into a single large
vortex is fixed by the initial condition, but we vary f and the amplitude of the small convective
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FIG. 6. (a) Median (solid) and 25th and 75th percentile (upper and lower dashed) particle vorticity
when ξ = 0.01 m2/s (black) and ξ = 0.025 m2/s (red) for f = 2×10−5 s−1. (b) The predicted proportion of
cyclones versus f for different values of ξ (lines) and observed proportion of cyclones in simulations (points).

vortices (which we control using the parameter ξ ). Since the sign of the absolute vorticity is
conserved following particle paths (neglecting diffusion), we expect the sign of the absolute vorticity
of the large vortex to be determined by the sign of the mean absolute vorticity of all small convective
vortices from which it is composed. In our idealized simulations, we can calculate this by averaging
the absolute vorticity over each basin of attraction at the start of the simulation. Since the relative
vorticity of the small convective vortices is random and unbiased and since there are many small
convective vortices in each basin of attraction, the mean absolute vorticity has a relatively small
magnitude. However, vortex stretching amplifies the magnitude of the relative vorticity, and the
simulations show that the relative vorticity of the large convective vortices is several orders of
magnitude larger than the planetary vorticity, f . Hence the relative vorticity dominates the absolute
vorticity of the large convective vortices, and the sense of rotation of the large convective vortices
will be set by the sign of the mean absolute vorticity in each basin of attraction.

To test this hypothesis, we calculate the vorticity of large convective vortices in simulations for
18 different combinations of f and ξ . For each value of f and ξ , we run 30 simulations (which
each have eight basins of attraction or large vortices) to ensure averaged results are statistically
converged. In each case, we calculate the number of basins of attraction with cyclonic mean absolute
vorticity and compare this with the number of large convective vortices with cyclonic rotation that
develop in the simulation. Details of the calculation are described in Appendix C. The predicted
proportion of cyclones [Fig. 6(b), lines] agrees very well with the proportion of cyclones observed
(points) for different values of f and ξ . The predicted and simulated cyclonic bias is more prominent
for larger values of f and smaller values of ξ . When f is small or ξ is large, the width of the
probability distribution for the absolute vorticity averaged in each basin of attraction will be large
compared to f , resulting in a weaker cyclonic bias. Due to nonlinear interactions between vortices,
vortex stretching, and dissipation, not all individual regions preserve the sign of the mean absolute
vorticity but the close agreement between our prediction and simulations in Fig. 6(b) suggests that,
statistically, our prediction works very well.

The addition of many small convective vortices with a small bias in the absolute vorticity leads to
a much more significant bias for the large convective vortices. Under this mechanism, the parameters
which determine the bias are f , the vorticity of the small convective vortices and the number of
small convective vortices that make up each large convective vortex. Changing f or the vorticity
amplitude changes the initial the bias of the small convective vortices. Equally, the more small
convective vortices that merge into a large vortex, the stronger we expect the bias to be.

This theoretical framework and the idealized LES can be used to predict the bias of convective
vortices in the more realistic LES analyzed in the previous section. The bias of the large convective
vortices is determined by the amplitude of the small vortices, ξ , the number of small vortices
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FIG. 7. Predicted probability contours (colored lines) and Ro∗ = 1 line (black dashed) for constant H . We
include Ro∗ and the observed bias, b, for simulations (points).

contributing to each large vortex, and the Coriolis parameter, f . In the more realistic simulations,
the number of small vortices feeding each large vortex is no longer fixed, and the vorticity of the
small vortices is not controlled. We use scaling theory to relate these quantities to the bulk properties
of the flow and apply the statistical theory described above.

The vorticity of the small convective vortices scales with B0 and the depth of the convective layer,
H , such that ζ ∼ w∗/H , where w∗ = (|B0|H )1/3 is the convective velocity [54] (see Appendix D).
When |B0| is large or H is small, the vorticity distribution has more extreme vorticity values so that
ζ + f is less biased (equivalent to when ξ is large). To set the maximum amplitude of the small
convective vortices, ξ , we use the upper limit set in our vortex detection algorithm, ξ = 5 m2×σζ .
Empirically, we then find that ξ = 260 m2×|B0|1/3H−2/3.

Based on the total number of small and large convective vortices detected from the LES, we find
that on average there are 40 small vortices for every large convective vortex. Since the detection
algorithm only identifies a small vortex when the vorticity is half of the maximum threshold, this
is equivalent to 80 vortices with an amplitude that is randomly sampled from a uniform vorticity
distribution. Here we model the statistics of the large convective vortices by averaging the vorticity
of 80 small convective vortices, each randomly sampled from an unbiased uniform distribution
with amplitude ξ . Applying this approach, we find that the vorticity distribution of the large
convective vortices is well approximated by a Gaussian with mean μ = 0 and standard deviation
σ = 3.4×10−3 m−2×ξ , where ξ is the maximum vorticity of the small convective vortices. The
sense of rotation of the large convective vortices is then set by the sign of the mean absolute vorticity
of the 80 small vortices.

Figure 7 shows the proportion of large cyclonic convective vortices, with a convective layer depth
of 80 m (typical of oceanic convection) for the theory (lines) and the LES (dots). The convective
vortices show the largest bias for large f and small B0, a trend supported by both the simulations
and theory. The mean-squared error of the points and lines in Fig. 7 is MSE = 0.0054.

IV. DISCUSSION AND SIGNIFICANCE

Here we built on previous work which showed that convective vortices can exhibit a significant
rotational bias, even when Ro∗ is large. In particular, we used large eddy simulations seeded
with Lagrangian particles to analyze the development of a cyclonic bias in convective vortices.
The convective vortices can be categorized into two types: small convective vortices, which are
approximately equally distributed between cyclones and anticyclones, and large convective vortices,
which exhibit a clear cyclonic bias. Our Lagrangian analysis shows that the large convective vortices
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FIG. 8. Predicted probability contours (colored lines) and Ro∗ = 1 line (black dashed) for constant f . We
highlight the approximate parameter spaces for convective vortex regimes.

develop through the merger of many small convective vortices. We developed a statistical theory to
predict the bias in the large convective vortices as a function of the bulk parameters of the flow.

We can apply the statistical theory to predict the bias in other settings. Figure 8 shows the
approximate parameter space for convection in the terrestrial and Martian atmospheres and for
shallow and deep ocean convection. In all cases we take f = 7×10−5 s−1, although this is the
lower end of f values for deep ocean convection which generally occurs in higher-latitude polar
oceans. Below we provide further justification of the approximate ranges that B0 and H take in the
different convective regimes, which we summarize in Table I.

Observations and measurements of deep ocean convection are extensive and well reported. A
cohesive review of typical deep ocean convective conditions is given in Marshall and Schott [25],
and here we summarize the key values relevant to this study. Sites of deep ocean convection include
the Labrador Sea, Greenland Sea, Mediterranean Sea and the Weddell Sea where the mixed layer
depth, H , ranges from about 1000 to 4000 m. Typical values of the surface buoyancy flux range from
|B0| = 10−6–10−8 m2/s3 where the corresponding heat loss can be between Q = 100–1500 Wm−2.
For example, in the Mediterranean Sea, H = 2000 m, f = 10−4 s−1, and B0 = −4 × 10−8 m2/s3,
giving Ro∗ = 0.3. More generally, we can expect Ro∗ ∼ 0.01–1 in a deep convective regime.

Shallow mixed layer convection is typically characterized by a much smaller H and a smaller
B0. For example, Chor et al. [17] used H = 80 m and a surface heat flux of Q = 150 Wm−2, while
Mensa et al. [55] used H = 50 m and Q = 1000 Wm−2 to model convection in the ocean surface
boundary layer. In this case, we estimate Ro∗ ∼ 0.5–10.

Heat fluxes in the terrestrial atmosphere are similar to those in oceanic convection because heat
loss to the atmosphere drives convection in the ocean, but they have very different buoyancy fluxes.
The ratio of the buoyancy fluxes in the ocean, Bocean, and atmosphere, Batmos, is written in Marshall

TABLE I. Typical parameters in different convective regimes.

Type of convection B0 (m2/s3) H (m) Ro∗

Deep ocean convection 10−7–5×10−7 1000–5000 0.01–1
Mixed layer ocean convection 10−8–10−7 50–150 0.5–10
Terrestrial atmosphere 10−3–5×10−2 1000–2000 10–250
Martian atmosphere 5×10−3–10−1 5000–10 000 5–100

033503-11



JENNY DINGWALL AND JOHN R. TAYLOR

and Schott [25] as:
Batmos

Bocean
= ρwcw

ρaαcaθa
≈ 105, (8)

where ρ is the density, c is the specific heat, α is the thermal expansion over water, and θ is the
typical air temperature. Subscript w denotes water and a denotes terrestrial air. An estimate of
the ratio is determined using typical meteorological values which suggests that the atmospheric
buoyancy fluxes are about 105 times larger than oceanic buoyancy fluxes. This is consistent with
Caughey [56] who estimate that B0 ≈ 5×10−3 m2/s3 in atmospheric boundary layer convection.
The mixed layer depth in the terrestrial atmosphere is typically H = 1000–2000 m. Such parameters
yield Ro∗ ∼ 10–250 in the terrestrial atmosphere.

Finally, Martian convection is similar to atmospheric convection but characterized by a larger H
and larger B0. We can write

Bmars

Batmos
= ρacaθagm

ρmcmθmga
≈ 50, (9)

where subscript m denotes Martian air and g is gravity. Again, the ratio is determined from typical
Martian [57] and terrestrial [25] values. On Mars, the convective boundary layer can be up to
10 000 m [4], giving a similar range of Ro∗ as in the atmosphere, Ro∗ ∼ 5–100.

Figure 8 shows that ocean mixed layer convection is expected to usually exhibit a cyclonic bias,
consistent with Dingwall et al. [18], while deep oceanic convection is highly biased. Our theory
predicts that most atmospheric regimes will be unbiased, with a slight rotational bias in Martian
dust devils. This is consistent with observations and simulations of terrestrial dust devils [4,38], but
Martian dust devil data are not yet extensive enough to test this prediction.

Finally, note that convective conditions often have additional sources of vorticity other than
buoyancy flux, which may influence the derived scaling law. Examples include wind forcing [18], or
bottom friction in the atmosphere, both of which have potential to increase vorticity fluctuations and
inhibit the cyclonic bias. The rotational bias of convective vortices under more realistic conditions
should be explored in future work.

APPENDIX A

The bias of convective vortices is independent of the simulation’s horizontal resolution, �x,
vertical resolution, �z, and horizontal domain size, L. To verify this, we run simulations varying
L keeping �x = 1 m and �z = 0.95–2.57 m fixed (recall we use variable grid spacing in the z
direction). Subsequently, we vary �x and �z keeping L = 125 m fixed. The additional simulations
each have B0 = −4.24×10−8 m2/s3, f = 10−4 s−1, and H = 80 m. To compare the vorticity
distributions, we plot the vertical vorticity PDF at z = −1 m for points associated with convective
vortices (using the vortex detection algorithm) and for all points in the domain. Note that the vortex
detection algorithm applied here uses a larger detection radius than in the letter (5 m as opposed to
3.5 m in the letter) to ensure that vortices are captured in low-resolution, large domain simulations.
A more detailed description of the method can be found in Dingwall et al. [18]. To remove turbulent
fluctuations in the distribution for all points, the vorticity at each point is averaged over a box
measuring 5×5 m.

Figures 9(a) and 9(b) shows the effect of varying the domain size (with �x = 1 m and
�z = 0.95–2.57 m). For points associated with convective vortices (a), the peak remains at ζ �
±0.015 s−1 as the domain size decreases. The proportion of cyclones and anticyclones stays
approximately the same with the most noticeable difference when L = 62.5 m. This is reflected
in the distribution for all points, with again the most noticeable discrepancy between distributions
when L = 62.5 m. For this reason, we choose to use a domain L = 125 m. At this size, there are
only one or two large convective vortices at any given snapshot. However, we aim to resolve the
small-scale motions as much as possible without adversely affecting the bias of convective vortices
and we run simulations for a long-enough period of time for statistical quantities to converge.
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FIG. 9. Probability density function of vertical vorticity at z = 0 for points identified as convective vortices
[(a) and (c)] and all points in the domain [(b) and (d)] as the domain size [(a) and (b)] and resolution [(c) and (d)]
are varied.

Now with L = 125 m fixed, Figs. 9(c) and 9(d) shows the effect of increasing the horizontal
resolution, �x, and the vertical resolution, �z. Again, the proportion of cyclones and the distribution
for all points remain similar even for the highest-resolution simulations. We choose to use the
highest computationally feasible resolution, �x = 0.25 m and �z = 0.95–2.57 m, to capture the
small-scale convective vortices described in this study. When �x = 0.25 m, the vortex detection
algorithm detects more convective vortices with a near-zero vorticity. In the main text, we use a
smaller detection radius in the algorithm to avoid this.

APPENDIX B

Figure 10 depicts a more detailed visualization of the small and large convective vortices from
a simulation with B0 = −4.24×10−8 m2/s3, H = 80 m, and f = 10−4 s−1 at time t = 10 h. The
small vortices are coherent structures which occur regularly throughout the domain and we observe a
roughly equal number of cyclones and anticyclones. The small vortices extend to a depth of between
5 and 10 m while the large vortex in Fig. 10(b) [and highlighted in the white box in Fig. 9(a)] extends
to a depth of about 40 m, and in this case is cyclonic.

APPENDIX C

Here we describe the specifics of the calculations used to predict the number of basins of
attraction with cyclonic mean absolute vorticity and the number of large convective vortices with
cyclonic rotation that develop in the idealized simulations, which are compared in Fig. 6.
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FIG. 10. Three-dimensional visualization of small (a) and large (b) convective vortices in a simulation with
B0 = −4.24×10−8 m2/s3 and f = 10−4 s−1. (a) The contour of perturbation pressure at δp = σp up to a depth
z = −7 m colored by vertical vorticity with a horizontal pressure slice overlain. (b) The contour of perturbation
pressure at δp = 5×σp colored by vertical vorticity for the large vortex highlighted in the white box in (a).

First, for any ξ and f , we calculate the mean vorticity within a single basin of attraction at
t = 0 h (dashed square boxes in Fig. 4), ζb, where the overline denotes mean and subscript b denotes
a quantity in an individual basin. Since the initial amplitude of the small vortices is uniformly
distributed, several have a very small amplitude and we expect these to be quickly dissipated.
We neglect such vortices by only considering points whose vorticity magnitude exceeds 20% of
the vorticity standard deviation. Computing ζb for each basin in each simulation, we find that the
distribution of ζb is well approximated by a Gaussian. An example of this approximation can be
seen in Fig. 11 which shows the PDF of the initial mean basin vorticity, ζb, for all simulations
with ξ = 0.025 m2/s. The distribution is very Gaussian (blacked dash line shows a Gaussian with
μ = 0, σ = 2.4×10−5 s−1). The Gaussian is symmetric about ζb = 0 by construction of uniformly
distributed small vortices. Computing the standard deviation for all values of ξ and f , we find that
the standard deviation linearly increases with ξ , with σ = 0.978×10−3 m−2×ξ , where the constant
is determined empirically.

FIG. 11. PDF of initial mean basin vorticity for ξ = 0.025 m2/s and Gaussian with μ = 0, σ =
2.4×10−5 s−1 (black dashed line).
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FIG. 12. Scaled probability density function of vertical vorticity in large-scale upwelling regions for
simulations with f = 10−4 s−1 with a Gaussian approximation to the scaled curve (dashed line) at z = −1 m.

While the distribution of initial relative vorticity, ζ , is symmetric about 0, the distribution of
absolute vorticity, ζ + f , is not. Accordingly, the distribution of ζb + f is not symmetric about 0. To
calculate the extent of the bias, we use the Gaussian approximation of ζb and calculate the proportion
of the distribution larger than − f (the upper tail to the right of − f ). This describes the probability of
a basin of attraction initially having positive mean absolute vorticity, which we expect to determine
whether a cyclone or anticyclone eventually forms. More specifically, we compute P(Z > − f /σ )
where Z is the standard normal distribution.

Second, in each test simulation, we determine whether a large cyclone or anticyclone has formed
at the center of each basin of attraction later in the simulation once the small convective vortices have
merged. We find the sign of the vertical vorticity field within radius 5 m of the center of the basin
of attraction, averaged over a time interval t = 0.875–0.925 h (after the large vortex has formed but
before dissipation of the large vortex ensues). If this is positive, then we judge that a cyclone has
formed.

APPENDIX D

Empirically, the vorticity scales with B0 and the depth of the convective layer, H , such that
ζ ∼ w∗/H where w∗ = (B0H )1/3. This scaling also holds in the shallow convective cells (which
contain the small convective vortices) whose depth is a fraction of the convective layer depth. This
scaling also holds in the shallow convective cells (ζ ∼ w∗/h) where h is the depth of the shallow
convective cells. Typically, w∗ characterizes the velocity scale in the upwelling region for a convec-
tively driven flow. The area of the downwelling and upwelling regions is very asymmetric [Fig. 1(a)],
and hence we expect a similar asymmetry between the upwelling and downwelling velocities. We
can write this as wu = cwd where subscript u denotes upwelling, d denotes downwelling, and c is a
constant of asymmetry. Since the small convective cells are contained within the upwelling of large
convective cells, there must be a point at the base of the small cell where the large-scale upwelling
velocity balances the small-scale downwelling velocity, i.e., Wu = wu/c (= wd ). Rewriting this in
terms of the relevant convective velocities gives (|B0|H )1/3 = (|B0|h)1/3/c and rearrangement yields
h/H = c3, i.e., the ratio of the depth of small and large convective cells is constant. To estimate
the vorticity fluctuations in the small convective cells (and large-scale upwelling) which contain
the small vortices, we use the relation ζu ∼ |B0|1/3H2/3. Finally, note that the convective Rossby
number can be rewritten in terms of ζ with a scaling constant, C, as Ro∗ = C(ζ/ f )3/2.

Figure 12 shows the scaled vertical vorticity pdf in the large-scale upwelling regions, i.e.,
H2/3ζu/|B0|1/3, for simulations with different values of B0 but the same value of f = 10−4 s−1

and H = 80 m, and the distributions collapse onto one another. The scaled distribution is relatively
Gaussian for small vorticity values but has much wider tails. Studies of the non-Gaussian distribu-
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tion of vorticity have previously suggested that the development of wide tails might be associated
with vortex stretching of strong vortices [58,59], which in our case most likely relates to stretching
of the large convective vortices.
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