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In this work, a localized artificial-viscosity/diffusivity method is proposed for accurately
capturing discontinuities in compressible flows. There have been numerous efforts to
improve the artificial diffusivity formulation in the last two decades, through appropriate
localization of the artificial bulk viscosity for capturing shocks. However, for capturing
contact discontinuities, either a density or internal energy variable is used as a detector. An
issue with this sensor is that it not only detects contact discontinuities but also falsely
detects the regions of shocks and vortical motions. Using this detector to add artifi-
cial mass/thermal diffusivity for capturing contact discontinuities is hence unnecessarily
dissipative. To overcome this issue, we propose a sensor similar to the Ducros sensor
(for shocks) to detect contact discontinuities and further localize artificial mass/thermal
diffusivity for capturing contact discontinuities. The proposed method contains coefficients
that are less sensitive to the choice of the flow problem. This is achieved by improved local-
ization of the artificial diffusivity in the present method. A discretely consistent dissipative
flux formulation is presented and is coupled with a robust low-dissipative scheme, which
eliminates the need for filtering the solution variables. The proposed method also does not
require filtering for the discontinuity detector/sensor functions, which is typically done to
smear out the artificial fluid properties and obtain stable solutions. Hence, the challenges
associated with extending the filtering procedure for unstructured grids are eliminated,
thereby making the proposed method easily applicable for unstructured grids. Finally, a
straightforward extension of the proposed method to two-phase flows is also presented.

DOI: 10.1103/PhysRevFluids.9.024609

I. INTRODUCTION

Simulations of high-Mach-number compressible flows require a stable and accurate
discontinuity-capturing method. As the Reynolds number increases, it is expected that the methods
should capture both the turbulent structure near/far from the shock, and also capture the flow
discontinuities such as shocks, contacts, and material interfaces, and the interactions between the
two [1]. In incompressible flows, it is well known that low/nondissipative schemes such as central
schemes are required for accurate coarse-grained simulations such as the large-eddy simulation
paradigm [2]. However, for capturing discontinuities, these standard central schemes introduce
nonphysical oscillations. Hence, the challenge associated with accurate simulations of compressible
flows lies in the different needs for simulating turbulence and capturing discontinuities.

Methods for capturing shocks/discontinuities can be broadly classified into three classes: (1) flux
limiters and nonlinear schemes—these act at the scheme level, and therefore can be termed “implicit
methods.” Both flux limiters [3,4] and nonlinear schemes, such as essentially nonoscillatory (ENO)
[5,6], weighted ENO (WENO) [7–9], weighted nonlinear compact (WCN) [10–12], and targeted
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ENO (TENO) [13] schemes, have been extensively used for capturing shocks in compressible flows.
(2) Artificial viscosity and artificial diffusivity—these act at the partial-differential equation (PDE)
level, and therefore can be termed “explicit methods.” (3) Hybrid methods—they are a combination
of implicit methods with central schemes that act in different regions of the domain. Some examples
of hybrid approaches in the literature include the work of Pirozzoli and Bernardini [14] where
a modified Ducros sensor was used to switch between a central scheme and a WENO scheme,
and Hendrickson et al. [15] where a modified Ducros sensor was used to switch between a
central scheme and a modified Steger-Warming scheme. The comparison of various shock-capturing
methods can be found in Johnsen et al. [16], Brehm et al. [17], and Lusher and Sandham [18].

In this work, a localized artificial-viscosity/diffusivity (AV/LAD)-based method for capturing
shock and contact discontinuities is presented and aimed towards capturing the aforementioned
effects in compressible flows. Using an analogy between the Lax-Friedrichs (LF) flux and the
artificial-viscosity methods, a discrete and consistent LF-type dissipative flux formulation is
proposed for the LAD method. The proposed method satisfies the discrete kinetic energy- and
entropy-consistency conditions presented in Jain and Moin [19], and thus results in stable numerical
simulations. We also propose discontinuity detectors/sensors that localize where the artificial diffu-
sivity is acting and show that the proposed method is suitable for both direct numerical simulation
(DNS) and large-eddy simulation (LES) of compressible turbulent flows with discontinuities. The
sensors are designed in a way that the resulting method is less sensitive to the model coefficients
(doesn’t require tuning coefficients depending on the problem being solved, which is otherwise
typically required for LAD methods). Finally, the extension of the proposed method to compressible
two-phase flows is also presented.

In this work, we choose an artificial viscosity/diffusivity approach because of its advantages such
as low cost (the increase in cost of the simulations due to additional sensors and artificial fluxes is
minimal) and ease of implementation (artificial material properties can be easily augmented to the
physical ones with very little modifications to the code structure). Further, this method can be used
with any underlying scheme, and more importantly, with central schemes, which is beneficial for
simulating turbulent flows. Moreover, it also turns off naturally in smooth regions of the flow where
there are no discontinuities.

The artificial viscosity/diffusivity-based discontinuity-capturing methods can also be broadly
categorized into two types of approaches. In one approach, artificial dissipation is directly added
to all the equations without relating to the physical quantities. This is sometimes referred to
as Laplacian viscosity. In the other approach, physical fluid properties, such as bulk viscosity,
shear viscosity, and thermal conductivity, are augmented by artificial fluid properties to capture
discontinuities. This is referred to as localized artificial viscosity/diffusivity (LAD). It is important
to note that these two formulations can be expressed interchangeably. The major difference is the
localization that is present in LAD, but typically absent in the Laplacian viscosity approach.

The idea behind artificial viscosity was first introduced by von Neumann and Richtmyer [20].
Jameson et al. [21] regularized solutions to the Euler equations. To minimize the undesirable dissi-
pation, Tadmor [22] and Kirby and Sherwin [23] proposed a spectral vanishing viscosity (SVV) ap-
proach where only high-frequency components are damped. Later, Cook and Cabot [24] introduced
the high-wave-number viscosity approach, an idea similar to the SVV approach, but the dissipation
was added in the physical space. To further minimize the dissipation, they introduced different
viscosities in the subsequent work [25], an artificial bulk viscosity (ABV) for shocks and artificial
shear viscosity (ASV) for turbulence. Along similar lines, Fiorina and Lele [26] introduced artificial
thermal diffusivity (ATD) for capturing temperature gradients and artificial species diffusivity for
capturing species gradients using an entropy indicator function, and extended the LAD formulation
for multicomponent reacting flows. Similarly, Cook [27] introduced artificial thermal conductivity
for contact discontinuities and artificial diffusivity for material interfaces. More recently, the LAD
formulation was also extended to curvilinear and anisotropic meshes by Kawai and Lele [28].

The original LAD formulation used a strain rate-based indicator function in ABV to detect
shocks. Bhagatwala et al. [29] and Mani et al. [30] replaced the strain rate-based indicator function
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with a negative dilatation-based indicator to localize ABV to shock regions and to turn it off in the
regions of vortical motions. Kawai et al. [31] augmented the ABV with a Ducros-type sensor to
further localize the ABV for regions of shock and to turn it off in the regions of weak compression.

Later the LAD was coupled with a high-order flux reconstruction (FR) method [32], a spectral
difference method [33,34], and a discontinuous Galerkin method [35] to extend the formulation to
unstructured grids. Later, Haga and Kawai [36] adopted the FR + LAD framework and proposed
a more sophisticated filter for robust simulations on unstructured grids. Olson and Lele [37]
proposed a LAD formulation where the artificial fluid properties are independently applied in each
direction to avoid over-dissipation of discontinuities and numerical stiffness for high-aspect-ratio
grids. Terashima et al. [38] proposed artificial mass diffusivity (AMD) as an alternative to ATD
for multicomponent flows. The LAD has also been used with adaptive grid refinement, where
the artificial diffusivity was used as an indicator for grid refinement [39,40]. More recently, Jain
et al. [41] further extended the LAD method by coupling it with a diffuse-interface method
[42] for the simulation of multiphase fluid flows and elastic-plastic deformation of solid-solid
materials.

It is worth mentioning the studies that used the other type of artificial (Laplacian) viscosity
[43–50]. Persson and Peraire [51] used polynomial-order-dependent artificial viscosity for discon-
tinuous Galerkin schemes. Barter and Darmofal [52], Reisner et al. [53] proposed an artificial
viscosity based on a scalar PDE. Later, Chandrashekar [54] proposed entropy-stable artificial
viscosity, which has been extensively used in recent works such as that of Wintermeyer et al.
[55]. Along similar lines, Guermond et al. [56] proposed the entropy viscosity method, an artificial
viscosity based on the local rate of generation of entropy. This was later extended to discontinuous
finite element methods by Zingan et al. [57] and discontinuous spectral element method by Abbassi
et al. [58]. More recently, Discacciati et al. [59] proposed an artificial neural network to predict
the local artificial viscosity. There are many more variants of this approach, but a drawback that
is common to all these methods is that they use the same sensor for all the discontinuities, which
could be overly dissipative for simulations of turbulent flows. Therefore, in this work, a LAD-based
artificial viscosity is used because of the localized nature of the dissipation, which is suitable for the
simulations of turbulent flows.

A characteristic of the LAD approaches is that they are most commonly used in conjunction
with a high-order central scheme [25,27,28,30,31,41,60–63], with some exceptions [36]. However,
in this work, we choose to use a second-order central-difference scheme with LAD since low-order
central schemes are known to have some advantages for the simulation of turbulent flows [64] due to
their nondissipative nature, low cost, low aliasing error, easy extension to unstructured grids, ease of
boundary treatment, and improved stability. In addition to these, the order of accuracy of high-order
schemes can be realized only in an asymptotic regime, but the flow fields will be well resolved
typically much before reaching this asymptotic regime. Moreover, for flows with discontinuities, the
order of accuracy is also locally reduced around discontinuities. Recently, Motheau and Wakefield
[65] compared a second-order Godunov method with a higher-order finite-volume WENO shock-
capturing method and showed that it was significantly cost-effective to run a refined simulation with
a second-order method than to run a coarse simulation using a higher-order method to obtain a
solution of similar accuracy.

A. Challenges with the existing methods

The issues/challenges with the existing artificial viscosity methods are:
(i) The LAD methods are generally used only with high-order numerical methods and have not

been used with a low-order method; therefore, it is unclear how the LAD methods perform with a
low-order method, and there are no guidelines on how to choose the parameters when used with a
low-order method.

(ii) Some of the existing artificial viscosity formulations are too dissipative because of lack of
proper localization, and hence are not suitable for the simulation of turbulent flows [54], and others
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are less dissipative but do not add enough dissipation locally to resolve the jumps and result in
inaccurate capturing of discontinuities.

(iii) Some formulations are also not stable for high-Reynolds-number flows and require low-pass
filters to eliminate oscillations, particularly with high-order numerical methods. Typically, these
filters are used in the hope of achieving a stable method; however, the use of low-pass filtering
might not necessarily always bring numerical stability to the method (see Kawai et al. [31]).

(iv) In the existing LAD formulations, an artificial fluid property, X ∗, is typically defined as

X ∗ ∼ CX �r+2|∇rsX | fX ,

where CX is a model constant, � is the local grid size, and sX is a discontinuity indicator function
with an additional localization sensor fX . The overbar denotes a Gaussian filtering operation, which
is required to obtain a smooth artificial fluid property (particularly for large values of r) to achieve a
stable method [58]. However, it is not trivial to extend this filtering operation to unstructured grids
for simulations in complex geometries [36].

(v) In the existing formulations, the artificial thermal/mass diffusivity (ATD/AMD) added to
capture contact discontinuities is also active in the regions of shocks and vortical motions due to
the choice of indicator function and lack of proper localization. This adds unnecessary additional
dissipation by ATD/AMD in the regions of shock where ABV is already acting to capture shocks
and in the regions of unresolved eddies where a subgrid model is already active.

(vi) Additionally, the coefficients CX may also require problem-dependent tuning [41,62], which
is primarily due to the insufficient localization of the added artificial dissipation. For example, the
coefficient values that are tuned for the simulation of turbulent flows with weak shocks/shocklets
might not be appropriate for the simulation of stronger shocks, and similarly, the coefficient values
that are tuned to capture stronger shocks could be too dissipative for the simulation of turbulent
flows.

(vii) It is also common to turn on and off the artificial fluid properties [36] depending on the
problem being solved, which is not predictive.

The proposed method in this work aims to address these challenges with existing AV/LAD
methods.

A preliminary version of this work has been published as a technical report in the annual
publication of the Center for Turbulence Research [66]. The rest of this paper is organized as
follows. Section II contains the proposed localized artificial-viscosity/diffusivity model along with
the details of the sensors used, a unique sensor for detecting contact discontinuities, the coefficient
values used, and an extension to two-phase flows. Section III contains the consistency conditions for
kinetic energy–and entropy-consistent discretization and a consistent dissipative flux formulation.
Section IV contains the simulation results using the proposed method, and finally the concluding
remarks are presented in Sec. V.

II. PROPOSED ARTIFICIAL-VISCOSITY/DIFFUSIVITY METHOD

The idea behind a LAD method is to augment the physical fluid properties with the grid-
dependent artificial fluid properties locally in the regions of the flow where discontinuities such as
shocks (artificial bulk viscosity), contacts (artificial mass/thermal diffusivity), and eddies (artificial
shear viscosity) are not resolved by the grid [25,27].

For capturing shocks on the grid, an artificial bulk viscosity (ABV), β∗, is appended to the
physical bulk viscosity, βp, as

β = βp + β∗. (1)

Initially, a strain-rate-based sensor was used to detect shocks [27], but this made the ABV active in
regions away from shocks and in turbulent flows. Since shocks are associated with high values of
negative dilatation, to reduce the ABV away from shocks, Bhagatwala et al. [29] and Mani et al.
[30] proposed a dilatation-based sensor. Further, Kawai et al. [31] appended the Ducros sensor [67]
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to ABV to reduce ABV in the regions of high enstrophy that represent turbulent motions and to
localize ABV further. For unresolved vortical motions, an artificial shear viscosity (ASV), μ∗, is
used as a subgrid model where it is appended to the physical shear viscosity, μp, as

μ = μp + μ∗. (2)

Typically, the magnitude of the strain rate tensor is used as an indicator function [27]. Alternatively,
an eddy-viscosity model [68,69] can be used as a subgrid-scale model for unresolved eddies, which
is a more widely adopted approach, and we use this approach in this work. This is motivated by
the observations that a dynamic subgrid-scale model appropriately turns on/off its activity based
on the amount of resolved turbulence, whereas a numerical dissipation approach does not account
for it appropriately. Similarly, for capturing unresolved contact discontinuities, an artificial thermal
diffusivity (ATD), κ∗, is appended to the physical thermal diffusivity, κp, [27,31,41] as

κ = κp + κ∗. (3)

Alternatively, artificial mass diffusivity (AMD), D∗, can be used in the place of ATD [38] where
artificial terms such as �∇ · (D∗ �∇ρ), �∇ · (D∗ �∇ρ ⊗ �u), and �∇ · [(|�u|2/2)D∗ �∇ρ] are consistently added
to the mass, momentum, and energy equations. These consistent corrections for the momentum and
energy equations are similar to the consistent corrections used in capturing material interfaces in
two-phase flows [42]. We adopt the AMD approach over ATD because it can be shown that AMD
satisfies the interface equilibrium condition (IEC) or sometimes also referred to as the pressure
equilibrium, an important thermodynamic consistency condition for robust numerical simulations
of compressible two-phase flows [42], with the five-equation model which the ATD does not satisfy
(see Sec. II F). However, for single-phase flows, both ATD and AMD are equally applicable and
will yield similar results.

A. Proposed model

The system of conservation equations (mass, momentum, and energy) along with the proposed
artificial-viscosity method can be written as

∂ρ

∂t
+ ∂ρu j

∂x j
= Aρ, (4)

∂ρui

∂t
+ ∂ρuiu j

∂x j
+ ∂ p

∂xi
= ∂τi j

∂x j
+ ρgi + Aρu, (5)

and
∂E

∂t
+ ∂ (E + p)u j

∂x j
= ∂τi jui

∂x j
+ ρuigi + AE , (6)

where ρ is the density, p is the pressure, u is the velocity, E = ρ(e + uiui/2) is the total energy and
e is the internal energy, τi j is the stress tensor, and gi represents a generic body force. Throughout
this paper, i and j represent Einstein indices, and x and t represent space and time coordinates,
respectively. In Eqs. (4)–(6), Aρ , Aρu, and AE are the artificial terms added to the mass, momentum,
and energy equations, respectively, to capture shocks and contact discontinuities. They can be
written as

Aρ = ∂

∂x j

(
D∗ ∂ρ

∂x j

)
, (7)

Aρu = ∂

∂x j

(
D∗ui

∂ρ

∂x j

)
+ ∂

∂x j

(
β∗ ∂uk

∂xk
δi j

)
, (8)

and

AE = ∂

∂x j

[
D∗ ∂ρ

∂x j

(
ukuk

2

)]
+ ∂

∂x j

(
D∗ ∂ρe

∂x j

)
+ ∂

∂x j

(
β∗ ∂uk

∂xk
δi jui

)
. (9)
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Here Eq. (7), the first term in Eq. (8), and the first two terms in Eq. (9) are added to capture contact
discontinuities; and the second term in Eq. (8) and the last term in Eq. (9) are added to capture
shocks. These consistent terms in the momentum and energy equations can be derived similarly to
the derivation of interface-regularization terms as described in Jain et al. [42]. The consistent terms
in the momentum and energy equations are introduced such that there is no spurious contribution to
the total kinetic energy of the system. Note that, in this work, the ASV is not used (or is equivalently
set to zero). Instead, a dynamic Smagorinsky model is used for unresolved eddies, and in Sec. IV B 1,
the sensitivity of the results to the presence of a dynamic subgrid-scale model is investigated.

B. Dynamic subgrid scale model

For the sake of completeness, the details of the subgrid-scale model are provided here. The
resolved turbulent stresses, Li j = −ûiu j + ûi û j [(̂·) denotes test-filter operation], are related to the
modeled stresses, Mi j , in the “test window” [69] as

Li j = 2(Cs�)2

(
�̂2

�2
|̂S|Ŝi j − ̂|S|Si j

)
= 2(Cs�)2Mi j, (10)

where �̂ and � denote test-level and grid-level filter widths, respectively. Cs is the subgrid scale
model coefficient, and Si j is the rate of strain tensor from resolved LES fields, and |S| is its
magnitude. Lilly [70] proposed a least-squares solution of this system, leading to the expression
for the model coefficient

(Cs�)2 = Li jMi j

2Mi jMi j
. (11)

In this work, both the numerator and denominator have been averaged in the volume (since for a
periodic box all three spatial directions are homogeneous), to arrive at

(Cs�)2 = 〈Li jMi j〉
〈2Mi jMi j〉 , (12)

where 〈·〉 is the volumetric-averaging operator for homogeneous isotropic flows. For general flows,
however, averaging can be done along the homogeneous directions (space and time, as also done
before in Meneveau et al. [71], Agrawal et al. [72]). The final form of the eddy-viscosity model is
then written as

μ∗ = (Cs�)2|S|. (13)

C. Artificial fluid properties

The artificial diffusivities used in this work can be defined as

D∗ = CD
1

ρ

∣∣∣∣∣∣
∑

j

∂rρ

∂xr
j

(�x j )
r+1

∣∣∣∣∣∣(|u j | + cs) fD (14)

and

β∗ = Cβρ

∣∣∣∣∣∣
∑

j

∂rθ

∂xr
j

(�x j )
r+2

∣∣∣∣∣∣H (−θ ) fβ, (15)

where �x is the grid size; CD and Cβ are the model coefficients for AMD and ABV, respectively; cs

is the speed of sound; θ = �∇ · �u is the dilatation; and fD and fβ are the localization sensors. Here
ρ and θ act as indicator functions in AMD and ABV to detect contact discontinuities and shocks,
respectively. The Heaviside function H (−θ ), which evaluates to 0 when θ is positive, and hence
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turns off the ABV in the regions of expansion. It is important to note that the Gaussian filtering
operation is not performed on these artificial fluid properties, unlike the previous LAD methods,
where the Gaussian filtering was required to obtain stable solutions. This makes it easy for the
present method to be extended for unstructured grids.

The localization sensor in ABV is given as

fβ =
(

θ2

θ2 + aωiωi + ε

)
, (16)

which is a modified version (a > 1) of the Ducros sensor [67], where ε = 1e−15 is a small number
added to prevent division by zero. The original Ducros sensor (a = 1) was used by Kawai et al. [31]
to localize ABV for capturing shocks. The idea behind using this sensor is to identify the regions
of weak compression where the enstrophy could be non-negligible compared to the local dilatation
and to turn off ABV in those regions. The modification (a > 1) is aimed towards making the sensor
more localized.

D. A sensor for detecting contact discontinuities

In all the previous studies, either density or internal energy is used as an indicator function
in AMD/ATD to detect contact discontinuities [27–29,31–38,60,62]. An issue with this approach
is that this indicator will not only detect contact discontinuities but will also detect shocks and
vortical motions where there are jumps in density and internal energy (finite gradients). Therefore,
to overcome this issue, we propose a sensor—motivated by the idea behind the Ducros sensor—for
detecting contact discontinuities as

fD =
⎡⎣ ∣∣ ∂ρ

∂x j

∣∣2∣∣ ∂ρ

∂x j

∣∣2 + a(θ2 + ωiωi )
(

ρ

|�u|+ε

)2 + ε

⎤⎦. (17)

This sensor by construction can detect contact discontinuities very effectively and can distinguish
it from the regions of shocks (high dilatation) and vortical motions (high enstrophy). This sensor
will turn on only when there is a jump in density and will turn off in regions of high dilatation or
enstrophy. In this work, the purpose of adding this sensor fD is to further localize AMD by making it
active only in the regions containing contact discontinuities and to turn off AMD in the regions with
high enstrophy and high dilatation, which represent vortical motions and shocks, respectively. Note
that the proposed fD can also be used with an ATD approach for capturing contact discontinuities
without the loss of generality.

E. Problem-independent coefficients and the choice of r

The coefficients CD and Cβ are generally dependent on the numerical scheme used. In this work,
for the second-order central schemes, we use the values CD ≈ 0.5, Cβ ≈ 100, and a ≈ 100. For the
flows considered, these values are shown to produce fairly similar results, as long as the values are
changed by less than an order of magnitude (see Secs. IV A 1 and IV B 2). This is primarily due
to the use of sophisticated sensors in Eqs. (17) and (16) that are responsible for adding dissipation
locally only in the regions where it is needed the most. Hence, the values of these coefficients CD

and Cβ need to be determined only once for a particular scheme. Without the use of the sensor in
Sec. II D, the current choice of values for CD and Cβ is too dissipative for turbulent flows with weak
compressibility (see Fig. 3 and the discussion in Sec. IV B), and if the values for these coefficients
are reduced to make them suitable for turbulent flows, the dissipation is insufficient to capture
stronger shocks. However, in the presence of the proposed sensor, the current choice of model
coefficients can be used without the need for tuning it for each problem, e.g., stronger shocks and
turbulent flows with weak compressibility.
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Furthermore, in this study, a value of r = 1 is used. Note that a higher value of r was used in
other studies that use higher-order schemes [27,28,30,31,41,60–63]. In previous studies, a higher
value of r was suggested because it results in dissipating only the higher-wave number content that
is not resolved by the scheme [24]. However, in this study, with the use of a low-order scheme,
the motivation to use r = 1 (a lower value of r) is to have a sensor that is more localized only at
the discontinuities and not to dissipate unresolved scales, unlike the motivation for higher-order
schemes. For lower-order schemes, a higher value of r > 2 makes the sensor active in other regions
in the domain where there is no shock or contact discontinuity, and this would not be ideal for the
simulation of turbulent flows.

F. Extension to two-phase flows

In this section the proposed artificial-viscosity method is extended for two-phase flows. Re-
cently, a conservative version of the diffuse-interface model that can be discretized using a
central-differencing scheme was proposed to simulate compressible two-phase flows [41,42,73].
A five-equation model based on Allaire et al. [74] and Kapila et al. [75] was proposed in Jain et al.
[42] and used with a low-order central scheme, and a four-equation model was proposed in Jain
et al. [41] and used with a high-order central scheme.

Here we present an extension of the proposed artificial-diffusivity method for two-phase flows.
The system of conservation equations for volume fraction, mass of each phase, momentum, and
total energy can be written as

∂φ1

∂t
+ ∂u jφ1

∂x j
= (φ1 + ζ1)

∂u j

∂x j
+ ∂a1 j

∂x j
+ ∂

∂x j

(
D∗ ∂φl

∂x j

)
, (18)

∂ρlφl

∂t
+ ∂u jρlφl

∂x j
= ∂Rl j

∂x j
+ ∂

∂x j

(
D∗ ∂ρlφl

∂x j

)
, l = 1, 2, (19)

∂ρui

∂t
+ ∂ρuiu j

∂x j
+ ∂ p

∂xi
= ∂ui f j

∂x j
+ ∂τi j

∂x j
+ σκ

∂φ1

∂xi
+ ρgi + ∂

∂x j

(
D∗ui

∂ρ

∂x j

)
+ ∂

∂x j

(
β∗ ∂uk

∂xk
δi j

)
,

(20)

∂E

∂t
+ ∂ (E + p)u j

∂x j
= ∂τi jui

∂x j
+ ∂k f j

∂x j
+

2∑
l=1

∂ρl hlal j

∂x j
+ σκui

∂φ1

∂xi
+ ρuigi

+ ∂

∂x j

[
D∗ ∂ρ

∂x j

(
ukuk

2

)]
+ ∂

∂x j

(
D∗ ∂ρe

∂x j

)
+ ∂

∂x j

(
β∗ ∂uk

∂xk
δi jui

)
, (21)

where φl is the volume fraction of phase l that satisfies the condition
∑2

l=1 φl = 1; ρl is the density
of phase l; ρ is the total density, defined as ρ = ∑2

l=1 ρlφl ; �u is the velocity; p is the pressure; e is
the specific mixture internal energy, which can be related to the specific internal energy of phase l ,
el , as ρe = ∑2

l=1 ρl el ; k = uiui/2 is the specific kinetic energy; E = ρ(e + k) is the total energy of
the mixture per unit volume; and the function ζ1 is given by

ζ1 = ρ2c2
2 − ρ1c2

1
ρ1c2

1
φ1

+ ρ2c2
2

φ2

, (22)

for the Kapila’s five-equation model and is ζ1 = 0 in the Allaire’s five-equation model, where cl is
the speed of sound for phase l . In Eq. (21), hl = el + p/ρl represents the specific enthalpy of phase
l and can be expressed in terms of ρl and p using the stiffened-gas equation of state as

hl = (p + πl )γl

ρl (γl − 1)
. (23)
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In Eqs. (18)–(21), σ is the surface-tension coefficient, κ = −�∇ · �n1 is the curvature of the interface,
�nl is the normal vector of the interface for phase l , and �al is the volumetric interface-regularization
flux for phase l which is responsible for keeping the finite thickness of the material interface, and this
satisfies the condition �a(φ1) = −�a(φ2). A conservative phase-field model or accurate conservative
phase-field model can be used as the interface-regularization fluxes, as was proposed in Jain et al.
[42] and Jain [73], respectively. �Rl = ρl �al is the consistent regularization flux for the mass of phase
l , and �f = ∑2

l=1
�Rl = ∑2

l=1 ρl �al is the net consistent regularization flux for the mixture mass.
The ABV in Eq. (15) requires no modification for two-phase flows, but AMD requires modifica-

tion because of the jump in density at the material interface, which will activate the AMD. Since the
diffuse-interface model is already active to capture material interface, AMD has to be turned off at
the interface. This can be easily achieved by replacing the gradients of density in Eqs. (7) and (17)
with a volume-weighted gradients of phase density as

∂ρ

∂x j
→

∑
l

φl
∂ρl

∂x j
,

which will prevent AMD from activating at material interfaces.

III. DISCRETE KINETIC ENERGY- AND ENTROPY-CONSISTENT DISSIPATIVE
FLUX FORMULATION

We first show an analogy between the Lax-Friedrichs (LF) flux and the artificial-viscosity
methods, and then use this idea to develop a kinetic energy–and entropy-consistent flux formulation
for the proposed artificial-viscosity method. Consider a generic conservation equation of the form

∂c

∂t
+ ∂ f (c)

∂x
= 0, (24)

where c is a conserved quantity, and f (c) is the flux function. Using the explicit Euler (EE) time-
advancement scheme and the second-order central scheme, the discrete form of the equation can be
written as

cn+1
m = cn

m − �t

2�x

[
f
(
cn

m+1

) − f
(
cn

m−1

)]
,

where m is the grid index. Now, replacing cn
m with (cn

m+1 + cn
m)/2, and rewriting in conservation

(flux) form, we obtain

cn+1
m = cn

m − λ
(

f̂m+ 1
2
− f̂m− 1

2

)
,

where the numerical flux, f̂m+1/2, is the well-known LF flux [76], given by

f̂m+ 1
2

=
[

f
(
cn

m+1

) + f
(
cn

m−1

)
2

]
− 1

2λ

(
cn

m+1 − cn
m

)
, (25)

and λ = �t/�x has units of inverse velocity. Now consider the same conservation equation in
Eq. (24) augmented with a generic artificial-viscosity fluid property, ε∗, as

∂c

∂t
+ ∂ f (c)

∂x
= ∂

∂x

[
ε∗ ∂c

∂x

]
.

Using EE and second-order central schemes and writing in conservation form, we arrive at

cn+1
m = cn

m − λ
[

f̂m+ 1
2
− f̂m− 1

2

]
,
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where the numerical flux is

f̂m+ 1
2

=
[

f
(
cn

m+1

) + f
(
cn

m−1

)
2

]
−

ε∗
m+ 1

2

�x

(
cn

m+1 − cn
m

)
. (26)

Note that if ε∗ = 2�x/λ, then the LF flux and the artificial-viscosity method are identical (provided
that a second-order central scheme is used for the discretization of the artificial-viscosity terms).

The LF flux is known to be entropy stable, but it is also highly dissipative. Therefore, the idea
proposed in this work is to replace the nondissipative central flux in the LF flux with robust kinetic
energy- and entropy-preserving (KEEP) type flux in Jain and Moin [19] and to further localize the
dissipative part of the LF flux, only to those regions where they are needed, with the use of sensors
(this idea of splitting a scheme into a “central” part and a “dissipative” part was first discussed by
Yee et al. [77]). The proposed flux can then be represented as

f̂m+ 1
2

= f̂m+ 1
2

∣∣
KEEP − Âd

m+ 1
2
, (27)

where Âd
m+1/2 is the discrete dissipative flux for the artificial term, given by

Âd
m+ 1

2
=

ε∗
m+ 1

2

�x

(
cn+1

m+1 − cn
m

)
. (28)

Here ε∗
m+1/2 represents a localized artificial-fluid property. In this work the nondissipative central

flux is replaced with the second-order KEEP scheme of Jain and Moin [19]. However, in general,
this central flux can be replaced with any other robust low/nondissipative flux [54,78–80].

Chandrashekar [54] explored a similar idea by replacing the nondissipative central flux with
a kinetic energy-preserving (KEP) flux. However, the dissipative flux in their approach was not
localized and was present everywhere in the domain. Another difference is that they used a scalar
dissipation of momentum to capture all discontinuities. The scalar dissipation of momentum not
only acts on the dilatational motion at the shocks but also dissipates the vortical structures, which
makes the method even more dissipative and unsuitable for the simulation of turbulent flows. They
concluded that this approach was too dissipative for turbulent flows.

A. Discrete consistency conditions

The discrete consistency conditions between the mass, momentum, kinetic energy, internal
energy convective fluxes, and artificial fluxes (for capturing material interfaces) were proposed
by Jain and Moin [81]. Following a similar procedure, the consistency conditions can be further
extended to include dissipative fluxes, which represent the artificial fluid diffusivity, in this work. If
the full flux in the mass equation [Eq. (4)] is written as

Ĉ f
j

∣∣
(m± 1

2 ) = Ĉj |(m± 1
2 ) + Ĉ′

j |(m± 1
2 ), (29)

where Ĉj |(m±1/2) is the convective part and Ĉ′
j |(m±1/2) is the dissipative AMD contribution, then, the

momentum- and kinetic energy–consistency conditions are given by

M̂ f
i j

∣∣
(m± 1

2 ) = (
Ĉj |(m± 1

2 ) + Ĉ′
j |(m± 1

2 )

)
u

(m± 1
2 )

i + M̂ ′
i j |(m± 1

2 ) (30)

and

K̂ f
j

∣∣
(m± 1

2 ) = (
Ĉj |(m± 1

2 ) + Ĉ′
j |(m± 1

2 )

)ui|(m±1)ui|(m)

2
+ u

(m± 1
2 )

i M̂ ′
i j |(m± 1

2 ), (31)

where M̂ ′
i j |(m±1/2) represents the additional momentum dissipative flux (ABV contribution) and the

overbar ·(m±1/2) denotes an arithmetic average of a quantity at m and m ± 1.
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B. Discrete fluxes for the proposed method

Using the consistency conditions in Eqs. (29)–(31), and following the notation used in Eq. (28)
for the LF-type dissipative fluxes, the proposed artificial-viscosity method can be written in discrete
flux form as

Âρ
d
j

∣∣
(m± 1

2 ) = Ĉ′
j |(m± 1

2 ) = −
D∗

m± 1
2

�x j
(� jρ), (32)

ˆAρu
d
i j

∣∣
(m± 1

2 ) = Ĉ′
j |(m± 1

2 )u
(m± 1

2 )
i + M̂ ′

i j

∣∣
(m± 1

2 ) =
(

−
D∗

m± 1
2

�x j
(� jρ)

)
u

(m± 1
2 )

i − β∗
m± 1

2

∂̂uk

∂xk

∣∣∣∣
(m± 1

2 )

δi j,

(33)

K̂d
j

∣∣
(m± 1

2 ) = Ĉ′
j |(m± 1

2 )
ui|(m±1)ui|(m)

2
+ u

(m± 1
2 )

i M̂ ′
i j |(m± 1

2 )

=
(

−
D∗

m± 1
2

�x j
(� jρ)

)
ui|(m±1)ui|(m)

2
+

(
−β∗

m± 1
2

∂̂uk

∂xk
|(m± 1

2 )δi j

)
u

(m± 1
2 )

i , (34)

and

Î d
j

∣∣
(m± 1

2 ) = −
D∗

m± 1
2

�x j
� j (ρe), (35)

where Âρ
d
j |(m±1/2), ˆAρu

d
i j |(m±1/2), and ÂE

d
j |(m±1/2) = K̂d

j |(m±1/2) + Î d
j |(m±1/2) are the localized LF-

type total discrete dissipative fluxes for the artificial terms in the mass, momentum, and energy
equations [Eqs. (7)–(9)], respectively.

IV. RESULTS

In this section, the proposed artificial-viscosity method is used to simulate a variety of test cases,
involving (1) a classical one-dimensional shock-tube case, to assess the accuracy of this method
in capturing the discontinuities and to illustrate the effect of the sensor in Eq. (17), (2) an LES of
compressible turbulent flow, to assess the low-dissipative nature with and without the use of the
sensor, and robustness in simulating compressible turbulent flows, (3) a shock-vortex interaction
simulation, to assess the capability and accuracy of the method for simulating a more resolved
DNS-type calculations, and (4) a drop advection simulation, to illustrate the advantages of the use
of AMD over ATD for two-phase flows.

The proposed method is implemented in the low-dissipative CTR-DIs3D solver [19,42], which
uses a second-order central scheme and a fourth-order Runge-Kutta scheme for spatial and temporal
discretizations, respectively. The total cost of the sensors and the artificial fluxes is about 10%, on
average, of the overall cost of the simulation. The cost of all the sensors and artificial fluxes is
computed by comparing the cost of the proposed method with the baseline implementation of the
compressible Navier-Stokes system in Eqs. (4)–(6) (by setting Aρ = 0, Aρu = 0, and AE = 0). One
could further reduce the cost of the proposed method by setting a lower threshold for the sensors and
by turning off the artificial fluxes completely when the values of the sensors are below the threshold.

A. Modified Sod test case

The modified Sod-shock tube is a classic one-dimensional test case, used to assess the accuracy of
shock and contact discontinuity-capturing methods, that was originally proposed by Sod [82]. The
modified version of the original Sod-shock tube case is used because an entropy-consistent scheme
is needed to avoid the entropy-violating jump that would otherwise form in the expansion region
[54]. The initial setup consists of a Riemann problem with the left state (ρ, u, p) = (1.0, 0.75, 1.0)
and the right state (ρ, u, p) = (0.125, 0.0, 0.1), and the discontinuity located at x = 0.3. Note that
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(a) (b) (c)

FIG. 1. Modified version of the Sod shock-tube test case, simulated with the sensor in Eq. (17) (proposed
method) and without the sensor (without fD), showing (a) density, ρ, (b) artificial mass diffusivity, D∗, and
(c) artificial bulk viscosity, β∗.

a sharp discontinuity was not used at the initial time, instead, the initial discontinuity was smoothed
to one to two grid cells thick. Starting with a sharp initial discontinuity can introduce locally
unnecessarily large artificial fluid properties, which can impose a severe Courant-Friedrich-Lewy
(CFL) restriction, which is a well-known issue for LAD methods [31]. On the other hand, starting
with a smooth discontinuity will not add large artificial fluid properties at time t = 0, thereby
minimizing the issue of severe CFL restriction. The number of grid points is chosen to be N = 400,
a CFL of 0.25 is chosen in this test case, and the results are presented at the final time of t = 0.2 in
Fig. 1 along with the analytical (exact) solution.

The simulation results in Fig. 1 show that the shock and contact discontinuities are captured
accurately with the proposed LAD method and that the method does not suffer from the formation
of entropy-violating jump in the expansion region. The density, ρ, and artificial mass diffusivity,
D∗, are plotted in Figs. 1(a) and 1(b), respectively, at time t = 0.2, with and without the proposed
sensor, fD. The artificial bulk viscosity, β∗, is also plotted in Fig. 1(c) at time t = 0.2, with and
without the fβ sensor. Figure 1(b) shows that the AMD (D∗) is active in the regions of shock, contact
discontinuity, and expansion fan when the proposed fD sensor is not being used. However, the use of
the fD sensor localizes D∗ mostly to regions around the contact discontinuity, without introducing
any more oscillations in the solution in the regions of shock [see Fig. 1(a)]. Nonzero values of
D∗ around shocks would unnecessarily make the method more dissipative because the ABV (β∗) is
already active in this region to resolve the shock. Therefore, the use of the switching sensor fD makes
the method less dissipative without affecting the accuracy of the solution. Figure 1(c) shows that the
ABV (β∗) is active only in the regions around the shock. The ABV is not affected with or without
the use of fβ sensor because the enstrophy is zero in a 1D setting, and therefore fβ = 1 in this case.

1. Sensitivity to model coefficients

As mentioned in Sec. II E, the coefficient values are chosen to be CD = 0.5 and Cβ = 100
throughout this work with the second-order central scheme. It was claimed that the simulations
are robust to these values and that the accuracy of the solution will not be significantly affected
as long as the coefficient values are not changed by an order of magnitude. To illustrate this, the
modified Sod-shock tube simulation is repeated for different values of the model coefficients in
Fig. 2, keeping everything else the same as described above. Figure 2 shows the solution density
field for different values of model coefficients, Cβ and CD in ABV and AMD, respectively. Small
oscillations can be seen around the shock for Cβ = 10 (10 times smaller than the proposed value),
and the thickness of the shock is slightly increased for Cβ = 1000 (10 times higher than the proposed
value). The contact discontinuity appears to be overly smeared for CD = 100 (200 times higher than
the proposed value), but for smaller values of CD, the contact discontinuity is intact and is not
affected. Overall, it can be seen that the solution is quite robust to the choices of both Cβ and CD,
and the accuracy of the solution is affected only when these model coefficients are varied by more
than an order of magnitude away from the proposed values.
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FIG. 2. Modified version of the Sod shock-tube test case, showing density, for (a) Cβ = 10, 100 (proposed
method), 200, and 1000, and (b) CD = 0.01, 0.5 (proposed method), 1, and 100.

B. Decaying homogeneous isotropic turbulence with shocklets

In this section the nondissipative nature, accuracy, and robustness of the proposed artificial-
viscosity method are assessed for the LES of compressible turbulent flows with shocklets. Here
a decaying homogeneous isotropic turbulence (HIT) is simulated at a high enough Mach number
that shocklets are generated in the flow [83]. In the incompressible limit of this flow, Agrawal et al.
[72] recently showed that the LES with dynamic Smagorinsky model accurately predicts the decay
rate of the kinetic energy. For this reason, the dynamic Smagorinsky model is used in this work as
well. The initial Taylor-scale Reynolds number of the flow is Reλ,o = 100, and the initial turbulent
Mach number is Mt,o = 0.6. The initial conditions for this simulation are generated following the
procedure described in Johnsen et al. [16]. The Prandtl number is chosen to be Pr = 0.7, and the
material properties of the fluid are chosen to be γ = 1.4 (specific heat ratio) and R = 1 (specific gas
constant) in the ideal gas law. The domain is a triply periodic cube with dimensions [0, 2π ], and
a CFL of 0.5 is chosen for all the simulations in this section. Here a coarse resolution of 643 grid
points is used, and hence, this is a good test to assess the amount of numerical dissipation added by
the shock–and contact discontinuity-capturing method.

Figure 3 shows the results from the simulation [Fig. 3(a)] with fD and fβ (the proposed method),
[Fig. 3(b)] with fD and without fβ , [Fig. 3(c)] without fD and with fβ (similar to the formulation
proposed in Kawai et al. [31], but note that here a modified form of the Ducros sensor is used instead
of the original Ducros sensor that was used in Kawai et al. [31]), and [Fig. 3(d)] without fD and
without fβ (similar to the formulation proposed in Mani et al. [30]). To compare the results, a direct
numerical simulation (DNS) of the same test case is performed on a 2563 mesh; the results are also
filtered, using a Gaussian filter, onto a 643 mesh and are shown in Fig. 3. In Fig. 3 no subgrid model
(ASV or eddy-viscosity model) is used for unresolved eddies in all the simulations, and hence, the
vorticity variance is overpredicted. The effect of the use of a subgrid model for unresolved eddies is
explored in Sec. IV B 1. For the remainder of this section, the predictions from LES are compared
to the filtered DNS values since LES formalism is expected to be the same as a filtered DNS in the
presence of a “perfect” subgrid-scale model and discontinuity-capturing methods.

Figure 3 shows that the proposed method that uses both fD and fβ sensors is the least dissipative
of all the formulations. If the fD sensor in Eq. (17) is not used, the dilatational motions, the
density fluctuations, and vortical motions are all significantly damped, with a greater effect on
the dilatational motions and the density fluctuations. Similarly, if the modified Ducros sensor in
Eq. (16) is not used, all the quantities are damped. Finally, if both fD and fβ sensors are not used,
the formulation is highly dissipative, making the simulations inaccurate.

Note that this observation is for the current choice of values for the model coefficients Cβ and
CD (Sec. II E) used in this work, which were chosen such that the stronger shocks and contact
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FIG. 3. Simulation of decaying HIT with shocklets, with both the fD and fβ sensors (proposed method),
without the fD sensor (similar to the Kawai et al. [31] formulation), without fβ sensor, and without both the fD

and fβ sensors (similar to the Mani et al. [30] formulation), and its comparison with the DNS and filtered DNS.
The plotted nondimensional quantities: (a) mean square velocity, (b) density variance, (c) dilatational variance,
and (d) vorticity variance.

discontinuities can be accurately captured with the current choice of the numerical scheme (see
Sec. IV A 1). If one chooses the values of Cβ and CD significantly lower than the proposed values, it
is possible to perform a low dissipative simulation of decaying HIT even without the use of sensors.
But these values of coefficients then will work only for turbulent flows with weak compressibility
and will not be suitable for the simulation of stronger shocks and contact discontinuities. Therefore,
it is preferable to use the sensors to appropriately localize the dissipation rather than tuning the
model coefficients for each problem.

The two-dimensional slices from the simulation, with and without the fD sensor, are plotted in
Fig. 4. With the fD sensor active, the AMD can be seen to be significantly reduced by almost more
than two orders of magnitude without spuriously affecting the scales of density fluctuations and
dilatational motions. In fact, without the fD sensor, the dilatational field and the density field are
seen to be damped slightly (see the range in the color bar). The ABV is seen to be active in the
regions of high dilatation, as expected, and without the fD sensor, the ABV is increased by a small
amount to compensate for the reduced AMD. However, the overall structure of the regions where
ABV is active is still the same, with and without the fD sensor.

In summary, the current simulation results show that the use of fD and fβ sensors is necessary
to recover the correct behavior of kinetic energy, and variances of dilatation, density, and vorticity.
The simulations are the least accurate without the use of fD and fβ sensors. Using these fD and
fβ sensors individually improves the results by making the method less dissipative, and using both
sensors gives the best results. Therefore, the proposed method along with the sensors results in a
robust, accurate, and low-dissipative method for capturing shocks and contact discontinuities for
LES of compressible turbulent flows.
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FIG. 4. Two-dimensional slices from the simulations of decaying HIT with shocklets, showing (a)–(d)
dilatation, ABV, density, and AMD with the fD sensor, and (e)–(h) dilatation, ABV, density, and AMD without
the fD sensor Note that the resolution of these images is low due to the chosen grid resolution in LES
calculations. Raw data have directly been plotted in these figures without any interpolation.

1. Effect of an eddy-viscosity model

Since this is an LES of a turbulent flow, a subgrid model (either an ASV or an eddy-viscosity
model) is required for unresolved eddies. So far, no model has been used in Fig. 3 to isolate only the
effect of ABV and AMD and to illustrate the effect of the use of the sensors fβ and fD. Here the LES
of decaying HIT is repeated with the use of a dynamic Smagorinsky model described in Sec. II B to
see the effect of this model. Figure 5 shows the simulation results for the proposed method, which
uses both fD and fβ sensors, with and without the dynamic Smagorinsky model (DSM).

The use of the DSM has an important effect on kinetic energy and all the variances in Fig. 5.
Without the DSM, all the quantities are overpredicted, but with the use of DSM, the simulation is
most accurate with all the quantities following very closely with the predicted filtered DNS data. Par-
ticularly, the accuracy of the evolution of kinetic energy and vorticity variance is greatly improved
with the use of DSM. It is important to also appreciate here that this is possible only because of the
low-dissipative nature of the proposed LAD method, with the sensors that appropriately localize the
dissipation to the regions where it’s needed. Without the use of fD and fβ sensors, the formulation
was very dissipative, as seen in Fig. 3, and with the addition of DSM, it would become only more
dissipative, significantly affecting the accuracy of the simulation.

In addition to the integrated quantities, we plot the spectrum of kinetic energy and density
variance in Fig. 6, with and without DSM, which gives a more detailed information on how the
models act at different scales. It shows that the use of DSM along with the proposed LAD approach
improves the result by bringing the spectra closer to the DNS spectra, except with deviations at
small scales which are to be expected in an LES calculation.

2. Sensitivity to model coefficients

The sensitivity to the model coefficients CD and Cβ was already tested in Sec. IV A 1. Here the
sensitivity to the model coefficient a in the fD and fβ sensors in Eqs. (16) and (17) is tested, and a
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FIG. 5. Simulation of decaying HIT with shocklets, with both the fD and fβ sensors, and without DSM
(proposed method) and with DSM (proposed method + DSM), showing the nondimensional quantities:
(a) mean square velocity, (b) density variance, (c) dilatational variance, and (d) vorticity variance.

is added in the sensors to make the sensor stronger and to further localize the regions where ABV
and AMD/ATD are active. To illustrate this, the decaying HIT simulation is repeated for different
values of a in Fig. 7.

Figure 7 shows the results from the decaying HIT simulation, with fD, fβ , and DSM active, for
a = 10, 100 (proposed method + DSM), 200, and 1000. Varying a affects only the dilatational
motions and the density fluctuations, and the effect is relatively small. The biggest improvement is
seen when the value of a is increased from 10 to 100 and the solution becomes less dissipative and

FIG. 6. Simulation of decaying HIT with shocklets, with both the fD and fβ sensors, and without DSM
(proposed method) and with DSM (proposed method + DSM), showing the spectrum of (a) kinetic energy and
(b) density variance.
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FIG. 7. Simulation of decaying HIT with shocklets with fD, fβ , and DSM active, for a = 10, 100 (proposed
method + DSM), 200, and 1000, showing the nondimensional quantities: (a) mean square velocity, (b) density
variance, (c) dilatational variance, and (d) vorticity variance.

is closer to the predicted filtered DNS data; and beyond this, it saturates, and a further increase in
the value of a has only a minimal effect on the solution. Hence, a value of a = 100 is chosen in this
work.

C. Shock-vortex interaction

In this section, a shock-vortex interaction is simulated using the proposed artificial viscosity
method. Section IV B demonstrated that the proposed method is low dissipative and is suitable
for LES of compressible turbulent flows. This section, in contrast, will assess the accuracy and
suitability of the present method for more resolved simulations and DNS of compressible turbulent
flows.

This inviscid test case is taken from the work of Inoue and Hattori [84], Zhang et al. [85], and
Chatterjee and Vijayaraj [86] and has also been used to evaluate the shock-capturing capability
by Subramaniam et al. [87] and Haga and Kawai [36]. The initial setup of this case consists of a
M = 1.2 stationary shock located at x = 0 and an isentropic vortex of strength Mv = 0.25, initially
located upstream of the shock at x = 2. The domain extent is [−30, 10] × [−20, 20], and a CFL of
0.25 is chosen. The initial vortex field is given by

uθ (r) = Mvr exp

(
1 − r2

2

)
, (36)

ur (r) = 0, (37)

p(r) = 1

γ

[
1 −

(
γ − 1

2

)
M2

v exp (1 − r2)

] γ

γ−1

, (38)
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FIG. 8. Schematic of the problem setup for the shock-vortex interaction simulation, showing the moving
vortex and the deformed stationary shock after the vortex has passed through the shock.

and

ρ(r) =
[

1 −
(

γ − 1

2

)
M2

v exp (1 − r2)

] 1
γ−1

, (39)

where uθ is the angular velocity, ur is the radial velocity, r is the radial distance from the center
of the vortex, and γ is the ratio of specific heats. The schematic of the setup after the vortex has
passed through the shock is shown in Fig. 8. The sound pressure field at the time of t = 6 is shown
in Fig. 9 along with the ABV, β∗. In this simulation, AMD is also active along with the fD sensor.
At time t = 6, the vortex has passed through the shock and deforms the shock surface. The results
show that the fβ sensor has successfully localized ABV only to those regions around the shock
while maintaining the accuracy in capturing the shock without the need for separately tuning the
coefficients or the need to turn off AMD in this case.

FIG. 9. Simulation of a shock-vortex interaction, showing (a) the sound pressure field, �p = (p − p∞)/p∞
and (b) the artificial bulk viscosity, β∗, at t = 6.
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FIG. 10. Simulation of a shock-vortex interaction, showing the sound pressure field, �p = (p − p∞)/p∞
along the radial direction r from the center of the vortex for three grid resolutions, along with the reference
solution from Inoue and Hattori [84], and at (a) t = 6 (b) t = 8.

The sound pressure is also plotted in Fig. 10 along the radial direction r from the vortex center
for a fixed value of θ = −45◦ at two different times (t = 6, 8) and for three grid resolutions against
the reference solution from Inoue and Hattori [84]. The plots show that the simulations are grid
converged and it matches well with the reference solution. An additional test case of a 2D Riemann
problem that develops a shock, an expansion fan, and two contact discontinuities is presented in
Appendix A for further verification of the proposed method.

D. Droplet advection

In this section, a droplet advection is simulated to assess the suitability of the proposed artificial
viscosity method for two-phase flows. The LAD formulation was extended to two-phase flows in
Sec. II F for a five-equation model [42] or a four-equation model [41] that can be used with a
central-difference scheme.

The five-equation model doesn’t assume thermal equilibrium and admits two temperatures for
two phases. Therefore, ATD cannot be directly used with a five-equation model, which would lead
to the violation of the interface-equilibrium condition (IEC). However, AMD is constructed in such
a way that it satisfies IEC with a five-equation model (see Appendix B).

Here, the use of AMD and ATD with a five-equation model for a simple one-dimensional
advection of the drop is assessed. The domain length is 5 units and has periodic boundary conditions
on both sides. A drop of radius 0.5 units is initially placed at the center of the domain at x = 2.5.
The grid size is chosen to be N = 100 and a CFL of 0.25 is chosen. The initial velocity is prescribed
to be u = 2.5 and the initial pressure is p = 1. Since both the velocity and pressure is uniform at the
initial time, the pressure and velocity has to remain uniform for all times (definition of IEC).

Here the material interface is the only discontinuity in this problem, and since the phase-field
model [73] is already acting to capture the material interface, the artificial viscosities (ABV and
AMD) should not have any effect on this problem. Figure 11 shows the pressure and volume fraction
at the final time of t = 2 with the use of ATD, AMD, and without ATD or AMD. When no ATD
or AMD is used, the pressure remains uniform as expected. Since ATD violates IEC, spurious
oscillations in the pressure field can be seen at the interface location when ATD is used. But when
AMD is used, the pressure remains uniform because AMD satisfies IEC, similar to when no ATD
or AMD is used. Hence, it is recommended to use AMD for capturing contact discontinuities in
two-phase flows.
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(a) (b) (c)

FIG. 11. Simulation of a one-dimensional drop advection, showing the volume fraction and pressure fields
at time t = 2, with (a) ATD, (b) no ATD or AMD, and (c) AMD.

V. SUMMARY AND CONCLUSIONS

In this work, we propose an entropy-consistent and stable localized artificial-viscosity/diffusivity
(LAD) method for capturing shocks and contact discontinuities in compressible flows. The artificial-
viscosity methods have many advantages over other discontinuity capturing methods due to its low
cost, ease of implementation, and the ability to be used with central-difference schemes, which
is beneficial for the simulation of turbulent flows. But the main challenge lies in (1) the need for
appropriate localization of the dissipation to regions of discontinuity where it is required, (2) the
need for sophisticated filtering operation for the artificial fluid properties to stabilize the method,
which will make it difficult to extend the formulation for unstructured grids, and (3) the need for
tuning the coefficients and to turn on and off the artificial fluid properties depending on the problem.
The proposed method in this work overcomes most of these challenges.

Moreover, all existing LAD methods are used with a high-order central scheme, and it is not clear
how these methods perform with low-order schemes. In this work, a second-order central scheme
is chosen because of its low cost; low aliasing error; easy implementation, boundary treatment,
extension to unstructured grids; and improved stability. Guidelines on how to choose the parameters
in the method are provided.

Furthermore, in artificial mass/thermal diffusivity (AMD/ATD), either the density or internal
energy was used previously as the indicator function to detect contact discontinuities. However,
the main issue with this sensor is that it not only activates in the regions of contact discontinuity
but also activates in the regions of shock and vertical motions. This would be a problem because
the artificial bulk viscosity (ABV) is already active in the regions of shock and a subgrid model is
already active for unresolved eddies, therefore, adding artificial mass/thermal diffusivity here will
be unnecessarily dissipative. To prevent this from happening, we propose a sensor, “like” a Ducros
sensor, that can effectively distinguish contact discontinuities from shocks and vortical motions
and turns on the AMD/ATD only in the regions of contact discontinuities. In ABV we also use a
stronger modified Ducros sensor instead of the original sensor, which further localizes ABV to only
the regions of shock.

The use of these sensors in AMD/ATD and ABV will result in a LAD method that does not
require tuning of the model coefficients, which is otherwise required, depending on the problem
being solved. We show that the proposed method accurately captures shocks and contact dis-
continuities, without the need for problem-dependent tuning, for a range of problems, such as a
one-dimensional Sod test case, decaying homogeneous isotropic turbulence with shocklets, and
shock-vortex interaction.

Using an analogy between the Lax-Friedrichs (LF) flux and the artificial-viscosity methods, a
discrete LF-type flux formulation is presented for the proposed LAD method that satisfies discrete
consistency conditions for kinetic energy and entropy. This LAD formulation is then coupled with
the system of equations for compressible flows that are discretized using a robust central scheme.
This results in a stable, low-dissipative, artificial-viscosity formulation which does not require
filtering the solution and the artificial fluid properties that were previously required to obtain stable
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FIG. 12. Initial setup for the Riemann problem, showing four quadrants with constant states.

solutions. Therefore, the proposed method is suitable for LES and DNS of compressible turbulent
flows with discontinuities in complex geometries.

An extension of the proposed method to capture shocks and contact discontinuities in com-
pressible two-phase flows is also presented. It is shown that the proposed method satisfies the
interface equilibrium condition, a crucial thermodynamic consistency condition for robust numerical
simulations of compressible two-phase flows.
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APPENDIX A: A 2D RIEMANN PROBLEM

In this section, a 2D Riemann problem is chosen from Lax and Liu [88] (configuration 16) where
the initial condition contains constant states within each quadrant as shown in Fig. 12. This test case
is designed in such a way that a shock, an expansion fan, and two contact discontinuities appear at
the four interfaces. Hence, this case is used here as an additional test of verification of the proposed
method in its ability to capture these waves accurately.

The setup consists of a domain of dimensions [0, 1] × [0, 1], a grid size of 400 × 400, and the
CFL is chosen to be 0.25. The density field at the final time of t = 0.2 is shown in Fig. 13(a) along
with the ABV in Fig. 13(b). It shows that the ABV is localized only to the regions of shock, and
the proposed method can accurately capture shocks, expansion fans, and contact discontinuities,
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FIG. 13. Simulation of a 2D Riemann problem, showing (a) density, ρ, and (b) artificial bulk viscosity, β∗,
at t = 0.2.

albeit being low dissipative and suitable for turbulent flows (Sec. IV B). It also shows that the
proposed method can capture these waves accurately in complex flows, without the need for tuning
the coefficients.

APPENDIX B: INTERFACE EQUILIBRIUM CONDITION

According to the definition of IEC, if velocity and pressure are initially uniform, they have to
remain uniform at all times. AMD satisfies IEC, but ATD does not satisfy IEC. Hence, it might be
preferable to use AMD for two-phase flows because it satisfies IEC, irrespective of the choice of the
model.

To show this, let us consider only the LAD terms in Eqs. (18)–(21) and ignore other terms because
they satisfy IEC [42], and make a one-dimensional assumption.

1. LAD with AMD and ABV

The simplified system of equations, with only AMD and ABV terms, can be written as

∂φ

∂t
= ∂

∂x

(
D∗ ∂φ

∂x

)
, (B1)

∂ρ

∂t
= ∂

∂x

(
D∗ ∂ρ

∂x

)
, (B2)

∂ρu

∂t
= ∂

∂x

(
D∗u

∂ρ

∂x

)
+ ∂

∂x

(
β∗ ∂u

∂x

)
, (B3)

∂E

∂t
= ∂

∂x

(
D∗k

∂ρ

∂x

)
+ ∂

∂x

(
D∗ ∂ρe

∂x

)
+ ∂

∂x

(
β∗u

∂u

∂x

)
. (B4)

Assuming u = const initially in Eq. (B3), it can be rewritten as

ρ
∂u

∂t
+ u

[
∂ρ

∂t
= ∂

∂x

(
D∗ ∂ρ

∂x

)]
, (B5)

where the relation in within [·] is 0 because of Eq. (B2). Hence, ∂u/∂t = 0 and u remains constant.
Now, taking a dot product of velocity with the momentum equation in Eq. (B3), the kinetic energy
can be derived as

∂ρk

∂t
= ∂

∂x

(
D∗k

∂ρ

∂x

)
+ u

∂

∂x

(
β∗ ∂u

∂x

)
. (B6)
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The internal energy equation can be obtained by subtracting the kinetic energy equation in Eq. (B6)
from the total energy equation in Eq. (B4) as

∂ρe

∂t
= ∂

∂x

(
D∗ ∂ρe

∂x

)
+ β∗

(
∂u

∂x

)2

. (B7)

In a five-equation model, thermal equilibrium is not assumed, and each phase has its temperature
Tl , but an isobaric closure law is assumed to close the system of equations. Now, expressing ρe
using the mixture rule, assuming ideal gas law for each phase, invoking isobaric law, internal can
be written as

ρe =
∑

l

ρl elφl =
∑

l

φl pl

γl − 1
= p

∑
l

φl

γl − 1
= pα, (B8)

where α = ∑
l φl/(γl − 1). Using Eq. (B8) and rewriting Eq. (B7) in terms of p, we get

∂ pα

∂t
= ∂

∂x

(
D∗ ∂ pα

∂x

)
+ β∗

(
∂u

∂x

)2

, (B9)

Now, assuming u = p = const at the initial time, we can rewrite this as

α
∂ p

∂t
+ p

[
∂α

∂t
= ∂

∂x

(
D∗ ∂α

∂x

)]
, (B10)

where the relation in within [·] is 0 because it satisfies Eq. (B1). Hence, ∂ p/∂t = 0 and p remain
constant, and therefore IEC is satisfied with AMD.

2. LAD with ATD and ABV

Similarly, the simplified system of equations, with only ATD and ABV terms, can be written as

∂φ

∂t
= 0, (B11)

∂ρ

∂t
= 0, (B12)

∂ρu

∂t
= ∂

∂x

(
β∗ ∂u

∂x

)
, (B13)

∂E

∂t
= ∂

∂x

(
D∗ ∂ρe

∂x

)
+ ∂

∂x

(
β∗u

∂u

∂x

)
, (B14)

∂ρk

∂t
= u

∂

∂x

(
β∗ ∂u

∂x

)
, (B15)

∂ρe

∂t
= ∂

∂x

(
D∗ ∂ρe

∂x

)
+ β∗

(
∂u

∂x

)2

. (B16)

Assuming u = const initially, from Eqs. (B12) and (B13), it is easy to see that ∂u/∂t = 0, and
therefore, u remains constant. Now, rewriting Eq. (B16) in terms of p and assuming u = p = const
at initial time, we can rewrite it as

α
∂ p

∂t
+ p

[
∂α

∂t
= ∂

∂x

(
D∗ ∂α

∂x

)]
. (B17)

However, the relation in within [·] is not 0 here, unlike in the case of AMD, because it doesn’t satisfy
Eq. (B11). Hence, ∂ p/∂t �= 0, and therefore, IEC is not satisfied with ATD.
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