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We present a physically motivated low-dimensional model for the dynamics of two
interacting large-scale circulations (LSC) in two-layer turbulent convection. Inspired by
our experimental results of the flow dynamics and coupling in two-layer turbulent convec-
tion [J. Fluid Mech. 728, R1 (2013)], the model extends previous studies of single-LSC
dynamics to incorporate four stochastic ordinary differential equations describing the
strength δ and azimuthal orientations θ of two vertically aligned LSCs. The interaction
terms of the two LSCs, i.e., thermal and viscous coupling terms, are predicted based on
the influence of the fluid temperature by the other LSC through heat advection and thermal
diffusion, and the enhanced (reduced) viscous damping across the interface between the
two LSCs. Our model produces two stable LSC rolls and predicts their preferred flow states
for the thermal and viscous couplings. The model describes properly the diffusive motion
of both δ and θ of the two LSCs, and the Poissonian distribution of time interval between
LSC cessations. More importantly, our study reveals that flow reversals and cessations
in two-layer convection can be achieved when turbulent fluctuations drive the azimuthal
diffusion of the two LSCs into a flow state that the two LSC planes are orthogonal to each
other, the strength of the LSC in the fluid layer with a relatively larger Rayleigh number
reduces to zero deterministically, owing to the unbalanced buoyancy forcing. Our model
provides accurate predictions for the enhanced occurrence frequency of flow reversals
observed in the experiment, and it suggests a new dynamical process of flow reversals
in multilayer turbulent convection.

DOI: 10.1103/PhysRevFluids.9.033501

I. INTRODUCTION

Turbulent thermal convection represents many important features of natural flows. It is found
widely in oceans and atmosphere [1], in the Earth’s liquid core [2], in the interior of terrestrial
planets [3] and the outer layer of the Sun [4]. In many geophysical and astrophysical settings, tur-
bulent convection often occurs in multilayers, examples include multilayer convection in gas-giant
planets [5], thermal-driven or density-driven flows in the coupled system of oceanic and atmospheric
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convection [1], and convection at the boundary of the Earth’s lower mantle and the outer core [6]. It
is also related to many industrial processes such as liquid-encapsulated crystal growth [7]. Exploring
the fluid dynamics of multilayer turbulent convection may assist us to understand a wide variety of
natural phenomena, and is of fundamental research interest in science and engineering.

In Rayleigh-Bénard convection (RBC), a paradigmatic model for studying turbulent thermal
convection in laboratory, a fluid layer confined between two horizontally parallel plate is heated
from below and cooled from above to generate buoyancy-driven flows [8–10]. For a given geom-
etry of the convection cell, the convection flows in RBC are determined by two nondimensional
parameters. The Rayleigh number Ra = αg�T H3/κν representing the buoyancy forcing, and the
Prandtl number σ = ν/κ characterizing fluid properties, where α, κ and ν are, respectively, the
isobaric thermal expansion coefficient, thermal diffusivity and kinematic viscosity of the fluid, g is
gravitational acceleration, �T is temperature difference across the fluid layer. The cell geometry is
described by its symmetry and aspect ratio 	 = D/H , where H and D are the vertical and horizontal
dimensions of the convection cell, respectively.

When the Rayleigh number is sufficiently high in RBC, various kinds of coherent flow structures
arise and the large-scale circulation (LSC) is one of the most salient one. LSC forms in the
background of turbulence, consisting of self-organized thermal plumes emanating from the thermal
boundary layers (BLs), which has enlivened experimental and theoretical studies in turbulent con-
vection until now (see, e.g., Refs. [11–26]). In cylindrical cells of aspect ratio 1, the LSC appears as
a single convection roll that oriented nearly vertically with the upflow and the downflow on opposite
sides of the cell. A rich variety of dynamics of the LSC has been reported in laboratory experiments,
including spontaneous meandering of the LSC azimuthal orientation θ0 and its oscillations that
manifest as twisting and sloshing modes [14,15,20]. The flow strength δ of the LSC fluctuates
around a stable point while occasionally drops to zero abruptly, i.e., the roll structure vanishes
suddenly, and then the flow will restart at any orientation, which is known as cessation events
[27,28]. Because of the rotational invariance of the cylindrical geometry, any azimuthal orientation
θ0 is an equally effective state for the quasi-2D LSC structure [28]. Therefore, after a cessation
event the LSC undergoes a change of azimuthal orientation with random amplitude (reorientation).
Reversal is a particular kind of dynamic event during which the LSC orientation θ changes by
π [29,30]. It can be achieved by rotations of the LSC plane without an obvious change in flow
strength δ, or by cessation when the flow structure vanishes and restarts at quite opposite direction.
Flow reversals are believed to be associated with many important phenomena in geophysical scale,
such as the reversal of the geomagnetic field, and changes of the wind directions in the atmosphere.

Theoretical models have been developed to interpret the LSC dynamics in turbulent RBC and to
make predictions for plenty of the observed phenomena. Rooted in the Navier-Stokes (NS) equation,
a low-dimensional model consisting two stochastic ordinary equations respectively describing LSC
strength and its azimuthal motion was proposed [18,19]. This model describes the diffusive behavior
of the LSC flow strength as stochastic motion in a potential well, and reproduces successfully
the observed phenomenon of LSC in leveled [19] or tilted [25] cylinder container, such as the
meandering, cessations, and reversals. Other phenomenological models are devoted to describe the
stochastic [13,16] and deterministic [17,31] nature of LSC reversals in RBC.

Despite the intensive studies of the LSC dynamics in a single-roll configuration, relatively fewer
works are devoted to investigate multiple-roll flow dynamics in turbulent convection. In RBC
systems when the aspect ratio 	 deviates from 1, one observes that the single-roll structure of the
LSC breaks down and multiple convection rolls can be generated. For instance, vertically lined-up
multiple rolls form in convection cells with 	 smaller than one [32–36]. In cylindrical cells with
	 = 0.5 two different states of convection can coexist, i.e., single-roll state and double-roll state.
In the state of double-roll convection, the two rolls are often found in a viscous-coupling mode
in which the fluid velocities of two LSCs are in the same direction at the midheight where they
meet [32,33]. Horizontally lined-up multiple rolls are observed in convection cells with large aspect
ratios [37–39]. For instance, in a rectangular cell with 	 = 4 it is reported that two counterrotating
LSCs are laid out horizontally [38]. Their flow directions at the cell center are both ascendent
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and descendent depending on the applied temperature difference across the fluid cell. However,
two corotating, horizontally adjacent rolls can also form, with prominent fluctuation in their flow
strength and circulation path [37]. The interaction of two neighboring LSCs is examined in a
convection cell consisting two horizontally connected cubic containers [26,40]. The competition of
thermal and viscous forcing in between the two LSCs results in bistable flow orientations, where the
two circulating rolls can be found both in a corotating and counterrotating state. Motivated by these
experimental findings a theoretical model is proposed to account for the coupling dynamics of the
two interacting LSCs, which provides predictions of the azimuthal orientations and flow strengths
of the two LSCs in good agreement with the experiment.

In a recent experimental study Xie and Xia [41] investigate the dynamics of two vertically
aligned LSCs in a cylindrical cell filling with two immiscible fluids. They reported that the two
LSC rolls have two preferred azimuthal orientations separated by π . Two dynamic modes, thermal
coupling and viscous coupling, are identified as the preferred flow configurations. Remarkably, it
is observed that in the lower fluid layer with a relatively higher Ra, cessation events occur much
more frequently than in single-layer turbulent convection, and a significant portion of cessations
end up as reversals. In the upper fluid layer that has a lower Ra, however, the stochastic fluctuations
of the LSC strength is largely suppressed and cessation events are hardly present. The underlying
mechanism responsible for the observed enhanced/suppressed LSC cessations and reversals remains
elusive. The heat transport efficiency as a function of the layer thickness ratio in two-layer turbulent
convection is studied [42]. When the layer ratio is not too small or too large, both layers are found
to have large-scale convection rolls. The heat transport efficiency in this regime is insensitive to the
change in the layer ratio. However, when one layer is thin enough to have a Rayleigh number below
the onset of convection, i.e., only thermal conduction, the heat transport is found to depend strongly
on the layer ratio. The interface between the two layers can be broken up for certain conditions [43].

In this paper, we investigate the flow coupling of the large-scale circulations in two-layer turbu-
lent thermal convection. We first revisit the experimental findings in Ref. [41], concerning the flow
states of two interacting LSCs and their stochastic properties of cessations and reversals. Motivated
by the intriguing experimental phenomena, we formulate a physically based, low-dimensional
model consisting of two sets of stochastic differential equations to describe the diffusive behavior of
the two LSCs as well as their thermal and mechanical interactions. The model can largely account
for the two preferred flow states of thermal and viscous coupling, and provides new understanding of
the mechanism of flow reversals, explaining the more frequent reversal events that arise in two-layer
turbulent convection systems.

II. EXPERIMENTAL RESULTS

The experiment was performed using an apparatus described before [41]. We used a cylin-
drical container with height H = 38.4 cm and diameter D = 19.0 cm, yielding an aspect ratio
	 = D/H = 0.5. Two immiscible fluids, with a water layer overlying a Fluorinert electronic fluid
(FC77) layer, are used as the working fluid. The two fluid layers both have a fluid height H =
19.2 cm, thus the aspect ratio of each fluid layer is unity (see the schematic drawing for the flow
configuration in Fig. 1). To diagnose the flow structures of the LSCs, six groups of thermistors
were installed at fluid heights H/8, H/4, 3H/8, 5H/8, 3H/4, and 7H/8 from the bottom plate,
respectively. At each fluid height, eight thermistors are equally spaced azimuthally to measure the
local fluid temperatures Ti, which are fitted using the function Ti = T0+δcos(iπ/4−θ ), i = 1, . . . 8,
to determine at the corresponding fluid height the thermal amplitude δ and azimuthal orientation θ

of the LSCs. Hereafter, we use subscripts “w” and “FC” to denote quantities measured in water and
FC77, respectively, and discuss here results of the LSC amplitudes δw, δFC and orientations θw, θFC

measured at two fluid heights 3H/4 and H/4. In the experiment a constant heat flux was applied
at the bottom boundary of the FC77 layer, and the temperature of the top boundary of the water
layer maintained a constant. Since the physical properties (e.g., α, κ , and ν) of the two fluid layers
are different, the convective flows adjust spontaneously the temperature differences across each
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FIG. 1. (a) A schematic drawing of two-layer RB convection system that shows the main coherent
structures in this system, thermal plumes and large-scale convection rolls. The evolution process of plumes
illustrates the circulating direction and the red and blue dashed arrows present the azimuthal orientation θ of
LSC roll of FC77 and water, respectively. (b) Schematic of the flow configurations in the flow modes of thermal
coupling (left) and viscous coupling (right). The upwelling (downwelling) flow of each LSC roll is shown by
the red (blue) arrow. The background color represents conceptually variation of the fluid temperature.

fluid layers. The bulk temperature of the water and FC77 layer were found to be 15◦C and 37◦C,
respectively. We thus determine the control parameters of convection for each layer Prw = 8.1,
PrFC = 19.6, and Raw = 1.23×109, RaFC = 1.59×1011.

Figures 2(a) and 2(b) present experimentally measured time series of the LSC temperature
amplitudes δ/〈δ〉 in the FC77 and water layers, respectively. We see that the flow strengths of
the two LSC rolls exhibit markedly different dynamical features: while δw maintains relatively
constant near its mean value and never drops below the critical value of cessation during the whole
experimental time, δFC fluctuates more intensively with frequent cessations. Here we adopt the
criterion δ�0.25〈δ〉 to identify cessation events [15] as indicated by the horizontal dashed lines.

FIG. 2. Time series of the normalized temperature amplitude δ/〈δ〉 for the LSCs in the FC77 fluid layer
(a), (c) and in the water layer (b), (d). Results for RaFC = 1.59×1011 and Raw = 1.23×109. Experimental
data (a), (b) are compared with the model data (c), (d). The dash-dotted lines denote the threshold value
δc = 0.25〈δ〉 used to define cessations.
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FIG. 3. Experimental (a) and modeling (b) results of the time series �θ (t ) that represents the flow states
of the two LSCs. (c) PDFs of �θ calculated using the experimental data (red circles) and model results (blue
triangles). The two vertical dashed lines at �θ = π/4 and 3π/4 are used as reference lines to define the flow
states of thermal and viscous coupling.

To describe the relative azimuthal orientation of the two LSC rolls, we introduce the azimuthal
angular difference �θ = |θFC−θw| as a flow state parameter to analyze their coupling dynamics. As
illustrated in Fig. 1(b), the flow state of �θ = 0, i.e., the upgoing (or downgoing) thermal plumes
of the LSCs are positioned at the same side of the container, is defined as a flow state of thermal
coupling. In the flow state of viscous coupling (�θ = π ), thermal plumes of the two rolls move in
same direction at the interface of the two layers. �θ is reduced to [0, π ] in our analysis because of
the azimuthal symmetry of the flow coupling dynamics in our cylindrical cell. Figure 3(a) shows
a long time series of �θ (t ) acquired experimentally over a period of 25 days. In addition to its
stochastic fluctuations covering the full azimuthal range, there exist apparently two preferred relative
azimuthal orientations between the two LSC planes, i.e., �θ = 0 and π . Figure 3(c) presents the
probability density function (PDF) of �θ . One sees that p(�θ ) has a maximum close to 0 and a
second peak near π , corresponding to the flow states of thermal and viscous coupling, respectively.

To gain more insights into the preferred orientations of the two LSCs, we present in Figs. 4(a)
and 4(b) the joint PDFs of δ and �θ for the convection rolls in the FC77 layer and the water layer,
respectively. It is seen that two prominent peaks of the PDFs locate at �θ≈0 and π for both rolls
when δ≈〈δ〉.

FIG. 4. Experimental results of the joint PDF p(�θ, δ/〈δ〉) for the LSC in the FC77 layer (a) and in the
water layer (b). (c) Results of p(�θ ) for given values of δFC/〈δFC〉. Green circles: 0.34�δFC/〈δFC〉�0.36, yellow
squares: 0.54�δFC/〈δFC〉�0.56, blue diamonds: 0.74�δFC/〈δFC〉�0.76, red triangles: 0.94�δFC/〈δFC〉�0.96.
These profiles are represented by the four dashed lines in panel (a) correspondingly.

033501-5



SUN, XIE, XIE, ZHONG, ZHANG, AND XIA

FIG. 5. (a) The histogram h(δθFC) of orientation change of the FC77 roll during cessation events. Red
circles: experimental data. Blue triangles: model results. (b) The PDF of the time interval τ between two succes-
sive cessation events p(τ/τ0). The red (blue) dashed line represents the fitted exponential function p(τ/τ0) =
exp(τ/τ0 ) with τ0 = 2.94×104s (2.72×104s) for the experimental (modeling) data. (c), (d) Experimental and
modeling results of p(τ ) (filled symbols) and p(�τ ) (open symbol). The dashed (solid) lines indicate the fitted
exponential distributions. See text for discussions.

With decreasing flow strength we see that the height of both peaks of p(�θ, δFC/〈δFC〉) for
the FC77 roll decreases gradually. p(�θ, δFC/〈δFC〉) becomes relatively flattened for small δFC.
The δ-dependence of p(�θ ) for the FC77 roll can be seen more clearly in a semilog plot in
Fig. 4(c), which shows p(�θ ) for various ranges of flow strength δFC. One sees that the two
maxima of p(�θ ) are evident near �θ≈0 and π in the range of 0.75�δFC/〈δFC〉�0.95. When
δFC deceases the peak-structure weakens and disappears for δFC≈0.55〈δFC〉 and p(�θ ) becomes
nearly independent of �θ . For even lower value of flow strength δFC = 0.35〈δFC〉, interestingly,
we note that p(�θ ) appears minimum near �θ = π , and there is overall a tendency that the ratio
of p(�θ = π/2)/p(�θ = 0, π ) increases with decreasing δFC. The joint PDF of the water roll
decreases sharply with decreasing δw and presents no clear dependence on �θ as shown in Fig. 4(b).
These results indicate that with small flow strength the two LSC rolls have a significant probability to
align perpendicularly (�θ = π/2), and that flow cessations in the FC77 fluid layer may be achieved
through a new dynamical process of flow coupling.

As the FC77 roll experiences cessation frequently, we examine the histogram h(δθFC) of its
orientation change over a cessation event. Here the orientation change for cessation is computed for
the whole cessation event which begins when δFC departs from its most probable value, reaching
a lowest value below the criterial value 0.25〈δFC〉 for cessation. A cessation event ends when
the LSC strength resumes and δFC returns to its most probable value. Figure 5(a) shows that
h(δθFC) of the FC77 roll exhibits two prominent maxima at �θ = 0 and π . The first maximum
for �θ = 0 suggests that after cessation events the LSC plane in the FC77 layer often returns
to its original azimuthal orientation. The second maximum at �θ = π indicates, however, that
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there is a significant probability that the FC77 roll experiences reversals in flow direction during
cessation events. We stress that the measured occurrence frequency of flow reversals in the FC77
layer ω = 1.3 day−1 is over one order of magnitude greater than that for single-layer convection
with similar Ra and Pr [44].

III. MODEL RESULTS

A. Derivation of the model

In this section we introduce our theoretical model that describes the dynamics of two neigh-
boring, vertically aligned LSCs in two-layer turbulent convection. We first revisit the previously
derived model by Brown and Ahlers [18,19], devoted to describe the behavior of a single-roll LSC.
Motivated by the NS equations, this model consists of a pair of stochastic differential equations that
represent in large timescale the deterministic motion of the LSC structure, and in short timescale
the stochastic fluctuations owing to the background turbulence. The flow strength of the LSC can
be described by the fluid velocity on the circulating plane uφ . For this degree of freedom, only the
buoyancy and viscous drag terms contribute to the acceleration of uφ . Therefore, the NS equation of
fluid motion over the vertical plane can be written as

u̇φ = αg(T − T0) + ν∇2uφ. (1)

Experimental measurements [15,28,44,45] have shown that the azimuthal temperature profile T (θ )
of a single-roll LSC can be interpolated as: T (θ ) = T0+δ cos(θ0−θ ), where T0 is mean temperature
of working fluid over a horizontal plane and δ is the temperature amplitude which is found to be
proportional to the flow strength of the LSC [19]. For a two-layer convection system, the interaction
of two vertically aligned LSC rolls influences the temperature profiles for both fluid layers. We
suggest that the azimuthal temperature profile over the lower fluid layer can be described as

T1 = T10+δ cos (θ1−θ )+a′δ2I (�θ ).

Here we use subscripts 1, 2 to denote quantities in the lower and upper fluid layer, respectively.
Note that the temperature profile for the upper layer T2 has a similar equation except swapping
the subscripts of 1 and 2. The last term a′δ2I (�θ ) represents the influence on T1 owing to thermal
coupling of the two LSCs, which is proportional to the temperature amplitude δ2 of the upper LSC.
a′ is an attenuation coefficient to be used as a fitting parameter in the range 0<a′<1. The thermal
coupling factor I (�θ ) depends on the relative azimuthal orientation �θ of the two LSC rolls.

We suggest that the azimuthal angular difference �θ of two LSC rolls plays crucial roles in their
thermal interaction. We consider the following states of flow coupling:

(i) When �θ = 0, the two LSC rolls are corotating [see the left column of Fig. 1(b)]. The hot
(cold) plumes forming the two LSCs appear at the same azimuthal orientation near the sidewall
and thus enhance each other their thermal amplitude. Under this condition, the buoyancy forcing on
each LSC rolls is strengthened by both thermal diffusion and heat advection provoked owing to the
other roll. The strength of thermal coupling between the two LSCs is maximum.

(ii) When �θ = π , the two LSC rolls are counterrotating. In this situation the hot (cold) plumes
appear at the opposite side of the cell and reduce, to some extent, the azimuthal temperature anomaly
on each fluid layer. However, in this flow state the two LSC flows are in the same direction at the
fluid interface and thus heat transports can be considerably enhanced through flow advection [see
illustration in the right column of Fig. 1(b)]. Therefore the LSC flow in each fluid layer can still be
strengthened.

(iii) When �θ = π/2 or 3π/2, the circulating planes of the two LSCs are orthogonal to each
other. The interacting strength of the two LSCs in this flow state is minimum.

According to these analyses, we suggest that the thermal coupling factor consists two terms
I (�θ ) = Ī + Ĩ (�θ ), where the �θ -independent term Ī represents the reduced (increased) mean
temperature of the lower (upper) layer owing to the overall enhanced heat transport by the upper
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(lower) LSC flow. Ĩ (�θ ) is an alternating component of I (�θ ) fulfilling
∫ 2π

0 Ĩ (�θ )d�θ = 0, which
is hypothesized to be a function of �θ as follows:

Ĩ (�θ ) = (I0 − 1) cos (2�θ ) + (2 − I0) cos (�θ ).

Here I0 denotes the value of I (�θ ) for �θ = 0, and I0 = Ī+1. We assume this functional form of
thermal coupling as the simplest way to account for its periodicity of �θ . Ĩ (�θ ) has a local maximal
value when the two LSCs are either in the corotating state (�θ = 0), or in the counterrotating
state (�θ = π ). Furthermore, we expect that 0<Ĩ (π )/Ĩ (0)<1 as thermal coupling of two corotating
LSCs is even stronger. Since Ĩ (π )/Ĩ (0) = 2I0−1, we constrain the parameter range of I0 in our
model as 3/2<I0<2. Last, Ĩ (�θ ) reaches a local minimum when the two LSC planes are orthogonal
to each other (�θ = π/2 or 3π/2).

With the expression of Ĩ (�θ ) one can obtain the functional form of the azimuthal temperature
profile in two-layer convection:

T1 = T̄1 + δ1 cos (θ1 − θ ) + a′δ2 Ĩ (�θ ).

Here T̄1 = T10 + δ2 Ī denotes the mean fluid temperature which is independent of the azimuthal
coordinate. a′ is the thermal coupling coefficient. In RB convection the flow strength of the LSC
fluctuates in a shorter timescale compared to the orientational change of the LSC plane. Thus
we decompose the thermal amplitude δ2 into a mean value δ20 and a fluctuating term δ̃2, i.e.,
δ2 = δ20+δ̃2. When evaluating the mean fluid temperature of the upper layer in a relatively large
timescale, we approximate that δ2≈δ20 and obtain T̄1 = T10+δ20 Ī .

Now we calculate the buoyancy force on the LSC roll in the lower fluid layer according to Eq. (1).
Using a step function S(θ − θ1) = 1 (−1) when |θ−θ1| is smaller (larger) than π/2 to present
the direction of buoyancy, we take the volume average of the lower fluid layer 〈α1g(T1−T̄1)〉V =
1/(2V )

∫
α1g(T1−T̄1)dV = 1/(2π )

∫ 2π

0 α1g(T1−T̄1)S(θ−θ1)dθ , and use the expression of T1 to
obtain

〈α1g(T1 − T̄1)〉V = 2gα1δ1

3π
+ a

2gα1δ2

3π
Ĩ (�θ ),

where a = πa′/2. We see that offset term T̄1 which presents the increased (decreased) mean fluid
temperature due to the LSC flow coupling, has no contribution to the buoyancy force on the LSC
rolls.

The viscous force term in Eq. (1) originates from drag force that occurs with the viscous boundary
layers (BLs). In two-layer convection, the drag force applied on the LSC rolls consists of the wall
drag near the nonslip boundaries of the sidewall and plates, and the flow-coupling drag at the
fluid-fluid interface owing to the different flow velocities of the two LSC rolls. In computing the
wall drag for the LSC in the lower layer, we assume a linear velocity profile within the viscous
BLs and a Prandtl-Blasius form of the BL thickness λ = H/(2

√
Re) [46,47] with Reynolds number

Re ≡ HU/ν and the LSC flow speed U . The viscous BLs near the bottom plate and the lower
half of the sidewall thus occupy a volume fraction of the lower fluid layer equal to 5λ1/H (see,
e.g., Ref. [19]), with λ1 being the viscous boundary layer thickness in the FC77 layer. We obtain
the volume-average of the wall drag, 〈ν1∇2uw

1φ〉V ≈〈−ν1U1/λ
2
1〉V = −10ν

1/2
1 U 3/2

1 /H3/2, where U1

is the mean flow velocity of the LSC in the FC77 layer. The magnitude of the viscous drag at the
fluid interface is determined by the fluid velocity difference U1−U0. Here U0 is fluid velocity of
the upper layer near the interface, which is assumed to be a projection of the upper roll velocity U2

along the direction of the lower roll, i.e., U0 = −b cos(�θ )U2. And b is an coefficient for viscous
coupling to be used as a fitting parameter in the range 0<b<1. The viscous BLs near the fluid-fluid
interface has a volume fraction λ1/H of the lower fluid layer, thus we can derive the volume-
average of the viscous drag at the fluid interface 〈ν1∇2ui

1φ〉V ≈〈ν1[−b cos(�θ )U2−U1]/λ2
1〉V =
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−2[b cos(�θ )U2+U1]ν1/2
1 U 1/2

1 /H3/2. Combining these two types of viscous force yields

〈ν1∇2u1φ〉V = −12ν
1/2
1 U 3/2

1

H3/2
− b

2ν
1/2
1 U 1/2

1 U2

H3/2
cos (�θ ).

We have assumed that the strength of viscous coupling of two LSC rolls is a cosine function of
their orientational difference �θ , accounting for its periodicity of 2π and the facts that the two LSC
rolls reinforce (attenuate) each other when |�θ | is less (larger) than π/2. Such a coupling effect is
maximum when the two rolls are lined up onto the same plane with �θ = 0 or π , but becomes zero
when the two rolls are orthogonal to each other with �θ = π/2 or 3π/2. Note that if U2 = 0 the
expression of the viscous force is degenerated into that for single-roll LSC [19].

Since the bulk velocity profile uφ≈2rU/H varies approximately linearly with r [48,49], we
obtain the volume-averaged fluid acceleration 〈u̇φ〉V = 2U̇/3. Based on Eq. (1), the equation of
motion for the LSC velocity in the lower fluid layer can be represented as

2U̇1

3
= 2gα1δ1

3π
+ a

2gα1δ2

3π
Ĩ (�θ ) − 12ν

1/2
1 U 3/2

1

H3/2
− b

2ν
1/2
1 U 1/2

1 U2

H3/2
cos (�θ ). (2)

Both the flow velocity U and temperature δ are measures of the LSC strength. They are found
to be instantaneously proportional to each other, with their proportionality constant satisfying
2gα1δ1/(3π ) = 12νU1Re1/2/H2 [19]. We thus substitute U1 with δ1 to simplify the equation which
then contains only variables of temperature amplitudes δ1 and δ2 that can be measured in the
experiments. Switching the subscripts of 1 and 2, the equations for the flow strength of two
vertically aligned LSCs can be rearranged as two Langevin equations with the stochastic term fδ (t )
representing the random force owing to the background small-scale turbulent fluctuations:

δ̇1 = δ1

τδ1

− δ
3/2
1

δ
1/2
10 τδ1

+ a
δ2

τδ1

Ĩ (�θ ) − b
ν2Re2

ν1Re1

δ
1/2
10 δ

1/2
1 δ2

6δ20τδ1

cos (�θ ) + fδ1 (t ), (3)

δ̇2 = δ2

τδ2

− δ
3/2
2

δ
1/2
20 τδ2

+ a
δ1

τδ2

Ĩ (�θ ) − b
ν1Re1

ν2Re2

δ
1/2
20 δ

1/2
2 δ1

6δ10τδ2

cos (�θ ) + fδ2 (t ). (4)

Here we have defined the mean LSC amplitude δ0≡18π�T σRe3/2/Ra and the timescale
τδ≡H2/18νRe1/2. The stochastic term fδ is modeled by Gaussian noise, which has a zero mean
and an autocorrelation 〈 fδ (t1) fδ (t2)〉t = 2(Dδ/τ

2
δ )δ(t1−t2). Here δ(t ) is a Dirac δ function. Dδ is the

diffusion coefficient of the LSC amplitude. We note that the third and fourth terms in Eqs. (3) and
(4) represent the thermal and viscous coupling effect of two vertically aligned LSCs, respectively.
Their competition may lead to an increased or decreased growth rate of the flow strength δ̇ for each
LSC roll, as we will discuss in detail in following sections.

To describe the azimuthal motion of the LSC planes, we consider the azimuthal component of
the NS equation

u̇θ + 
u · 
∇uθ = ν∇2uθ . (5)

Here the advection term presents mainly the rotational inertia of the LSC which provides a
variable damping force for the azimuthal motion of the LSC planes. Since the viscous drags
across the BLs near the rigid walls and the fluid interface are small compared to this damping
term [18,19], they are neglected in the present model. Since u̇θ = H θ̈ , and only the component
corresponding to the rotational inertia of the LSC in the vertical plane is significant for the
advection term 
u · 
∇uθ≈∂uθ /∂φ(uφ/r)∼U θ̇ , we take volume averages of these terms to obtain:
H θ̈/3 + 2U θ̇/3 = 0. Introducing a second stochastic term fθ̇ (t ) to represent the random forcing on
θ̇ owing to the turbulent background fluctuations, and converting U to δ using their proportional
relation, we arrive at the second sets of Langevin equations for the azimuthal rotation of the two
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TABLE I. The values of the main input parameters in model.

a b I0 δFC,0 (K) δw,0 (K) DδFC (K2/s) Dδw
(K2/s) Dθ̇FC

(rad2/s3) Dθ̇w
(rad2/s3)

0.13 0.22 1.76 0.21 0.57 0.92×10−5 3.2×10−5 0.95×10−4 1.1×10−5

LSC rolls:

θ̈1 = − θ̇1δ1

τθ̇1
δ10

+ fθ̇1
(t ), (6)

θ̈2 = − θ̇2δ2

τθ̇2
δ20

+ fθ̇2
(t ). (7)

Here fθ̇ is modeled as Gaussian noise which is independent of fδ , 〈 fθ̇ (t1) fθ̇ (t2)〉t =
2(Dθ̇ /τ

2
θ̇

)δ(t1−t2). τθ̇≡H2/2νRe defines the timescale for the azimuthal dynamics of the LSCs and
Dθ̇ is the diffusivity coefficient of θ̇ .

Equations (3), (4), (6), and (7) compose the model for the dynamics of two coupling LSCs. They
are four stochastic ordinary differential equations (ODEs) with variables (δ1, δ2, θ̇1, θ̇2) presenting
the strengths and the azimuthally rotating rate of the two LSC rolls. The coefficients of the model
including the mean temperature amplitude δ0, and the timescales τδ and τθ̇ , and the diffusion
constants Dδ and Dθ̇ represent the dynamical properties of one LSC roll and are determined
experimentally. Our model contains three unknown parameters (a, b and I0) which reveal the degree
of flow coupling of the two LSCs. Using our experimental data of p(�θ, δ/〈δ〉) for the flow coupling
states, we give details of the methods to constrain and optimize their values in the Appendix. A list
of the model parameter values are given in Table I.

B. Model results

Figures 2(c) and 2(d) show the calculated time series of normalized flow strength δ/〈δ〉 for
the two LSC rolls, capturing the main feature of the experimental results. The time trace δ/〈δ〉
for each LSC exhibits similarities to the single-roll case observed in experiments, for example,
the amplitude of the LSC appears stable around their mean value but with occasional drastic
fluctuations. Moreover, our model shows that the frequency of cessation differs markedly for the
two LSCs. Using δc = 0.25δ0 as the threshold for cessation events, our model predicts that flow
cessation occurs very frequently in the FC77 layer [Fig. 2(c)], with an occurrence frequency of
ωFC = 4.88 day−1 that is even twice higher than that in single-roll case [41,44]. However, no flow
cessation is observed in the water layer in a timescale of 23 days [Fig. 2(d)]. These modeling results
are in good accord with the experiment.

Figure 3(b) presents model results of the azimuthal angular difference �θ (t ) of the two LSC rolls.
Our model reproduces the large-amplitude fluctuations of �θ in time, and the two preferred relative
orientations of the two LSCs (�θ = 0 and π ) as observed experimentally. These two preferred
relative orientations, as previously interpreted, corresponds to the flow states of thermal and viscous
couplings, respectively. Using these computational data we computer the PDF of �θ for the two
LSCs, and compared with the experimental data in Fig. 3(c). Our model predicts that (�θ ) has
an oscillatory profile with two prominent peaks located at �θ = 0 and π , and a local minimum
for �θ = π/2. The close agreement between the model and experimental results indicates that the
model captures the essential ingredients of flow coupling responsible for the preferred flows states
observed in the experiment.

The joint PDF of δ and �θ obtained from the model are illustrated in Figs. 6(a) and 6(b) for
convection rolls in the FC77 and water layer, respectively. The well-marked global peaks are found
around �θ = 0 and π with δ≈δ0 for both LSC rolls. With decreasing δ, the profile of p(�θ, δ/〈δ〉)
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FIG. 6. Modeling results of the joint PDF p(�θ, δ/〈δ〉) for the LSC in the FC77 layer (a) and in the water
layer (b). (c) Results of p(�θ ) for given values of δFC/〈δFC〉. Green circles: 0.34�δFC/〈δFC〉�0.36, yellow
squares: 0.54�δFC/〈δFC〉�0.56, blue diamonds: 0.74�δFC/〈δFC〉�0.76, red triangles: 0.94�δFC/〈δFC〉�0.96.
These profiles are shown as well by four dashed lines in panel (a) correspondingly.

for the LSC roll in FC77 evolves. The magnitude of the two maxima decreases with their positions
moving towards �θ = π/2. This is in stark contrast to that of the LSC roll in water for which
the PDF decreases sharply towards zero irrespective of �θ . In Fig. 6(c) we show four profiles of
p(�θ ) for the FC77 roll with given flow strength δ = (0.95, 0.75, 0.55, 0.35)δ0, respectively. We
see clearly the trend that the maxima of p(�θ ) switches from �θ = 0, π at large δ, to �θ = π/2
when δ is small. For very low flow strength δ� 0.35δ0 where flow cessation and reversal may
occur, we find that the maximum of p(�θ ) is suited at �θ = π/2. These modeling results show, to
some extent, similar features of the δ-dependence for p(�θ ) observed experimentally [Fig. 4(c)].
They suggest that in the present two-layer convection system, cessation and reversal events occur
frequently when the two LSC rolls are in a configuration that their circulation planes are orthogonal
to each other with �θ = π/2.

We examine the statistical properties of flow cessation and reversal predicted in the model.
Figure 5(a) presents a histogram of the orientation change for the FC77 roll during a cessation event.
We see that data curves of h(δθFC) for both the model and experiment collapse approximately onto
each other. The two maxima of h(δθFC) suggest that after a cessation event the FC77 roll is likely
to resume at its initial azimuthal orientation (δθFC = 0), or undergoes flow reversal (δθFC = π ).
Moreover, the data also indicate that flow reversal occurs very frequently and has a significant
contribution to the stochastic behavior of the LSC in the FC77 layer. We find an occurrence
frequency ωFC = 0.97 day−1 for flow reversal in our model, which is in reasonable agreement with
the experimental observation.

To further explore the stochastic features of flow cessations in the FC77 layer, we present in
Fig. 5(b) the PDF of the time interval between two successive cessation events p(τ/τ0). Here the
exact time of a cessation is defined as the moment when the LSC strength δFC is minimum. τ is
defined as the time interval between the exact times of two successive cessations. Both the exper-
imental and modeling data are in agreement with the exponential function p(τ/τ0) = exp(−τ/τ0),
as indicated by the fitted dashed lines. The slope of the dashed lines gives a characteristic timescale
for cessation interval, τ0 = 2.72×104 in the model, which is quite similar to the measured value
τ0 = 2.94×104.

The exponential PDF of τ indicates that the sequence of flow cessation is a Poisson processes. To
substantiate this claim, we calculate the PDF of the increments between successive time intervals
�τ = τi+1−τi. Here τi is the ith time interval of cessation. Figures 5(c) and 5(d) present the
experimental and modeling results of p(�τ ) (filled symbols), respectively, which are compared with
the data of p(τ ) (filled symbols). While data of p(τ ) are well described by p(τ ) = c0exp(−τ/τ0)
with the pre-factor c0 = 2.04×10−5 (1.84×10−5) for the experimental (modeling) results, we
see that both the experimental and modeling results of p(�τ ) are in good agreement with the
exponential distribution p(�τ ) = 0.5c0exp(−�τ/τ0), with the characteristic time τ0 determined
previously. The Poissonian distributions of both τ and �τ for cessation events, as seen in the
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experimental and modeling data, suggest that flow cessations occur as a stochastic process and
the occurrence of a cessation event is independent of each other.

IV. DISCUSSION

One of the most intriguing flow dynamics observed in the present two-layered convection system
is the significantly enhanced rate of flow cessations and reversals in the FC77 layer, differing
markedly from the LSC dynamics in single-layer convection. To reveal its underlying mechanism,
we analyze the equation of motion for the flow strength δ of the two LSCs. Neglecting the stochastic
terms in Eq. (3), and substituting δ2 in the thermal and viscous coupling terms by its mean δ20, we
obtain the deterministic equation for δ1,

δ̇d
1 = δ1

τδ1

− δ
3/2
1

δ
1/2
10 τδ1

+ a
δ20

τδ1

Ĩ (�θ ) − b
ν2Re2

ν1Re1

δ
1/2
10 δ

1/2
1

6τδ1

cos (�θ ). (8)

Similarly, the deterministic equation for δ2 reads

δ̇d
2 = δ2

τδ2

− δ
3/2
2

δ
1/2
20 τδ2

+ a
δ10

τδ2

Ĩ (�θ ) − b
ν1Re1

ν2Re2

δ
1/2
20 δ

1/2
2

6τδ2

cos (�θ ). (9)

Equations (8) and (9) reduce to the deterministic amplitude equation for the LSC in a single-roll
configuration if the two coupling terms are ignored [19],

δ̇d
s = δs

τδ

− δ3/2
s

δ
1/2
0 τδ

. (10)

Setting δ̇d
s = 0, one sees that the amplitude equation (10) has two fixed points. An unstable fixed

point locates at δ∗
1 = 0 since ∂δ̇d

s (δ)/∂δs|δ=0>0. There is a second fixed point at δ∗
2 = δ0 that is

stable to small perturbations for δs because ∂δ̇d
s (δ)/∂δs|δ=δ0<0. As pointed out in the pioneering

work [19], the stochastic behavior of LSC cessation can be interpreted in terms of diffusion in
a potential well defined by Eq. (10), V (δs) = − ∫

δ̇d
s (δs)dδ = −δ2

s /(2τδ )+2δ5/2
s /(5τδδ

1/2
0 ). Flow

cessation occurs when the LSC amplitude δs drops to zero owing to the random forcing from
the background turbulent fluctuations, i.e., when the fluctuations of δs exceed the potential barrier
�V ≡V (0) −V (δ0) = δ2

0/(10τδ ). Given by the intensity of the stochastic force fδ one can evaluate
the first-passage time for δ to escape the potential well and thus the cessation frequency ω =
exp(−2�Vδ/Dδ )/(2πτδ ). Using the known coefficients (i.e., δ0, τδ and Dδ) for the two LSCs, one
finds that the cessation frequency of the LSC in the FC77 and the water layer are ωFC = 0.39 day−1

and ωw = 6.7×10−9 day−1, respectively. Obviously one underestimates the cessation frequency of
the FC77 roll in the present two-layer convection system based on the aforementioned single-roll
LSC model.

We now consider the phase portrait for two coupling LSCs according to our model. Figures 7(b)
and 7(c) present δ̇d

FC and δ̇d
w as functions of �θ and δ/〈δ〉 based on Eqs. (8) and (9), respectively. For

comparison we show in Fig. 7(a) results of δ̇d
s in the phase space (δ/〈δ〉,�θ ) for the case of single-

roll LSC based on Eq. (10), whereby there exists no �θ -dependence of δ̇d
s by definition. For two

interacting LSCs, however, their thermal and viscous coupling effects result in new �θ -depending
terms in their δ̇ equations. The thermal coupling effect, expressed as aδi0 Ĩ (�θ )/τδ j (i, j = 1, 2),
has positive contributions to δ̇ around �θ = 0 and π since in both states the LSC amplitudes are
enhanced by heat advection. The viscous coupling effect, modeled as a drag force with its magnitude
proportional to cos(�θ ) [the last term in Eqs. (8) and (9)], increases δ̇ when the two LSC rolls
are counterrotating (�θ = π ), but reduces δ̇ if the two LSC rolls are corotating (�θ = 0). Thus
the competition between the thermal and viscous coupling effects of the two LSCs determines the
oscillation amplitude of δ̇d over the phase space (δ/δ0,�θ ). In the flow state when the two LSC
planes are orthogonal to each other (�θ = π/2), δ̇d for both LSCs is reduced, compared to δ̇d

s for
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FIG. 7. The normalized time-derivative of the LSC amplitude δ̇d as functions of �(θ ) and δ/〈δ〉. Results for
the LSC in a single-roll configuration (a), in the FC77 layer (b), and in the water layer (c). δ̇d is calculated based
on Eqs. (8)–(10). For a single-roll LSC δ̇d

s is by definition independent of �(θ ), but shown as well in panel
(a) as a three-dimensional phase surface δ̇d

s (�(θ ), δ/〈δ〉) for comparisons. The orange line is the intersection
lines of the surface δ̇d (�θ, δ/〈δ〉) with the plane δ̇d = 0, which is the collection of stable fixed points.

a single-roll LSC. Such a reduction in δ̇d is attributed to the background fluid cooling (warming) in
the FC77 (water) layer which reduces the buoyancy forcing on the LSC structure, a global effect of
heat advection and diffusion in the present two-layer convection system.

We evaluate the relative strength of thermal coupling effect compared to the buoyancy forcing on
the two LSCs. We calculate the ratios of the third term (representing thermal coupling effect) over
the first term (representing buoyancy force) in Eqs. (8) and (9). Taking time-average for the LSC
amplitudes δi(i = 1, 2) and approximating Ĩ (�θ ) as unity, we find the ratios are aδ20/δ10= 0.34
and aδ10/δ20= 0.05 for the LSC in the FC77 and water layer, respectively. They imply that
although the thermal coupling effect is insignificant in the water layer, it plays a crucial role in
the amplitude equation of the FC77 roll. For this reason prominent oscillations appear on the phase
surface δ̇d

FC(δ/〈δ〉,�θ ) for the FC77 roll [Fig. 7(c)], with pronounced crests and trough arising at
(�θ = 0, π, 2π ) and (�θ = π/2), respectively. The phase surface of δ̇d

w(δ/〈δ〉,�θ ) for the LSC
roll in water, however, is relatively flat along the axis of �θ [see Fig. 7(b)]. The ratios of the viscous
coupling effect over the buoyancy forcing can be assessed, taking the magnitude of the fourth term
in Eqs. (8) and (9), as bν2Re2/(6ν1Re1) = 0.01 for the FC77 roll and bν1Re1/(6ν2Re2) = 0.09 for
the water roll. We see that the viscous coupling effect on either LSC rolls is insufficient to produce
significant variations of the phase surface δ̇d

FC(δ/〈δ〉,�θ ).
We seek for physical interpretations for the dissimilar effects of thermal coupling

on the two LSCs and explain their different dynamics. In the experiment a con-
stant heat flux density Q was applied through the two fluid layers. For the parameter
regime of 109 �Ra� 1011 and 8 � Pr � 20, the Nusselt number, which measures ratio of
the effective thermal conductivity of the convecting fluid to the thermal conductivity λ

of the quiescent fluid, can be described approximately as Nu = QH/(λ�T ) ≈ 0.05 Ra1/3

[50]. Substituting the definition expression for Ra, one finds that Q∝(λ3α/κν)1/3�T 4/3.
Given by the physical properties of the two fluid layers (i.e., αFC = 1.4×10−3K−1,
κFC = 3.4×10−4 cm2s−1, νFC = 6.6×10−3 cm2s−1, λFC = 6.1×10−4 W cm−1K−1, and αw =
1.5×10−4 K−1, κw = 1.4×10−3 cm2s−1, νw = 1.1×10−2 cm2s−1, λw = 5.9×10−3 W cm−1K−1),
one can evaluate the values of the combined coefficient λ3α/κν to be 1.34×10−7 W3 cm6 K−4

and 1.88×10−6 W3 cm6 K−4 for the FC77 and the water layer, respectively. We then determine the
ratio of the temperature differences over the two fluid layers �TFC/�Tw = 1.94, which is in good
agreement with the measured value 1.93. It hints that the larger temperature difference crossing the
FC77 layer is mainly attributed to its relatively lower thermal conductivity. Thus we can predict the
ratio of the Rayleigh numbers for the two fluid layers RaFC/Raw = 130.3 with its experimentally
determined value being 129.6. The Reynolds number for the LSC can be approximated as well
in this flow regime Re = UH/ν∝Ra4/9Pr−2/3 [50]. We can then express the time-averaged LSC
amplitude δ0 ≡ 18π�T σRe3/2/Ra, as defined in the equations of motion (3) and (4), in terms of
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FIG. 8. The potential V (δ) for various flow states �θ = 0 (red line), �θ = π/4 (orange line), and
�θ = π/2 (blue line). Results for the LSC in the FC77 layers (a) and in the water layer (b).

�T and the parameters of the fluid properties δ0∝(κνα−1�T 2)1/3. We can now evaluate the ratios
of the strength of thermal coupling over buoyancy forcing for the LSC in the FC77 layer, which
is given by aδw,0/δFC,0∝(κνα−1�T 2)1/3

w /(κνα−1�T 2)1/3
FC , according to Eqs. (8) and (9). Although

the temperature difference �Tw in the water layer is smaller than in the FC77 layer, the thermal
expansion coefficients of the FC77 layer is approximately one order in magnitude larger than that
of water, i.e., αFC/αw = 9.32. Thus a thermal perturbation of smaller amplitude generated from the
water layer, presumably produced by thermal plumes detached from the LSC therein, may result
in considerably large buoyancy acceleration of the LSC in the FC77 layer. We find that this is the
dominating factor that contributes to the prominent effect of thermal coupling in the FC77 layer.
We conclude that it is the different physical properties of the two fluid layers that gives rise to the
distinct dynamics the two LSCs in the present two-layer convection system.

In Figs. 7(a)–7(c) we show in orange curves the intersection lines of the surface δ̇d (�θ, δ/〈δ〉)
with the plane δ̇d = 0. They are a collection of stable fixed points δ∗(�θ ) since ∂δ̇d (δ)/∂δ|δ=δ∗<0,
and if a small deviation of the LSC amplitude arises from δ∗, presumably caused by the background
turbulent fluctuations, a restoring force appears that drives δ back to the stable point. One sees that
for the single roll case δ∗(�θ ) is a straight-line [Fig. 7(a)]. For the LSC in the water layer Fig. 7(b)
shows that small wavy variation appears on δ∗(�θ ) which remains still a continuous function and a
stable fixed point always exists for 0��θ�2π . Figure 7(c) shows that for LSC in the FC77 layer the
intersection line δ∗(�θ ) turns into unclosed loops surrounding the crests near �θ≈(0, π ). However,
near the trough with �θ≈(π/2) there exists no stable fixed points. It hints that flow cessations and
reversals may be prone to occur in this flow state since δ̇d remains negative for all values of δ.

Based on Eqs. (8) and (9) we calculate the potential wells V (δ) = − ∫
δ̇d (δ)dδ for the flow

strength of the two LSCs. Figures 8(a) and 8(b) depict V (δ) at various relative orientation (�θ = 0,

π/4, π/2) for the LSC in the FC77 and water layer, respectively. One sees that with increasing
�θ the potential barrier �V = V (0)−V (δ0) for the LSC in FC77 layer becomes small gradually.
When �θ = π/2, the potential barrier eventually disappears and V (δ) increases monotonically
with δ. Within such a repulsive potential, the flow strength δ of the FC77 roll drifts spontaneously
towards the stable fixed point δ∗ = 0 irrespective of its initial status. In this sense, the FC77 roll
is prone to cease in the flow state when the two LSC planes are orthogonal to each other with
�θ = π/2. We thus suggest that there exist two distinct stochastic dynamic processes through
which flow cessations and reversals may occur. Starting from the most probable flow state of thermal
coupling (�θ = 0), for example, and with its amplitude being at the bottom of the potential well
(δ = δ0), the LSC in the FC77 layer acquires stochastic forcing for both degrees of freedom of its
temperature amplitude δ and the relative orientation θ . A cessation (or reversal) event occurs when
fluctuations in δ cross the potential barrier �V and δ drops to zero, while the system remains in a
thermal coupling state (�θ = 0). We refer this process as amplitude-fluctuation induced cessation
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(reversal), a well-known stochastic process observed in turbulent convection with a single-roll LSC.
Flow cessation and reversal events can be also achieved in a two-layer convection system when
stochastic fluctuations drive the azimuthal diffusion of two coupling LSCs such that the system
switches between various preferred states (e.g., thermal coupling and viscous coupling, etc.). Under
the circumstance that the two LSC planes are right-angled to each other (�θ≈π/2), the LSC
amplitude of the FC77 roll δ drops to zero momentarily, owing to a deterministic force created by the
positive potential V (δ,�θ = π/2) as depicted in Fig. 8(a). This is an orientation-fluctuation induced
cessation (reversal) event which is a new stochastic process observed in the present convection
system of two interacting LSCs.

Both our experimental and modeling data shown in Figs. 4(c) and 6(c) reveal that when the flow
strength of the FC77 roll is weak (e.g., δ/〈δ〉≈0.35), there is a considerably large possibility to two
LSC planes are orthogonal to each other with �θ = π/2. It is an evidence that a significant portion
of cessation and reversal event of the FC77 roll may occur through the orientation-fluctuation
induced process. Indeed, we have observed from our experimental (modeling) data that 27.3 (56.7)
percent of cessation events are orientation-fluctuation induced. When the flow state of the two LSCs
evolves from thermal coupling or viscous coupling, to a flow configuration that their circulating
planes are orthogonal to each other, a momentary vanishing of the FC77 roll occurs, followed by
a revival of the LSC flow likely returning to the state of thermal coupling or viscous coupling.
The above analysis thus provide a new perspectives into understanding the significantly enhanced
frequency of flow cessations and reversals observed in the FC77 layer. In the water layer, however,
the potential function V (δ) of the LSC amplitude is nearly independent of �θ [Fig. 8(b)]. Hence
even in the flow state when the two LSC planes are orthogonal to each other (�θ = π/2), cessations
and reversals occur only when fluctuations of the LSC amplitude is large enough to overcome the
potential barrier that has a similar amplitude. We thus interpret the apparently different stochastic
behavior of the two LSCs. Our model provides predictions for the occurrence frequency of flow
cessations and reversals which is in good agreements with the experimental observations (Fig. 5).

Figure 9 presents an example of the experimental results of the time series of δ and �θ when the
FC77 roll undergoes a reversal event, displayed over the phase surface δ̇FC(δFC/〈δFC〉,�θ ). Before
flow reversal starts, we see that the two LSCs are in a thermal coupling state with �θ = 0 and
the strength of the FC77 roll is meandering around the stable position δd

FC≈〈δFC〉 (see the red part
of the trajectory in Fig. 9). The reversal event is initialized when �θ undergoes an abrupt shift
towards �θ = π/2, presumably owing to the stochastic force fθ̇ that drives the azimuthal rotation
of the FC77 roll, while its flow strength δFC remains nearly unchanged in this process. When �θ

reaches π/2, i.e., the circulating planes of the two LSCs are right-angled to each other, δFC starts
to decrease rapidly, reaching a minimum δFC≈0.1〈δFC〉 (see the purple part of the trajectory). As
we have interpreted in the model, in this flow state the potential VFC(δ) is positive with a positive
slope ∂VFC(δ)/∂δ>0 for all δFC [see the blue curve in Fig. 8(a)], which promotes the occurrence
of cessation and reversal events. When the FC77 roll is at a low level of flow strength δFC�〈δFC〉,
its angular momentum is small and thus its azimuthal orientation exhibits erratic motions until for
this case it reaches �θ = π . In this flow state of viscous coupling we see that the flow strength δFC

gradually resumes to its mean value 〈δFC〉 (the blue part of the trajectory) and the reversal event is
accomplished. Such sequence of events typifies the evolution of flow states during a reversal event,
which occurs relatively frequently in the present two-layer convection system.

V. CONCLUSION

In this paper we propose a low-dimensional model to interpret the rich dynamics of two
interacting large-scale circulations in two-layer turbulent thermal convection. Extending previous
models for single LSC dynamics in RBC [18,19], our model consists of four stochastic ordinary
differential equations to describe the strength δ and azimuthal orientations θ of the two LSCs,
with their deterministic terms formulated by volume-average of the momentum terms in the NS
equations, given by the empirically known structures of the LSC rolls. The interaction terms of
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FIG. 9. Experimental results for the time series of δ and �θ of the FC77 roll which undergoes a flow
reversal, overlying the phase surface δ̇FC(δFC/〈δFC〉,�θ ) predicted by the model. The red part of the trajectories
represents the meandering movement of the flow strength around the stable position 〈δFC〉 in the state of thermal
coupling. The purple line shows the rapid orientational change of the FC77 roll towards the state of viscous
coupling, and a momentary vanishing of its flow strength near � = π/2. After this reversal event, the strength
of the FC77 roll gradually resumes at the state of viscous coupling �θ = π as shown by the blue line. The
orange dashed line represents the intersection of the phase surface δ̇FC(δFC/〈δFC〉, �θ ) with the plane δ̇ = 0
(indicated by the grey horizontal plane). The black arrows on the trajectory denote the direction of flow-state
evolution.

the two vertically aligned LSCs, i.e., thermal and viscous coupling terms, are predicted based
on the influence of the fluid temperature induced by the other LSC roll through heat advection
and thermal diffusion, and the enhanced (reduced) viscous dissipation across the interface between
the two LSC rolls. The effects of the background turbulent fluctuations are represented by stochastic
forcing terms for both the δ and θ equations.

Our model produces two stable LSC rolls interacting with each other, and predicts their preferred
flow states of thermal and viscous coupling. The model describes properly the diffusive motion
of the LSC amplitudes δ in a deterministic potential V (δ) and predicts accurately the Poissonian
distribution of time interval between LSC cessations. More importantly, our study shows that for
two vertically aligned, interacting LSCs in turbulent convection, flow reversals and cessations can
be initiated when turbulent fluctuations force the stochastic azimuthal motion of the two LSCs into a
flow state with the orientation of the two LSC planes being right-angled to each other, the amplitude
δ of the LSC in the fluid layer with a relatively larger Ra drops to zero, driven by a deterministic
force created in its positive potential V (δ,�θ = π/2). Flow reversal is achieved when the LSC
resumes in the opposite azimuthal position.

Previous studies on the LSC dynamics in turbulent convection have proposed several scenarios
for the mechanism of flow reversals. Flow reversals in turbulent RBC are often interpreted as an
intrinsic instability of the LSC structure which switches between two bistable states [13,17–19].
Such a flow instability is initialized, either by a transitory imbalance between the buoyancy forcing
and viscous damping of the LSC [13,17], or by stochastic fluctuations in the background turbulence
[18,19]. Other experiments suggest that LSC reversal may be ascribed to external disturbances
from secondary flows. For convection in a quasi two-dimensional domain, flow reversals occur
when the corner vortices drain energy from and destabilize the main LSC structure [21,51]. In
recent works, the irregular flow reversals and cessations are viewed as a dynamical process of heat
accumulation and release in thermal convection [24]: the abrupt massive eruption of thermal plumes,
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which releases the accumulated heat in the convective fluid, interrupts the existing LSC and resets
its azimuthal direction. While these studies provide perceptive descriptions of LSC reversals in a
single-roll configuration, from different viewpoints of experiments and numerical simulations, they
suggest different theoretical interpretations of the phenomena.

In the present work we demonstrate that in two-layer turbulent convection the stability of the
flow structures depends on the interacting degrees of freedom of the two LSCs. Importantly,
the mechanism of flow reversal in this system is underpinned by multiple dynamical processes:
a stochastic process that the two LSCs undergo azimuthal diffusion driven by the background
turbulent fluctuations and switch randomly between various flow states, and a deterministic pro-
cess in which the strength of the LSC reduces monotonically owing to a reduction of buoyancy
forcing on the LSC structure. The success of our model in predicting the enhanced occurrence
frequency of flow reversals and cessations in two-layer convection suggests that the turbulent flow
dynamics of interacting large-scale flows can be described by physically based, low-dimensional
approximate models. The interactions between two adjacent LSCs, and the resultant stochastic
dynamics as elucidated in the present work, may be of fundamental significance for turbulent
flows with multiple large-scale stuctures. Thus the present modeling approach may be applied more
generally to multilayer convection systems in which multiple convection rolls coexist and interact
thermally and mechanically. Turbulent convection in multiple fluid layers (such as convection in
the air-ocean system and in the Earth’s fluid core and its mantle) has been a challenging subject for
numerical and experimental studies but is of great practical importance. Our work brings insights
into understanding the dynamics of these turbulent flows and may inspire further studies.
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APPENDIX: MEASURING THE MODEL PARAMETERS

Our model of two interacting LSCs requires several input parameters. Given by the experimental
conditions RaFC = 1.59×1011, Raw = 1.23×109 and σFC = 19.6, σw = 8.1, our measurements of
the sidewall temperature show that the mean temperature amplitudes for the LSCs in the FC77
and water are δ10 = 〈δFC〉 = 0.21 K and δ20 = 〈δw〉 = 0.57 K, respectively. The Reynolds numbers
of the two LSC are evaluated based on the Grossmann-Lohse theory [50], ReFC = 4446.7 and
Rew = 940.2.

For a variable x that undergoes diffusive fluctuations, the mean-square displacement 〈(dx)2〉 over
a small time interval dt is given by 〈(dx)2〉 = Dxdt , where Dx is defined as the diffusivity of x. For
a sufficiently large time, 〈(dx)2〉 = 2τxDx approaches a constant, with τx being the characteristic
timescale of the diffusive motion. In our model, the stochastic terms fx(t ) are modeled as Gaussian
white noise that have a variance of Dx/h, where h is the time step.

Figure 10 shows the mean-square displacements 〈(dδFC)2〉 and 〈(dδw )2〉 as functions of the time
interval dt . The equation 〈(dδ)2〉 = Dδdt is fitted to both data sets for the FC77 layer and water
layer, in the linear range of the time interval 30s� dt � 90s, to obtain DδFC = 0.92×10−5 K2/s and
Dδw

= 3.2×10−5 K2/s. For a sufficiently large time interval dt � 103 s, we use 〈(dδ)2〉 = 2τδDδ to
determine τδFC = 191 s and τδw

= 84 s. Following a similar scheme we determine the dynamical
parameters for the diffusive motion of θ̇ as follows, Dθ̇FC

= 0.95×10−4 K2/s, τθ̇FC
= 1.8 s and

Dθ̇w
= 1.1×10−5 K2/s, τθ̇w

= 1.2 s.
Our model contains three unknown parameters a, b, and I0 to be determined by matching

between the experimental data and the modeling outputs. Here we examine the experimental and
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FIG. 10. The mean-square displacements 〈(dδFC)2〉 (a) and 〈(dδw )2〉 (b) as a function of the time interval
dt . The orange dashed lines denote 〈(dδFC)2〉 = DδFC dt and 〈(dδw )2〉 = Dδw

dt with DδFC = 0.921×10−5 K2/s
and Dδw

= 3.2×10−5 K2/s. The purple dashed line shows the fitted constant 2Dδτδ for large dt , yielding τδFC =
191 s and τδw

= 84 s.

modeling results of (i) the PDF of the flow coupling states p(�θ ) as shown in Fig. 3(c), and (ii)
the ratio R(δFC)≡ ∫ π/4

−π/4 p(�θ )d�θ/
∫ 5π/4

3π/4 p(�θ )d�θ that reveals the probability whether the LSC
in the FC77 layer is in the flow state of thermal coupling or viscous coupling for various flow
strength. We calculate the mean-square deviations of the modeling results of these two quantities
from the experimental ones, i.e., �2

R = ∫ 1.4
0 (Re−Rm)2dδFC/〈δFC〉 and �2

P = ∫ 2π

0 (pe−pm)2d�θ . The
subscripts e and m denote data from the experiment and the model, respectively. δFC/〈δFC〉 = 1.4 is
the maximum value of δFC/〈δFC〉 observed in the experiment. Following the least-square method,
we determine the optimal values of the parameters (a = 0.13, b = 0.22, I0 = 1.76) by setting the
quantity �2 ≡ �2

R/
∫ 1.4

0 RedδFC/〈δFC〉+ �2
P/

∫ 2π

0 ped�θ a minimum.
For demonstration we show in Fig. 11 model results of the ratio R as functions of δFC/〈δFC〉

for three sets of parameters (a, b, and I0), which are compared with the experimental data. �2
R

for these three sets of result are 6.85 (blue triangles), 40.51 (orange diamonds), and 16.76 (purple
squares), respectively. Furthermore, we calculate p(�θ ) using these three sets of parameters to
find out �2

P = (1.35, 3.43, 2.44), and �2 = (0.59, 2.21, 1.19). Last, we find that with the com-
bined parameters (a = 0.13, b = 0.22, I0 = 1.76) the mean-square deviation �2 = 0.59 reaches the

FIG. 11. The ratio R as functions of δFC/〈δFC〉. Red circles (solid line): experimental results. Other symbols
(dashed lines): model results using different sets of parameters. Triangles represent the result with the optimal
parameters (case 1: a = 0.13, b = 0.22, I0 = 1.76). Diamonds and squares are results for (case 2: a = 0.12,
b = 0.22, I0 = 1.76) and (case 3: a = 0.13, b = 0.3, I0 = 1.64), respectively.
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global minimum over the parameter range that is explored, and this result determines the optimal
parameters for our model.

The values of the main parameters used in the model are presented in Table I.
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