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In this paper, we study the artificially thickened boundary layer flows downstream of the
tripping configuration that consists of a set of trip wires of varying diameters. Single-point
hot-wire measurements are executed at a fixed streamwise location in the adaptation region,
where the boundary layer is in conditions ranging from understimulation to overstimula-
tion. Comparisons of the mean flow, Reynolds stress, energy spectra, and higher-order
turbulence statistics demonstrate that the tripping effects are significant in the outer region,
by introducing the enhanced energetic large scales with increasing the trip-wire diameter.
The emergence of large scales manifests the scale separation in the overstimulated condi-
tions, implying that the boundary layer has the potential to simulate high-Reynolds-number
flows in the current tripping configurations. Then we attempt to identify the effect of
the emergent large scales by examining the scale interactions. Under the overstimulated
conditions, the generated large-scale structures penetrate down to the wall and superimpose
energy in the near-wall region. The cross-term of the scale-decomposed skewness factor
reveals that the amplitude modulation (AM) of the large scales on small scales is enhanced
in the near-wall region. On the other hand, the frequency modulation (FM) is discussed by
the zero-crossings-based evidence. Both the AM and FM effects become more significant
with increasing the trip-wire diameter and the free-stream velocity. Far away from the wall,
a reversal mechanism occurs and becomes more noticeable due to the tripping influence
on the external intermittency. Moreover, it is found that the intermittent geometry of the
turbulent/nonturbulent interface exhibits a fractallike self-similar convolution behavior in
the current artificially thickened wall turbulence.

DOI: 10.1103/PhysRevFluids.9.024606

I. INTRODUCTION

In some respects, the turbulent boundary layer (TBL) flow is characterized by a competition
between inertial and viscous forces, quantified by the Reynolds number. The friction Reynolds
number is defined as Reτ = uτ δ/ν, where uτ is the friction velocity, δ is the boundary layer
thickness, and ν is the kinematic viscosity. Here, Reτ can be interpreted as the ratio of two motion
scales: the largest eddies at the characteristic length scale of boundary layer thickness δ and the
smallest eddies characterized at the viscous length scale ν/uτ . As Reτ increases, it is argued that
turbulent motions with different scales perform in their full form as they should. Over the past
decades, considerable progress has been made in understanding the Reynolds number dependence of
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TBL flows from diverse perspectives [1,2], including turbulence statistics [3,4], organized structures
[5], and scale interactions [4,6–9].

Considering the engineering applications, there is an existing difference in TBL flows between
the academic and engineering communities. For turbulent flows in wind turbines, pipelines, ships,
and aviation, the typical values of the Reynolds number are in the range of Reτ ≈ 4000–6000 to
10 000–100 000, which is higher than the flows that can be commonly achieved through laboratory
experiments or direct numerical simulations (DNSs). High-Reτ flows have attracted more and more
attention worldwide. However, the construction of high-Reτ facilities poses both infrastructural and
financial challenges. Therefore, it is desirable to explore more economical and feasible approaches
to generate high-Reτ TBL flows.

The characteristic velocity and length, uτ and δ, are two common parameters to be considered
to increase Reτ of TBL flows. Generally, increasing the free-stream velocity results in a growth
of uτ but leads to a decrease of viscous length scale ν/uτ , which will increase the challenge
to the spatial/temporal resolution of experiments and simulations. As a characteristic length, the
boundary layer thickness δ slowly increases with the development of TBL flow, which means that
it is necessary to have an exceptionally long test section to achieve an expected δ [10]. Hence, for
a wind tunnel with the given test section length, it is more desirable to artificially thicken δ via the
tripping configuration at the leading edge, for the achievement of a higher Reτ TBL flow.

In their pioneering work, Klebanoff and Diehl [11] utilized a set of different trips to artificially
thicken the boundary layer, which indicates that the initial condition at the leading edge has a
significant impact on the development of boundary layer flows. Subsequent investigations have
corroborated that the minor modification of the trip parameters can engender noncanonical TBL
up to surprisingly high Reτ (high δ) in the adaptive region [12,13]. These findings suggest that
the introduction of perturbations via tripping devices at the leading edge is an accepted approach
for attaining higher-Reτ TBL flows. Considerable efforts have been dedicated to understanding the
effects of the exact tripping devices with different sizes and shapes on the evolution of boundary
layers. Erm and Joubert [14] revealed the influence of various tripping conditions on TBLs, such
as cylinder wire, distributed grit, and cylindrical pins. They concluded that a certain free-stream
velocity requires a unique tripping device to form a desirable TBL flow. By an elaborately ap-
propriate trip design, Rodríguez-López et al. [15] employed two families of tripping devices (i.e.,
high-aspect-ratio uniform distributed cylinders and low-aspect-ratio sawtooth fence) to artificially
generate higher-Reτ TBLs. Correspondingly, it was argued that the boundary layer is generated by
the wall- and wake-driven mechanisms. For the wall-driven mechanism, the inner structures drive
the mixing of the tripping wake with the wall-bounded flow. On the other hand, the wake-driven
mechanism is related to a long adaptation region, in which the inner structures are reorganized under
the wake influence. The two kinds of driven mechanisms were further discussed by considering
the different geometric configurations [16,17]. Moreover, Marusic et al. [10] measured the spatial
development of high-Reτ TBL flows and observed the scaling behaviors from different tripping
conditions, which include standard sandpaper and threaded rods of different diameters. They
reported that a significant difference can be noted in the outer region due to the introduction of
large-scale disturbances by the trips, and the memory of this overtripped effect exceeds 10 m along
the streamwise direction. This finding was further supported by Sanmiguel Vila et al. [18] based
on the high-fidelity DNS and experimental data. They explored different tripping configurations
ranging from undertripped to overtripped conditions and verified that the overtripped case leads to
more prominent wake flows.

To sum up, it is evident that, within a finite-length test section, the geometry of the tripping
devices plays a dominant role in determining the turbulence behavior of artificially thickened
boundary layer flows. Nevertheless, the specific structures dominating the adaptive region and their
impact on the scale interaction and arrangement are less investigated. Furthermore, the influence of
tripping configuration on the boundary layer flows still lacks comprehensive understanding, owing
to the diverse array of tripping conditions. In this paper, we utilize transverse cylindrical rods as
the trip wires, each with progressively increasing diameters, to systematically induce artificially
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FIG. 1. Sketch of the hot-wire experimental setup and trip wires of varying diameters.

thickened boundary layer flows in a finite-length wind tunnel test section. In this paper, we aim to
examine the new-generated structures and their impact on statistical deviation, scale interactions,
and intermittency properties within the artificially thickened TBLs under the trip-wire effects. The
experimental methods are introduced in Sec. II. The basic statistics under the tripping effect are
presented in Sec. III, which includes mean flow, second-order statistics including spectra, and
high-order statistics. The zero-crossings-based frequency modulation (FM) will be exhibited in
Sec. IV, and the self-similar intermittency in the outer region under the tripping impacts will be
examined in Sec. V. Finally, the conclusions are drawn in Sec. VI.

II. EXPERIMENTAL SETUP AND METHODS

Experiments were conducted in a closed-circuit wind tunnel at Tianjin University, as described in
previous studies [19–21]. The test section of the tunnel was 2.0 m long, 0.6 m tall, and 0.8 m wide.
A smooth boundary-layer plate was vertically fastened at the test section. The flat plate had a size
of 1.75 × 0.6 × 0.015 m (length × width × thickness) within a 4:1 elliptical leading edge and was
vertically fastened at the test section. A 0.25-m-long adjustable trailing-edge flap was included to
control the circulation around the boundary layer plate such that the leading-edge stagnation point
was located on the measurement side of the leading edge. Static wall pressure was monitored at
four pressure ports spaced along the streamwise direction (0.7, 1.0, 1.25, and 1.5 m downstream
of the leading edge) using an inclined-tube micromanometer. The coefficient of pressure Cp along
the working section was constant to within ±0.82%, consistent with conditions observed in the
previous investigations [10,21]. In the present experiments, three different free-stream velocities
were employed U∞ ≈ 5.5, 9.0, and 13.6 m/s.

The trip wire of different diameters Dc = 1, 2, 3, 4, 6, 8, 10, 12, 14, 17, and 20 mm was
employed as the tripping device, which was mounted at the position 80 mm downstream of the
leading edge of the plate. These cylindrical rods were fabricated from ceramic zirconia materials
with high hardness and toughness. Each cylindrical rod was affixed onto a metal insert using the
double-sided tape (tesa 4972), allowing the insert to be bolted into a recess in the flat plate, ensuring
its surface remained flush with the plate wall. To enhance the stability of the fixed cylindrical rod,
both ends of the trip were secured with glass cement, which is unlikely to introduce additional
perturbations into boundary layer flows. Additionally, the case with no tripping device (Dc = 0) was
also executed. Notably, these trip wires with increasing diameter (Dc = 0–20 mm) were assumed
to progressively stimulate the boundary layer from understimulation to overstimulation, which
provides a comprehensive insight into the influence of the trip wires on the boundary layer flows.

Hot-wire measurements were carried out in the boundary layer flows. Boundary-layer traverses
were conducted at the streamwise location downstream of the tripping device at x = 1.32 m.
The sketch of the hot-wire experimental setup is plotted in Fig. 1. A miniature single-sensor
boundary layer probe (TSI-1621A-T1.5) was used with a constant temperature anemometer system
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of IFA-300 operating at an overheat ratio of 1.7. The tungsten (platinum-coated) hot wire has a
sensitive length of 1.25 mm and a diameter of 4 μm, resulting in a length-to-diameter ratio (l/d)
of >200 [22,23]. In terms of spatial resolution, the viscous-scaled wire length is l+ < 48 for all
the measurement cases. On the other hand, Hutchins et al. [23] suggested that there is negligible
energy content for fT

+ > 1
3 ( fT

+ = fT ν/uτ
2, where fT is the frequency of turbulent fluctuations).

Following this suggestion, the sampling frequency for all the experimental cases was set up, and the
corresponding nondimensional sample interval was �t+ < 0.5 (�t+ = �tu2

τ /ν, where �t = 1/ f
and f is the sampling frequency). Note that the current sampling frequency is higher than the
frequency limit of the current hot-wire probe [24]. Calibration was employed by Air Velocity
Calibrator Model 1127 of IFA-300 over a velocity range of 0–22 m/s. The hot-wire probe was
systematically translated to all experimental locations using a computer-controlled translation stage.
Specifications of experimental parameters and trip wires are given in Table I. In the table, L, M, and
H denote the low, medium, and high free-stream velocities, respectively. Due to the limit on the
amount of memory, the sample length of the signals in each case was correspondingly changed
with the given sampling frequency. For all the measurements, the sample length included no less
than 8500 boundary-layer turnover time, even at the most thickened boundary-layer cases, which
adequately covers the energy contained in the largest scales and acquires the converged statistics.
Due to the tripping effects, the number of wall-normal measurement stations with logarithmical
spacing was increased as the boundary layer was thickened. In addition, we monitored the probe
sensor of the hot wire and adjusted for the wall-normal offset by a digital microscope-based
procedure.

In this paper, the friction velocity uτ was estimated from the raw mean velocity profiles using a
composite profile fitting approach, as outlined in the methodology of Rodríguez-López et al. [25].
This fitting procedure yielded not only the skin-friction velocity uτ but also other integral quantities
such as Coles’ wake strength �, which will be discussed in the subsequent section.

III. STATISTICS OF BOUNDARY LAYER UNDER THE TRIPPING EFFECT

A. Integral and global quantities

An overall assessment of the boundary layer under the tripping conditions is presented through
the boundary-layer thickness. Figure 2(a) shows the distribution of δ as a function of Reynolds num-
ber Reθ (Reθ = θU∞/ν, θ is the momentum boundary layer thickness), across different trip-wire
diameters and different free-stream velocities. The increasing δ implies the deviation of velocity
profiles from the canonical status. In Table I, the basic flow parameters manifest that the cases
of L0, L1, M0, and H0 exhibit an undertripped state, consequently excluding them from further
discussion within this paper.

To discern the degree of distortion of flow fields under the tripping influence, the distribution of
the shape factor is considered the reference, which is given by H12 = δ∗/θ (δ∗ is the displacement
thickness). Figure 2(b) shows that H12 is a function of Reθ . The values of H12 under all tripping
conditions are also tabulated in Table I. The reference curve (in black line) proposed in Monkewitz
et al. [26] is regarded as an indicator of the scatter in the current data under the influence of trips.
It is worth noting that H12’s for the cases with small Dc closely resemble the reference profile
and then decrease and deviate from it with increasing Reθ . This trend indicates that the boundary
layer is gradually overtripped in the adaptive region with increasing Dc. The overtripped effect
leading to the decrease in H12 was also observed in the boundary-layer flows triggered by different
tripping configurations [10,18], which is attributed to the alteration of the mean velocity scaling in
the wake region. Coles’ wake parameter � was considered a measure of the wake strength [27].
Figure 2(c) shows the distribution of � with respect to Reθ . The solid line is the wake parameter
�num (the proposed threshold �num ± 0.05 in dashed lines) of the composite profile proposed in
Chauhan et al. [28]. As shown, � agrees with the proposed value for small Dc and then rapidly
decreases and becomes negative as the wake region disappears in the strong tripping cases. The
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FIG. 2. (a) Boundary-layer thicknesses δ, (b) shape factor H12, (c) Coles’ wake parameter �, and (d)
friction coefficient Cf , as a function of Reθ for various DC and free-stream velocities. In subplot (b), the

solid line represents the composite profile by Monkewitz et al. [26] as H12 = 1 + κIWW
ln(Reθ ) + κ2IWW (IWW −C)

ln2 (Reθ )
+

κ2IWW (κIWW
2−IWW −2κIWW C+κC2 )
ln3(Reθ )

, with κ = 0.41, IWW = 7.11, and C = 3.3. In subplot (c), solid line: �num for
the composite profile proposed in Chauhan et al. [28]; dashed line: �num ± 0.05. In subplot (d), solid
line: Coles-Fernholz skin-friction law Cf = 2(κ−1lnReθ + C)−2, with coefficient κ = 0.384 and C = 4.127
[29]. (e) The linear relation between H12 and �. The solid line represents the fit to all data points, viz.
H12 = 0.27� + 1.31. (f) The relation between Reynolds numbers Reθ and Reτ . The solid line indicates the
relation of Reτ = 1.13 × Re0.843

θ by Schlatter and Örlü [13]. The data of the different tripping conditions
in Rodríguez-López et al. [15] are involved for comparison: the two-rows-cylinder (2row20) case , the
staggered-cylinder (2stag20) case , and the sawtooth (Saw) case . The empty and filled symbols denote
the data at the streamwise locations of x = 1.3 and 1.6 m, respectively.

decreased � value was also reported by Marusic et al. [10] in the oversimulated boundary-layer
flows under the tripping conditions of thread rods. In fact, by increasing Dc to be of the same
order as or larger than the incoming boundary layer thickness, the tripping rod can induce a strong
perturbation wake flow which has a predominant influence on the intermittency and mean profiles
in the wake region [12,13], consequently resulting in the significantly depleted wake parameter �,
as shown in Fig. 2(c). As another diagnostic alternative to assess the inner flow property under the
tripping effects, the friction coefficient Cf against Reθ is plotted in Fig. 2(d). As shown, Cf is close

to the Coles-Fernholz skin-friction law Cf = 2(κ−1lnReθ + C)−2, with coefficient κ = 0.384 and
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C = 4.127 [29] for the small Dc. With increasing Dc, Cf remains nearly constant and deviates from
the proposed curve. It has been documented that the estimation of Cf is dramatically affected by
the trips in the adaptive region, the effect of which diminishes with an increase in the extent of
the logarithmic layer [15]. This suggests that the relatively stable Cf observed at each free-stream
velocity is attributed to the measurements taken far downstream, where the near-wall region and
logarithmic layer should be recovered from the trip-wire effects.

Rodríguez-López et al. [15] conducted a comprehensive investigation into the mechanisms gov-
erning the formation of artificially generated TBL flows by designing the uniform and nonuniform
wall normal distributions of blockage. They meticulously executed the one- and two-point hot-wire
in the whole adaptive region, systematically observing the diagnostic quantities of H12, �, and
Cf to assess the recovery of the canonical properties. The data from the different trips located at
x = 1.3 and 1.6 m in their investigations are involved for comparison. The streamwise locations are
comparable with our current experiment at x = 1.4 m. The comparisons shown in Figs. 2(b)–2(d)
reveal notable differences in the distribution of H12, �, and Cf between the Saw case ( and

) and the cylinder-family configurations [the 2row20 case ( and ) and the 2stag20 case (
and )]. These parameters tend to cluster on opposing sides of the proposed curve within each
subplot. The comparison indicates that, in contrast to the cylinder-family trip, the Saw trip exhibits
similar properties to the current trip wire with large Dc. Both the Saw trip and the current trip wire
demonstrate comparable distributions for both H12 and �, derived from the mean velocity profiles.
The relatively lower values of these parameters imply that the mean velocity profiles have a reduced
wake [15]. Furthermore, this consistent deviation suggests that the boundary layers in the tripping
conditions of the Saw trip and the current trip wire are generated by the wake-driven mechanism,
likely attributed to the 100% blockage at the wall, as discussed in Rodríguez-López et al. [15].

To further observe the relation between � and H12 across various trip-wire diameters at different
free-stream velocities, all current datasets are employed to obtain a functional relation for � in
terms of H12. Figure 2(e) illustrates the linear behavior of H12 = 0.27� + 1.31, which provides a
good fit. This suggests that either � or H12 can serve as a diagnostic quantity to characterize the
tripping impacts on the mean profile. Additionally, Fig. 2(f) presents the relationship between Reθ

and Reτ . A functional relation of Reτ = 1.13 × Re0.843
θ from Schlatter and Örlü [13] by compiling

the canonical TBL data is included for comparison. As shown, under the current tripping effect, both
Reτ and Reθ increase with enhancing Dc, and Reτ gradually deviates from the proposed relation
curve. This deviation could also be associated with the modification of the mean profile in the wake
region.

B. Basic statistics and premultiplied spectra

Inner-normalized mean streamwise velocity and velocity-fluctuation variance profiles are shown
in Fig. 3 for all the tripping conditions at varying free-stream velocities. At each free-stream speed,
the mean velocity profiles (〈U 〉+ vs y+) for different Dc collapse in the near-wall region. For
comparison, the inner velocity profile of Musker [30] is superimposed as a black line, in which
von Kármán constant κ = 0.41 and constant B = 4.86 [31–33]. The results show that the mean
profile in the inner region (loosely defined as y+ � 100) behaves canonically for all the trip wires,
affirming the robustness of the law of the wall. The series of works by Rodriguez-Lopez et al. [17,34]
indicated that, in the region close to the tripping device, clear distortions of the mean profiles occur.
Therefore, it can be inferred that the current measurement location is sufficiently far downstream,
thereby avoiding direct impacts of the trip wires. The agreement also suggests that the near-wall
region is more prone to adapting quickly to a canonical TBL, which is like that reported by Schlatter
and Örlü [12]. On the other hand, there is an extension of the logarithmic region toward further
positions with increasing Dc, which can be considered a proportional effect of the current trips. As
shown, the upper bound of the log region extends up to approximately y+ ≈ 600. Considering that
the upper bound of the log region in canonical TBLs is up to y+ = 0.15Reτ [31], this observation
implies that the boundary layer in the strong tripping condition has the potential to simulate and
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FIG. 3. Inner-normalized mean velocity profiles (left column) and streamwise velocity-fluctuation variance
profiles (right column) for the different Dc at different free-stream speeds: (a) case L, (b) case M, and (c) case
H. Left column: The solid black lines show the Musker profile [30] with constants κ = 0.41 and B = 4.86.
Right column: Dashed lines indicate the inner peak at y+ ≈ 15.

compare with a high-Reτ TBL at Reτ ≈ 4000. However, a significant difference is observed in the
outer layer (in Fig. 3), presenting a progressively repressive wake region with increasing Dc, which
is consistent with the decrease of � [in Fig. 2(c)]. The systematic deviation in the wake region is
consistent with the observations under different initial conditions, such as threaded tripping rods
[10] and free-stream turbulence [35,36]. In canonical TBL flows, a velocity defect in the wake
region is attributed to the large-scale intermittent mixing [27]. However, the current overtripped
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effects could lead to a suppression of the wake region by introducing generated wake flows, which
results in lower velocities in the modified region.

Accordingly, the inner-normalized root-mean-square (RMS) velocity fluctuation profiles
u+

rms(y
+) are shown in the right column in Fig. 3. The u+

rms(y
+) profiles diverge in the outer region,

which shows a systematic enhancement in the intensity level with increasing Dc. This enhancement
in outer intensity is attributed to the turbulent wake flows introduced by the trip wires, which alter
the structure of turbulence in the bulk of the boundary layer. The inner peak is consistently located at
the wall-normal location of y+ ≈ 15 for all the cases, as widely reported in canonical TBLs [3,37].
In this paper, the near-wall variance peaks are lower than the predicted value by Hutchins et al.
[23], and the attenuation is no more than 6% for l+ � 48. This attenuation should be attributed
to the spatial-attenuation effect of hot-wire sensor length l+ and the low Reynolds number effect
[22,23,37,38]. In fact, the spatial resolution of the hot-wire sensor could also have an attenuation
impact on the higher frequency content of the turbulence energy, especially in the cases with
decreasing viscous time scale [24]. For the main purpose of comparing different tripping effects,
the attenuation effect of l+ on resolving the high-frequency content can be considered negligible in
this paper. Although the difference between the inner peaks is relatively small, a closer examination
reveals that the influence of the generated wake flows appears to be felt in the near-wall region, as
evidenced by a certain growth in the inner peak with increasing Dc, especially at higher free-stream
speeds. A possible explanation for the variation in inner-peak value is the growing superposition of
larger-scale energy from wake structures in increasingly overtripped conditions.

Figure 4 shows premultiplied spectra of streamwise fluctuations kxφuu/u2
τ as a contour plot for

each trip wire at the free-stream velocity in case H. The results of cases L and M are shown in the
Appendix, which exhibit consistent results. The details of Fig. 4 are given in the figure caption.
As shown, the similarity of kxφuu/u2

τ is noted near the wall, with the inner peak of the spectrogram
located at y+ ≈ 15 and a streamwise wavelength of λ+ ≈ 1000. The frequency domain is mapped to
the wavelength domain by using the local mean velocity and Taylor’s frozen field hypothesis. With
increasing Dc, the premultiplied spectra in the outer region present the enhanced magnitude with
the longer wavelength. In cases of small Dc, due to the insufficient scale separation at the relatively
low Reτ , the outer spectral peak is barely distinguishable. Hutchins and Marusic [3] proposed that
the scale separation begins to emerge for Reτ

>∼ 2000, with the appearance of the outer energy site.
This estimate is consistent with the current cases of Dc = 12–20 mm (Reτ = 2674–3546), showing
the outer energy site. The emergence of the outer energy plateau is related to the enhancement of
fluctuation variance shown in Fig. 3. It is deduced that the trip wire introduces large-scale energetic
motions, which either originate from or are amplified by the shedding of the wake in the abruptly
tripping conditions. As reported in the previous investigations in canonical TBL flows [5,8], an
outer peak in the spectrogram emerges at y+ ≈ 3.9Reτ

1/2 and λx/δ ≈ 6, corresponding to the very-
large-scale motions. This location is marked by + in Fig. 4, which is used purely as a reference to
compare with the current overstimulated cases. The mark + is approximately located at the position
of the outer-energy plateau in the overtripped cases, which implies that the generated large scales
have a comparable length scale as the very large-scale structures in the canonical high-Reτ TBL
flows. In this sense, increasing Dc can be viewed as a potential approach for simulating an increase
in Reτ for TBL flows.

From the results of global quantities, mean velocity, and turbulent intensity profiles, it is
indicated that the cases with a diameter of Dc = 2 mm exhibit the canonical behavior at
all the different free-stream velocities. The other cases are generally categorized as under-
tripped/overtripped. Thus, from a systematic perspective, the cases with the diameter of Dc = 2
mm are selected as the reference ones for each free-stream velocity to observe differences in
the premultiplied spectra. At the high free-stream velocity, the premultiplied spectrum in the
case H2 is chosen to demonstrate differences �kxφuu/u2

τ = kxφuu/u2
τ Dc=N − kxφuu/u2

τ Dc=2, where
N = 1, 2, 3, 4, 6, 8, 10, 12, 14, 17, and 20. The composite spectrum of case H2 is regridded
by cubic interpolation to match the range of the spectrum in other cases prior to the subtraction.
For comparison, the boundary layer thickness δDc2 is chosen for dimensionless representation. As
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FIG. 4. Premultiplied velocity spectra of the fluctuation signal for various tripping diameters at the high
free-stream velocity. Case Dc = 1–20 is labeled in each panel of the figure, correspondingly, in their right-
hand panels, changes in spectrograms of all the tripping cases relative to case Dc = 2 are shown, labeled
as �(Dc = 1–20) in each panel. The horizontal dashed line represents the wavelength of λx/δDc2 = 3. The
boundary layer thickness of case H2 δDc2 is chosen for normalization. The + symbol denotes the proposed
outer peak of y+ ≈ 3.9Re1/2

τ and λx/δ ≈ 6 [8].

expected, for the cases of small diameter (Dc = 3 and 4 mm), the differences in energy content at
any wavelength are quite small. For Dc = 1 mm, there exists a certain discrepancy in the near-wall
region, which validates the choice of case H2 as a reference to observe the spectra difference. It
is evident that the tripping configurations with Dc > 6 mm exhibit significant excess energy in the
outer region. The increasing extent of excess energy with Dc implies that the physical dimensions
of the trip wires directly influence the turbulence in the outer region. If we look carefully, the outer-
layer excess energy is performed in a wide range of scales 0.5 � λx/δDc2 � 200 but predominantly
concentrated near λx/δDc2 = 10–20 and y+ ≈ 800. Conversely, the region of reduced energy in the
outer layer is noted in the vicinity of λx/δDc2 ≈ 0.5–3 and y+ ≈ 100–300. It is suggested that
the overtripped conditions introduce the large-scale motions that take over the outer layer and
dominate the energy reassignment across multiscales. Additionally, the enhanced large-scale energy
in the near-wall region seems to be the derivative of these energetic outer-layer large scales, with the
extent of penetration dependent on the tripping intensity. This refers to the generated large scales
penetrating down to the wall based on the footprint effect [3,6,7], which results in the increased
near-wall peak in the broadband turbulence intensity (see Fig. 3). In summary, the current trip wires
essentially simulate the effect of increasing the Reynolds number of TBL flows by introducing
large-scale structures in the outer region.
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FIG. 5. Distribution of the discrepancy energy peak [(a) �P], and the corresponding wall-normal height [(b)
y+

L ] and wavelength [(c) λL/δDc2 ] against Reτ for all the tripping cases. The solid line in subplot (b) represents
the relation of y+ ≈ 3.9Re1/2

τ proposed by Mathis et al. [8].

To further quantify the energy discrepancy, the proposed outer peak of y+ ≈ 3.9Reτ
1/2 and

λx/δ ≈ 6 [5,8] is plotted in the discrepancy maps in Fig. 4. It is noted that the proposed peaks align
with the region of increased energy, which means that the generated very large-scale structures have
comparable length scales with the proposed ones. However, the symbols do not precisely match
the discrepancy energy peak. This expected discrepancy suggests that the artificially generated
large-scale structures in this paper cannot exactly replicate the canonical very large-scale motions
(VLSMs). Figure 5 plots the distribution of the discrepancy energy peaks (�P), along with their
corresponding wall-normal heights (y+

L ) and wavelength (λL/δDc2 ) against Reτ for all tripping cases.
As shown, �P increases as expected with Dc for each free-stream velocity. Interestingly, with
increasing the free-stream speed, the extent of increase in �P is attenuated, which is likely attributed
to the growth of the outer-layer turbulent intensity with increasing Reτ (free-stream velocity) in
canonical conditions. The corresponding wall normal heights and wavelengths (y+

L and λL/δDc2 )
exhibit an overall increasing trend against Reτ . Notably, the wall normal height y+

L is higher than the
proposed value by Mathis et al. [8], which indicates that the occupation of the artificially generated
large-scale structures predominantly resides in the wake region.

These statistical results clearly illustrate the alterations occurring in the outer region under the
tripping effects. Rodríguez-López et al. [15] revealed that these outer-region alterations have an
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FIG. 6. (a) Power spectral density φuu in the free-stream at y/δ = 2 for cases H2 and H20. (b) Distributions
of power spectral density peaks normalized with that in the reference case φm/φδ2, m against Reτ .

influence on the free-stream (laminar) fluid above the boundary layer. Figure 6 shows the power
spectral density φuu at y/δ = 2 for the two representative cases of H2 and H20 (canonical and
most overtripped cases). As suggested by Rodríguez-López et al. [15], the height of y/δ = 2
means that the hot-wire probe is sufficiently outside of the boundary layer, where the flow is
permanently irrotational. In Fig. 6(a), it is evident that the case H20 presents significantly higher
energy content with a low-frequency peak, attributed to the irrotational random motions of the
potential flow outside of the turbulent-nonturbulent interface (TNTI) [15,39]. These irrotational
events are accelerated/decelerated when the instantaneous TNTI is higher/lower than its average
height, and their typical energy depends on the difference between the maximum and the minimum
heights of the TNTI [15]. From this perspective, it can be inferred that the height difference of TNTI
is larger in the overtripped cases, considering the stronger shedding wakes generated from the trip
wires. To further explore the energy content with increasing tripping intensity, Fig. 6(b) plots the
ratios of the power spectral density peak in the overtripped cases relative to that in the reference
case φm/φδ2, m. Clearly, increasing Reτ enhances the peak intensity up to 20 times greater than the
reference cases, meaning that the considerably intense fluctuations present in the wake of trip wires.
Moreover, this result corroborates the argument that the height difference between the maximum
and minimum of TNTI becomes larger and larger with increasing Dc.

C. Higher-order moments and amplitude modulation

Figure 7 shows the distribution of high-order statistics in the form of the skewness Su =
〈u3〉/〈u2〉3/2 and the flatness Fu = 〈u4〉/〈u2〉2. As expected, clear scatters are noted for both Su

and Fu at the edge of the boundary layer. Despite this scatter, the overall trend remains consistent,
characterized by negative Su and positive Fu. This consistency underscores the persistence of the
intermittent discontinuity between the free-stream and TBL (nonturbulence and turbulence) under
the current tripping impacts.

On the contrary, both Su and Fu approximately collapse in the inner region. At each free-stream
velocity (cases L, M, and H), the tripping diameter Dc is considered the only parameter influencing
the distribution, as other factors such as the free-stream velocity, hot-wire spatial length l+, and
viscosity length scale ν/uτ are almost fixed (Table I). In Fig. 7, the near-wall Su and Fu profiles
demonstrate a remarkable collapse in each subplot, indicating the minimal influence of Dc on the
near-wall distributions. Moreover, with increasing Dc, both Su and Fu extend into the outer region,
trying to preserve values typical of the logarithmic region. This could be the evidence to support the
extension of the logarithmic region in the overtripped conditions.

024606-13



TANG, JIANG, LU, AND ZHOU

FIG. 7. Wall-normal profiles of the streamwise fluctuation skewness Su (left column) and flatness Fu (right
column) at different free-stream velocities: (a) case L, (b) case M, and (c) case H. Dash lines respectively
represent Su = 0 and Fu = 3.

Figure 8 plots the negative peak value of the skewness (Su, NP) in the wall normal region of 10 �
y+ � 100 against the tripping diameter Dc normalized by δ∗ (Dc/δ

∗). As shown, at each free-stream
velocity, Su, NP shows a slight increase with Dc/δ

∗. However, this growth is notably weaker than the
influence caused by the free-stream velocity across all datasets. This observation indicates that the

FIG. 8. Distribution of the negative peak value of the skewness Su, NP against the normalized tripping
diameter Dc/δ

∗. Square, circle, and diamond symbols represent the different free-stream velocities L, M, and
H.
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FIG. 9. Effect of applying a high-pass filter, with cutoff frequency f +
C , to the streamwise velocity statistics

(a) u+
rms, (b) Su of the cases H2 (Reτ = 898) and H20 (Reτ = 3546) at y+ = 20. Solid horizontal lines represent

the unfiltered result of case L2 (Reτ = 482) at the corresponding wall normal location. Solid vertical lines
denote the location at which the filtered data of H2 and H20, respectively, reach the unfiltered values of u+

rms in
case L2 and get their minimum values of Su.

free-stream velocity should be the more dominant parameter influencing the skewness distribution,
overshadowing the impact of the tripping diameter.

The skewness factor Su in Fig. 7 exhibits a negative peak in the region of 20 � y+ � 30, which
is consistent with the low Reynolds number results by Metzger and Klewicki [40]. They found
that Su exhibits the discrepancy in the near-wall region for a wide range of Reynolds numbers
and revealed that the disparities originate mostly from the large-scale motions which have a direct
interaction with the small scales. Considering the artificially generated large scales in this paper,
we apply a high-pass filtering procedure to the field data at y+ = 20 as processed by Metzger and
Klewicki [40]. This position of y+ = 20 corresponds closely to the negative peak observed in Su

and the peak of u+
rms. We examine three representative Reynolds number cases for observation: (1)

case L2 (Reτ = 482), the canonical case at low free-stream velocity, which serves as the reference
case; (2) case H2 (Reτ = 898), the canonical case at high free-stream velocity; and (3) case H20
(Reτ = 3546), the most overtripped case at high free-stream velocity. Figure 9 illustrates the effect
of high-pass filter on u+

rms and Su for cases H2 and H20 against the inner normalized cutoff frequency
f +
C ( f +

C = f ν/u2
τ ). Solid horizontal lines represent the unfiltered case L2 at the corresponding wall

normal location. The filtered u+
rms values for cases H2 and H20 converge to the unfiltered result

of case L2 at the cutoff frequencies of f +
C = 0. 0004 and 0.0008, as marked by the solid vertical

lines. In Fig. 9(b), both cases H2 and H20 obtain the minimum Su near a sufficiently large cutoff
frequency of f +

C ≈ 0.0045. It is noted that the Su minimum is still higher than the unfiltered case
L2 value, which is possibly due to the relatively narrow range of Reτ . The systematical elimination
of any additive effect of large-scale, low-frequency motions on the measured statistics by high-pass
filtering procedure suggests that the observed differences in f +

C between the low-speed case (L2)
and the high-speed cases (H2 and H20) stem from the increasing range of large scales inherent
in the high-speed flow and introduced by the tripping conditions. Through high-pass filtering,
the disparities of the cutoff frequency suggest the existence of some direct coupling, albeit weak,
between the large and small scales of motion [40]. Furthermore, the filtered u+

rms values approach
the case L2 values at a higher cutoff frequency in case H20 than case H2. This implies that the
artificially generated large scales could further enhance the energy of the small scales by more
direct interactions.

Given the emergence of large-scale structures in the outer layer in the current tripping conditions,
it becomes imperative to examine the modulation effect of these large scales on small-scale
structures. To achieve this, a filter with a cutoff wavelength of λx/δDc2 = 3 (the horizontal dashed
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FIG. 10. Wall-normal profiles of 3u+
L u+

S
2 at the different tripping conditions with different free-stream

velocities: (a) case L, (b) case M, and (c) case H.

line in Fig. 4) is chosen as a reasonable demarcation to separate the fluctuating velocity signal into
the large and small scales (uL and uS). Although the choice of cutoff length may introduce some

bias in 3u+
L u+

S
2 at a given Reynolds number (or a certain flow condition), we assume that the current

choice of cutoff wavelength has no considerable effect on the scale interactions, which are intended
to emphasize the various trip-wire effects.

It has been accepted that the amplitude modulation (AM) effect of large scales can be evaluated
from skewness analysis [35,41–43]. The profile of the cross-term of the scale-decomposed skewness

factor 3u+
L u+

S
2 closely resembles to the AM coefficient between the large scales and the envelope

of small scales [8,41]. Thus, we utilized the cross-term of the scale-decomposed skewness factor
to diagnose the AM effects under the tripping impacts. By using a scale-decomposed signal u+ =
u+

L + u+
S , the skewness factor Su can be expressed in the form:

Su = u+
L

3 + 3u+
L

2u+
S + 3u+

L u+
S

2 + u+
S

3
, (1)

with X̄ = X̄/(u+2)
3/2

, where a single overbar indicates the time average. Figure 10 shows the

distribution of the cross-term 3u+
L u+

S
2. Like the distribution of Su in Fig. 7, 3u+

L u+
S

2 exhibits

agreement in the inner region and discrepancy in the outer region. Looking carefully, 3u+
L u+

S
2 shows

a slight growth in the near-wall region with increasing Dc. Even though the current Reynolds number

is relatively lower, this subtle growth in 3u+
L u+

S
2 reveals that the large scales have an enhanced AM

effect on the near-wall small scales with increasing the tripping intensity. On the other hand, it was
argued that the AM effect can be interpreted as a phase relationship between the large and small

scales [44]. The distribution of 3u+
L u+

S
2 suggests that the phase relationship is unchanged under the

tripping impact, which remains in phase (3u+
L u+

S
2 > 0) approximately below the buffer layer and

exhibits the critical layer behavior (3u+
L u+

S
2 ≈ 0) in the log layer. The negative 3u+

L u+
S

2 in the outer
region is interpreted as a reversed scale arrangement phenomenon, which is the consequence of the

outer-layer intermittency. Under tripping impacts, 3u+
L u+

S
2 holds the attenuated values in the outer

region, which means that the intermittency is somewhat modified due to the wake flow generated
from the trip wires.

In Fig. 11, we compare the wall-normal profiles of 3u+
L u+

S
2 at three Reynolds numbers (L2:

Reτ = 482, H2: Reτ = 898, and H20: Reτ = 3546) to observe the effect of tripping diameter and

free-stream velocity on the scale interactions. It is evident that the near-wall 3u+
L u+

S
2 has higher

values in cases H2 and H20 (especially in the negative-peak region of 20 � y+ � 30), which
indicates that the free-stream velocity enhances the AM effects. Moreover, the value of case H20
is even higher than that of case H2 (almost increased 40% in the near-wall region), suggesting that
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FIG. 11. Wall-normal profiles of 3u+
L u+

S
2 at the three cases. L2: Reτ = 482, H2: Reτ = 898, and H20:

Reτ = 3546.

the tripping diameter also influences the AM results. Thus, it can be inferred that both the tripping
diameter and the free-stream velocity are the influence parameters affecting scale interactions in the
current experiments.

Moreover, to further explore the nature of the scale interactions at an equivalent Reτ as discussed

in Rodriguez-Lopez [15], Fig. 12 compares 3u+
L u+

S
2 at two nominally matched Reynolds numbers:

Reτ ≈ 1200 (Reτ ≈ 1237 at case L20, Reτ ≈ 1180 at case M8, and Reτ ≈ 1322 at case H6) and
Reτ ≈ 2300 (Reτ ≈ 2253 at case M20 and Reτ ≈ 2342 at case H10). Note that the comparisons
are not for perfectly matched values of Reτ . As shown in Fig. 12, obvious differences are observed
in the wake region, suggesting the persistence of remnants from the trip wires at the measurement
location. That is, the artificially generated large-scale structures predominantly modify the outer
intermittency to varying degrees. This result is consistent with that reported by Rodríguez-López

et al. [15]. Closer observation of the profiles in the inner region reveals that the 3u+
L u+

S
2 profiles do

not exhibit a perfect collapse. This observation suggests that, while the AM intensity and the phase
relationship between the large and small scales generally follow a consistent distribution trend, they
still display some degree of discrepancy at the nominal equivalent Reτ .

IV. FM

The emergence of large-scale structures in the outer layer with increasing tripping intensity
raises our interest in the scale interaction of the overtripped boundary layer. Apart from the

FIG. 12. Comparisons of 3u+
L u+

S
2 at two nominally matched Reynolds numbers: (a) Reτ ≈ 1200 (L20:

Reτ = 1237, M8: Reτ = 1180, and H6: Reτ = 1322) and (b) Reτ ≈ 2300 (M20: Reτ = 2253 and H10: Reτ =
2342).
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FIG. 13. (a) An interval of large- and small-scale components (uL and uS , blue and black lines), extracted
from the fluctuation signal at y+ ≈ 15 for case H2. (b) The TA s(ti ) is shown in a black line, and the instants
for upcrossing of zero are marked by red squares. (c) The frequency indicator function kP is shown in the green
pulse, and IP is also plotted for reference.

well-documented AM phenomenon, FM has received relatively less attention to date, primarily
owing to the difficulty of robustly quantifying the instantaneous frequency of small scales in
broadband signals [6,7,45–48]. The observation of scale interactions has demonstrated that the
small scales, characterized by high frequency, are related to the regions of intense vorticity, which
have a characteristic length of the local Taylor microscale [6,49,50]. It has been reported that the
zero-crossing interval is related to Taylor’s microscale, fine structures, and vorticity distribution
[51]. Therefore, the derivative of zero crossings is developed to quantify the instantaneous frequency
for the observation of the FM effect.

Figure 13 shows a schematic representation of the procedure proposed to isolate the modulation
effects of large scales on the small-scale frequency, and the procedure is as follows:

(i) The decomposed large-scale (uL) and small-scale (uS) fluctuations are acquired by a spectral
filter of length λx/δDc2 = 3, which is also used for the discussion of AM effects in Figs. 10
–12.

(ii) The telegraph approximation (TA) of small scales is obtained s(ti ), as shown in the black
line. Then the instants exhibiting up crossings of zero IP(ti ) are extracted and marked by red
squares. It is worth noting that the zero crossing with up or down crossings provides con-
sistent results. The interval between every two successive IP(ti ) is interpreted as a measure
of the instantaneous period, by analogy with the concept of instantaneous frequency [52].

(iii) To quantify the representative instantaneous frequency, the center of every two successive
IP(ti ) is defined as an indicator function kP(ti ) of the instantaneous frequency, expressed as

kP[t(n+m)/2] =
{

1 if IP(tn) = 1 and IP(tm) = 1, (m = min{n + 1, . . . N})

0 otherwise.
(2)

It is evident that the indicator function, kP(ti ) = 1, refers to the instants which can be used
to count for calculating the small-scale frequency, based on the idea that the local frequency is
proportional to the amounts of kP(ti ) = 1 per unit length of the series. For a given signal length,
the higher the amount of kP(ti) = 1 per unit length, the higher the representative frequency of the
signal, and vice versa. The above procedure shows that the frequency indicator is derived strictly
following the zero-crossing events without setting any thresholds.
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FIG. 14. The ratio of large-scale conditional averaging zero-crossing frequency KR, as a function of the
wall-normal coordinate y+, in boundary layers for various tripping diameters for case H.

Then we introduce the ratio KR to quantify FM, defined as

KR =
∑N

i=1

[
kP(ti )suL (ti )

]/ ∑N
i=1

[
suL (ti)

]
∑N

i=1

{
kP(ti )

[
1 − suL (ti )

]}/∑N
i=1

[
1 − suL (ti )

] , (3)

where suL (ti ) is a TA of large-scale structures uL(ti ) as

suL (ti ) = 1

2

[
uL(ti)

|uL(ti)| + 1

]
. (4)

The value of KR > 1 signifies that the frequency is statistically higher during the intervals of
uL > 0 than during uL < 0, indicating a positive FM effect. This means that an increase of the local
frequency in small scales becomes aligned with uL > 0 and a decrease for uL < 0. In addition, the
negative FM effect can be characterized by KR < 1, and the absence of FM is given by KR ≈ 1.

The values of the ratio KR as a function of the wall-normal coordinate y+ are shown in Fig. 14
for the cases at high-speed free-stream velocity. In the plot, the values of KR > 1 appear in the
near-wall region, while moving away from the wall, KR becomes <1, which indicates a reversal
in the FM effects. The overall behaviors are in accordance with previous investigations on FM
in canonical wall-bounded turbulence [6,45–48]. However, the behavior of KR also highlights the
specific features that depend on the tripping conditions with different Dc. The degree of FM close
to the wall is enhanced by increasing Dc (∼40% if we set KR = 1 as the datum point to differentiate
the positive and negative FM), which indicates that the generated large-scale structures enhance the
near-wall FM process in the overtripped cases, like the consequence of increasing Reτ in canonical
TBL flows. This distribution of KR could be related to the distortion of near-wall structures below
the buffer layer caused by the strong sweeps (splatting) of large scales [53]. As increasing Dc and
the free-stream velocities, the higher KR values in the range of y+ � 20 suggest that the generated
large-scale structures promote the transportation of the high-intensity small scales toward the wall,
which causes a stronger distortion of the small scales through the splatting mechanism. On the
other hand, away from the wall, the reversal mechanism of FM is noted in a V-like shape of KR

in the outer region, which is strengthened with increasing Dc. The scale arrangements in the outer
region are the consequence of the intermittent exposure of the hot wire to an alternating occurrence
of turbulent/nonturbulent fluids. Under the tripping effect, the range of the V-like shape of KR

expands with increasing the boundary layer thickness, confirming the above conclusion that the
trips significantly modify the outer region while preserving intermittency.

Like the discussion of 3u+
L u+

S
2 in Fig. 12, Fig. 15 shows the comparisons of KR at nominally

matched Reynolds numbers to examine the nature of the FM effects. The FM profiles show an
acceptable agreement in the inner region, as indicated by the relatively dispersed distribution of
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FIG. 15. Comparisons of KR at two nominally matched Reynolds numbers (the same as in Fig. 12).

KR. As anticipated, a noticeable discrepancy appears in the wake region associated with the trip-
wire effects. These results support the proposal that attention should be paid when comparing scale
interactions (both AM and FM) at matched Reynolds numbers if the boundary layers have not fully
recovered from specific tripping conditions. Furthermore, it evokes our attention to the behavior of
the intermittency in the outer region under the impacts of trip wires, which will be discussed in the
following section.

V. INTERMITTENCY IN THE OUTER REGION

According to Corrsin and Kistler [54], the outer-layer intermittency is described as the flow
alternating between turbulent and substantially irrotational nonturbulent motions. To observe the
intermittency behavior, it is necessary to detect the TNTI. Various threshold-detecting methods
have been developed, based on vorticity [55] and enstrophy [56] in numerical simulation datasets.
For the experimental data of relatively high level of free-stream turbulence, the TNTI was detected
by the technique based on turbulent kinetic energy [57], local homogeneity [58], fuzzy clustering
of the velocity field [59], track of the Lagrangian particle trajectories [60], and so on. For one-
dimensional flow data by hot-wire measurement, the detection relies upon identifying whether the
probe is measuring turbulent or nonturbulent fluids. Therefore, a turbulent kinematic energy (TKE)
criterion proposed by Chauhan et al. [57] is utilized for the current hot-wire data. This procedure
has been extensively used in many previous works for the detection of TNTI [16,57,61–63], and a
brief description is given here. The TNTI detector function is expressed as

k̂(i) = 100

U 2∞

1

3

1∑
j=−1

(Ui+ j − U∞)2, (5)

where the index i is an arbitrary instant in the temporal domain, and summation over index j
indicates a mean over three consecutive measurements in a time series. The turbulent (nonturbulent)
fluids can be detected based on whether k̂(i) is higher (lower) than a given threshold kth. Utilizing
this threshold, a binary representation of the flow is obtained, defined as

k̂b(i) =
{

1, k̂(i) � kth

0, k̂(i) < kth.
(6)

Then as proposed by Klebanoff [64], an intermittency parameter γ (y) at the wall-normal location
of y is defined as

γ (y) = 1

N

N∑
i=1

k̂b(i, y), (7)
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FIG. 16. Wall-normal intermittency profile γ (y) in inner and outer scaling (left and right column) for
various DC for case H. Color lines represent the result by fitting γ (y) to the error function.

which reflects the proportion of time that the flow is turbulent. Close to the wall, the flow is expected
to be fully turbulent, γ (y) = 1, the nonturbulent fluids gradually have more occurrence far away
from the wall, and γ (y) = 0 in the free stream. It is well known that the intermittency profile γ (y)
in a canonical TBL is described by the error function [54,64,65]:

γ (y) = 1

σI

√
2π

∫ ∞

y
exp

[
− (y − YI )2

2σ 2
I

]
dy. (8)

Here, YI is the wall-normal location of the mean interface, where γ (YI ) = 0.5 and σI is the standard
deviation of instantaneous interface position yI relative to the mean position YI . Both YI and σI are
estimated parameters obtained by fitting the measurement intermittency profile to the function of
Eq. (8). From the above definition, it is evident that the intermittency γ (y) is dependent on the
given threshold value kth. Based on the known free-stream intensity in this paper, a threshold of
kth ≈ 0.07–0.08 is chosen to calculate γ (y).

Figure 16 plots the γ (y) profiles against the normalized wall-normal distance in inner and outer
scaling (y+ and y/δ) for the tripping cases at high free-stream velocity. Here, γ (y) exhibits a normal
distribution with the mean interface location at YI/δ ≈ 0.81–0.82 and standard deviation σI/δ ≈
0.15–0.18 at cases L2, M2, and H2, consistent with the previous investigations in canonical TBL
flows [54,65]. The agreement affirms the availability of the TKE-based TNTI detecting approach
and the corresponding threshold kth. The inner scaling results in the left column in Fig. 16 show
that, with increasing boundary-layer thickness δ+ (with increasing DC), the intermittency region
extends far away from the wall. On the other hand, the outer scaling results (right column) indicate
that the intermittent region exhibits a wider proportion in the boundary layer, as evidenced by the
increasing value of σI . Here, σI is a suitable measure of the width of the intermittent zone and is
also deemed as an indicator parameter of the wrinkle amplitude of TNTI. Due to the enhanced wake
shedding in the outer region from the trips, it is reasonable to have the large tortuosity of TNTI and
the correspondingly thickened intermittent zone.

To further characterize the feature of the (ir)regularity of TNTI, Fig. 17 shows probability density
functions (PDFs) of the length of the turbulent and nonturbulent segments (l). The time interval that
the continuous turbulent or nonturbulent fluids between every two adjacent TNTI points is converted
into segment length l by using Taylor’s frozen hypothesis. Figure 17 plots the PDF of l at different
wall-normal heights (corresponding to γ = 0.1–0.9) for all the tripping cases. It is easy to accept
that longer turbulent segments are prevalent in the region close to the wall (γ → 0.9), and the
nonturbulent segments have a broader length scale toward the boundary layer edge (γ → 0.1). Both
situations lead to long segments l . For γ ≈ 0.5, l has a relatively narrower distribution range, as
turbulent and nonturbulent regimes appear in the equivalent scale with relatively shorter l . More
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FIG. 17. Distribution of PDF(l ) at the wall-normal heights in the range of 0.1 � γ (y) � 0.9, under all the
tripping effects for case H. The solid black line indicates an exponential distribution with a power-law scaling
exponent of ζ ≈ − 4

3 . The square symbols represent the intermediate range between λT and lmean + lrms/2.

importantly, a remarkable observation is that the collapse of PDF(l ) exhibits a power-law behavior:

PDF(l ) ∼ lζ . (9)

The power-law scaling has an overall exponent equal to ζ ≈ − 4
3 , which is in very good agree-

ment with the values reported in previous studies on canonical TBLs (e.g., Refs. [63,66–68]. Under
all the tripping effects, the power-law behavior is almost independent of the intermittency parameter
and the Reynolds number. Note that the power-law scaling almost ceases below the inner cutoff
scale of λT like that reported by Chauhan et al. [68]. The outer cutoff is approximately at the scale
of lmean + lrms/2, where lmean and lrms are the mean and RMS values of the segments l [69]. As
shown, the data between the inner and outer cutoffs are marked by square symbols, which exhibit
the power-law scaling over one order of magnitude of scale separation.

To explain the power-law scaling behavior in Fig. 17, we revisit the description of the fractal
geometry of the instantaneous TNTI [63]. Following the additive properties of dimensions gov-
erning the intersection of fractals [70], the set of isolated TNTI points can be acquired from the
one-dimensional hot-wire datasets, which are analogous to the Cantor’s discontinuum and have the
fractal dimension D1 with the relation:

D3 = 2 + D1, (10)

where D3 is the fractal dimension of the TNTI in three-dimensional space. A box-counting algorithm
has been widely used to obtain the fractal dimension from the one-dimensional hot-wire dataset. It
is suggested that the number of boxes N (r) of size r cover a set of TNTI surface points, according
to the relation:

N (r) ∼ r−D1 . (11)

The TNTI interface is described to be fractallike only in an intermediate range. In this paper,
the scale range between λT and lmean + lrms/2 is considered. By systematically revealing the
fractal facets of turbulence, Sreenivasan and Meneveau [71] pointed out that, due to the practical
circumstances, there are no restrictive situations on scale cutoffs of the intermediate range. In this
paper, the inner cutoff occurs at Taylor microscale λT , due to the relatively coarse resolution of the
hot-wire sensor, whose spatial length is larger than the Kolmogorov scales. The finite resolution
means that, as the TNTI area is measured by covering it with increasingly finer boxes, once the
resolution of λT is reached, the convolutions on even finer scales no longer exist, and the TNTI area
does not increase anymore.

In Fig. 18, the scale range with the power law of N (r) ∼ r−D1 is bounded by cutoffs on
both ends. The exponent is approximately D1 ≈ 0.35. Following the relation in Eq. (10), it can
be deduced that the fractal dimension of the TNTI is D3 = 2 + D1 ≈ 2.35, which is matched with
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FIG. 18. The distribution of the number of boxes N (r) in the size of r covering the line intersection points
of the turbulent/nonturbulent interface (TNTI) at the wall-normal heights in the range of 0.1 � γ (y) � 0.9,
under all the tripping conditions for case H. The solid yellow line indicates an exponential distribution with a
one-dimensional fractal dimension D1 ≈ 0.35. The square symbols represent the intermediate range between
λT and lmean + lrms/2.

the proposed value D3 = 2.35 ± 0.05 in TBL flows [66]. Importantly, the result of D1 ≈ 0.35
is sensibly independent of the intermittency factor 0.1 � γ (y) � 0.9 in all the current tripping
conditions. Furthermore, from the viewpoint of probability statistics, PDF(l ) pertains to the fractal
set with the linear interactions and follows the power law [70]:

PDF(l ) ∼ l−D1−1, (12)

which establishes a connection between the results of probability density and fractal dimension. As
shown in Figs. 17 and 18, it provides the equation of −(D1 + 1) = ζ ≈ − 4

3 , where D1 ≈ 0.35.
Therefore, it can be concluded that, for the current artificially thickened TBLs introduced by
the current trip wires, the intermittent geometry of the TNTI exhibits a fractallike self-similar
convolution behavior within the intermediate scale range.

VI. CONCLUSIONS

Single-point hot-wire anemometry has been performed at a given streamwise location in artifi-
cially thickened TBL flows generated by the trip wires of varying diameters. The trip wires with
incremental diameters were employed as the tripping device. The experiment provided comprehen-
sive insight into the impact of the trip wires with varying diameters on boundary layer flows from
understimulation to overstimulation.

With increasing the diameter, the trip wire has a significant modification on the boundary
layer, particularly in the outer region, as supported by the basic statistics, such as the mean flow,
broadband turbulence intensities, and higher-order moments. The larger trip-wire diameter results
in larger deviations of the TBL from canonical behavior. The wake region gradually disappears
with increasing the diameter (namely, increasing the boundary-layer thickness and the Reynolds
number). The spectra comparisons indicate that the overtripped conditions introduce large-scale
perturbation into the boundary layer. These large-scale disturbances predominantly reside in the
outer part and probably originate from the shedding of the trip-wire wake, akin to the wake behind
the threaded rods from Marusic et al. [10]. The presence of such energetic motions is associated
with the outer peak in the spectrogram, exhibiting a distinct separation from the inner peak. Through
high-pass filtering, the disparities between the profiles of u+

rms and Su at various free-stream velocities
and the tripping conditions are shown to mainly originate from the large-scale motions performing
a direct interaction with the small scales. More importantly, it was indicated that the free-stream
velocity is a dominant influence parameter in determining the turbulence statistics, in addition to
the tripping diameter.
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The trips broaden the inner spectral peak with contributions from larger scales, like those present
in the outer peak. This refers to the effect that the generated large scales penetrate down to the
wall, resulting in an increased near-wall peak in the broadband turbulence intensity based on the
footprint effect [3,6,7]. In addition to the superposition of large-scale energy in the near-wall region,

the AM effect was revealed by the cross-term of the scale-decomposed skewness factor 3u+
L u+

S
2.

It was manifested that, as the large scales become more energetic with increasing the trip-wire
diameter, their AM effect on the small scales is enhanced in the near-wall region. On the other
hand, the zero-crossing-based approach was developed to describe the FM effect. The overall results
indicate that the FM effects of the energetic large-scale structures on the small scales occur in the
near-wall region, and the FM extent is strengthened by increasing Dc. In consideration of the effect
of free-stream velocity, the comparison of the modulation profiles manifests that the free-stream
velocity and tripping diameter are the two important factors to influence the near-wall AM and FM
behavior. In addition, a reversal in both the AM and FM mechanisms was noted far away from
the wall. The reversal becomes more noticeable, as the outer-layer intermittency is modified by the
new-generated large scales.

Moreover, it was affirmed that the trip wire with increasing Dc leads to more thickened intermit-
tent zones and greater tortuosity of the TNTI. The similar behavior of the outer-layer intermittency
was noted, which is independent of the current tripping conditions. The PDFs of the length of the
turbulent and nonturbulent segments l present a power-law behavior with an exponent of ζ ≈ − 4

3
for all the tripping conditions, which is in very good agreement with the value reported in canonical
TBL [63,66–68,72]. Based on the linear intersection of TNTI with the stationary hot-wire probe
measurements, a box-counting algorithm returns the TNTI fractal dimension of D1 ≈ 0.35. From
the viewpoint of probability statistics, the relation of PDF(l ) and the fractal dimension provide
the equation of −(D1 + 1) = ζ ≈ − 4

3 , where D1 ≈ 0.35. Thus, it was revealed that, under all the
tripping effects, the random intermittent geometry of the TNTI exhibits a fractallike self-similar
convolution behavior, within the intermediate scale range between the inner cutoff scale of the
Taylor microscale λT and the outer cutoff scale of lmean + lrms/2. Importantly, this fractallike
self-similar behavior is established across the entire intermittent zone, which is independent of the
wall-normal position with the intermittency factor ranging from 0.1 � γ (y) � 0.9.

In addition, in this paper, we underscore the necessity of caution when employing artificially
thickened TBLs induced by leading-edge trips to simulate high-Reτ TBLs within a finite-length
test section. Within the range of free-streamwise velocities U∞ ≈ 5–13 m/s, it is suggested that
a tripping diameter of Dc ≈ 2 mm is optimal for generating canonical TBLs from a streamwise
location x � 1.4. The trip wires with smaller diameters tend to induce undertripped boundary layer
flow, while larger trip wires result in artificially thickened TBLs in an overtripped status, with their
statistical deviation from canonical TBLs becoming more distinct with increasing Dc, indicating
the necessity of a longer streamwise distance for achieving canonical status. Essentially, larger
Dc trip wires introduce large-scale structures into the boundary layers through the wake-driven
mechanism owing to the 100% blockage of the trips at the wall [15]. The emergence of these
large scales leads to a thicker boundary layer by exhibiting a wider external intermittent region,
resulting in noncanonical behavior. The large-scale structures induced from the trip wires possess
relatively longer wavelengths (λ+

L ) at higher wall normal heights (y+
L ) than VLSMs in canonical

TBLs. Their energy and the derivatives of y+
L and λ+

L exhibit an overall increasing trend with
Dc. These generated large-scale structures not only dominate in the outer layer but also influence
near-wall turbulence through the footprint effect and AM/FM effect, presenting an increased inner
peak and AM/FM extent with increasing Dc. The increased degree of both AM and FM effects
is nearly up to 40% in the most overtripped cases. All the above observations suggest that the
artificially thickened TBLs have the potential to simulate high-Reτ TBLs. Nevertheless, it does not
imply that artificially thickened TBLs are a reasonable approach to generating high-Reτ canonical
TBLs. A noticeable discrepancy can be observed in the high-order statistics and degree of AM/FM
effects among artificially thickened cases at the nominally matched Reτ . Furthermore, to obtain a
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FIG. 19. Premultiplied spectra of the streamwise fluctuation signal for the different tripping conditions at
low free-stream speed (case L). The details are consistent with that shown in Fig. 4.

high-Reτ canonical TBL at a given free-stream velocity by thickening the boundary layer thickness,
a decreasing trend of skin friction coefficient Cf with increasing Dc is expected. However, the
friction coefficient Cf remains nearly constant for various Dc in this paper, which confirms that
the artificially thickened TBLs are not canonical. The conclusions suggest that the observation of
canonical behaviors, such as flow statistics, turbulent structure, and scale interactions, should be
conducted in canonical TBL flows. In conclusion, pursuing excessive thickening of the boundary
layer requires careful consideration, at least based on the current trip geometry, for generating
high-Reτ canonical TBLs in a finite-length test section, as a longer development region is necessary
for the recovery of canonical properties with larger tripping diameters.
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APPENDIX: PREMULTIPLIED SPECTRA

The premultiplied spectra of streamwise fluctuations kxφuu/u2
τ for each of the trip wire at the

free-stream speed in cases L and M are shown in Figs. 19 and 20. They present consistent results
with those shown in Fig. 4. As shown, the premultiplied spectra in the outer region exhibit enhanced
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FIG. 20. Premultiplied spectra of the streamwise fluctuation signal for the different tripping conditions at
medium free-stream speed (case M). The details are consistent with that shown in Fig. 4.

magnitudes with longer wavelengths at higher wall-normal locations, corresponding to an increase
in the trip-wire diameter. The emergence of the large-scale energy is confirmed by the discrepancy
map for the composite spectra, which shows the clear scale separation from the inner small scales, as
marked by the dashed lines with λx/δDc2 = 3. Moreover, in the overstimulated cases, the emergent
large scales penetrate all the way down to the wall, confirming their presence throughout the
boundary layer.
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