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Stagnation enthalpy effects on hypersonic turbulent compression corner
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The effects of stagnation enthalpy on a hypersonic boundary layer developing over a
compression ramp are analyzed in this work using direct numerical simulations. Separate
sets of simulations with different values of free-stream temperature, wall-cooling rate,
and edge Mach number are carried out to evaluate and isolate stagnation enthalpy effects.
Moreover, these sets of calculations are performed with and without vibrational excitation
to further characterize the impact of this thermodynamic phenomenon on the flow. The
presented calculations show that the variation of stagnation enthalpy and the presence of
vibrational excitation are not able to qualitatively alter the structure of the flow. From a
quantitative point of view, it is shown that the variation of the thermodynamic state of the
gas can cause a 10% variation in the skin-friction coefficient, a 20% decrease in wall heat
flux, and a shift in the typical frequencies of wall-pressure fluctuations by a factor of 2
toward higher frequencies.
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I. INTRODUCTION

Aircraft that fly at hypersonic Mach numbers and low altitudes experience intense mechanical
and thermal loads on their surface [1–3]. In particular, when the Reynolds number of the flow
surrounding the fuselage is sufficiently high to trigger the transition to turbulence, strongly nonlinear
interaction of complex thermochemical effects with transport phenomena due to the high velocity
of the gas is activated [1,4]. The correct prediction of these fundamental phenomena is of primary
importance to achieve a precise evaluation of the thermal and mechanical loads of hypersonic
aerospace applications.

Significant advances in describing the behavior of wall-bounded compressible, and more specif-
ically, hypersonic turbulence have been achieved in the past years in the context of low-enthalpy
flows. These flows are characterized by low stagnation temperatures, which most of the time imply
cryogenic static temperatures in the free stream and prevent the activation of vibrational excitation,
chemical dissociation, and thermochemical nonequilibrium. Most of the efforts are related to
boundary layers developing on flat plates in supersonic [5,6] and hypersonic [7–11] regimes. The
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main objective of these studies was to assess the importance of compressibility and wall heat transfer
on the dynamics of the boundary layer. Specifically, various transformations that attempt to map
the mean compressible flow onto its incompressible counterpart have been formulated and tested
with mixed results, depending on the edge Mach number of the flow and the intensity of the wall
heat flux [12–14]. Similarly, several decompositions of the skin friction and wall heat flux have
been proposed to highlight how the various hydrodynamic phenomena occurring in the boundary
layer influence the exchange of energy and momentum with the solid wall [15,16]. Interactions
of compressible boundary layers with oblique shocks have also been investigated considering
configurations where either the compression wave is generated by external shock generators [17,18]
or by a compression corner [19,20]. A main point of interest in these studies is the quantification and
modeling of low-frequency unsteadiness of the wall pressure field [21,22]. In fact, it is known that
the hydrodynamic fluctuations of the preshock boundary layer coupled with the separation bubble
formed by the flow separation at the shock foot generate very-low-frequency oscillations of the
pressure field that might be dangerous for the structural integrity of hypersonic vehicles.

The higher computational complexity associated with considering high-enthalpy effects has
limited studies of turbulent flows where vibrational excitation, chemical equilibrium, and thermal
nonequilibrium are active. Recently, spatially evolving boundary layers with stagnation enthalpies
of the order of tens of megajoule per kilogram have been computationally analyzed considering
chemical [23] and thermochemical nonequilibrium [24]. These studies have highlighted the impor-
tance of turbulent transport on the atomic species distribution within the boundary layer and the
high-turbulence–chemistry interaction achieved in flows of this kind. Very recently, high-enthalpy
effects have also been investigated in the context of oblique shocks impinging on transitional
boundary layers [25]. Further characterization of these phenomena in the context of turbulent
compression corners still requires investigation.

The present study analyzes the effects of stagnation enthalpy on hypersonic compression corner
flow. Direct numerical simulations (DNS) of a fully turbulent compression corner flow are carried
out for different wall-cooling ratios, free-stream Mach numbers, and stagnation enthalpies consider-
ing the vibrational excitation of the gas. The rest of the manuscript is organized as follows. Section II
describes the mathematical and numerical formulation utilized to carry out the presented simulations
and the computational setup. The main results of the simulations are presented in Sec. III, where the
analysis is focused mainly on integral quantities of engineering interest, such as the skin-friction
coefficient, the heat flux at the wall, and the intensity of the wall-pressure fluctuations. Lastly,
conclusions are given in Sec. IV.

II. MATHEMATICAL FORMULATION

The DNS presented in this work have been carried out using the Hypersonic Task-based Research
(HTR) solver [26–28]. HTR is a compressible Navier–Stokes solver capable of executing large-
scale simulations of compressible reacting flows, taking into account multicomponent transport and
finite-rate chemistry. Specifically, the presented results are obtained by solving the conservation
equations of mass, momentum, and energy, namely,

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂ (ρu)

∂t
+ ∇ · (ρuu) = −∇P + ∇ · τ , (2)

∂ (ρe0)

∂t
+ ∇ · (ρuh0) = ∇ · (λ∇T + τu). (3)

In this formulation, t is the time coordinate, ρ is the density, u is the velocity vector, P is the
thermodynamic pressure, and T is the temperature of the gas. The viscous stress tensor τ is defined
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as

τ = μ[∇u + ∇uT − 2(∇ · u)I/3], (4)

where I is the identity tensor, and the viscosity of the fluid is determined as a function of the
local temperature using Sutherland’s law: μ = μref(T/Tref )

3
2 (Tref + S)/(T + S). In particular, Tref =

271.15 K and S = 110.4 K have been selected in order to reproduce the behavior of standard air.
The formulation is supplemented with the ideal-gas equation of state P = ρRgT , where Rg is the
gas constant.

In Eq. (3), e0 = e + |u|2/2 and h0 = e0 + P/ρ are the specific values of the stagnation internal
energy and enthalpy, respectively. In this formulation, e is the specific internal energy that is
computed as a function of temperature with the expression

e = hr +
∫ T

Tr

cpdT ′ − P

ρ
, (5)

where cp is the constant-pressure specific heat capacity, and hr is a reference enthalpy evaluated at
the corresponding temperature Tr .

In this work, two types of gas in thermodynamic equilibrium are considered, using (a) a
diatomic calorically perfect gas (CPG) model, for which Tr = 0, href = 0, and cp = 7Rg/2, and
(b) a calorically imperfect gas (CIG) with the same value of Rg but whose specific heat capacity
and specific enthalpies are computed as functions of the local temperature using the nine-coefficient
NASA polynomials particularized for a gas mixture composed of 79% N2 and 21% O2 on a molar
basis [29]. In both cases, the thermal conductivity of the gas, λ, is computed as a function of the local
viscosity and specific heat capacity at constant pressure with a constant Prandtl number assumption,
namely, Pr = cpμ/λ = 0.71.

The conservation equations are discretized over a curvilinear computational grid using a conser-
vative formulation [30]. In particular, the Euler fluxes are discretized with a sixth-order centered
hybrid scheme, whereby a sixth-order skew-symmetric formulation that preserves kinetic energy
[31] is utilized in the smooth regions of the flow and a targeted essentially nonoscillatory (TENO)
scheme [32] is used for stencils that are crossed by discontinuities. The smoothness of the flow is
measured direction-by-direction using a shock sensor based on the TENO6-A smoothness factors,
where the cutoff parameter adaptation is based on a Ducros sensor [33]. The viscous fluxes are
discretized in divergence form using a second-order centered scheme. The resulting set of ordinary
differential equations is advanced in time using a Runge–Kutta strong-stability-preserving third-
order scheme [34]. Further details about the numerical procedures utilized in this work, along with
performance analyses of test benchmark cases, can be found in Di Renzo et al. [26].

A. Computational setup and flow parameters

The computational setup considered in this study consists of the prismatic domain sketched in
Fig. 1. A 15◦ compression corner is located at the origin of the system of coordinates. A hypersonic
turbulent boundary layer of thickness δ0 is injected through the inflow boundary. The free stream
of the incoming boundary layer has a velocity Ue, temperature Te, and density ρe. The distance
between the left surface of the domain and the compression corner is equal to L1 = 60δ0. The
turbulence in the injected boundary layer is sustained using a recycle-rescaling boundary condition,
which samples the velocity and temperature fluctuations on a plane located 40δ0 downstream of the
inlet plane [35].

The wall along the compression corner is kept at a constant temperature Tw and its shape is
defined by the equation yw(x) = d2[ f (x) − f (−60)], where f (x) = x + log[cosh(xd1)]/d1, d1 =
(1 + d2

2 )
3
2 /Rc, and Rc = 0.05δ0 is the radius of curvature of the compression corner, imposed to

avoid any discontinuity in the computational grid metrics, while d2 is numerically determined to
guarantee the correct deflection angle.
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FIG. 1. Schematics of the computational setup. The contour plot shown in the figure corresponds to one of
the computed average temperature fields.

The top surface of the computational domain is located 10δ0 units above the wall, while its
shape is represented by a mathematical expression similar to the bottom wall with Rc = 10δ0. The
boundary condition along the top surface is treated with a characteristic far-field boundary condition
that switches between a characteristics-based outflow (if the local flow exits the surface) and a
nonreflective inflow that weakly imposes the free-stream conditions (if the flow locally enters the
computational domain).

The right surface of the computational domain is positioned L2 = 40δ0 downstream of the
compression corner and is modeled using a nonreflective outflow [36]. The computational domain
is 10δ0 wide in the z direction normal to the sketch, along which periodicity is enforced.

The computational grid is uniform along the periodic direction and is stretched with a hyperbolic
sine function in the wall-normal direction to achieve a grid spacing that is similar to unity in
local friction (plus) units for the entire computational domain. Approximately 30% of the grid
points assigned to the streamwise direction are uniformly distributed in the region of the com-
putational domain upstream of the interaction, whereas the rest of the points are smoothly clustered
downstream of the compression corner to achieve an approximately uniform grid resolution nor-
malized in local friction units. In particular, the positions of the grid points in the x direction are
determined as xi = [L1 + L2 cos(15◦)][g(ξ − rp) − g(−rp)] − L1, where the normalized grid index
ξ = i/(Nx − 1) is a parameter that is zero for the first point of the computational grid (i = 0) and
one at the last point (i = Nx − 1). Nx is the number of computational grid points utilized along the
streamwise direction, and g(x) is a stretching function defined as

g(x) = L1

rp[L1 + L2 cos(15◦)]
x − c2[ f (ξ − rp) − f (−rp)], (6)

where rp is the parameter that controls the clustering, and c2 is a constant numerically determined
in order to obtain a computational grid of the correct size. The results shown below correspond to
nine cases whose main parameters are summarized in Table I. The subscripts e and w mean that
the quantity is evaluated at the edge of the incoming boundary layer and at the wall, respectively.
These simulations differ mainly with respect to the thermodynamic state of the free stream, the edge
Mach number of the incoming boundary layer, the dimensionless temperature of the wall, and the
thermodynamic model that describes the gas. In general, we can divide the presented calculations
into three sets composed of three calculations.

Within each set of calculations, the configurations with Tref/Te = 2.7315 are at low-enthalpy
conditions (Te = 100 K) and are representative of the state of the art for DNS of hypersonic
compression ramps. The setups at Tref/Te = 0.5463 (Te = 500 K) have higher stagnation enthalpy,
and they reach thermodynamic states that activate vibrational excitation within the boundary layer.
For this reason, these simulations are carried out with both the CPG and CIG models. In this
way, the influence of the variation of the viscosity field on the flow is highlighted by comparing
the high- and low-enthalpy CPG simulations, whereas the effects of vibrational excitation are
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TABLE I. Setup parameters of the presented simulations where Me is the edge Mach number at the inlet,
Re0 = ρeUeδ0/μe is the Reynolds number computed at the inlet with the edge conditions, Nx , Ny, and Nz are
the number of grid points along the Cartesian directions.

Label Model Mae Tw/Te Tref/Te hw/haw Tw/Taw Re0 Nx × Ny × Nz rp

M5_T22_loH_CPG CPG 5 2.2 2.731 0.400 0.400 1.0×104 2560×450×768 0.35
M5_T22_hiH_CPG CPG 5 2.2 0.546 0.400 0.400 1.0×104 3000×450×1024 0.35
M5_T22_hiH_CIG CIG 5 2.2 0.546 0.355 0.462 1.0×104 3000×450×1024 0.30
M5_T33_loH_CPG CPG 5 3.3 2.731 0.600 0.600 1.2×104 2560×256×620 0.30
M5_T33_hiH_CPG CPG 5 3.3 0.546 0.600 0.600 1.2×104 2560×256×810 0.30
M5_T33_hiH_CIG CIG 5 3.3 0.546 0.625 0.693 1.2×104 2560×256×810 0.30
M6_T45_loH_CPG CPG 6 4.5 2.731 0.600 0.600 1.4×104 2240×256×600 0.25
M6_T45_hiH_CPG CPG 6 4.5 0.546 0.600 0.600 1.4×104 2688×256×768 0.25
M6_T45_hiH_CIG CIG 6 4.5 0.546 0.663 0.714 1.4×104 2688×256×768 0.25

observed while comparing the two high-enthalpy simulations with different thermodynamic models.
The high-enthalpy free-stream static temperature considered in this study has been selected to
generate a stagnation enthalpy between 3 and 4 MJ, which is similar to that experienced by many
hypersonic systems flown in the past [37]. Moreover, in the considered thermodynamic conditions,
the activation of vibrational excitation in the inviscid region of the flow is marginal both upstream
and downstream of the oblique shock wave emanated by the compression corner. Thus the intensities
of the shock waves are very similar in all the calculations at equal Mach numbers.

Two sets of cases contain configurations with Me = 5 and with different wall-cooling rates.
In particular, the first set of calculations, which is composed of the cases M5_T22_loH_CPG,
M5_T22_hiH_CPG, and M5_T22_hiH_CIG, has an intense wall cooling, namely, Tw/Te = 2.2. The
second set of calculations, which is composed of the cases M5_T33_loH_CPG, M5_T33_hiH_CPG,
and M5_T33_hiH_CIG, has a milder cooling, namely, Tw/Te = 3.3. These two different sets of
calculations are analyzed to define the effects of wall cooling on the flows at Mach 5. A third set
of calculations, with a higher Mach number, namely, Me = 6, has been included in the analysis to
assess the effects of Me on the flow. The wall temperature for this set of cases has been selected to
produce a mild wall-cooling similar to the M5_T33 calculations. In fact, both these sets of calcu-
lations have a ratio between the wall enthalpy and the adiabatic wall enthalpy, haw = he + rU 2

e /2,
which is about 0.6. In the adiabatic-wall-enthalpy expression, r = 0.9 is the recovery factor that
here is assumed to be constant regardless of the thermodynamic state of the gas. The influence
of high-enthalpy effects on the recovery factor of a boundary layer has never been rigorously
quantified; therefore the validity of this assumption will need to be further investigated in the future.

It is noteworthy that for the CIG simulations, the ratio hw/haw changes nonlinearly with the wall
temperature. In fact, while the adiabatic wall enthalpy is constant regardless of the thermodynamic
model, hw is a nonlinear function of the wall temperature for the CIG. For this reason, the
ratio hw/haw in CIG is lower (higher) than the corresponding CPG cases for the higher (lower)
wall temperature. Moreover, if an approximate adiabatic wall temperature Taw is computed as
the temperature corresponding to haw, it appears that not even the ratio between Tw and Taw is
matched between the CPG and CIG cases. As a consequence, the wall-cooling rate will be only
approximately matched between each CIG and corresponding CPG calculations. Table II reports
some of the characteristic parameters of the presented calculations. In particular, it shows that all the
considered boundary layers have similar properties upstream of the interaction (x = −10), whereby
the Reynolds number Reδ2 = ρeUeθ/μw ∼ 500 and the friction Mach number Mτ = τw/aw ∼ 0.16.
In the previous expressions, θ is the local momentum thickness of the boundary layer and aw is
the speed of sound computed at the wall. The table contains also the values of the computational
grid spacing normalized in friction units 	+

i . Note that all the reported values, both upstream and
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TABLE II. Main solution parameters of the presented simulations where Reδ2 = ρeUeθ/μw is the Reynolds
number based on the momentum thickness θ and the viscosity at the wall, Mτ = τw/aw is the friction Mach
number, H = δ∗/θ is the shape factor, 	+

x , 	+
y , and 	+

z are the grid spacing at the wall in the streamwise,
wall-normal, and spanwise directions. The superscripts up and dw mean that the quantity is computed upstream
(x = −10δ0) or downstream (x = 30δ0) of the interaction, respectively.

Label Reup
δ2

Mup
τ Reup

τ H up 	+
x

up
	+

y
up

	+
z

up
	+

x
dw

	+
y

dw
	+

z
dw

M5_T22_loH_CPG 525 0.164 285 7.97 6.85 0.35 1.36 9.76 1.35 5.28
M5_T22_hiH_CPG 636 0.158 336 7.90 7.13 0.35 1.24 10.18 1.35 4.85
M5_T22_hiH_CIG 646 0.165 340 7.60 8.50 0.36 1.27 9.58 1.37 4.91
M5_T33_loH_CPG 414 0.157 201 9.64 5.45 0.36 1.14 6.27 1.39 4.53
M5_T33_hiH_CPG 543 0.150 253 9.47 7.18 0.36 1.15 8.28 1.40 4.58
M5_T33_hiH_CIG 548 0.157 254 9.31 7.27 0.37 1.17 8.34 1.41 4.61
M6_T45_loH_CPG 314 0.171 152 13.65 5.35 0.26 0.84 6.17 1.31 4.32
M6_T45_hiH_CPG 430 0.163 196 13.42 6.27 0.27 0.92 7.14 1.32 4.69
M6_T45_hiH_CIG 436 0.172 204 13.06 6.36 0.27 0.94 7.20 1.33 4.72

downstream of the compression corner, are well within the DNS range, and together with the
low-dissipation numerics deployed in these calculations, warrant an accurate numerical solution
to the shock wave and turbulence interaction problem under consideration.

III. RESULTS

The numerical results presented in this section are collected after ten flow residence times based
on the edge velocity and the length of the computational domain. Statistics are computed for an
additional ten flow residence times for convergence. In the formulation employed below, the overline
symbol indicates a Reynolds average, or equivalently, an unweighted average along both time and
the spanwise direction. On the other hand, the tilde symbol denotes density-weighted averages,
which for a generic quantity φ are defined as φ̃ = ρφ/ρ. The prime and double prime superscripts
identify the fluctuations of the quantity around the unweighted and density-weighted averages,
respectively. That is, using again the generic quantity φ, the fluctuations around the Reynolds
average are defined as φ′ = φ − φ, while the Favre fluctuations are defined as φ′′ = φ − φ̃.

A. Properties of the preshock turbulent boundary layer

Considering that the properties of the shock wave and turbulent-boundary-layer interaction
(SBLI) ultimately depend on the conditions of the boundary layer upstream of the compression
corner, this section provides a quantitative analysis of the state of the preshock flows under con-
sideration. Figure 2 shows the streamwise velocity profiles extracted in the discussed calculations
at x = −10δ0. The presented profiles are transformed using the velocity transformations proposed
by van Driest [38], Trettel and Larsson [12], and Griffin et al. [14]. For all transformations and
all considered sets of conditions, the most significant differences among the profiles are observed
between the high-enthalpy conditions, regardless of the considered gas model, and the low-enthalpy
cases. The profiles of the van Driest transformed velocity uV D are plotted against the wall-normal
distance normalized in friction units and provide the worst agreement with the incompressible law
of the wall. The uV D falls below the linear scaling in the near-wall region while overpredicting
the logarithmic region, namely, uV D = ln(y+)/0.41 + 5.2. This gap in the near-wall region depends
on the wall cooling, as observed in previous studies [10]. As expected, the gap between uV D and
the linear scaling is more significant for the Mach-5 cases with stronger wall cooling than in the
cases with warmer walls. Conversely, the upward shift of the logarithmic layer depends on the
Mach number of the flow, with the Mach-5 cases being closer to the reference scaling. The van
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FIG. 2. (a)–(c) van Driest, (d)–(f) Trettel-Larsson, and (h)–(i) Griffin-Fu-Moin transformed mean velocity
profiles of the preshock boundary layer (x = −10δ0) for the cases (a), (d), (g) Me = 5 and Tw/Te = 2.2,
(b), (e), (h) Me = 5 and Tw/Te = 3.3, and (c), (f), (i) Me = 6 and Tw/Te = 4.5. The dashed lines represent
the incompressible wall law for reference.

Driest transformation provides an overall good collapse between each set of cases, with the larger
differences observed in the wake of the low-enthalpy CPG calculations, which is shifted downward
with respect to the high-enthalpy cases.

The use of the semilocal coordinate, y∗ = yμ/
√

ρτw, where τw is the local average wall-shear
stress developed by the flow in the streamwise direction, in plotting the Trettel-Larsson (uT L) and
Griffin-Fu-Moin (uGFM) transformed velocity profiles appears to be crucial for achieving a linear
scaling of the velocity profiles in the near-wall region regardless of the wall-cooling, free-stream
stagnation enthalpy, and gas thermodynamic model. The Trettel-Larsson transformation provides a
good collapse of the different calculations in the Mach-5 conditions. At the same time, it shows a
slight upward shift of the Mach-6 low-enthalpy velocity profile with respect to the higher enthalpy
cases. For all the flow conditions included in the present study, the logarithmic layer of the velocity
profiles is characterized by higher velocities as compared to the incompressible logarithmic law. On
the other hand, the Griffin-Fu-Moin transformation yields the best collapse of all thermodynamic
conditions with the law of the wall. The only minor differences observed for the uGFM profiles are
located in the wake of Figs. 2(h) and 2(i), for which the low-enthalpy velocity profile has higher
transformed free-stream velocities. Figure 3 shows the components of the turbulent stress tensor
normalized by the local wall-shear stress and plotted versus the wallnormal coordinate in semilocal
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FIG. 3. Normalized turbulent stress profiles of the preshock boundary layer (x = −10δ0) for the cases
(a), (d), (g), (j) Me = 5 and Tw/Te = 2.2, (b), (e), (h), (k) Me = 5 and Tw/Te = 3.3, and (c), (f), (i), (l) Me = 6
and Tw/Te = 4.5.

units. The profiles obtained in all the edge conditions and with both thermodynamic gas models are
very similar overall. In general, the high-enthalpy cases show slightly larger normalized turbulent
stresses in all the plotted components. For this reason, this increase in stresses can be mainly
attributed to local Reynolds number effects. In fact, the higher Te utilized in the high-enthalpy
setups shifts the operating region of the Sutherland law, leading to a lower-viscosity rise in the
peak temperature region, thus decreasing the overall Reynolds number. The vibrational excitation
does not have a definite effect, as the simulations with the CIG model produce marginal increases
or decreases of the turbulent stresses depending on the configuration and component of the stress
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FIG. 4. Normalized mean and rms of temperature profiles of the preshock boundary layer (x = −10δ0) for
the cases (a), (d), (g) Me = 5 and Tw/Te = 2.2, (b), (e), (h) Me = 5 and Tw/Te = 3.3, and (c), (f), (i) Me = 6 and
Tw/Te = 4.5. Panels (d), (e), (f) show the relation between mean velocity and temperature within the boundary
layer.

tensor that is considered. Figure 4 shows the normalized value of the Favre mean and rms of
the static gas temperature. In all the considered cases, the temperature peaks at about y∗ ∼ 10,
whereby the increase of internal energy due to the viscous heating is balanced by wall cooling. The
stagnation enthalpy at the edge of the boundary layer does not seem to play a significant role in
the distribution of the mean temperature. In fact, the low-enthalpy and high-enthalpy CPG cases
overlap in all three considered conditions. Conversely, the introduction of vibrational excitation in
the mixture with the CIG model induces a reduction of the maximum temperature achieved within
the boundary layer. This reduction is particularly evident for the Me = 5 Tw/Te = 2.2 configuration,
whereby the peak temperature is lowered by about 10%, but it is also present in the other cases with
warmer walls. Such reduction of the temperature peak intensity is directly correlated to the reduction
of the wall heat flux that will be described in Sec. III B. Figures 4(d)–4(f) show the normalized
value of the density-weighted mean temperature as function of the normalized density-weighted
mean streamwise velocity. This type of relation has been utilized in multiple studies to quantify
the accuracy of the strong Reynolds analogy [10,39] or to construct wall models for compressible
boundary layers [40]. These plots also show that the variation of the free-stream stagnation enthalpy
does not directly affect the mean temperature distribution unless vibrational excitation is activated.
In fact, the CIG cases show a temperature-velocity relation that is qualitatively similar to the
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corresponding CPG cases but with lower mean temperatures. For this reason, the Crocco-Busemann,
Walz, or Zhang [39] relations will need to be revised before they can be applied to high-enthalpy
boundary layers, whereby the specific heat capacity of the gas is not constant.

The effects of the edge Mach number and stagnation enthalpy are more visible in the temperature
fluctuations shown in Figs. 4(g)–4(i). The low-enthalpy CIG flows produce the most intense fluc-
tuations in all the considered configurations. The peak of fluctuation intensities happens at around
y∗ ∼ 50, where the cold gas from the outer parts of the boundary layer is mixed with the hot air
produced by viscous heating close to the walls. The intensity of these fluctuations increases with
the wall temperature and with the edge Mach number. The high-enthalpy flows tend to have weaker
fluctuations of the static temperature; however, the gap with the low-enthalpy profiles depends on the
specific boundary-layer properties. The introduction of vibrational excitation in the thermodynamic
description of the gas decreases the T̃ ′′2 for all considered configurations.

B. Distribution of skin-friction coefficient and wall heat flux

Figure 5 shows the distributions of the skin-friction coefficient Cf = 2τw/(ρeU 2
e ). All the

analyzed boundary layers require an adaptation length of about 20δ0 downstream of the inflow.
At this location, which corresponds to the inflection point in the Cf profile, the boundary-layer
turbulence achieves a physically meaningful state that is not affected by the recycle-rescaling
boundary condition. A small separation bubble of approximate size δ0 is generated as a result of
SBLI at the compression corner. As observed in Figs. 5(a), 5(c) and 5(e), an overall trend in the
cases involving CPG away from the separation and reattachment zones is a 10% decrease in the
skin-friction coefficient upon increasing the stagnation enthalpy by 400%. However, an increase
in the skin-friction coefficient is observed when swapping the assumption of CPG for the CIG
approximation. As a result, the aforementioned increase in stagnation enthalpy leads to only a
moderate decrease of approximately 5% in the skin-friction coefficient when vibrational-excitation
effects are incorporated. In contrast, as shown in Figs. 5(b), 5(d) and 5(f), the size of the separation
bubble appears to remain mostly unaltered across all cases.

A variation of the stagnation enthalpy modifies significantly the flow just upstream of the
separation bubble, although the bubbles themselves remain largely unaffected by the change in the
thermodynamic model. In particular, the upstream influence of the SBLI, which is measured by the
departure from the classical Cf scaling, is delayed by the increase in the stagnation enthalpy and by
the introduction of the CIG model. These differences observed between the low- and high-enthalpy
setups are to be attributed to Reynolds number and thermodynamic effects. In fact, the two CPG
simulations differ only in the relation between the molecular viscosity and the local temperature.
The lower enthalpy conditions experience a larger variation of viscosity across the boundary layer,
leading to lower local Reynolds numbers. The additional endothermicity introduced by the CIG
model reduces the magnitude of the temperature peak generated in the boundary layer, thus de-
creasing the maximum viscosity of the fluid and further increasing the local Reynolds number. This
aspect of the presented results is also visible in the trend of the shape factors H = δ∗/θ , where δ∗ is
the boundary-layer displacement thickness, reported in Table II. In fact, H becomes increasingly
lower when the stagnation enthalpy increases and when vibrational excitation is considered in
the calculations. As higher Reynolds number boundary layers with lower shape factors are less
prone to separate and the separation bubble must be located across the compression corner, the Cf

profile of the higher Reynolds flow has a shorter upstream influence and steeper transition. For this
reason, the increase in the stagnation enthalpy and the introduction of the CIG model steepen the
Cf profiles upstream of the separation point. Moreover, the increase of the stagnation enthalpy and
the introduction of vibrational excitation lower the sonic line of the preshock boundary layer toward
the wall. The distance between the sonic line and the wall in the preshock region is decreased
in the CIG calculations with respect to the CPG low-enthalpy cases by about 25%, 28%, and
37% in the cold-wall Me = 5, warm-wall Me = 5, and Me = 6 configurations, respectively. The
shorter extent of the subsonic region in the boundary layer contributes to reducing the upstream
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FIG. 5. Skin-friction coefficient as a function of streamwise distance for the calculations with (a) Me = 5
and Tw/Te = 2.2, (c) Me = 5 and Tw/Te = 3.3, and (e) Me = 6 and Tw/Te = 4.5. Panels (b), (d), and (f)
are analogous to (a), (c), and (e), respectively, but they show a zoomed-in version of the results near the
compression corner.

influence of the SBLI. Figure 6 shows the distribution of the wall heat flux using two different
normalizations. The first is the classic Stanton number, defined as St = qw/[ρeUe(haw − hw )], where
qw is the heat flux at the wall. The second normalization is based on the free-stream momentum
flux, namely, Cq = qw/(ρeU 3

e ), as proposed by White [41] specifically for hypersonic flows of CIG.
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FIG. 6. Streamwise distributions of (a), (c), (e) Stanton number and (b), (d), (f) wall-heat-flux coefficient
for flow cases with (a), (b) Me = 5 and Tw/Te = 2.2, (c), (d) Me = 5 and Tw/Te = 3.3, and (e), (f) Me = 6 and
Tw/Te = 4.5.

Interestingly, the behavior of the normalized heat flux depends strongly on the chosen normalization,
as a consequence of the nonlinear relationship between enthalpy and temperature in CIG. If the
Stanton number distribution is considered, the effects of vibrational excitation are very similar to
those observed in the skin-friction coefficient. Specifically, the highest Stanton number is found in
the low-enthalpy case, whereas the high-enthalpy CPG case shows a reduction of about 10%. The
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FIG. 7. Distribution along the streamwise direction of the Reynolds analogy factor for flow cases with
(a) Me = 5 and Tw/Te = 2.2, (b) Me = 5 and Tw/Te = 3.3, and (c) Me = 6 and Tw/Te = 4.5.

CIG simulations lie in between the two CPG simulations for both wall-cooling intensities considered
in this study.

If the heat-flux coefficients Cq are considered instead, a new interpretation of the CIG effects
presents itself. In particular, the red curve is shifted downward in Figs. 6(b), 6(d) and 6(f). This
is the effect of the endothermicity induced by vibrational excitation. As discussed in Sec. III A,
the variation of the heat capacity lowers the temperature peak arising because of viscous heating.
For this reason, the temperature gradients and the wall heat flux are milder. This second normal-
ization emphasizes the reduction in the temperature gradient by vibrational excitation because the
normalizing factor ρeU 2

e is constant for the high-enthalpy CPG and CIG setups. We believe that
this ambiguity in interpreting the results prompts further studies regarding the most appropriate
normalization of heat fluxes in boundary layers of CIG.

The Reynolds analogy factor (2St/Cf ) is shown in Fig. 7 for the nine calculations considered
in this study. In the presented calculations, the ratio 2St/Ct remains remarkably independent of
the wall cooling and edge Mach number. All the calculations with the CPG assumption show a
Reynolds analogy faction similar to 1.2 in the upstream section of the computational domain. The
values shown downstream of the compression corner, away from the separation bubble, have a
more significant dependence of Tw/Te and Me. In particular, the Mach-5 cases with a colder wall
show 2St/Cf ∼ 1.35 for x > 15δ0, while increasing the wall temperature leads to 2St/Cf ∼ 1.3
in the same region of the computational domain. The cases at Mach 6 show similar values of the
Reynolds analogy factor in the preshock and postshock sections of the flow. The introduction of the
endothermicity due to the CIG model increases the Reynolds analogy factor for all the analyzed
wall-cooling ratios and edge Mach numbers. This effect is more visible in the upstream section of
the flows with the warmer wall. This variation of 2St/Cf is probably due to the aforementioned
difficulties in correctly normalizing the heat flux at the wall in the CIG setups rather than to a
change in the flow dynamics.

C. Wall-pressure fluctuations

Figure 8 shows the root-mean-square of the wall-pressure fluctuations induced by the SBLI
for the nine computational setups presented in this work. The fluctuation intensity is about 10%
of the preshock mean free-stream pressure, up to a distance 2δ0 from the compression corner,
as shown by Figs. 8(a), 8(c) and 8(e). Past this location, the pressure fluctuation intensity rises,
showing the upstream influence of the SBLI that is generated at the compression corner. The
distributions feature a second change in slope around the compression corner, where the growth
of the pressure fluctuations becomes steeper for an additional distance 2δ0. The maximum of the
pressure fluctuation intensity is then achieved about 5δ0 downstream of the compression corner.
The effects of the thermodynamic conditions of the gas on this peak are very similar to those
observed for the skin-friction coefficient. In each set of calculations, the low-enthalpy case shows the
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FIG. 8. (a), (b) Streamwise distribution of root-mean-square wall pressure normalized by (a), (c), (e) the
free-stream pressure and (b), (d), (f) the local wall-shear stress. Panels (a), (b) refer to the cases at Me = 5 and
Tw/Te = 2.2, (c), (d) to the case at Me = 5 and Tw/Te = 3.3, and (e), (f) to the cases at Me = 6 and Tw/Te = 4.5.

strongest pressure fluctuations, the high-enthalpy CPG setup has the weakest pressure fluctuations,
and the high-enthalpy CIG case lies in between. The peak pressure fluctuation intensity is usually
located at the shock foot in supersonic SBLIs, as the shock motion induces large footprints in terms
of wall pressure [22,42,43]. One of the most interesting aspects of the present results is that the
strongest pressure fluctuations are not generated by the shock itself. In fact, the peak of pressure
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FIG. 9. Instantaneous visualizations of the flow around the compression corner for the case
M5_T22_loH_CPG. (a) Contours of density in the x-y plane. (b) Three-dimensional visualization of the
instantaneous shock position using a Ducros sensor. The surface of the wall is colored by the local value
of the wall pressure normalized by the edge pressure in the preshock conditions.

fluctuations occurs where the large eddies generated in the outer portion of the upstream boundary
layer impinge on the shock wave and the ramp following the compression corner, as shown in the
instantaneous density contours in Fig. 9(a). In the figure it is possible to observe that large eddies
in the outer section of the preshock boundary layer (dark blue regions in the figure) are able to
survive the shock and eventually impinge on the surface of the ramp, whereby their momentum
locally introduces a large increase in pressure. Figure 9(b) shows that the shock wave, visualized
by an isosurface of the Ducros sensor, is severely corrugated by the interaction with these highly
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energetic turbulent structures. Note that the presented figure has been obtained by considering the

isosurface of the Ducros sensor � = −∇ · u/
√

(∇ · u)2 + |∇ × u|2 + (Ue/δ0)2 = 0.6; however,
identical conclusions could be drawn by using any of the isosurfaces constructed in the interval
0.4 � � � 0.7. The effects of the shock wave and turbulence interaction are visible for several
boundary-layer thicknesses downstream of the compression corner in the form of bulges in the shock
wave that are advected along the direction of the flow. The intensity of the turbulent fluctuations
produced in the upstream boundary layer is high enough to generate holes in the shock wave, locally
entering the broken shock regime [44]. Further details about the properties of the shock wave and
turbulence interaction are provided in Sec. III F.

D. Spectral properties of wall-pressure fluctuations

The time spectra of the wall-pressure fluctuations are analyzed in this section. The data that are
presented focus on the Mach-5 cases with a warmer wall (Tw/Te = 3.3). The results of the cases with
stronger wall cooling and higher Mach numbers have been omitted from this analysis because they
lead to very similar observations. Figure 10 shows color maps that represent the premultiplied power
spectral density of wall pressure throughout the computational domain. The spectra are averaged
over the spanwise direction and plotted such that the x axis of the figure corresponds to the stream-
wise coordinate of the computational domain and the y axis to Strouhal number Sr = f δ0/Ue, where
f is the signal frequency. These plots can be divided into three main regions. There is an upstream
attached boundary-layer region (−60δ0 < x < −2δ0) where the spectral density is independent of
the streamwise location. The power spectral density peaks roughly at Sr ∼ 0.8 in this region, which
is consistent with the standard behavior of a turbulent boundary layer. The flow separation and
reattachment locations correspond to the long tails of the power spectral density shown at x ∼ ±δ0

in Fig. 10. At these locations the pressure fluctuates on a wide range of time frequencies, which
almost spans two orders of magnitude of Strouhal numbers. The structure of the wall-pressure
spectra is quickly recovered about 20δ0 downstream of the separation bubble, whereby the most
energetic mode in the pressure is again located at about Sr ∼ 1. However, the fluctuation spectra are
much wider in this postshock region compared to the preshock boundary layer. Figure 11 shows the
premultiplied power spectral densities of the wall-pressure signal extracted at four locations along
the evolution of the flow. These line plots provide a more quantitative assessment of the differences
between the three discussed calculations in the upstream boundary layer, at the compression corner,
at x = 1δ0, and at the location of maximum P′2

w . The increase in the stagnation enthalpy of the flow
and the introduction of vibrational excitation have the effect of shifting the energy toward higher
frequencies. In fact, we can observe that the spectra extracted for M5_T33_loH_CPG are always
located at lower frequencies, while M5_T33_hiH_CIG produces the highest frequency signals. The
wall-pressure spectra of the case M5_T33_hiH_CPG are located in the middle. The shift between
the case M5_T33_hiH_CIG and M5_T33_loH_CPG, which is larger at the compression corner and
is mostly negligible at x = δ0, is a consequence of the local Reynolds number variations discussed
in Sec. III A.

E. Proper orthogonal decomposition of the pressure field

This section analyzes the main modes of the pressure field that contribute to the formation
of the wall-pressure oscillations discussed so far in this work. This analysis is carried out by
performing the proper orthogonal decomposition (POD) of the pressure fluctuations extracted
regularly in time on an x-y plane of the flow. The results presented in this section are extracted from
the M5_T33_loH_CPG setup, but similar behavior is observed for all the executed calculations.
Figure 12(a) shows the cumulative energy of the first 100 POD modes that have been computed. The
first 10 POD modes contain roughly 40% of the total energy of the pressure fluctuation signal and
specifically, the first six modes are representative of approximately one-third of the overall pressure
fluctuation energy. As shown by the power spectra map of the chronomodes in Fig. 12(b), the first

033401-16



STAGNATION ENTHALPY EFFECTS ON HYPERSONIC COMPRESSION RAMP

−60 −40 −20 0 20
x/δ0

10−2

10−1

100

S
r

0.00 0.15 0.30 0.45 0.60 0.75 0.90

fÊp

(a)

−60 −40 −20 0 20
x/δ0

10−2

10−1

100

S
r

0.00 0.15 0.30 0.45 0.60 0.75 0.90

fÊp
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FIG. 10. Premultiplied spectra of the wall pressure for the cases with Tw/Te = 3.3, namely,
(a) M5_T33_loH_CPG, (b) M5_T33_hiH_CPG, and (c) M5_T33_hiH_CIG. Instantaneous visualizations of
the flow around the compression corner for the case M5_T22_loH_CPG.

five POD modes correspond to relatively high-frequency pressure fluctuations, whose dominant
timescale approximately corresponds to Sr ∼ 0.1. On the contrary, the sixth POD mode is active
on a much lower frequency corresponding to Sr ∼ 0.02, which is roughly the lowest frequency
observed in Fig. 10. Considering that the sixth mode is clearly the most energetic in that frequency
range, it can be identified as the major contributor to the low-frequency oscillations described in
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FIG. 11. Premultiplied spectra of the wall pressure for the cases with Tw/Te = 3.3 computed (a) at
x = −10δ0, (b) at the compression corner, (c) at x = δ0, and (d) at the location of maximum P′2

w .

Sec. III D. The first five POD modes correspond to local corrugations of the shock wave, as shown
by Figs. 12(c)–12(g). These corrugations, which appear as sinusoidal oscillations localized at the
mean shock-wave location in the shown panels, have a significant footprint in the postshock region
and toward the wall. In particular, it appears that each of the lobes located on the mean shock line
has a tail that elongates toward the wall in the upstream direction. This tail is particularly evident in
Fig. 12(e). On the other hand, the sixth POD mode shown in Fig. 12(h) has a completely different
shape. It consists of a mode that is constant along the shock wave and represents a breathing motion
of the discontinuity that rigidly moves upstream and downstream with respect to the compression
corner. Each rigid motion upstream (downstream) of the shock generates an approximately uniform
decrease (increase) of the pressure in the postshock region. For this reason, the results of the
POD analysis suggest that the high-frequency wall-pressure oscillations observed in the previous
section are due to corrugations of the shock wave, while the mild low-frequency oscillations are
induced by the breathing motion of the shock wave.

F. Shock wave and turbulence interaction

The description of the turbulent boundary layer performed in Sec. III A highlights that the
considered flows upstream of the compression corner are mostly independent of the stagnation
enthalpy or thermodynamic model that is considered in the calculation. Thus, the reasons for the
pressure variance modifications at the wall analyzed in Sec. III C must be sought in the modification
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FIG. 12. (a) Cumulative energy contribution on the first 100 POD modes for the M5_T33_loH_CPG case.
(b) Power spectral density of the first 40 most energetic chronomodes. (c)–(h) The shape of the first six POD
modes ordered by energy content for the M5_T33_loH_CPG case. The red ellipse in panel (b) highlights the
power spectrum of the sixth chronomode.

of the shock wave and turbulence interaction in the vicinity of the compression corner. Figure 13

shows the profiles of turbulent Mach number Mt =
√

ũ′′
i u′′

i /a extracted just after the compression
corner (x = 5δ0) where the outer part of the incoming boundary layer interacts with the oblique
shock. These profiles are characterized by a plateau that extends between y∗ ∼ 10 and y∗ ∼ 100,
whereby Mt ∼ 0.55 for the Mach-5 cases and Mt ∼ 0.65 for the Mach-6 cases. The considered
compression ramp produces a shock wave inclined by about 24◦ and 22◦ in the Mach-5 and Mach-6
cases, respectively. In these conditions, the normal Mach number of the upstream flow with respect
to the undisturbed shock wave is about 2.0 and 2.3, respectively. Larsson et al. [44] and Donzis
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FIG. 13. Turbulent Mach-number profiles at x = 5δ0 for the cases (a) Me = 5 and Tw/Te = 2.2, (b) Me = 5
and Tw/Te = 3.3, and (c) Me = 6 and Tw/Te = 4.5.

[45] have found that a planar-shock-wave and isotropic-turbulence interaction transitions from a
wrinkled shock regime, whereby the shock is only corrugated by the preshock turbulence, to a
broken shock regime, where the thermodynamic fluctuations of the incoming turbulence are so
strong as to generate holes in the shock when Mt � 0.6(Mn − 1), where Mn is the convective Mach
number of the flow normal to the shock wave. While keeping in mind that this approximate relation
has only been verified for homogeneous isotropic turbulence and that the turbulence generated by the
precompression corner boundary layer is far from being isotropic and homogeneous, it is interesting
that the values of Mt observed in these calculations marginally satisfy the inequality above and
suggest a broken shock condition. Considering that holes in the shock have been visualized for the
computed cases, for example, in Fig. 9, it is possible to suggest that the inequality above could be
sufficiently robust to describe the transition from wrinkled to broken regimes, even in the case of
oblique shocks interacting with inhomogeneous and anisotropic turbulence. Clearly, this initial piece
of evidence does not provide definitive proof of this theory, which will require further investigation
to be verified.

Another interesting aspect that emerges from the graphs in Fig. 13 is the correlation between the
levels of Mt and the peak of wall-pressure variance shown in Fig. 8. In fact, it appears that in all the
examined conditions, the low-enthalpy CPG calculations are characterized by the highest turbulent
Mach number; the high-enthalpy CPG configurations have the lowest turbulent Mach number; and
the high-enthalpy CIG flows have intermediate values of Mt , which are most of the times closer to
the low-enthalpy profiles. The similarity of the enthalpy effects on this quantity with the variations
described in Sec. III C, together with the results of the POD analysis in Sec. III E and the strong
shock corrugation highlighted in Fig. 9, suggests that the analyzed pressure fluctuations at the wall
are the direct footprint of the oblique-shock-wave and turbulent interaction that happens just above
the compression ramp. At high turbulent Mach numbers, any oscillation of the thermofluid-dynamic
quantities in the preshock turbulent boundary layer will induce a local modification of the oblique
shock wave with a consequent variation of the local momentum of the flow in the normal direction
to the compression ramp wall.

IV. CONCLUSIONS

DNSs of turbulent boundary layers flowing over a 15◦ compression ramp have been carried
out in this study. The presented calculations consider two upstream-edge Mach numbers, namely,
5 and 6, two rates of wall cooling, and two levels of stagnation enthalpy. The lowest stagnation
enthalpy is representative of the state of the art of hypersonic turbulence simulations, and it considers
a flow with a free-stream temperature of 100 K that remains in the CPG regime throughout the
computational domain. The highest stagnation enthalpy corresponds to a free-stream temperature
of 500 K, which is sufficiently high to allow the gas molecules to become vibrationally excited
within the turbulent boundary layer formed over the compression ramp and across the ramp-induced
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shock wave. However, the maximum gas temperature encountered in all these cases always remains
sufficiently low to warrant marginal activation of other high-temperature effects, such as chemical
dissociation.

The presented results have shown that an increase in the stagnation enthalpy decreases the
skin-friction coefficient, the Stanton number, and the wall-pressure fluctuations by about 10% while
retaining the CPG assumption. Introducing the endothermic effects associated with vibrational
excitation partially compensates for this decrease, yielding values of the normalized mechanical and
thermal stresses at the wall that are halfway between the low-enthalpy and high-enthalpy calorically
perfect flow solutions. However, a different normalization of the heat flux, which does not take
into account the nonlinear relation that exists between temperature and enthalpy in the CIG model,
shows that vibrational excitation actually decreases the heat flux at the wall by about 20%. The
conflicting conclusions offered by two normalizations prompt further investigation into the correct
scaling for this quantity. Another effect associated with stagnation enthalpy variation which has
some engineering relevance is the shift of the wall-pressure fluctuations toward higher frequencies.
In fact, the increase in stagnation enthalpy in the CPG simulation and the introduction of vibra-
tional excitation increase the peak frequency of pressure fluctuations at the compression corner.
Considering that the most energetic frequency shifts by a factor of 2 between the low-enthalpy
and high-enthalpy vibrationally excited flow, it appears that high-enthalpy effects should be taken
into account when dynamical loads generated by this type of flow are evaluated. In the context
of describing the pressure fluctuation field, it has been shown using POD analysis that the most
energetic low-frequency modes of the wall pressure are associated with a breathing motion of the
oblique shock induced by the compression corner, while the high-frequency pressure fluctuations are
instead due to the shock corrugation generated by the highly compressible turbulence that impinges
on the shock wave.

The results reported in this study provide an initial assessment of the importance of high-enthalpy
effects in the prediction of hypersonic wall-bounded turbulence and, in particular, of hypersonic
shock wave and turbulent boundary-layer interactions. However, the flow conditions under scrutiny
here are at the lower end of the hypersonic regime, and the free-stream enthalpy is such that
only vibrational excitation is triggered. Future work will focus on verifying the conclusions of
this study for flows at higher Mach numbers and higher enthalpy in which chemical and thermal
nonequilibrium effects play a role.
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APPENDIX: VERIFICATION USING A SUPERSONIC COMPRESSION CORNER

This Appendix provides a verification of the formulation deployed to obtain the presented
results with a Mach-2.9 turbulent compression corner flow. In particular, the flow configuration
presented and discussed by Wu and Martin [46] has been selected for this verification. A Mach-2.9
turbulent boundary layer, whose free-stream temperature is 107.1 K, flows over a 24◦ compression
corner that is kept at Tw = 307 K. The Reynolds number based on the momentum thickness of the
incoming boundary layer is Reθ = 2300 at the location x = 9δ0, whereby δ0 is the boundary-layer
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FIG. 14. Verification of the (a) streamwise distribution of mean pressure and (b) wall-normal van Driest–
transformed velocity profiles obtained upstream (x = −4.1δ0) and downstream (x = 2δ0) of the compression
corner. The solid lines correspond to the results of the present formulation while the symbols to the results of
Wu and Martin [46].

thickness at the same location. The calculations presented in this section are executed with the
same methodology described in Sec. II, except for (i) the computational domain is significantly
smaller, namely, L1 = 29δ0, L2 = 9δ0, the height of the domain is 5δ0, and its width is 2.6δ0;
(ii) the sampling station for the recycle-rescaling location is positioned at x = −20δ0; (iii) the
computational deployed computational grid consists of 2800×256×192 points in the streamwise,
wall-normal, and spanwise directions, respectively. Note that the computational domain utilized in
this verification is significantly longer than the original domain utilized by Wu and Martin [46].
Such a modification of the computational domain has been dictated by the will of reducing the
influence of the inflow boundary conditions on the compression corner flow.

Figure 14 shows a comparison of the results obtained with the present formulation and those
provided by Wu and Martin [46]. The agreement is within plotting accuracy for both the wall-
pressure profiles and the upstream velocity profile. Minor discrepancies are observed for the
near-wall section of the van Driest transformed velocity profile extracted just downstream of the
interaction at x = 2δ0. Considering the small deviation of the velocity profiles in this section and
the overall agreement of the other quantities, the presented results provide a successful verification
of the numerical methodology.
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