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The filtered density function (FDF) in the context of large eddy simulation (LES) has
demonstrated its unique strength in predicting complex turbulent reacting flows. However,
the high computational cost of FDF-LES may hinder its application in industrial con-
figurations. The combination of FDF with the hybrid Reynolds-averaged Navier–Stokes
(RANS)-LES method can potentially provide an effective means to significantly reduce
computational cost while maintaining accuracy. In this work, the FDF method within the
framework of self-adaptive turbulence eddy simulation (SATES), a hybrid RANS-LES
approach, is formulated. The focus is on ensuring consistency in both definition and
scalar-mixing modeling. The filtered density function in SATES-FDF can be interpreted
as the spatial filtering density function under either RANS or LES filtering scale, de-
pending on the local turbulence integral scale and grid resolution. The inconsistency of
scalar-mixing rate modeling between RANS mode and LES mode in SATES-FDF is
revealed. The general modeling criteria for modeling consistency of scalar-mixing rate
are formulated in the context of SATES. A scalar-mixing rate model is then proposed
through dimensional analysis, which utilizes a hybrid length scale to meet the criteria and
achieve the consistency. The SATES-FDF approach is demonstrated in the simulations of
standard turbulent premixed swirling burner TECFLAM, in which the k−ω shear stress
transport model is adopted for the base model of SATES. With the consistency issue being
resolved, it is shown that this mixing-frequency model achieves better overall agreement
with experimental data than the classic models in standalone RANS or LES context in
terms of reproducing the swirling flow and related flame characteristics, demonstrating
its potential for practical combustor configurations. Finally, H equivalence is employed to
extend SATES-FDF to more several hybrid RANS-LES frameworks, such that a unified
framework for FDF in conjunction with hybrid RANS-LES method is established.

DOI: 10.1103/PhysRevFluids.9.033201

I. INTRODUCTION

Large eddy simulation (LES), which can effectively resolve large-scale turbulent motions, has
been applied in many laboratory-scale flames [1–11] and even industrial-scale combustion chambers
[12–15]. However, LES could be computationally expensive, especially for wall-bounded turbulent
flows in industrial applications [16]. It requires, therefore, a balance between the accuracy of
physical modeling and the computational cost, particularly for wall-bounded flows. Recently, hybrid
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Reynolds-averaged Navier–Stokes (RANS)-LES method (HRLM) [17] has gained popularity for its
high accuracy and low computational cost, and these hybrid techniques are designed to operate in
LES mode in regions where transient effects are strong and in RANS mode in other regions to
save computational cost. A number of strategies for combining RANS and LES equations have
been proposed thus far; for instance, detached eddy simulation (DES) [18], partially averaged
Navier-Stokes (PANS) [19–21], partially integrated transport model (PITM) [22], and self-adaptive
turbulence eddy simulation (SATES) [23,24]. These methods, also called adaptive turbulence model,
focus on the utilization of a unified modeling framework that encompasses the three primary com-
putational modes: RANS, LES, and direct numerical simulation (DNS), and facilitates the seamless
transition between RANS, LES, and DNS depending on local turbulent scales and computational
grid resolution. SATES, developed from very large eddy simulation (VLES) proposed by Speziale
[25], is a representative of such hybrid RANS-LES methods. Its capacity to achieve both efficiency
and accuracy for highly turbulent flows has been demonstrated in classical isothermal turbulent-flow
cases [26] as well as in complex strong swirling flow [27]. However, the utilization of hybrid
RANS-LES method in the presence of reaction, i.e., for complex turbulent flames, has received
less attention [28]. One of the primary reasons that hinders utilization is that the different modes in
hybrid RANS-LES method could lead to modeling inconsistency of some combustion models that
have different modeling strategies in RANS or LES context.

Transported filtered density function (FDF), which closes the mean chemical source term without
any approximation [29–33], has shown great potential for predicting near-limit flame character-
istics and emissions in laboratory-scale flames (jet, swirl, layered, nonpremixed, premixed, etc.)
[3–6,11] and turbulent flames in industrial devices [13]. However, one of the great challenges
for the one-point, one-time FDF representation is the conditional molecular-diffusion term which
requires the closure by the micromixing model [34–38]. As the key component for a micromixing
model, the scalar-mixing timescale depends on the level of turbulence closure. Specifically, with
the constant scalar-mechanical ratio model, the scalar-mixing timescale is modeled as τM = τturb

CM

[31,32], where CM is the mixing-rate parameter and τturb is the (subgrid) turbulent timescale. In
RANS concept, τturb ∼ ω−1, which is grid independent with ω being specific dissipation, while in
LES concept, τturb ∼ �2/(νt + ν), which is grid dependent with νt , ν, and �, respectively, being
turbulent-laminar viscosity and filter size. In the framework of hybrid RANS-LES method, with the
change of local turbulent scales and grid resolution, the closure for local turbulence could transition
between LES and RANS. Challenges remain on ensuring the consistent scalar-mixing timescale
modeling when transitioning between RANS and LES modes.

This study aims at formulating the FDF method in the context of hybrid RANS-LES method,
focusing on the consistency in the definition and scalar-mixing modeling. The SATES is first
employed as an example to demonstrate the concepts and methodology. The applications of SATES-
FDF are then demonstrated for turbulent swirling premixed flames with bluff body, i.e., TECFLAM
[39–41], which has been extensively studied [42–44]. Finally, H equivalence is employed to extend
SATES-FDF to general hybrid RANS-LES method in the Appendix.

II. METHODOLOGY

A. Self-adaptive turbulence eddy simulation method

The SATES method [23,24] is formulated based on the VLES method originally developed by
Speziale [25]. In the present SATES modeling framework, the Navier-Stokes equations for low-
Mach Newtonian fluids are solved,

∂ρ̄

∂t
+ ∂

∂x j
(ρ̄ũ j ) = 0, (1)

∂

∂t
(ρ̄ũi ) + ∂

∂x j
(ρ̄ũiũ j ) = − ∂ p̄

∂xi
+ ∂

∂x j

[(
μ + μsub

t

)( ∂ ũi

∂x j
+ ∂ ũ j

∂xi

)]
, (2)
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FIG. 1. Schematic diagram of the SATES simulation modes with different grid resolution (above);
schematic diagram of turbulence energy spectrum corresponding to different SATES modeling modes (below).

where the overbars “-” and “∼,” respectively, refer to averaged and Favre-averaged variables. In
RANS mode, it refers to ensemble-averaged variables, while in LES mode, it refers to spatially
averaged variables, with the fluid density ρ, the velocity components ui, the pressure p, the laminar
viscosity μ, and the turbulent viscosity μsub

t to be modeled. By introducing the resolution control
function Fr , the unresolved turbulent viscosity μsub

t can be modeled as

μsub
t = Frμ

RANS
t , (3)

with μRANS
t being the turbulent viscosity in RANS framework, such that a set of RANS turbulence

model can serve as the basis in SATES. In this study, the k−ω shear stress transport (SST) model
is employed as an example for illustration purpose, in which the transport equations of turbulence
kinetic energy k and the specific dissipation ω are

∂ρ̄k

∂t
+ ∂ρũ jk

∂x j
= ρ̄Pk − β∗ρ̄kω + ∂

∂x j

[(
μ + μsub

t

σk

)
∂k

∂x j

]
, (4)

∂ρ̄ω

∂t
+ ∂ρ̄ωũ j

∂x j
= γ

ω

k
ρ̄Pk − β1ρ̄ω2 + ∂

∂x j

[(
μ + μsub

t

σω

)
∂ω

∂x j

]
+ 2ρ̄(1 − F1)σω2

1

ω

∂k

∂x j

∂ω

∂x j
, (5)

where Pk = 2μsub
t S̃i j S̃i j

ρ̄
, where Si j = 1

2 ( ∂ui
∂x j

+ ∂u j

∂xi
) is the production term, the model constants are

σk = 2, α; σω = 2; σω2 = 0.856; β1 = 3/40; γ = 5/9; and F1 is a function of k, ω, μ, and the
distance to the wall dw as described in Ref. [48]. The turbulent viscosity μRANS

t is given by

μRANS
t = ρ̄

k

ω
. (6)

For the modeling of resolution control function Fr , Fig. 1 illustrates the different turbulent model-
ing modes of SATES with various grid resolution. The specific modes are dynamically determined
according to the relative size between local grid resolution and turbulent scales. Specifically, the
SATES works in a LES mode locally if the local grid resolution is sufficient to capture most turbulent
kinetic energy, i.e., over 80% of the turbulent kinetic energy is resolved, and works in a VLES mode
if only a few large turbulent vortices can be captured and less than 80% of the turbulence energy is
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resolved, and works in RANS mode if the local grid resolution is so low that even turbulent vortices
at the integral length scale cannot be captured and all turbulence energy must be modeled. One key
aspect of SATES is how to trigger the mode transition such that the transition occurs seamlessly
and efficiently between the RANS and LES modes. This is crucial for maintaining the accuracy and
reliability of the simulation.

Han et al. [23,24] constructed the resolution control function Fr as a trigger, which incorporates
the cutoff length scale, Lc, integral length scale, Li, and Kolmogorov length scale, Lk . As illustrated
in Fig. 1, from the energy-spectrum perspective, the corresponding SATES mode is determined by
wave numbers,

(κi, κc, κk ) = 2π
(
L−1

i , L−1
c , L−1

k

)
, (7)

where κi, κc, and κk are the wave numbers corresponding to the integral, cutoff, and Kolmogorov
length scales, respectively. For the cutoff wave number κc falling within the inertial subrange, the
energy spectrum adheres to the well-known −5/3 law as

E (κ ) ≈ Ckε
2/3κ−(5/3), κi � κc � κk. (8)

The total turbulence kinetic energy (TKE) can be estimated via
∫ Li

Lk
E (L)dL ≈

[1− exp(−βLi/Lk )]n, while the unresolved TKE can be approximated with
∫ Lc

Lk
E (L)dL ≈

[1− exp(−βLc/Lk )]n, where β ∼ O(10−3) and n ∼ O(1). Based on Pope’s theory [45], for LES
mode, the unresolved TKE proportion,

∫ Lc

Lk
E (L)dL, needs to be below 20% of the total TKE. The

SATES transfers to VLES mode locally if the cutoff wave number κc is in the inertial subrange but
has an unresolved TKE being larger than 20% of the total TKE. The SATES transfers to RANS
mode locally if the cutoff wave number κc is below the integral wave number κi, i.e., outside the
inertial subrange, the total TKE has to be modeled.

Following the generic form of the resolution control by Hsieh et al. [46],

fr =
∫ Lc

Lk
E (L)dL∫ Li

Lk
E (L)dL

, (9)

the resolution control function is defined as [23,24]

Fr = min
[
1.0, f 2

r

] = min

[
1.0,

(
1.0 − exp(−βLc/Lk )

1.0 − exp(−βLi/Lk )

)2
]
, (10)

with the three length scales being determined as

Lc = CVLES�; Li = k1/2/(β∗ω); Lk = υ3/4/(β∗kω)1/4
, (11)

where k and ω are, respectively, the turbulence kinetic energy and the specific dissipation, the model
constants β = 0.002, and β∗ = 0.09. Note that the parameter CVLES is related to the Smagorinsky
constant CS as CVLES = √

0.3CS/β
∗, which could be obtained by assuming that the RANS model is

identical to the standard Smagorinsky LES model [47] when Fr is exactly 1 for continuous transition
between RANS mode and LES mode. When CVLES = 0.12, CS ≈ 0.02, and when CVLES = 0.61,
CS ≈ 0.1 [23].

The adaptive change of Fr between 0 and 1 with local mesh resolution and local turbulent scale
allows the SATES method to cover RANS, VLES, LES, and correctly approach DNS within one
modeling framework. In specific cases, when the mesh scale is incapable of resolving the largest
turbulence scale, i.e., Fr approaches 1, a RANS-like modeling is applied; when the mesh resolution
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can resolve a majority of turbulent scales, i.e., Fr is considerably lower than 1, a LES-like modeling
is used; when Fr approaches 0, indicating the mesh scale can resolve the minimum turbulence scale
(Kolmogorov length scale), the calculation approaches the DNS limit.

B. Transported FDF in SATES

1. FDF concepts in SATES

The FDF method is an approach that provides the closure for subgrid-scale quantities in a
probabilistic manner. The advantage of this methodology is obvious, i.e., if the FDF of a trans-
port quantity is known, all of its statistical moments are readily determined. The joint FDF of
composition is defined as fFDF(�, x, t ) = 〈δ(φ(x, t ) − �)〉�G

= ∫
G(r,�G)δ(φ(x + r, t ) − �)dr,

where 〈•〉�G
represents spatial filtering with the filter size �G, and G(r,�G) is a homogeneous

filter function which satisfies
∫

G(r,�G)dr = 1, G(r,�G) = G(−r,�G), and all the moments∫
rmG(r,�G)dr should exist for m � 0 [33]. Given the FDF of composition, the filtered quantity

of any variable Q(x, t ) = Q(φ) with respect to component φ can be obtained by 〈Q(x, t )〉�G
=∫

G(r,�G)Q(x + r, t )dr.
In the framework of SATES, two modes for turbulence closure, i.e., RANS and LES, are involved.

RANS and LES are conceptually deterministic and stochastic, respectively. However, it is worth
appreciating that the concept of RANS and LES can be interpreted from various perspectives.
For example, it has been argued by Perot [49] that while the RANS equations can be derived
from the assumption of ensemble averaging and the LES equations from filtering operations, these
assumptions are overly restrictive and neither system must be derived with those assumptions. The
key idea of the SATES is to interpret Reynolds averaging as the spatial filtering with a considerably
larger filter width. In this sense, SATES ensures the consistency between RANS and LES by
employing the identical transport equations but adapting different filter width according to the local
turbulence and grid resolution.

Therefore, the concept of FDF in RANS and LES can essentially be interpreted as filtered density
function with the filter size based on integral length scale and computational cell size, respectively,
i.e., Lc = CVLES�; Li = k1/2/(β∗ω). Given two linear and constant preserving filters (G1 and G2)
with the filter size of Li = k1/2/(β∗ω) and Lc = CVLES�. The filter function and filter size satisfy
the following formulation [50]:

L2
i =

∫
r2G1(r, Li )dr, (12)

L2
c =

∫
r2G2(r, Lc)dr. (13)

An additive filter function (G3) is defined by Germano [50] as

G3(r, Lhybrid ) = αG1(r, Li ) + (1 − α)G2(r, Lc). (14)

Therefore, L2
hybrid = αL2

i + (1−α)L2
c , where α is bounded between 0 and 1. For SATES, α is 0 if

Lc < Li, and α is 1 if Lc � Li; the former situation corresponds to Fr < 1 as shown in the middle of
Fig. 1, while the latter situation corresponds to Fr = 1 as shown in the left of Fig. 1,

α =
{

0 if Lc < Li

1 if Lc � Li
. (15)

Equations (14) and (15) yield

Lhybrid = min(Li, Lc), (16)
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thus,

〈Q(x, t )〉Lhybrid
=

∫
G3

(
r, Lhybrid

)
Q(x + r, t )dr

= α

∫
G1(r, Li )Q(x + r, t )dr + (1 − α)

∫
G2(r, Lc)Q(x + r, t )dr. (17)

Finally, Eq. (17) yields

〈Q(x, t )〉Lhybrid
= α〈Q(x, t )〉Li

+ (1 − α)〈Q(x, t )〉Lc
=

{〈Q(x, t )〉Lc
if Lc < Li

〈Q(x, t )〉Li
if Lc � Li

. (18)

Equation (18) means that the filter size in SATES-FDF takes the minimum of Li and Lc. In RANS
mode (Lc � Li), the filter size is grid independent. And, if Li is large enough and turbulence can be
assumed to be homogeneous, from ergodic hypothesis,

∫
G1(r, Li )Q(x + r, t )dr = 〈Q(x, t )〉, where

〈•〉 means ensemble average and fFDF(�, x, t ) is converted to fPDF(�, x, t ) = 〈δ(φ(x, t ) − �)〉,
where PDF stands for probability density function. In LES mode (Lc < Li), the filter size is grid
dependent, which is similar to the filter size in LES context.

2. Monte Carlo particle method

Following the above interpretation of FDF in hybrid RANS-LES method, the Lagrangian Monte
Carlo particle algorithm as in LES-FDF can be directly adopted, in which computational particles
evolve in physical and composition space according to the following stochastic differential equa-
tions:

dx∗ = {ũ + ∇[(�̃ + �̃t )ρ̄]/ρ̄}∗dt +
√

2
(
�̃ + �̃t

)
dW ∗, (19)

dφ∗(t ) = M(φ∗)dt + S(φ∗)dt, (20)

where the superscript ∗ represents a specific property of an individual particle or a value of the
SATES field assessed at the location of the particle, ũ, �̃, and �̃sub

t are respectively, density-weighted
spatial filtered velocity, and molecular and turbulent diffusivity interpolated on the particle locations
with a second-order piecewise linear scheme [51]. dW ∗ is an independent Wiener increment; M(φ∗)
represents the rate of change due to the process of molecular mixing closed by a mixing model.
Existing models, such as exchange with the mean (IEM) [34], modified Curl’s model (MC) [35],
Euclidean minimum spanning tree (EMST) model [36], shadow-position mixing model [52], etc.,
have the same mixing format in the RANS mode or LES mode and can be directly adopted in
SATES. For example, with IEM model [34], the micromixing formulation is

M(φ∗) = −�φ (φ∗ − φ̃), (21)

where �φ is the scalar-mixing rate, and φ̃ denotes the density-weighted spatial filtered scalar-mass
fraction. Note that �φ , crucial in FDF simulations of turbulent flames [30–33], is commonly
assumed to be proportional to turbulent mixing frequency, i.e., �φ = Cφ�turb. There are two major
inconsistencies in modeling �φ between RANS and LES. In RANS, �turb = ε

k = β∗ω is grid
independent, whereas �turb = υt +υ

�2 is grid dependent in the framework of LES. Second, the reported
values of model parameter Cφ , depending on both flow conditions and flame structures [53], are very
different in the RANS and LES frameworks. For example, Cφ commonly varies from 1.0 to 3.0 in
RANS [54], but may vary from 5.0 to 50.0 in LES [52,55,56]. In FDF [30–33,57,58], scalar-mixing
timescale is identified to be one of the major sources of uncertainty, and the inconsistency in Cφ and
�turb should be properly resolved.
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3. Consistency in scalar-mixing rate modeling

To resolve the inconsistency in the transition between RANS mode and LES mode [59], the
following four modeling criteria in SATES should be satisfied:

(1) In RANS mode (i.e., Fr = 1), the SATES equations degenerate into RANS equations; �φ is
independent of � and should be modeled as �φ = �φRANS = CφRANS�RANS = CφRANSβ

∗ω.
(2) In LES (and VLES) mode (0 < Fr < 1), �φ scales as �φ = �φLES = CφLES

υt +υ
�2 .

(3) In DNS mode (i.e., Fr = 0), �φ scales as �φ = �φDNS = CφLES
υ
�2 , with turbulent viscosity

vanishing.
(4) During mode transition (e.g., Fr → 0 or Fr → 1), the spatial continuity in �φ should be

ensured.
Note that existing models in RANS and LES context could not guarantee the above criteria. For

example, with the model �φ = Cφβ∗ω, when Fr → 0, υt
�2 = Fr ·k

ω�2 = k
ω�2 ( Lc

Li
)
2 = (β∗CVLES)2ω, and

one has

�φ → 1

β∗C2
VLES

Cφ

υt

�2
, (22)

which cannot correctly recover the DNS limit. With the model �φ = Cφ
υt +υ
�2 being used, when

Fr = 1, it would not be independent with � in the RANS mode.
To ensure the above four criteria being satisfied, a length scale, which has been introduced in

Eq. (16) as the filter size of SATES-FDF, is reintroduced as the characteristic scale in mixing-
frequency modeling,

Lhybrid = min(Li, Lc) =
{

k1/2/(β∗ω) if Fr = 1

CVLES� if 0 � Fr < 1
. (23)

This mixing-frequency model is formulated as

�φ = Cφhybrid

υt + υ

L2
hybrid

=
{

CφRANSβ
∗ω if Fr = 1

CφLES
υt +υ
�2 if 0 � Fr < 1

, (24)

where the laminar viscosity in RANS mode with Fr = 1 is neglected considering that υ

L2
i

	 υt

L2
i
.

To ensure the spatial continuity from LES mode to RANS mode, i.e., when Fr is approaching 1
and Li = Lc, one should have CφRANSβ

∗ω = CφLES
υt
�2 , and thus the model constants CφRANS and CφLES

should be inherently related to

CφLES

CφRANS

= 1

C2
VLESβ

∗ . (25)

For example, with CVLES = 0.61, the ratio is approximately
CφLES

CφRANS
= 30 to ensure a smooth

transition.

4. Numerical implementation

The proposed SATES-FDF methods are implemented in an unstructured, based on finite-volume
method, parallel and open-source Computational Fluid Dynamics (CFD) software [60]. For the flow
fields, a pressure-based solver utilizing the SIMPLEC algorithm [61] is employed for solving the
Navier-Stokes equations. This solver is suitable for variable density incompressible flows. An im-
plicit first-order Euler scheme was used for time discretization. A second-order central scheme and
a first-order upwind scheme are blending as 90% and 10% was used in velocity-space discretization
for the sake of balancing stability and accuracy. Similar operation was done by 80% central scheme
and 20% upwind scheme in pressure-space discretization. A pure second-order upwind scheme was
used for other scalars, like k and ω.
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FIG. 2. Sketch of the computational domain with the isothermal simulation results obtained by SATES as
background (dimensions in millimeters).

For the sake of simplicity and efficiency, the FDF particle solver currently employs a first-order
explicit scheme to transport particles in the physical space. To determine the velocity and relevant
quantities governing the movement of particles in Eqs. (19) and (20), linear interpolation of the
variables is performed at the particle’s initial position during each time step. At the end of a time
step, the particle’s cell ID number is updated using the cell-face mapping relation [31], providing
valuable information about its corresponding cell.

The coupling between the two components of SATES-FDF algorithm is similar as the coupling
of LES-FDF in Refs. [50,62–64]. The SATES component offers a solution to the hydrodynamic
equations, while the Lagrangian Monte Carlo component calculates the FDF of chemical compo-
sitions. The specific-volume transport approach was implemented by solving the specific-volume
equation while incorporating a relaxation source term. This source term allowed for the relaxation
of the specific-volume FDF towards the SATES specific volume, with a relaxation time step of four
times the numerical time step.

III. VALIDATION IN TECFLAM BURNER

For the simulated TECFLAM burner [39–41], as shown in Fig. 2, the configuration is un-
restricted. It consists of an annular slot measuring 15 mm in width, encircling a central bluff
body with a diameter of 30 mm. In the experiments conducted for the reactive case, the bluff
body was cooled using water to maintain a temperature of 353 K. The generation of swirl was
achieved through the manipulation of a movable block geometry. By rotating the block assembly,
a theoretical swirl number ranging from 0 to 2 could be attained. The burner was conducted at a
swirl number of S = 0.75. In the reactive case, the fuel–air mixture was fully premixed, possessing
an equivalence of φ = 0.83. The injection of the mixture was carried out with a volumetric flow
rate of Q̇ = 37.92 m3/h. The Reynolds number was set to Re = 10 000, and the temperature was
maintained at 300 K. On the other hand, in the isothermal nonreacting case, air was injected instead
of the fuel–air mixture, maintaining the same momentum and temperature. To analyze the velocity
fields in both the reacting and nonreacting cases, laser Doppler velocimetry was employed, while the
characterization of the flame structure was accomplished through planar laser-induced fluorescence
measurements [41]. The mass fractions of CO2, CH4, N2, H2O and O2 were measured using a 1D
multiscalar Raman-Rayleigh setup. The detailed measurements enable the TECFLAM burner to be
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FIG. 3. Radial profiles of the axial (U )–azimuthal (W ) mean and rms velocity of the nonreacting case. The
profiles are shown at four axial positions (x = 10, 20, 30, and 60 mm). The symbols represent the experimental
data [39] and the dotted lines represent the simulated results of SATES (blue) and LES (black) [8].

a benchmark configuration for model validation; for example, DNS was performed to study the
isothermal flow [43] and LES combined with the level-set model [43], artificially thickened flame
[44], or Eulerian stochastic-field method [8] was performed to study the reacting flow.

In the SATES-FDF simulations, the 25-species methane skeletal mechanism SK25 [65] is
employed for oxidation. The bluff-body wall is modeled as a fixed-temperature boundary. In the
FDF solver, the heat loss, calculated by a three-layer wall function [66], is taken into account
by adjusting the mean sensible enthalpy in the cells adjacent to the bluff-body surface. A similar
treatment of boundary conditions can be found in Ref. [67]. The nominal number per cell (npc) is
10; increasing npc to 20 makes no difference to the prediction of mean statistics. The number of
grids is 0.81 × 106, with the local refinement in the inner recirculation zone (∼ 1-mm3 resolution).
The time step is 4 × 10−5 s, where maximum Courant number ≈ 1.8, maximum y+ ≈ 10. The inlet
axial and azimuthal mean-rms velocity is specified according to experimental measurement at x = 1
mm. In situ adaptive tabulation [68] has been implemented with the error tolerance being 2 × 10−4

to accelerate chemical reaction integration.
To validate the treatment for turbulence closure using SATES approach, in the isothermal sim-

ulation, the mean and rms results of the axial and azimuthal velocities are selected for comparison
with the experimental measurements.

Figure 3 illustrates the predicted mean and rms quantities of the axial and azimuthal components
of velocity in isothermal nonreacting flow, which are compared to the experimental measurements
[39]. Samples have been collected over sufficient amount of time to ensure the convergence of
statistics. The predicted and measured axial (azimuthal) components of velocity exhibit a high level
of agreement for SATES. The simulated inner (outer) recirculation zone IRZ (ORZ) is also in good
agreement with experiment. All the rms velocities also exhibit a reasonable level of agreement
with the experiment. Compared with the LES reported in Ref. [8], the level of agreement between
simulation and experiment is sufficient for the subsequent analysis.
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A. Flame and flow structures

For the reacting case, simulation was first performed to reach statistically steady state. Then,
statistical quantities have been collected over sufficient amount of time to ensure the convergence of
statistics. In the analysis, the different flow regimes are identified following the experimental paper
[41]. The inner recirculation zone (IRZ) denotes the region where hot products are convected from
the reaction zone towards the bluff body. The inner mixing layer (IML) primarily encompasses the
flame front. The central annular jet (CAJ) and outer mixing layer (OML) involve the mixing of fuel,
downstream hot products, and secondary air. The coflow (CF) corresponds to a zero equivalence
ratio [41].

To verify the effectiveness of Eq. (24), the conventional mixing-frequency model �φ =
CφRANS β∗ω and �φ = CφLES

υt +υ
�2 is also used for comparation, where the former is denoted as

RANS-mixing frequency model (RANS-MFM) and the latter is denoted as LES-mixing frequency
model (LES-MFM). Equation (24) is denoted as hybrid-mixing frequency model (hybrid-MFM). To
ensure the consistency, the parameter CφRANS and CφLES should satisfy Eq. (25). The value of CφRANS

and CVLES is determined based on a sensitivity study by matching the computed statistics with the
experimental data, which essentially yields CVLES = 0.61 and CφRANS ≈ 30. In this study, the IEM
mixing model is employed for demonstration. Similar results are obtained with MC and EMST (not
shown).

To provide an overall qualitative representation of the flame structure, time-averaged and tran-
sient of temperature, species, equivalence ratio, velocity, fraction of modeled TKE, and mixing
frequency simulated by SATES-FDF with hybrid-MFM are shown in Fig. 4. In the experiment,
the flame exhibits a weak M-shaped pattern which is also observed in simulation. However,
the flame on the two wings locates further downstream in the simulation, which indicates the
underestimated heat-release rate. Increasing CφRANS will subsequently lead to the stabilization of
the flame closer to the blunt wall. Due to the heat loss, the temperature around the bluff body is
lower than 2040 K, which is the adiabatic flame temperature for this mixture [39]. An isosurface
of OH concentration represents the flame front, primarily situated within the IML. The equivalence
ratio remains relatively constant near the bluff body. However, as we move downstream, the main
flow mixes with secondary air near the reaction zone, leading to a decrease in the equivalence
ratio. Figures 4(e) and 4(f) are shown to illustrate the differences in mixing-frequency predictions
among different mixing-frequency models. Specifically, the hybrid-MFM model was employed in
the simulation, complemented by calculations from two additional models for comparative analysis.
By analyzing the distribution of fr ( fr = F 0.5

r ), it can be observed that the RANS mode ( fr = 1) is
mainly near the wall, while the LES mode (0 < fr < 1) is predominantly in the region far from
the wall. Further observation on the distribution of fr and �φhybrid − �φLES uncovers discrepancies
in mixing-frequency predictions at fr = 1, indicating the RANS mode. Notably, compared with
hybrid-MFM, LES-MFM forecasts a lower mixing frequency near the wall, in contrast to RANS-
MFM, which predicts a lower mixing frequency at regions away from the wall.

It is worth appreciating that SATES is like LES, which approaches DNS as computational
grids get refined. Consequently, unlike RANS, SATES only reaches grid convergence at the DNS
limit; this greatly diminishes the value of checking its grid convergency. Instead, the study on grid
sensitivity of SATES has been performed in Refs. [23,24,27,28], in which SATES has demonstrated
the similar accuracy as LES using a much finer grid, illustrating the advantages of SATES. Despite
that the grid-convergence test was not performed in this study, grid resolution can be verified
through the distribution of fr shown in Fig. 4(e). Observations from the figure below indicate that
in regions like shear layers and recirculation cores, the LES mode dominates, effectively capturing
complex phenomena like separated flows, shear layers, and vortex breakup. This suggests that the
grid resolution is sufficient to meet requirement for SATES-FDF simulation of the TECFLAM case.

For comparison, Figs. 5 and 6 illustrate the time-averaged axial velocity, equivalence ratio, tem-
perature, and OH mass fraction, simulated by SATES-FDF using the RANS-MFM and LES-MFM,
respectively. Compared with Fig 4, the results obtained by RANS-MFM and LES-MFM exhibit
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FIG. 4. The reacting case simulated by SATE-FDF with hybrid-MFM. (a) Time-averaged temperature and
mass fraction of OH. (b) Time-averaged axial velocity, equivalence ratio (c); snapshots of temperature and mass
fraction of OH (d) time-averaged mass fraction of CH4 and H2O. (e) The fraction of the modeled turbulent
kinetic energy in the total turbulent kinetic energy and mixing frequency predicted by hybrid-MFM. (f) The
mixing frequency predicted by hybrid-MFM minus mixing frequency predicted by LES-MFM and mixing
frequency predicted by RANS-MFM (IRZ, inner recirculation zone; IML, inner mixing layer; CAJ, central
annular jet; OML, outer mixing layer; CF, coflow).
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FIG. 5. The reacting case simulated by SATE-FDF with RANS-MFM. (a) Time-averaged temperature and
mass fraction of OH. (b) Time-averaged axial velocity, equivalence ratio.

reduced velocity expansions, leading to the formation of larger recirculation regions and allowing
air to be entrained into the premixed region. Consequently, the equivalence ratio in the recirculation
region decreases, affecting the flame structure.

B. Velocity and composition profiles

The means and rms of the axial and azimuthal velocities with different mixing-frequency models
simulated by SATES-FDF are shown in Fig. 7, respectively. It is observed that the results of
these three different mixing-frequency models are quite different. Focusing on the mean velocities,
the mixing-frequency model hybrid-MFM has a better overall agreement with experimental data
compared to RANS-MFM or LES-MFM. All the rms velocities are qualitatively consistent with the
experiment, and are insensitive to different mixing-frequency models. One obvious disagreement
between simulation and experiment is the mean azimuthal velocity when using LES-MFM. The
variations in velocity expansion may be attributed to the significant influence of three different
mixing-frequency models on the predicted mixing frequency, which in turn affects the finite reaction
rates and the heat-release rate.

FIG. 6. The reacting case simulated by SATE-FDF with LES-MFM. (a) Time-averaged temperature and
mass fraction of OH. (b) Time-averaged axial velocity, equivalence ratio.

033201-12



TRANSPORTED FILTERED DENSITY FUNCTION IN …

FIG. 7. Radial profiles of the axial (U )–azimuthal (W ) mean and rms velocity of the reacting case simulated
by SATES-FDF. The profiles are shown at four axial positions (x = 10, 20, 30, and 60 mm). The symbols
represent the experimental data [39] and the lines of different color represent the simulation results with
different methods.

The means and rms of the temperature, equivalence with different mixing-frequency models
simulated by SATES-FDF, are shown in Fig. 8, respectively. It is observed that the results of
these three different mixing-frequency models are quite different. The mean temperature in ex-
periment first increases and then decreases along the radial direction (r = 0 − 30 mm) at the inner
recirculation zone, which is not captured by the simulation. The uncertainty in the experimental
conditions at the bluff-body wall may be the reason, and the fixed temperature condition used in
the simulation might not be adequate to represent the nonuniform wall temperature caused by water
cooling. The excessive and unsteady heat exchange may lead to less flame expansion and eventually
result in lower overall predicted mean temperature and higher predicted rms temperature around
the bluff body compared with experiment. In addition, the mean-rms temperature of experiment
gets a second peak around r = 40 mm, x = 20−30 mm, which is delayed to r = 60 mm, x = 60
mm in the simulation due to less flame expansion. Among the three mixing-frequency models, only
hybrid-MFM captures the second peak.

As shown in Fig. 8, the experimental equivalence [39] is almost a constant 0.833 around
r = 0−30 mm at the inner recirculation zone, and then drops down to around r = 30−60 mm
outside the inner recirculation zone. Compared by simulated equivalence, hybrid-MFM has a better
overall agreement with experiments than RANS-MFM and LES-MFM, where LES-MFM does not
form a premixed combustion flame in the all-inner circulation zone and RANS-MFM has a narrower
premix combustion region than the experiment. The worse performance of RANS-MFM and LES-
MFM may be due to mixing of air which comes from vortex core breaking in advance caused by the
low heat release. The higher experimental rms equivalence than simulation at the inner recirculation
zone may be due to the transients at the inlet [41], which is not considered in the simulation.
Thus, in general, the correct prediction of the expansion effect caused by temperature increase is a
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FIG. 8. Radial profiles of the mean and rms temperature (T )–equivalence (φ) of the reacting case simulated
by SATES-FDF. The profiles are shown at four axial positions (x = 10, 20, 30, and 60 mm). The symbols
represent the experimental data [39] and the lines of different colors represent the simulation results with
different methods.

crucial factor for the swirl field, which is captured by hybrid-MFM, but not by RANS-MFM and
LES-MFM.

The means and rms of the mass fraction of CH4, CO2, and O2 with different mixing-frequency
models simulated by SATES-FDF are shown in Fig. 9, respectively. The simulated results of CH4

exhibit a good level of agreement with experimental measurements. In the inner circulation zone,
CH4 is consumed, then increases at IML and CAJ, and finally decreases to zero at OML and CF
along the radial direction, which is reasonably captured by simulation. The mass fraction of CH4

is in reasonable agreement with experiments around r = 0 − 30 mm, but is overpredicted for r >

30 mm, which is probably due to the underestimated flame expansion observed in the velocity and
temperature results in Fig. 7 and Fig. 8. The mass fractions of CO2 and O2 also exhibit similar trends
as temperature. The performance of three mixing-frequency models in predicting mass fractions of
CH4, O2, and CO2 is very similar.

C. Scatter plots and conditional statistics

Since the SATES-FDF simulation with hybrid-MFM demonstrates satisfactory agreement with
the experimental data concerning the mean flow and flame statistics, we can now focus on examining
the instantaneous thermochemical state. This is particularly intriguing because the SATES-FDF
simulation provides detailed three-dimensional information about the flame at any given moment.
The instantaneous particle information is obtained by selecting five time instances with an equal
time spacing from the fully developed and statistical steady flame. Note that only 1/5 of these
particles have been presented in the following figures.

Figure 10 illustrates scatter plots of temperature-conditioned position at various axial planes. In
these plots, the temperature of Lagrangian particles is plotted against their radial position. Both the
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FIG. 9. Radial profiles of the mean and rms mass fraction of CH4, CO2, and O2 (YCH4 , YCO2 , and YO2 ) of
the reacting case simulated by SATES-FDF. The profiles are shown at four axial positions (x = 10, 20, 30,
and 60 mm). The symbols represent the experimental data [39] and the lines of different colors represent the
simulation results with different methods.

experimental results and simulations exhibit a bimodal pattern, where intermediate temperatures
increase as the flame brush thickness grows, further downstream from the swirler exit. Among the
three mixing-frequency models, only hybrid-MFM captures this most accurately.

Figures 11 and 12 show the PDFs of temperature and molar concentration of H2O, respec-
tively, measured at x = 30 mm. These measurements were conducted for three distinct ranges
of equivalence ratios (φ < 0.65, 0.65 < φ < 0.75, and φ > 0.75). For comparison purposes, the
experimental single-shot PDFs are also incorporated in the figures.

The first zone (φ < 0.65) primarily encompasses the CF region, as well as the region where
some products and unburned gas are transported to CF region due to the influence of the outer
recirculation zone. This region is characterized by low temperatures and few products. As shown
in Fig. 11 and Fig. 12, the simulation results obtained by hybrid-MFM demonstrate better overall
agreement with the experiment compared to the results obtained by RANS-MFM and can capture
the main characteristics of this region. On the other hand, the simulation obtained by RANS-MFM
predicts a high probability near T = 1700 K, which may be attributed to excessive mixing with
coflow secondary air.
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FIG. 10. Single-shot scatter plots of radial position conditioned on temperature for four different x planes
(x = 10, 20, 30, and 60 mm). A comparison of the experiment [39] and the simulation with SATES-FDF is
shown.

The second zone (0.65 < φ < 0.75) primarily encompasses the partial IML region, partial CAJ
region, and partial OML region, which is a very narrow region, closing to nozzle and the fuel
mixing with the air coming from the same direction. At x = 30 mm, the flame front exhibits
wrinkling and penetration within this region. Consequently, the experimental results indicate a
bimodal distribution in PDFs of temperature and the mole fraction of H2O. The overall agreement
between the simulation results obtained by hybrid-MFM and the experiments surpasses that of
RANS-MFM and LES-MFM. This disparity arises from the ability to reproduce bimodal behavior
in both the hybrid-MFM simulation and the experimental results, which is not observed in the
LES-MFM simulation. In the RANS-MFM simulation, the peak in the low-temperature region

FIG. 11. PDFs of temperature for three different ranges of equivalence ratios at x = 30 mm. A comparison
of the experiment [39] and the simulation with SATES-FDF is shown.
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FIG. 12. PDFs of mole fraction of H2O for three different ranges of equivalence ratios at x = 30 mm. A
comparison of the experiment [39] and the simulation with SATES-FDF is shown.

is reduced. This is primarily attributed to the fact that air mixing reduces the equivalence in the
reaction zone, causing combustion to transpire in regions with lower equivalence, thereby leading
to unimodal behavior in the products and temperature.

The third zone (φ > 0.75) contains the entire IRZ region along with CAJ region and parts
of the IML region. Here, the dilution with secondary air is minimal. The PDFs in Figs. 11 and
12 exhibit a bimodal distribution, representing undiluted fuel and fully burnt gas, in both the
experiment and simulation. However, the maximum temperatures predicted by the three different
mixing-frequency models are consistently higher than those observed in the experiment. During
the experiment, the temperature distribution is centered around 1800 K. However, the simulation
results reveal a clustering of temperatures around the adiabatic temperature of 2040 K, suggesting a
higher probability of reaching a chemical equilibrium state. This inconsistency could be attributed
to the previously mentioned wall condition of the bluff body, which leads to inadequate prediction
of intermittent heat losses in the inner recirculation zone. The simulation results obtained by
RANS-MFM indicate a high probability at a low molar fraction of H2O, which may be attributed
to increased air mixing in the inner recirculation zone. Consequently, the reaction occurs at the low
equivalence, resulting in a larger amount of undiluted fuel remaining at the high equivalence.

Further analysis of the described observations can be conducted by examining scatter plots
depicting the equivalence, CH4 and H2O in relation to temperature. These scatter plots illustrate
the data for two distinct axial positions, namely x = 10 mm and x = 30 mm in Figs. 13 and 14,
respectively. At x = 10 mm, the particles sampled from the IRZ in the experiment are predominantly
concentrated in the high-temperature region, characterized by a very low CH4 fraction, high H2O
content, and an equivalence ratio of approximately 0.83 in a state of chemical equilibrium. The
particles sampled from ISL and CAJ show a similar concentration around an equivalence ratio
of 0.83. The particles sampled from OSL are concentrated in the low-temperature region, while
particles sampled from CF are concentrated in both the low equivalence ratio and low-temperature
region. Among the three models mentioned, the RANS-MFM simulation results show significant
deviations from the experimental data. Conversely, the other two models exhibit closer agreement
with the experimental results. At x = 30 mm, the experimental results demonstrate similar trends to
those observed at x = 10 mm. However, there is a higher level of scattering in the data, which the
simulation fails to reproduce. This discrepancy may be attributed to a lack of statistical particle
number, as there is a limited number of particles in the OML and CF regions. Nevertheless,
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FIG. 13. Simulated scatter plots of equivalence ratio and mole fractions of CH4 and H2O vs temperature at
x = 10 mm. The black (gray) line is the mean value. A comparison of the experiment [39] and the simulation
with SATES-FDF is shown.

the RANS-MFM simulation results still display significant inconsistency with the experimental
findings.

IV. CONCLUSION

Transported FDF in hybrid RANS-LES method was investigated theoretically, including the
basic definition, mixing model, and scalar-mixing rate model. The main conclusions follow:

(1) Due to the inconsistency of scalar-mixing rate model between RANS mode and LES mode
in hybrid RANS-LES method, four modeling criteria are proposed via dimensional analysis to
ensure the consistency for the sake of realizability. The original scalar-mixing rate model in RANS
framework (�φ = CφRANSβ

∗ω) or LES framework (�φ = CφLES
υt +υ
�2 ) was proved to violate these

FIG. 14. Simulated scatter plots of equivalence ratio and mole fractions of CH4 and H2O vs temperature at
x = 30 mm. The black (gray) line is the mean value. A comparison of the experiment [39] and the simulation
with SATES-FDF is shown.
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criteria. Then, a scalar-mixing rate model was proposed by dimensional analysis with a length
scale Lhybrid, which is obtained by taking the minimum value of turbulent cutoff length scale and
integral length scale. The proposed SATES-FDF can be extended to several more hybrid RANS-LES
methods due to H equivalence.

(2) To establish a correlation between CφRANS and CφLES in the scalar-mixing rate model, the
adopted RANS model is assumed to be identical to the standard Smagorinsky-Wall-Adapting Local
Eddy (WALE) LES model when Fr = 1. Alternatively, for a specific hybrid RANS-LES strategy,
the trigger between RANS mode and LES mode naturally provides a bridge between CφRANS and
CφLES .

With SATES based on k−ω SST model, the SATES-FDF approach is demonstrated in the
standard turbulent premixed swirling burner TECFLAM. Results show that for the isothermal
case, good agreement with the experimental flow data is achieved with SATES-FDF on a coarse
grid of 0.81 × 106 cells, which is comparable to reported LES and quasi-DNS simulations on
much finer resolution. For the reacting case, the proposed mixing-frequency model hybrid-MFM
(�φ = Cφhybrid

υt +υ

L2
hybrid

) has a better overall agreement with experiments than the classic mixing-

frequency model RANS-MFM (�φ = CφRANSβ
∗ω) and LES-MFM(�φ = CφLES

υt +υ
�2 ) in terms of the

mean velocity field, the mean temperature, and the mean equivalence. The poorer performance of
RANS-MFM and LES-MFM might be attributed to their underprediction of the heat-release rate.
This further causes an underestimated velocity expansion and alters the structure of the recirculation
zone. Consequently, fuel mixes with more secondary air from the coflow within the recirculation
zone, thus impacting the flame structure. The mass fractions of CH4, CO2, and O2 also show
consistent trends with the temperature. The observed behavior in the experiments was found to be
consistent with the instantaneous scatter plots and conditional PDFs of the temperature, exhibiting
a comparable bimodal behavior.
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APPENDIX: TRANSPORTED FDF IN GENERAL HYBRID RANS-LES METHOD

Considering the different existing hybrid RANS-LES methods, a unified framework is explored
to extend SATES-FDF to general hybrid RANS-LES method. As suggested by Pope [45], turbulent
resolution could be measured by the fraction of the modeled turbulent kinetic energy in the total
turbulent kinetic energy, fk , similar to fr in SATES, which could then be employed to classify the
local turbulence modes, e.g., DNS mode if fk → 0, LES mode if fk is between 0 and 0.2, VLES
mode if fk is between 0.2 and 1, and RANS mode if fk → 1. One can formulate a unified framework
for FDF in general hybrid RANS-LES method with H equivalence [69,70], in which different hybrid
RANS-LES methods are formulated with the same closure in governing equations, and the same
energy partition fk is employed for mode transition.

1. H equivalence of hybrid RANS-LES method

The H equivalence by Davidson and Freiss [69] and Freiss and co-workers [70] evaluates the
equivalence of hybrid RANS-LES method and allows various hybrid methods to be regarded as
models for the same system of equations. For example, a DES-like model (DES [18]) has been
demonstrated to be H equivalent with the PANS-like model [71] under stationary, inhomogeneous
conditions. In this section, the H equivalence among SATES [23,24] (VLES-like), classic DES [18]
(DES-like), and PANS [19–21] (PANS-like) models is demonstrated by analyzing the base RANS
standard k−ε model and the demonstration is also applicable to the base RANS k−ω SST model.
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Define the subfilter turbulent kinetic energy as km, the total turbulent kinetic energy as ktot , subfil-

ter dissipation rate as εm, and the total dissipation rate as εtot, which satisfy υt = 1
β∗

k2
m

εm
[72]. Assume

this satisfies self-consistency, i.e., εm = ε. For SATES, υt = 1
β∗

k2
m

εm
= Fr · 1

β∗
k2

ε
, thus k = km√

Fr
. For

classic DES-like and PANS-like models, the variable of governing equations is naturally km and εm.
Therefore, considering Fr as a constant for convenience, which is similar to the constant parameter
fk in PANS’s demonstration, the governing equations can be rewritten into

∂ρkm

∂t
+ ∂ρu jkm

∂x j
= ρPk1 − ψρεm + ρDk, (A1)

∂ρεm

∂t
+ ∂ρu jεm

∂x j
= εm

km
(Cε1ρPk1 − C∗

ε2ρεm) + ρDε, (A2)

where Pk1 = √
FrPk, ψ = √

Fr, C∗
ε2 = √

FrCε2 in SATES, Pk1 = Pk, ψ = FDES =
max( Li

Lc
, 1), C∗

ε2 = Cε2 in DES, and Pk1 = Pk, ψ = 1, C∗
ε2 = Cε1 + fk

fε
(Cε2 − Cε1) in PANS,

usually fε = 1.0 [19], Dk = 1
ρ

∂
∂x j

[(μ + μt

σk
) ∂km

∂x j
] and Dε = 1

ρ
∂

∂x j
[(μ + μt

σε
) ∂εm

∂x j
].

In the following, the H equivalence among three hybrid RANS-LES methods under equilibrium
layers will be first proved, and then stationary, inhomogeneous conditions will be considered.

In equilibrium layers, the turbulent timescale τm = km
εm

asymptotically tends to equilibrium, i.e.,
Dτm
Dt = 0, and Dk and Dε can be ignorable. Thus, we can get

γ1(Cε1 − 1)|S|km = (C∗
ε2 − ψ )ε, (A3)

where γ1 = Pk1
Skm

, |S| =
√

2S̃i j S̃i j .
Differentiation of Eq. (A3), by considering infinitesimal perturbations δγ1, δ|S|, δk, δC∗

ε2, and δψ

of the variables, yields

δγ1

γ1
+ δ|S|

|S| + δkm

km
= δC∗

ε2 − δψ

C∗
ε2 − ψ

. (A4)

Let γ2 = Pk
Skm

; the left-hand side is the same in SATES, DES, and PANS, i.e., δγ2

γ2
+ δ|S|

|S| + δkm
km

.
Integrating the right-hand side from RANS (ψ = 1, C∗

ε2 = Cε2) to LES conditions (ψ, C∗
ε2),

∫ C∗
ε2,ψ

Cε2,1

δC∗
ε2 − δψ

C∗
ε2 − ψ

= ln

(
C∗

ε2 − ψ

Cε2 − 1

)
= ln(

√
Fr )

= ln

(Cε1 + fk

fε
(Cε2 − Cε1) − 1

Cε2 − 1

)
= ln

(
Cε2 − FDES

Cε2 − 1

)
. (A5)

Therefore,

fk =
√

Fr (Cε2 − 1) − (Cε1 − 1)

Cε2 − Cε1
= 1 − FDES − 1

Cε2 − Cε1
. (A6)

To ensure a tractable system of equations, the analysis reintroduces the modeled diffusion and
transport effects into Eqs. (A4) and (A5) with additional restrictions. In this context, it is assumed
that both km and εm are in equilibrium along mean streamlines. The system of equations can then be
written as follows:

Pk1 − ψεm + Dk = 0, (A7)

εm

km
(Cε1Pk1 − C∗

ε2εm) + Dε = 0. (A8)
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Assuming self-consistency (δεm = 0), the resulting equation for the infinitesimal perturbations is

δPk1 − εmδψ + δDk = 0, (A9)

Cε1
εm

km
Pk1

(
δPk1

Pk1
− δkm

km

)
− C∗

ε2
ε2

m

km

(
δC∗

ε2

C∗
ε2

− δkm

km

)
+ δDε = 0. (A10)

Ignoring the laminar viscosity,

δDk

Dk
= 3

δkm

km
, (A11)

δDε

Dε

= 2
δkm

km
. (A12)

Combining the above Eqs. (A7)–(A12),

δC∗
ε2 − Cε1δψ

C∗
ε2 − ψCε1

= 3
δkm

km
. (A13)

Integrating from RANS (ψ = 1, C∗
ε2 = Cε2) to LES conditions (ψ, C∗

ε2),∫ C∗
ε2,ψ

Cε2,1

δC∗
ε2 − Cε1δψ

C∗
ε2 − ψCε1

= ln
C∗

ε2 − ψCε1

Cε2 − Cε1
= (VLES) ln

√
Fr = (PANS) ln fk

= (DES) ln
Cε2 − FDESCε1

Cε2 − Cε1
. (A14)

Therefore,

fk = √
Fr = Cε2 − FDESCε1

Cε2 − Cε1
. (A15)

It is worth mentioning that fk = √
Fr = fr , where fk and fr are both defined as the ratio of

unresolved TKE to total TKE, but the modeling for fk and fr may be quite different. This reveals
the differences and similarities of different hybrid RANS-LES methods.

2. FDF coupled with general hybrid RANS-LES method

The interpretation and implementation of FDF in SATES can be directly extended to the above
hybrid RANS-LES method methods, except that the potential inconsistency in scalar-mixing rate
model should be properly addressed. With Eq. (A15) proved by H equivalence, one could unify
different resolution control functions, e.g., Fr in VLES-like models, FDES in DES-like models, and
fk in PANS-like models, such that a common resolution control function could represent different
hybrid RANS-LES methods. For example, if fk is chosen as the common resolution control function,
the modeling criteria of scalar-mixing rate could be modified as follows:

(1) In RANS mode, e.g., fk = 1, �φ is independent of � and should be modeled as �φ =
�φRANS = CφRANS�RANS = CφRANSβ

∗ω.
(2) In VLES mode, e.g., 0.2 < fk < 1 and LES mode (0 < fk � 0.2), �φ depends on �, and is

modeled as �φ = �φLES = CφLES
υt +υ
�2 .

(3) In DNS mode, e.g., fk = 0, �φ is modeled as �φ = �φDNS = CφDNS
υ
�2 .

(4) During mode transition, (e.g., fk → 0 or fk → 1), the spatial continuity in �φ should be
ensured.

The scalar-mixing rate model could be modified as follows:

�φ = Cφhybrid

υt + υ

L2
hybrid

=
{

CφRANSβ
∗ω if fk = 1

CφLES
υt +υ
�2 if 0 � fk < 1

. (A16)
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TABLE I. Parameters and model variations for parametric studies in SATES-FDF simulations.

CφRANS CVLES Mixing model Mixing-frequency model

Case 1 10 0.61 IEM RANS-MFM
Case 2 10 0.61 IEM LES-MFM
Case 3 10 0.61 IEM Hybrid-MFM
Case 4 50 0.61 IEM RANS-MFM
Case 5 50 0.61 IEM LES-MFM
Case 6 50 0.61 IEM Hybrid-MFM
Case 7 30 0.12 IEM RANS-MFM
Case 8 30 0.12 IEM LES-MFM
Case 9 30 0.12 IEM Hybrid-MFM
Case 10 30 1.0 IEM RANS-MFM
Case 11 30 1.0 IEM LES-MFM
Case 12 30 1.0 IEM Hybrid-MFM
Case 13 30 0.61 IEM Hybrid-MFM
Case 14 30 0.61 MC Hybrid-MFM
Case 15 30 0.61 EMST Hybrid-MFM

To ensure the spatial continuity from LES-VLES mode to RANS mode, CφRANS and CφLES are
correlated with CφRANSβ

∗ω = CφLES
υt
�2 , when fk is exactly 1. Then, we assume that the k−ω SST

model is identical to the standard Smagorinsky LES model, which is similar to Johansen et al.
[47], who did the same assumption on the standard k−ε model when fk is exactly 1. Therefore,
υt = (CS�)2|S|. Besides, the governing equation of ω in SST could be simplified by dropping the
diffusion terms and unsteady term,

0 = γ
ω

k
ρ̄Pk − β1ρ̄ω2. (A17)

Thus, ω2 = γ |S|2/β1, and finally we get
CφLES

CφRANS
= β∗

√
γ

β1

C2
S

= 0.24/C2
S . When CS is set to 0.1,

CφLES
CφRANS

= 24. When fk is exactly equal to 0, υt = 0, left continuity is also naturally satisfied by
CφLES
CφDNS

= 1. The difference of
CφLES

CφRANS
between general HRLM-FDF and SATES-FDF is because the

parameter CVLES = 0.61 is obtained by the assumption that the standard k−ε model aligns precisely
with the standard Smagorinsky LES model when Fr equals 1, but in this section k−ω SST model
was used for derivation.

Or, if assuming that the k−ω SST model is identical to the standard WALE LES model [73]

when fk is exactly 1, similarly, we can get
CφLES

CφRANS
= β∗

√
γ

β1

C2
W

· |S|
Sw

, where Sw = (Sd
i j S

d
i j )

1.5

(S̃i j S̃i j )
2.5+(Sd

i j S
d
i j )

1.25 , and

Sd
i j = 1

2 [( ∂ ũi
∂x j

)
2 + ( ∂ ũ j

∂xi
)
2
]− 1

3δi j (
∂ ũk
∂xk

)
2
.

3. Sensitivity of the parameters CφRANS and CVLES and mixing model in SATES-FDF simulations

Fifteen cases, as outlined in Table I, were simulated. The results of mean temperature (T )–
equivalence (φ)–mass fraction of CO2 are shown in Fig. 15, which reveals that adjusting parameters
CφRANS and CVLES was ineffectual in improving the experimental conformity of predictions for
RANS-MFM and LES-MFM. Significantly, hybrid-MFM consistently yielded predictions more in
accord with experimental observations, surpassing the accuracy of both RANS-MFM and LES-
MFM.
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4. Delayed Detached Eddy Simulation (DDES)-FDF simulations

Three cases, as outlined in Table II, were simulated. The results of mean temperature (T )–
equivalence (φ)–mass fraction of CO2 simulated by DDES-FDF are shown in Fig. 16. DDES-FDF
and SATES FDF have similar results in the mixed-frequency model, where Hybrid-MFM get a
better agreement with experiemnt than RANS-MFM or LES-MFM.

FIG. 15. Radial profiles of the mean temperature (T )–equivalence (φ)–mass fraction of CO2 of the reacting
case simulated by SATES-FDF. The profiles are shown at four axial positions (x = 10, 20, 30, and 60 mm). The
symbols represent the experimental data [39] and the lines of different colors represent the simulation results
with different methods, (a) Case 1 & Case 2 & Case 3, (b) Case 4 & Case 5 & Case 6.
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FIG. 15. (Continued.) (c) Case 7 & Case 8 & Case 9, (d) Case 10 & Case 11 & Case 12, (e) Case 13 &
Case 14 & Case 15.
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TABLE II. Model variations for parametric studies in DDES-FDF simulations.

CφRANS CVLES Mixing model Mixing-frequency model

Case 16 30 0.61 IEM RANS-MFM
Case 17 30 0.61 IEM LES-MFM
Case 18 30 0.61 IEM Hybrid-MFM

FIG. 16. Radial profiles of the mean temperature (T )–equivalence (φ)–mass fraction of CO2 of the reacting
case simulated by DDES-FDF. The profiles are shown at four axial positions (x = 10, 20, 30 and 60 mm). The
symbols represent the experimental data [39] and the lines of different color represent the simulation results
with different methods, Case 16 & Case 17 & Case 18.
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