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Scale-free topology of vortical networks in a turbulent thermoacoustic system
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We use complex network analysis to investigate the vortical interactions in a bluff-
body stabilized combustion system containing a turbulent lean premixed swirling flame.
Using time-resolved vorticity measurements, we construct time-varying weighted spatial
networks whose node strength distribution is derived from the Biot-Savart law. We find
widespread evidence of scale-free topology in the vortical networks, with the most coherent
flow structures acting as the primary network hubs. Crucially, we find that even after the
onset of thermoacoustic instability, the scale-free topology can persist continuously in time,
contrary to some suggestions from the literature. This discovery could have important
implications for the design of flow controllers that rely on destroying the primary hubs
of vortical networks.

DOI: 10.1103/PhysRevFluids.9.033202

I. INTRODUCTION

Lean premixed combustion is known to be able to lower thermal NOx emissions from gas tur-
bines. Such systems typically contain a swirling flame whose stability against high-speed reactants
is provided by high-temperature recirculation zones [1,2]. However, lean premixed combustion is
also known to be prone to thermoacoustic instability [3]. This self-excited phenomenon can cause
intense pressure oscillations to arise in gas turbine combustors, limiting their efficiency, operability,
and reliability [4,5].
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Previous studies have shown that coherent vortices generated from the injector lip of a combustor
can cause flames to respond nonlinearly to incident flow perturbations [1]. Such vortical structures
can induce flame roll-up, cusp formation, and surface annihilation, causing further fluctuations in
the heat release rate (HRR) [6]. Palies et al. [7] showed that the interactions between vortex roll-up
and flame angle oscillations can influence the local minimum and maximum gain values of the
transfer function of a swirling flame. The crucial role of vortical structures was further highlighted
by Oberleithner et al. [8], who used linear stability analysis to show that the shear layer receptivity
correlates well with the flame transfer function. For both bluff-body and aerodynamically stabilized
swirling flames, Gatti et al. [9] found that the flame transfer function is strongly dependent on the
large-scale vortical structures shed from the injector lip. From these and other related studies [1,2],
it is now clear that the accurate prediction and control of thermoacoustic oscillations requires a
thorough understanding of the flame response under vortical modulation.

In the past several decades, complex networks have emerged as a powerful tool with which
to understand and control the spatiotemporal dynamics of complex systems in various fields of
science and engineering [10–12]. In network analysis, the components of a system are treated as
nodes, while their interactions are treated as links. If the links of a network exhibit a heavy-tailed
distribution with no characteristic scale, then that network is said to be scale free [13]. In the node
degree distribution, such scale-free topology can be identified by a power-law scaling of the form
P(k) ∼ kγ , where P(k) is the percentage of nodes with k links to other nodes and γ has a typical
value between −2 and −3 [14]. Such a power-law scaling, which is caused by nodal growth and
preferential attachment [13], implies that most nodes have only a small number of links, but that
a few nodes have a disproportionately large number of links. The latter nodes, called hubs, play a
critical role in dictating the behavior of the entire network and are thus particularly susceptible to
control action [12,15].

In thermoacoustics, network analysis has been gaining traction recently, following seminal exper-
iments by Murugesan and Sujith [16] and Okuno et al. [17] showing that the onset of thermoacoustic
instability is often presaged by a loss of scale-free topology in complex networks built with pressure
data. This discovery has since inspired fresh approaches to the early detection of thermoacoustic
instability. For example, using a visibility algorithm, Murugesan and Sujith [18] built complex
networks from pressure time-series data collected on a turbulent lean premixed combustor. They
found evidence of scale-free topology during both a low-amplitude aperiodic state of combustion
noise (high-dimensional deterministic chaos [19]) and a medium-amplitude transitional state of
intermittency. However, they found that the scale-free topology is replaced by an ordered structure
when the system transitions from intermittency to a high-amplitude self-excited state of thermoa-
coustic instability (limit-cycle dynamics). Crucially, this loss of scale-free behavior was observed to
be gradual rather than abrupt. This made it possible to derive precursors of thermoacoustic instability
based on various network metrics, such as the network diameter, characteristic path length, and
clustering coefficient [18].

Meanwhile, evidence has emerged that for complex networks built with vorticity data rather than
pressure data, the scale-free topology that is expected to disappear at the onset of thermoacoustic
instability survives to some degree. For example, Murayama et al. [20] adopted the vortical-
interaction framework of Taira et al. [21] to build turbulence networks with vorticity data from
a swirl-stabilized combustor. They found that even after becoming thermoacoustically unstable, the
combustor can still exhibit scale-free network topology for around one-fifth of the operating time.
Similarly, Krishnan et al. [22] built time-varying weighted spatial networks with turbulent flow-field
data from a bluff-body stabilized combustor. They found that the node strength distribution only
intermittently exhibits a power-law scaling with −3 < γ < −2, indicating that scale-free topology
appears only some of the time. In particular, those observations of scale-free topology were found to
be less frequent during intermittency and thermoacoustic instability than during combustion noise.
The scale-free behavior was attributed to two sets of large-scale coherent vortical structures, one
downstream of the dump plane and the other downstream of the bluff body. Those vortical structures
were determined to be the primary hubs of the turbulence network, dictating the spatiotemporal
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FIG. 1. (a) Illustration of the experimental setup; for details, see Wang et al. [28] and Zheng et al. [29].
Also shown are instantaneous snapshots of the (b) CH∗ chemiluminescence and (c) vorticity fields of the flame
during a thermoacoustically stable state in which acoustic forcing is applied at a frequency of f f = 183 Hz and
an amplitude of u′/ū = 0.1. In (b) and (c), the magenta lines at the bottom represent the burner outlet. In (c),
the black lines are streamlines.

dynamics of the entire flow even after the onset of thermoacoustic instability [22]. Thus, disrupting
those primary network hubs—via the injection of steady air jets in regions of high vorticity—has
been shown to be an effective way of suppressing thermoacoustic instability [22–24]. Collectively,
these studies have demonstrated that in the analysis of thermoacoustic systems, vortical networks
can exhibit far more intricate features than pressure networks. However, the precise influence
of vortical structures on the network properties during both forced modulation and self-excited
thermoacoustic instability remains an unresolved question. This question is nonetheless important
within the thermoacoustics community, as it aims to enhance the understanding of self-organized
dynamics through a comparative analysis with forced dynamics. Complicating the matter further
is the fact that the onset of thermoacoustic instability coincides with the mutual synchronization
of the pressure and HRR signals [25–27]. In turbulent combustors, the HRR field of a flame is
known to be strongly correlated with the vorticity field of the underlying injector flow, indicating
a nontrivial relationship between pressure and vortical networks. Gaining a better understanding
of this relationship could therefore provide the key to unlocking the flame–acoustic coupling
mechanisms behind thermoacoustic instability.

In this experimental study, we apply complex network analysis to the time-resolved pressure and
vorticity fields of a turbulent lean premixed combustor containing a bluff-body stabilized swirling
flame. Our aim is to better understand the vortical interactions in the reacting flow field by relating
the scale-free topology of the vortical networks to the pressure dynamics in the combustor. To this
end, we consider three canonical states: (i) an unforced state of combustion noise, (ii) an acoustically
forced state without thermoacoustic instability, and (iii) a thermoacoustically self-excited state.

II. EXPERIMENTAL SETUP AND TEST CONDITIONS

Our experimental setup is identical to that of Wang et al. [28] and Zheng et al. [29]. Shown
in Fig. 1(a), it consists of a confined turbulent lean premixed flame produced by feeding air and
methane (CH4) into a settling chamber via mass flow controllers (SevenStar CS200A). The chamber
contains an axial flow swirler (a swirl number of 0.6), with a conical bluff body mounted at the
burner outlet for flame holding. The burner outlet is thus annular, with outer and inner diameters
of do = 20 and di = 10 mm, respectively. Connected downstream is a cylindrical quartz combustor
(length 475 mm, inner diameter 76 mm), which provides acoustic feedback for thermoacoustic
instability to arise under certain flow conditions (see below). For some test cases, a loudspeaker
mounted upstream of the settling chamber is used to generate sinusoidal acoustic forcing, and
the resultant velocity perturbations are measured with a hot-wire anemometer (Dantec MiniCTA)
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mounted upstream of the axial swirler. The forcing amplitude is defined as u′/ū, where u′ and ū are
the velocity fluctuation amplitude and the time-averaged velocity, respectively. The time-resolved
spatial distribution of flow velocity in the combustor is measured along the central plane using
two-dimensional particle image velocimetry (PIV). Specifically, dual burst-mode Nd:YAG lasers
(Spectral Energies QuasiModo 1000.2X) are operated at a frequency of 20 kHz, generating pulses
of 10 ns in duration and 250 mJ in energy at a wavelength of 532 nm. The two laser beams are
expanded into an overlapping planar sheet via a series of optics. The light scattered from seeding
particles (Al2O3, with a nominal diameter of 1 micron) is captured with a high-speed CMOS camera
(Photron FASTCAM SA-Z) equipped with a bandpass optical filter (Edmund Optics 532/10 nm).

Simultaneously, the acoustic pressure (p′) in the combustor is measured at 100 kHz using a
piezoelectric sensor (Sinocera CY-YD-200) mounted 161 mm downstream of the burner outlet
via the semi-infinite tube method. For the unforced and forced states, which are both free of
thermoacoustic instability, the reactants have a velocity of ū = 5 m s−1 and an equivalence ratio
of φ = 0.8 (lean combustion), giving a Reynolds number of Re = 2600 based on do. Figures 1(b)
and 1(c) show, respectively, instantaneous snapshots of the CH∗ chemiluminescence and vorticity
fields of the flame during the forced state. It can be seen that even under acoustic excitation, the
flame remains anchored to the bluff body, with most of its HRR occurring in the central wake
region between the inner shear layers, where strong vorticity exists. To induce a thermoacoustically
self-excited state, we increase ū to 12 m s−1, while keeping φ between 0.7 and 0.8, resulting in
Re = 6200. Further details on the experimental set-p and procedures can be found in Wang et al.
[28] and Zheng et al. [29].

III. RESULTS AND DISCUSSION

We use network analysis to examine the complex dynamics hidden in the pressure and vorticity
data. As noted earlier, we focus on three representative states: an unforced state, an acoustically
forced state, and a thermoacoustically self-excited state. We first characterize the pressure signals
using graph theory, then explore the scaling properties of the node strength distribution of turbulence
networks constructed from the vorticity field, and finally compare the temporal evolution of those
scaling properties with that of the pressure signals.

A. Network analysis of the pressure signal

First, we characterize the dynamical state of the system by analyzing the temporal structures in
the p′ signal. Figures 2(a1)–2(c1) show the p′ signal, and Figs. 2(a2)–2(c2) show the corresponding
power spectral density (PSD) for all three states. In the unforced state (Fig. 2, top row), the
system exhibits only low-amplitude aperiodic p′ fluctuations, with no dominant peaks in the PSD.
This indicates a state of combustion noise dominated by chaotic turbulence, free of the tonal
nature of thermoacoustic instability. In the forced state (Fig. 2, middle row), the system is still
thermoacoustically stable, but the p′ signal is now periodic as a result of the applied forcing, with
the system behaving as a forced damped oscillator. Here, the forcing is applied sinusoidally at a
frequency of f f = 183 Hz and an amplitude of u′/ū = 0.2, producing periodic p′ oscillations of a
moderate amplitude. In phase space, this state could be regarded as a closed periodic orbit similar
to a limit-cycle attractor. We then increase Re from 2600 to 6200 to produce a thermoacoustically
self-excited state with high-amplitude periodic p′ oscillations (Fig. 2, bottom row). The PSD is dom-
inated by an energetic peak at 310 Hz with a weaker subharmonic, indicating that thermoacoustic
instability in this system takes the form of a quarter-wave mode. This is the intrinsic thermoacoustic
mode identified previously by Xu et al. [30].

Next, we analyze the p′ signal using the horizontal visibility graph (HVG), a graph-theoretical
tool for mapping time-domain data to network structures [31]. We use a filtered version of the HVG
capable of detecting hidden periodicity even in signals corrupted by noise, enabling stochastic,
chaotic, and noisy periodic dynamics to be distinguished [32]. Figures 2(a3)–2(c3) show the mean
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FIG. 2. System dynamics based on the pressure fluctuation signal p′ for three representative states: (a1)–
(a5) unforced state of combustion noise, (b1)–(b5) acoustically forced state without thermoacoustic instability,
and (c1)–(c5) thermoacoustically self-excited state. From left to right, the columns show the time trace of p′

(note the change in timescale at t = 400 ms), the PSD of p′, the HVG mean degree vs the graph-theoretical
noise filter amplitude, the network structure with the highest degree nodes (hubs) shown as red dots, and the
node degree distribution.

degree k̄—the mean number of nodes linked to a given node—as a function of famp, the amplitude
of the graph-theoretical noise filter. For a perfectly sinusoidal signal without any noise, k̄ → 2
because all the network nodes are linked only to their immediate neighbors. In the unforced state
[Fig. 2(a3)], the system dynamics are aperiodic, dominated by chaotic turbulence. This prevents k̄
from converging to 2, even when famp reaches a high value (0.2). The network structure [Fig. 2(a4)]
contains several nodes with a disproportionately large number of links. These high-degree nodes
are the network hubs and are highlighted as red dots. The node degree distribution [Fig. 2(a5)]
shows a power-law scaling with an exponent of γ = −2.46, indicating that the topology of the
pressure network is scale free. This finding is consistent with that of Murugesan and Sujith [16]
and Murayama et al. [20]. For both the forced and self-excited states [Figs. 2(b3) and 2(c3)],
k̄ converges to exactly 2 as famp increases. This confirms the dominance of periodic dynamics,
with increases in famp acting to filter out the effects of small-scale turbulence. For the forced
state [Fig. 2(b3)], k̄ experiences abrupt drops as famp increases; these drops are due to harmonic
disturbances generated by the forcing. For both states [Figs. 2(b4), 2(b5) and Figs. 2(c4), 2(c5)], the
network structure contains no hubs, with the node degree distribution collapsing to a single point,
indicating a complete loss of scale-free topology in the pressure networks. Again, these findings are
consistent with previous studies [27], further substantiating our methodology.

B. Network analysis of the vorticity field

Having examined the pressure dynamics, we now turn to the vorticity dynamics as captured by
time-resolved PIV (see Sec. II). We perform a time-varying weighted network analysis based on the
framework of Taira et al. [21]. This involves constructing, at each time instant, a spatial network
whose nodes represent fluid elements that induce a velocity at other fluid elements via the vorticity
field (ω). The velocity magnitude induced by fluid element i on another fluid element j is found via
the Biot-Savart law,

ui→ j = |γi|
2π

√
(xi − x j )2 + (yi − y j )2

, (1)
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FIG. 3. Unforced state of combustion noise (Re = 2600, φ = 0.8): (a1),(a2) vorticity field, (b1),(b2) node
strength field from vortical networks, (c1),(c2) network structure with the highest strength nodes (hubs) shown
as red dots, and (d1),(d2) node strength distribution on a log-log plot. Both the instantaneous and time-averaged
data are shown. In the spatial data [(a1),(a2) and (b1),(b2)], the black lines are streamlines and the magenta
lines at the bottom represent the burner outlet.

where γi = ω(xi, yi )�x�y is the circulation of element i whose width and length are �x and �y,
respectively. Here the vorticity ω is the out-of-plane component provided by our two-dimensional
PIV measurements (Sec. II). This component is used because our previous dual-plane stereoscopic
PIV measurements revealed that the dominant vortical structures in the present flow field are the
outer vortex rings [29]. These rings are axisymmetric, producing a high concentration of out-of-
plane vorticity when the PIV laser sheet is aligned along the central plane [Fig. 1(a)]. The magnitude
of the average induced velocity is assigned to the weight Ai j of the link between fluid elements i and
j, providing an instantaneous measure of their vortical interaction strength. For an entire network,
this is encapsulated by the adjacency matrix,

Ai j =
{

1
2 (ui→ j + u j→i ) if i �= j,

0 if i = j.
(2)

This type of vortical network is considered a complete graph because each element interacts with
every other element. The node strength (si ≡ ∑N

j=1 Ai j), which is defined as the sum of all the
weights (Ai j) at a given element (node i), is an indicator of how strongly that node interacts
with all N nodes of the network. Physically, an increase in si implies an increase in the velocity
induced by fluid element i on all the other fluid elements [21,22]. To determine the network
topology, we examine the node strength distribution P(s), which is the percentage of nodes with
strength s. If a power-law scaling of the form P(s) ∼ sγ with −3 < γ < −2 is observed, then the
network is considered to be scale free [14]. In a scale-free network, the weight distribution of the
links is highly inhomogeneous, with most nodes exhibiting small s. However, a few nodes exhibit
disproportionately large s, making them hubs. Such a network is termed scale free because nodes
with a wide range of s values coexist with no characteristic scale. Below we use such a weighted
spatial network analysis to investigate the vortical interactions in our combustion system for the
three states examined in Sec. III A.

1. Unforced state of combustion noise

Figure 3 shows the spatial distributions of ω and s alongside the network structure and P(s), all
for the unforced state. From both instantaneous and time-averaged data, we find that the high |ω|
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regions overlap with the high s regions, confirming that the node strength can reliably capture the
dominant vortical structures. We also find that for this thermoacoustically stable state dominated
by combustion noise (high-dimensional deterministic chaos [19]), the node strength distribution
follows the power-law scaling P(s) ∼ sγ with −3 < γ < −2 for almost every sampled time instant,
indicating that these vortical networks are almost continuously scale free, regardless of the phase of
development of the coherent flow structures. This assessment is confirmed by the presence of hubs
of high node strength in the network structure [Figs. 3(c1), 3(c2)]. Our observation of scale-free
topology in vortical networks at nearly all times during a state of combustion noise is consistent
with that of Murayama et al. [20] and Krishnan et al. [22]. The observation is also consistent with
the experiments of Murayama et al. [33], who found that the scale-free existence probability for
an unforced thermoacoustically stable system exhibits a narrow Gaussian distribution. The coherent
flow structures with high |ω| near the inner and outer shear layers are the primary hubs of the vortical
networks [Figs. 3(a1), 3(a2) and Figs. 3(b1), 3(b2)], dominating the spatiotemporal dynamics of the
entire flow. We find that time averaging the data smears the ω distribution, reducing the strength
of those vortical structures and thus reducing γ ; nevertheless, scale-free topology still persists
[Figs. 3(c1), 3(c2) and Figs. 3(d1), 3(d2)].

2. Forced state without thermoacoustic instability

Figure 4 is analogous to Fig. 3, but for the forced state. Instead of showing the instantaneous
and time-averaged data, we show the phase-averaged data at five instants in a forced oscillation
cycle, with each instant separated in time by an angle of 2π/5. Here a phase angle of 0 corresponds
to the moment when an outer vortex ring is generated at the burner outlet. This moment precedes
the moment of minimum acoustic pressure by a small angle [0.127π ; see Fig. 5(c2)]. We find
that energetic coherent vortices are shed periodically from the burner lip, in synchronization with
the periodic velocity perturbations arising from the applied forcing. These acoustically induced
vortices act as the primary network hubs, dominating the entire flow. In the node strength distribution
[Figs. 4(d1)–4(d5)], we find clear evidence of a power-law scaling, but γ always remains below
−3, indicating that these vortical networks are in the random regime rather than in the scale-free
regime, as defined by Barabási [14]. We find that γ depends on the spatiotemporal development
of the vortical structures. As the vortices in the outer shear layers emerge and grow (phase angle
0 → 4π/5), γ increases, indicating a more even distribution of s. Then, as those vortices begin to
dissipate (phase angle 4π/5 → 8π/5), γ decreases, causing the networks to move further into the
random regime.

We find that the range of values in which γ fluctuates depends on f f . To illustrate this, we
show in Fig. 5 the temporal evolution of γ for three different forcing frequencies ( f f = 63, 133,
and 183 Hz), all at the same forcing amplitude (u′/ū = 0.2). This range of f f was chosen based
on a balance between exploiting the low-pass filtering characteristics of the HRR response of the
flame [34] and exciting the system at frequencies close to the fundamental or subharmonic of the
incipient self-excited thermoacoustic mode (Fig. 2 and Sec. III B 3). The case of f f = 183 Hz was
examined in Fig. 4. For both instantaneous and phase-averaged data (Fig. 5), we find that γ increases
as f f decreases. At the lowest f f value (63 Hz), γ even intermittently enters the scale-free range
(−3 < γ < −2), which is reminiscent of the intermittent scale-free dynamics observed by Krishnan
et al. [22] in vortical networks during intermittency and thermoacoustic instability. In our case, the
change in γ may be due to a decrease in the vortex core energy with decreasing f f [34]. The
instantaneous γ data are seen to fluctuate more than the phase-averaged data because turbulence
causes ω to be more scattered and randomly distributed. Figure 5 also shows the temporal evolution
of p′ in relation to that of γ . Regardless of f f , we find that these two signals are well correlated,
indicating that the hydrodynamic field is strongly receptive to the applied forcing. This is in line
with the spatial amplifier characteristics of a convectively unstable flow [35]. In summary, we have
shown that the degree of scale-free topology in vortical networks built from a forced turbulent
combustion system without thermoacoustic instability is highly dependent on the presence and
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FIG. 4. Forced state without thermoacoustic instability (Re = 2600, φ = 0.8): (a1)–(a5) vorticity field,
(b1)–(b5) node strength field from vortical networks, (c1)–(c5) network structure with the highest strength
nodes (hubs) shown as red dots, and (d1)–(d5) node strength distribution on a log-log plot. The data shown are
phase averaged at five instants in a forced oscillation cycle, with each instant separated from the next by an
angle of 2π/5 (see labels on the right). The forcing is applied at a frequency of f f = 183 Hz and an amplitude
of u′/ū = 0.2. In the spatial data [(a1)–(a5), (b1)–(b5)], the black lines are streamlines and the magenta lines
at the bottom represent the burner outlet.

frequency of external perturbations. This contrasts strikingly with the absence of any scale-free
structure in pressure networks formed under identical forcing conditions [Figs. 2(b4) and 2(b5)].

3. Thermoacoustically self-excited state

When the system is thermoacoustically self-excited (Fig. 6), the peak values of |ω| and s increase
by an order of magnitude relative to the first two states (Secs. III B 1 and III B 2). These increases
can be attributed to the two-orders-of-magnitude increase in |p′| (Fig. 2). The stronger pressure
oscillations give rise to more energetic vortical structures, both in the outer shear layers as well as
in the central recirculation zone (Fig. 6). Crucially, the node strength distributions of the vortical
networks exhibit a familiar power-law scaling with −3 < γ < −2 at nearly all times, regardless

033202-8



SCALE-FREE TOPOLOGY OF VORTICAL NETWORKS IN A …

FIG. 5. Forced state without thermoacoustic instability (Re = 2600, φ = 0.8): simultaneous evolution of
γ and p′ at three different forcing frequencies ( f f = 63, 133, and 183 Hz), but the same forcing amplitude
(u′/ū = 0.2). The top and bottom rows show the instantaneous and phase-averaged data, respectively. For the
phase-averaged data, a phase angle of 0 corresponds to the moment when an outer vortex ring is generated at
the burner outlet.

of the phase of the oscillation cycle. This continuous scale-free behavior is in stark contrast to
the intermittent scale-free dynamics observed in Fig. 5 for the forced state and in the studies by
Murayama et al. [20] and Krishnan et al. [22] for thermoacoustically self-excited states. This shows
that even after the onset of thermoacoustic instability, although scale-free topology disappears
completely in the pressure networks [Figs. 2(c4) and 2(c5)], it survives robustly in the vortical
networks [Figs. 6(c1)–6(c5) and Figs. 6(d1)–6(d5)].

The scale-free topology observed in the vortical networks can be explained through the flow
physics. During thermoacoustic instability, it is generally recognized that large-scale vortical struc-
tures are responsible for most of the thermoacoustic driving—via the generation of large clusters of
coherent acoustic power sources that act as the network hubs [22,36]. In turbulent combustors,
such large-scale coherent vortices tend to coexist with many smaller incoherent eddies arising
from the chaotic nature of the underlying turbulent flow field [1,27]. Consequently, the scale-free
topology observed in the vortical networks can be attributed to the coexistence of two different
classes of vortices: (i) a large number of vortices whose influence is mostly local, inducing only
low-to-moderate flow velocities and forming network nodes with low-to-moderate s values, and (ii)
a small number of vortices whose influence is global, inducing high flow velocities and forming
network hubs with high s values. In our experiments, the latter class of vortices, corresponding to
the primary network hubs, dominates the outer shear layers and their roll-up into vortex rings, as can
be seen in the ω and s fields of Fig. 6. In summary, the coexistence of vortices of different interaction
strengths is what physically causes scale-free topology to emerge in the vortical networks of this
turbulent thermoacoustic system.

Although the topologies of the pressure and vortical networks are vastly different, we still find
a strong degree of synchronicity between γ of the vortical networks and the p′ signal itself. To
illustrate this, we show in Fig. 7 the simultaneous evolution of γ , p′, and |ω| at three different
equivalence ratios: φ = 0.70, 0.75, and 0.80. On increasing φ, we find that the amplitude of the
thermoacoustic mode increases. This enhances the synchronicity of the γ and p′ signals, as evi-
denced by an increase in their cross correlation (Fig. 7: CC = 0.58 → 0.61 → 0.82). Meanwhile,
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FIG. 6. Thermoacoustically self-excited state (Re = 6200, φ = 0.8): (a1)–(a5) vorticity field, (b1)–(b5)
node strength field from vortical networks, (c1)–(c5) network structure with the highest strength nodes (hubs)
shown as red dots, and (d1)–(d5) node strength distribution on a log-log plot. The data shown are instantaneous,
extracted at five instants in a natural oscillation cycle (see labels on the right). The time separation is around
π/2. In the spatial data [(a1)–(a5), (b1)–(b5)], the black lines are streamlines and the magenta lines at the
bottom represent the burner outlet.

the amplitude of the γ fluctuations increases as well, but not beyond the range −3 < γ < −2,
implying that scale-free topology is continuously maintained in the vortical networks, even though
it has disappeared completely in the pressure networks [Figs. 2(c4) and 2(c5)]. As with the forced
state (Sec. III B 2), we find that γ fluctuates in time with the development of the coherent flow
structures (Fig. 6), with moments of high γ coinciding with moments of high |ω| concentration
(Fig. 7).

IV. CONCLUSIONS

We have investigated the vortical interactions in a bluff-body stabilized swirling combustion
system via the construction of time-varying weighted spatial turbulence networks whose node
strength distribution is derived from the Biot-Savart law. We focused on three canonical states: (i) an
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FIG. 7. Thermoacoustically self-excited state (Re = 6200): simultaneous evolution of γ , p′, and maximum
|ω| at three different equivalence ratios (φ = 0.70, 0.75, 0.80). The |ω| data are included for qualitative
comparison only, so their axis values are not displayed.

unforced state of combustion noise, (ii) an acoustically forced state without thermoacoustic insta-
bility, and (iii) a thermoacoustically self-excited state with limit-cycle dynamics. In all three states,
we found evidence of hubs in the network structure and a power-law scaling in the node strength
distribution, indicating the existence of scale-free topology. The scale-free topology appears nearly
continuously in time for the unforced and self-excited states, but only intermittently for the forced
state, depending on the exact forcing frequency. The coherent flow structures with strong vorticity
were found to act as the primary network hubs, dictating the spatiotemporal dynamics of the entire
flow. Murayama et al. [20] and Krishnan et al. [22] have shown that even during thermoacoustic
instability, such scale-free topology can appear in vortical networks, but only intermittently. Here
we have provided evidence that such scale-free topology can appear continuously in time in vortical
networks, despite being completely absent in the corresponding pressure networks. This discovery
sheds light on the robustness of the primary network hubs and may have implications for the efficacy
of controlling self-excited thermoacoustic systems via external forcing directed at such network
hubs [27].
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