
PHYSICAL REVIEW FLUIDS 9, 024603 (2024)

Predicting unavailable parameters from existing velocity fields of turbulent
flows using a GAN-based model

Linqi Yu ,1,* Mustafa Z. Yousif ,1,* Young-Woo Lee,1 Xiaojue Zhu ,2 Meng Zhang ,1

Paraskovia Kolesova ,1 and Hee-Chang Lim 1,†

1School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil,
Geumjeong-gu, Busan, 46241, Republic of Korea

2Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, Göttingen 37077, Germany

(Received 18 April 2023; accepted 17 January 2024; published 20 February 2024)

In this study, an efficient deep-learning model is developed to predict unavailable
parameters, e.g., streamwise velocity, temperature, and pressure from available velocity
components. This model, termed mapping generative adversarial network (M-GAN), con-
sists of a label information generator (LIG) and an enhanced super-resolution generative
adversarial network. LIG can generate label information helping the model to predict
different parameters. The GAN-based model receives the label information from LIG
and existing velocity data to generate the unavailable parameters. Two-dimensional (2D)
Rayleigh-Bénard flow and turbulent channel flow are used to evaluate the performance
of M-GAN. First, M-GAN is trained and evaluated by two-dimensional direct numerical
simulation (DNS) data of a Rayleigh-Bénard flow. From the results, it can be shown
that M-GAN can predict temperature distribution from the two-dimensional velocities.
Furthermore, DNS data of turbulent channel flow at two different friction Reynolds
numbers Reτ = 180 and 550 are applied simultaneously to train the M-GAN and examine
its predicting ability for the pressure fields and the streamwise velocity from the other
two velocity components. The instantaneous and statistical results of the predicted data
agree well with the DNS data, even for the flow at Reτ = 395, indicating that M-GAN
can be trained to learn the mapping function of the unknown fields with good interpolation
capability.

DOI: 10.1103/PhysRevFluids.9.024603

I. INTRODUCTION

As a traditional topic in experimental and computational fluid dynamics (CFD), turbulence
has been investigated extensively to enhance the understanding of its complicated characteristics
and chaotic behavior over a hundred years. Visualizing and statistically analyzing turbulent flows
requires massive data from flow fields. With various methods developed, high-fidelity turbulence
data can be efficiently generated for aerodynamic simulations and other scientific applications.
For instance, direct numerical simulation (DNS) has been extensively applied in the CFD field to
simulate a variety of turbulent flows precisely at a specific range of Reynolds numbers (Re), whose
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main mechanism solves the Navier-Stokes equations numerically [1–3]. From the perspective of
experimental measurement, one of the most widely used methods is particle-image velocimetry
(PIV), which plays a crucial role in the experimental investigation of turbulent flow fields [4]. How-
ever, if an ordinary two-dimensional (2D) PIV system is employed, only two velocity components,
e.g., wall-normal velocity (v) and spanwise velocity (w), can be obtained but without streamwise
velocity (u).

Note here that an unavailable parameter generally refers to a parameter that cannot be measured
directly using 2D measurement techniques such as PIV measurement. For instance, if the normal
section to the streamwise direction of the flow is measured, the streamwise component cannot be
obtained directly and therefore is considered an unavailable parameter. In addition, pressure (p)
and temperature (T ) also cannot be obtained directly by those measurements. These unavailable
parameters are undoubtedly important for turbulent flow analysis and engineering applications.
Therefore, these three velocity components are required to analyze the instantaneous flow structures
and statistics of turbulent flow [5,6]. In addition, the fluctuating pressure field over the bluff bodies
under turbulent boundary layers causes severe noise and vibration [7]. Moreover, the pressure
fields within the turbulent flow field are crucial to analyze the coupling mechanisms of turbulence-
acoustic [8] and flow control strategies for reducing noise [9]. Temperature is also crucial in
turbulence fields, as its gradient drives the heat transfer phenomenon. Additionally, temperature
gradients in the near-wall region significantly impact the overall performance of many engineering
systems [10,11].

Currently, several methods are applied to obtain the aforementioned unavailable parameters.
Therefore, in general, acquiring the full components of turbulent flow fields requires a high-
performance PIV system such as a tomographic PIV (Tomo PIV) [12], which realizes the acquisition
of three-dimensional (3D) turbulent flow with full velocity components. However, in order to
obtain the full velocity components, it would be necessary to incur additional costs and employ
complex processes to achieve the desired level of precision. As for pressure measurement by PIV,
Oudheusden [4] proposed a way to manipulate the instantaneous pressure field by combining the
experimental data with the governing equations, i.e., the Poisson equation. Thermographic PIV
(Thermo PIV) [13,14] has been developed to measure velocity fields and temperature based on
thermographic phosphor particles, which possess temperature-dependent luminescence properties.
Compared to the original PIV, Thermo PIV needs extra setup and equipment, which include
an extra ultraviolet laser and two extra cameras with suitable spectral filters. Nonetheless, it
is difficult to predict unavailable parameters such as u, p, and T , based on the available data
(v and w) obtained from an ordinary 2D PIV system. In addition to the above experimental
methods, this is an alternative mathematical method to generate the unavailable parameters from
known flow fields, termed data assimilation. He et al. [15] used data assimilation to determine the
pressure of turbulent velocity fields measured by PIV based on the unsteady adjoint formulation.
However, implementing these methods still needs the assistance of Tomo PIV. In other words,
the turbulence velocity data, e.g., wall-normal velocity v and spanwise velocity w, from the
2D PIV system are insufficient to solve the governing equation and apply data assimilation for
getting pressure field because of the lack of one of the velocity components, i.e., streamwise
velocity u. Therefore, the aim and innovation of this study is to find a data-driven-based method
to predict the unavailable parameters mentioned earlier from existing flow fields using deep
learning.

Deep-learning (DL) algorithms are rapidly developing and extensively used in various fields
[16,17]. Recently, DL has been widely utilized in fluid dynamics, benefiting from its capability of
highly nonlinear mapping [18]. DL is of great interest in the following problems about turbulent
flows: temporal flow data generation based on turbulent modeling [19,20]; fluid flow simulation
[21]; reduced-order modeling [22,23]; prediction of turbulent flow based on the information from
previous temporal data [24–26]; super-resolution reconstruction of turbulent flow [27–30]. Another
important application of DL in fluid dynamics is mapping parameters of the flow field, namely,
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mapping some parameters obtained from a fluid flow to the other different parameters, which can
be expressed as

f : Pa → Pu, (1)

where Pa is termed the set of available or already existing parameters, Pu is the set of unavailable
parameters, and f is the mapping rule taking the elements in Pa to the one in Pu. The f of note is the
complex nonlinear functions hidden in deep-learning neural network, which are learned by the DL
model through training. Guastoni et al. [31] applied convolutional neural network models to map
the wall-shear-stress components and the wall pressure to the 2D instantaneous velocity-fluctuation
fields at different wall-normal locations in a turbulent open-channel flow. Jouybari et al. [32]
designed a multilayer perceptron type neural network to get the mapping of various rough surface
statistics to equivalent sand-grain height. Lee et al. [33] proposed a transfer learning method based
on empirical correlations to predict the drag force on the statistics of rough surfaces. Moreover, the
mapping that takes local wall-shear stresses and wall-pressure fluctuations to local heat flux was
proved to be possible by Kim and Lee [34].

Furthermore, generative adversarial networks (GAN) proposed by Goodfellow et al. [35] have
been used in various fields, e.g., the work of Shamsolmoali et al. [36] for synthetic image
generation. Other powerful networks based on GAN are super-resolution generative adversarial
network (SRGAN) [37], and the variant of SRGAN, i.e., enhanced SRGAN (ESRGAN) [38].
Recently, GAN-based DL models have been rapidly implemented to solve turbulent flow prob-
lems, particularly resolution reconstruction problems. Benefiting from deeper layers and special
loss functions (e.g., perceptual loss), SRGAN and ESRGAN show better performance on the
resolution reconstruction of flow fields than basic other DL models [39]. Moreover, Yousif et al.
[40] proposed a novel 2D3DGAN based on the mechanism of ESRGAN, which could recon-
struct the 3D turbulent flow fields from 2D velocity fields. Regarding flow field parameters
mapping, Güemes et al. [41] evaluated the performance of SRGAN for reconstructing turbulent-flow
quantities from coarse wall measurements. The results showed that the SRGAN could capture
and rebuild the large-scale structures of the flow even for the most complicated cases. Un-
doubtedly, the GAN-based DL models also have the potential to tackle more turbulence-related
problems.

In this paper, we attempt to predict unavailable parameters (Pu) from existing available param-
eters (Pa) using a deep-learning model that can help find a mapping rule between Pu and Pa. A
novel GAN-based model is proposed, termed mapping-generative adversarial network (M-GAN),
and is applied to map available parameters to unavailable parameters. Two cases of fluid flows
are used to examine the performance of M-GAN. The 2D Rayleigh-Bénard (RB) flow at Rayleigh
number (Ra) = 108 is used as a demonstration, where u and v are regarded as available parameters;
meanwhile, T is the unavailable parameter needing to be predicted. Furthermore, turbulent channel
flow data at Reτ = 180, 395, and 550, are applied to test the M-GAN model sufficiently. 2D flow
fields at Reτ = 180 and 550 are the data for training and testing for M-GAN, i.e., v, and w are input
data, and u and p are output data. Then channel flow at Reτ = 395, which has never participated
in the training process, is used as an additional testing case to estimate the interpolation ability of
M-GAN. Note that a label information generator (LIG) is combined with M-GAN to train and test
the turbulent channel flow cases. The role of LIG is to help M-GAN decide to output u or p when
the DL model can only receive the same information of v and w. All the mentioned flow data are
generated using DNS.

The remainder of this paper is written as follows. Section II presents the generation of flow data
using DNS. The design of M-GAN is introduced in the methodology part (Sec. III), where the
training and testing procedures are also included. The results, including instantaneous contours and
turbulence statistics, are plotted and discussed in Sec. IV. Finally, Sec. V summarizes the paper and
proposes potential future research based on this study.
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TABLE I. Simulation parameters of Rayleigh-Bénard flow. Nx and Ny are the grid resolution in the
horizontal and vertical directions. � is the aspect ratio, � = W/L, where W and L are the width and depth
of the domain. Pr and Nu are the Prandtl number and Nusselt number. �t+ is the dimensionless time step of
the simulation. The superscript “+” represents that the quantity is nondimensionalized by uτ and ν.

Ra Nx × Ny � Pr Nu �t+

108 512 × 256 2 1 26.1 0.1

II. DATA GENERATION

A. 2D Rayleigh-Bénard flow

In the Rayleigh-Bénard flow case, the governing equations with incompressibility condition can
be expressed as

∂u
∂t

+ u · ∇u = − 1

ρ
∇p + ν∇2u + Fb, (2)

∇ · u = 0. (3)

As for the temperature field, an advection-diffusion equation is applied as

∂T

∂t
+ u · ∇T = κ∇2T , (4)

where u, p, ρ, T , ν, κ , and t represent velocity vector, pressure, density, temperature, kinematic
viscosity, thermal diffusivity, and time, respectively. The Boussinesq approximation is applied for
this flow and the body force Fb is taken to only depend linearly on the temperature and to be in the
direction of gravity. Besides, the possible dependencies of density, viscosity, and thermal diffusivity
on temperature are ignored, so these parameters are considered constant.

The simulation is carried out by performing DNS using a well-validated second-order finite-
difference code [11,42]. One important control parameter of Rayleigh-Bénard flow is the Rayleigh
number, i.e., Ra = αg�L3/(νκ ), where α is the thermal expansion coefficient, g is the acceleration
of gravity, and � is the temperature difference between the upper and bottom surface with a depth
L. The no-slip and constant temperature boundary conditions are applied for the bottom and top
plates, and periodic boundary condition is assigned to the horizontal direction. The details of this
case are listed in Table I. More information on the simulation of Rayleigh-Bénard flow can be found
in these papers [11,43].

In this case, 13000 snapshots are generated and collected, where the data collection time step
(�t+

c ) is equal to simulation �t+. Among the 13000 snapshots, the first 9000 snapshots are used
as training data, while the rest 3000 snapshots are used to test the trained model. To save the
computational expense, all the data are interpolated to reduce the resolution from 512 × 256 to
256 × 128. Besides, the dissimilarity between training and testing data has been evaluated by
comparing the same number of snapshots in every eddy turnover period. Thus, the testing data
is valid.

B. Turbulent channel flow

In the turbulent channel flow case, the momentum equation for an incompressible viscous fluid
is expressed as

∂u
∂t

+ u · ∇u = − 1

ρ
∇p + ν∇2u. (5)

The open-source CFD finite-volume code OPENFOAM-5.0x is applied to perform the quasi-DNS
calculations. For convenience, the term DNS is used in the next sections of the paper. As mentioned
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TABLE II. Simulations parameters of two turbulent channel flows. L and N are the domain dimension and
the number of grids. The superscript “+” represents that the quantity is nondimensionalized by uτ and ν. �y+

w

and �y+
c are the spacing near the wall and at the center of the channel.

Reτ Lx × Ly × Lz Nx × Ny × Nz �x+ �z+ �y+
w �y+

c �t+

180 4πδ × 2δ × 2πδ 256 × 128 × 256 8.831 4.415 0.63 4.68 0.113
395 4πδ × 2δ × 2πδ 385 × 257 × 385 12.553 6.277 0.541 5.115 0.023
550 4πδ × 2δ × 2πδ 512 × 336 × 512 13.492 6.746 0.401 5.995 0.030

earlier, the current study has used three different friction Reynolds numbers, i.e., Reτ = uτ δ/ν =
180, 395, and 550, where uτ is the friction velocity, and δ is half of the channel height. The detailed
simulation parameters of each Reτ are listed in Table II. The periodic boundary condition is used
in the streamwise (x) and spanwise (z) directions. The no-slip boundary condition is applied to
the upper and lower walls of the channel. Moreover, the obtained turbulence statistics have been
validated by comparing them with the results from Kim et al. [2] and Moser et al. [3].

We use the pressure implicit split operator algorithm to solve the coupled pressure momentum
system. We discretize the convective fluxes using a second-order accurate linear upwind scheme.
Additionally, all the discretization schemes employed in the simulations, including convective
fluxes, have second-order accuracy. We maintain the maximum Courant-Friedrichs-Lewy (CFL)
number below 1 during the simulations to ensure stability.

The 2D data of a y-z plane from the 3D channel flow domain are collected. 10000 snapshots
of flow velocity and pressure fields are obtained from channel flows at Reτ = 180 and 550, where
the �t+

c to collect data is ten times as the simulation �t+. Among the 10000 snapshots, the front
9000 snapshots are used as training data, while the remaining 1000 snapshots are used as test data.
Meanwhile, 1000 snapshots of channel flows at Reτ = 395 are obtained to do the interpolation test.
The data of the flow at Reτ = 395 and 550 are interpolated to match the grid size of the DNS data
of the flow at Reτ = 180, which is 128 and 256 in y and z directions, respectively. By applying
this data processing technique, we can ensure that the flow data at all three Reynolds numbers are
suitable inputs for the model.

C. Data nondimensionalization

All the flow field parameters and time used in this study are made in nondimensional form.
First, velocity is nondimensionalized using friction velocity uτ , represented as U + = U/uτ . The
temperature T in the Rayleigh-Bénard case is nondimensionalized by T + = T/Tτ , where Tτ =
−κ∂y〈T 〉x,t |y=0/uτ is a characteristic temperature scale like the uτ for the velocity [44] and Tb is
the bottom plate temperature. The pressure p in the channel flow case is nondimensionalized by
density ρ and uτ : p+ = p/(ρu2

τ ). The dimensionless wall-normal direction distance y+ is defined as
y+ = (yuτ )/ν.

Moreover, the nondimensionalization of time is represented by several forms in this work. For
the Rayleigh-Bénard flow case, the cycle time is defined as Tcycle = N/40, where N is the number of
snapshots and 40 means one cycle includes 40 snapshots. Thus, the Rayleigh-Bénard data’s period
is Tcycle = 300. For the channel flow case, flow-through time Tf t is defined as Tf t = tUcenter/Lx =
t/4π , where Lx is the domain length in the x direction, Ucenter is the velocity along the center line.
However, for the unified representation of both Rayleigh-Bénard flow and channel flow cases, we
use the t+ to represent dimensionless time expressed as t+ = tu2

τ /ν.
The detailed information of all the data sets is summarized in Table III, where data collection

interval time �t+
c , number of snapshots, available parameters Pa, and unavailable parameters Pu of

various cases are listed.
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TABLE III. Information of data sets.

Number of snapshots

Case �t+
c

Collected
data

Training
data Test data

Interpolation
test data

Available
parameters Pa

Unavailable
parameters Pu

Rayleigh-
Bénard flow
Channel flow at

0.1 13000 10000 3000 0 u, v T

Reτ = 180 1.13 10000 9000 1000 0 v, w u, p
Channel flow at
Reτ = 395 0.23 1000 0 0 1000 v, w u, p
Channel flow at
Reτ = 550 0.3 10000 9000 1000 0 v, w u, p

III. METHODOLOGY

A. M-GAN

GAN, developed by Goodfellow et al. [35], has been successfully applied to tackle the image
generation problem. Subsequently, based on the traditional GAN, Ledig et al. [37] and Wang
et al. [38] proposed SRGAN and ESRGAN, respectively. Generally, ordinary GAN is unsupervised
learning where the adversarial loss dominates the training process. However, SRGAN and ESRGAN
integrate both supervised and unsupervised learning. SRGAN and ESRGAN have both supervised
and unsupervised loss (adversarial loss), which can guarantee the target prediction or reconstruction
is more accurate. Besides, ESRGAN has deeper and more complicated layers with a powerful
ability to capture or reconstruct features of image data. Thus, ESRGAN performs more excellently
in recovering high-resolution images from multiple images. The turbulent flow field has complex,
multiscale, and chaotic features, making reconstructing and predicting turbulent flows more difficult.
But, in the turbulence field, ESRGAN has proven its capability to reconstruct the super-resolution
data of turbulent flows [28–30]. Considering the previous great mapping ability of ESRGAN
for resolution reconstruction, this study intends to develop the M-GAN to map some flow field
parameters to other parameters.

Like the traditional GAN, M-GAN comprises two parts, i.e., generator (G) and discriminator
(D). As shown in Fig. 1(a), G mainly contains deep convolutional neural networks (CNNs)-based
multilayers termed residual in residual dense blocks (RRDBs) [45]. The subelements of RRDBs
are dense blocks (DBs) consisting of convolutional and leaky ReLU activation function layers. Skip
connection is applied in RRDBs and DBs to avoid vanishing gradient. In addition, G comprises
a convolution-pooling part (CPP) following the input and a multiscale part (MSP) preceding the
output. The CPP module includes several convolutional and max pooling layers that extract input
data information and compress the data size. Conversely, the MSP module uses upsampling layers
and convolutional layers with various-sized filters to extract information from the output of RRDBs
and construct the output data. More details of CPP and MSP are listed in Tables IV and V,
respectively. Besides, the label information generator (LIG) is added to the input of G. LIG is used in
specific situations, such as v and w are the input, and u or p are the output. Note that LIG can provide
information to G for determining which parameters to output. Table VI shows the detailed structure
of LIG. The label is passed into a dense layer to generate label information. After reshaping, the
label information is concatenated to pa and input into the next process. Notably, the use of LIG is
optional. Sometimes LIG can be neglected when the outputting only includes one parameter in Pu.
Figure 1(b) shows the detailed structure of D. The major component of D is CBL, including three
different layers, i.e., convolutional, batch normalization, and LReLU activation function layers.
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FIG. 1. Architecture of M-GAN: (a) generator and (b) discriminator, where LIG is the label information
generator, CPP is the convolution-pooling part, RRDBs is the residual dense blocks, MSP is the multiscale
part, and CBL is the convolutional-batch normalization-LReLU integrated layers.

The overall algorithm is described as follows. First, Pa and label information (here, we assume
to have the label information) are input to G. The generated unavailable parameters (p′

u) are
obtained from the output of G. Then, both Pu (real one) and P′

u (generated one) are fed into D.

TABLE IV. CCP structure.

Type of layers Shape

Input (Pa) (128, 256, 2)
Conv2D.(3, 3) (128, 256, 56)
MaxPooling(2, 2) (64, 128, 56)
Conv2D.(3, 3) (64, 128, 56)
MaxPooling(2, 2) (32, 64, 56)
concat (Output of last layer and LIG) (32, 64, 64)
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TABLE V. MSP architecture.

First branch Second branch Third branch

Conv2D.(3, 3) Conv2D.(5, 5) Conv2D.(7, 7)
UpSampling(2, 2) UpSampling(2, 2) UpSampling(2, 2)
Conv2D.(3, 3) Conv2D.(5, 5) Conv2D.(7, 7)
LeakyReLU LeakyReLU LeakyReLU
UpSampling(2, 2) UpSampling(2, 2) UpSampling(2, 2)
Conv2D.(3, 3) Conv2D.(5, 5) Conv2D.(7, 7)
LeakyReLU LeakyReLU LeakyReLU

Add (first branch, second branch, third branch)

The nontransformed discriminator value DRa is calculated from the output of D, which is
formulated as

DRa(Pu, P′
u) = σ (C(Pu) − EP′

u
[C(P′

u)]), (6)

DRa(P′
u, Pu) = σ (C(P′

u) − EPu [C(Pu)]), (7)

where σ is the sigmoid function, and E is the average calculating operator. Similar to ESRGAN,
D is designed to predict the probability that Pu is relatively more realistic than P′

u. Using Eqs. (6)
and (7), the discriminator loss LRa

D and adversarial loss LRa
G are calculated. The formulation of the

discriminator loss (LD) is expressed as

LD = LRa
D = −EPu [ln(DRa(Pu, P′

u))] − EP′
u
[ln(1 − DRa(P′

u, Pu))]. (8)

Besides, the adversarial loss is expressed as

LRa
G = −EPu [ln(1 − DRa(Pu, P′

u))] − EP′
u
[ln(DRa(P′

u, Pu))]. (9)

As mentioned before, D predicts the probability that the Pu is relatively more realistic than the P′
u

in the training process. When Pu is more realistic than P′
u, DRa(Pu, P′

u) tends to be 1 and DRa(P′
u, Pu)

tends to be 0. Thus, LRa
D will decrease and tend to be 0. Inversely, G plays a role in generating more

realistic P′
u tending to be similar to Pu. In this situation, DRa(Pu, P′

u) will decrease from 1 to 0, and
DRa(P′

u, Pu) will increase from 0 to 1, which makes LRa
G tend to be 0. The above description is the

adversarial process between G and D. In this process, G and D compete with each other. Meanwhile,
they are also promoted mutually.

Although the adversarial loss can guide the G to generate the targeting results, it is still insuf-
ficient for G to generate accurate results. Herein, in addition to adversarial loss, the loss function
of G (LG) contains some extra parts, i.e., pixel loss (Lpixel), perceptual loss (Lperceptual). Lpixel is
the pixel-based error, which is calculated by comparing the value difference between Pu and P′

u.
Different from Lpixel, Lperceptual is the error between the features of Pu and P′

u, which are extracted by
the feature extractor (FE). Regarding the original ESRGAN, VGG19 [46], a very deep convolutional
network, is used as FE. However, VGG19 is designed to process image data with three channels,
i.e., RGB. In other words, VGG19 can only receive the flow data with three components like u, v,

TABLE VI. LIG structure.

Type of layers Shape

Input (label inf.) (1)
Dense (32 × 64 × 8)
Reshape (32, 64, 8)
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FIG. 2. Architecture of the AE-FE.

and w. In this study, Pu and P′
u only contains one component, so applying VGG19 to extract features

is unsuitable. This study develops an autoencoder-based DL algorithm as a FE (AE-FE) to replace
VGG19. FE is a pretrained model using Pu data. As shown in Fig. 2, after the Pu are input the
AE-FE, various features data with different sizes are output from several convolutional layers. The
above extra loss terms are computed using the mean-squared error (MSE). The total loss function
of the G is expressed as

LG = LRa
G + λLpixel + Lperceptual, (10)

where, λ is the coefficient used to balance the magnitude of various loss terms, which is set to be
1000.

This study uses the open-source library TENSORFLOW 2.3.0 to implement the DL model. The
customized sample PYTHON code for the proposed M-GAN is available online [47].

B. Training and testing of M-GAN

For the training process of the 2D Rayleigh-Bénard flow case, the input data, i.e., Pa are velocity
components u and v. Meanwhile, the target data, i.e., Pu is temperature T . First, u and v are input
into G to output P′

u, with a batch size of 16. Then, generator loss is calculated using Pu and P′
u based

on Eq. (10). The discriminator loss is calculated by Eq. (8) through Pu and P′
u. After computing the

losses, the optimization algorithm updates the weights of both G and D to minimize losses during
the training period. The adaptive moment estimation (Adam) algorithm is used in this study for
optimization [48]. In addition, the target data, Pu, is normalized using the min-max normalization
function with a range of 0–1 to enhance the training performance. After training, the u and v values
in the test data set are fed into trained M-GAN to generate predicted T (P′

u), which is depicted in
Fig. 3.

In the training process of the turbulent channel flow case, the input data Pa comprise wall-normal
velocity v and spanwise velocity w, while the target data Pu consist of the streamwise velocity u and
pressure p. For predicting u, a label of 0 is input into LIG, whereas a label of 1 is used for predicting
p. Here, the predicted u and v are termed P′

u. In contrast to the 2D Rayleigh-Bénard flow case, we

M
-G

A
N

Input u

Input v

+
Output T

FIG. 3. Schematic of the 2D Rayleigh-Bénard flow case.
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Output u
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FIG. 4. Schematic of the channel flow case.

train the M-GAN using both channel flow data sets at Reτ = 180 and 550 together. First, v and w

are input into G to generate P′
u with a batch size of 16. Then, Pu and P′

u are used to computed the
generator loss through Eq. (10). At the same time, the discriminator loss is yielded based on Pu,
P′

u, and Eq. (8). After calculating losses, the Adam optimizer changes the weights of G and D to
decrease losses while the model is being trained. The data normalization strategy is also used here to
make the range of Pu within 0 and 1. After training, the validation is made to check the performance
of the trained M-GAN using test data. As shown in Fig. 4, we input v and w from channel flow and
the corresponding label into the trained M-GAN to predict the corresponding u or p.

Here, the channel flow data at Reτ = 395 mentioned above never attend the training process
of M-GAN, and they are used to evaluate the interpolation ability of M-GAN. The v and w from
channel flow at Reτ = 395 and label are input into the M-GAN trained by channel flows at Reτ =
180 and 550 to predict the u or p. Here, if the M-GAN trained by channel flows at Reτ = 180
and 550 could also predict the unavailable parameters of channel flow at Reτ = 395 from its v and
w, it could be proved that the proposed M-GAN has good interpolation ability. In other words, the
M-GAN might be appropriate for all the channel flows at a range of Reynolds numbers (Reτ = 180–
550) to predict their unavailable parameters. The verification of the instantaneous and statistical
results from all the above cases will be presented in due course.

IV. RESULTS AND DISCUSSION

A. 2D Rayleigh-Bénard flow

The capability of M-GAN is examined in this section for the case of 2D Rayleigh-Bénard
flow. Figure 5 shows the predicted instantaneous temperature field from the mapping of velocity
components using M-GAN. Additionally, the error contours are plotted to show the absolute error
(ε1) between DNS and predicted results. The error is calculated as follows:

ε1 = |αDNS − αM-GAN|, (11)

where, αDNS and αM-GAN represent the DNS data and predicted results from M-GAN, respectively.
Additionally, | | is the absolute value function.

From these instantaneous temperature contours, we can find that all the detailed features of
predicted results using M-GAN are consistent with the corresponding DNS data. Additionally,
the error between DNS and predicted results is less than 0.4 in the most areas of error contours.
However, the error is relatively large in some areas where the Rayleigh-Bénard convection are
located.

Moreover, the mapping ability of M-GAN is further validated by plotting and comparing the
statistical results from the predicted and DNS data. The average temperature profile along the wall
unit y+ and the probability density function (PDF) are plotted in Fig. 6. All the predicted results
show commendable agreement with the results obtained from DNS data indicating that M-GAN
can map the available parameters u and v to unavailable parameter T of the 2D Rayleigh-Bénard
flow.
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FIG. 5. Predicted instantaneous temperature field of the 2D Rayleigh-Bénard flow case.

Although the results show that M-GAN can work well for the RB flow case, the RB flow case
still cannot sufficiently verify the mapping ability of M-GAs, because Rayleigh-Bénard flow does
not have very complex and chaotic behavior at a low Rayleigh number (Ra = 108). Thus, the next
section will illustrate a more comprehensive verification using turbulent channel flow data.

B. Turbulent channel flow

In this section, the mapping capability of M-GAN for taking the available parameters v and w

to unavailable parameters u and p is examined. Figures 7 and 8 show the predicted instantaneous
streamwise velocity and pressure fields of the turbulent channel flow at Reτ = 180 and 550. The
predicted results of both cases agree well with the related DNS results, where most fluctuating
features of predicted results are consistent with the DNS data. Moreover, the absolute error contours
calculated by Eq. (11) are also plotted in these figures. Through observation by comparing the results
based on different parameters and Reτ , we can find that the results of channel flow at Reτ = 180
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FIG. 6. Statistical results of the 2D Rayleigh-Bénard flow case: (a) average temperature profile; (b) proba-
bility density function of temperature field.
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FIG. 7. Predicted instantaneous streamwise velocity and pressure fields of the turbulent channel flow at
Reτ = 180.

have more accuracy as compared to the results of the flow at Reτ = 550. Besides, when comparing
the results from the same channel flow case, the predicted u field is better than the results from
p. Figure 9 also indicates this observation, where root-mean-square (RMS) velocity and pressure
fluctuations (u+

rms and p+
rms) are plotted. The reason for that could be attributed to the fact that

pressure fields are more chaotic than streamwise velocity fields, and channel flow at Reτ = 550
is more complicated than the one at Reτ = 180.

Figure 10 shows the probability density function (PDF) plots of the u and p fields. Note that
a larger probability means that the parameter magnitude appears more frequently and dominates
the flow field to a greater extent. The PDF of predicted velocity and pressure fields can basically
match the reference results. However, the results obtained from channel flow at Reτ = 550 show less
accuracy than the results from channel flow at Reτ = 180. At the same time, the deviation shown in
PDF(p) is much larger than the one in PDF(u), which is consistent with the previous discussion in
the first paragraph of this section.

In Figs. 11 and 12, the spanwise energy spectrum of u and p [E+
uu(k+

z ) and E+
pp(k+

z )] at various
wall distances are plotted to evaluate the ability of M-GAN to predict the u and p fields with
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FIG. 8. Predicted instantaneous streamwise velocity and pressure fields of the turbulent channel flow at
Reτ = 550.

realistic behavior. In these two figures, the results of E+
uu(k+

z ) have more accuracy than the results of
E+

pp(k+
z ). Moreover, with the y+ increasing, the deviation of the energy spectrum also increases.

This is consistent with previously discussed instantaneous contours and RMS results. Another
interesting thing observed from the energy spectrum results is that in the flow at Reτ = 180, the
predicted energy in high wave numbers is higher than the DNS results. On the contrary, the predicted
energy in high wave numbers is mostly lower than the DNS results for the channel flow case at
Reτ = 550.

With the above discussion, we can observe that the M-GAN can predict the unavailable pa-
rameters from the corresponding available data based on flow data used for training. However, the
interpolation ability of the model still needs to be further investigated, in other words, whether the
model can work in the channel flow case at a Reynolds number between Reτ = 180 and 550 or
not. Regarding this issue, a channel flow at Reτ = 395, which never joins the training, is used for
the interpolation ability test. Same as the previous operation, v and w are regarded as available
data to predict u and p using pretrained M-GAN trained by the data of channel flows at Reτ = 180
and 550.
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Reτ = 180.

Figure 13 shows the predicted instantaneous streamwise, pressure fields and the absolute error
of the channel flow at Reτ = 395. Moreover, Fig. 14 shows the statistical results of RMS velocity
and pressure fluctuations. Although there are larger errors than in previous results, especially the
p field cannot be predicted well, the results still are acceptable. Generally, most of the features of
flow fields can be constructed and u+

rms has a relatively good agreement with the DNS result. This
indicates that the proposed M-GAN has a good interpolation ability to work successfully in a case
different from the training data set. In other words, M-GAN can learn the mapping function between
Pa and Pu.

Furthermore, the consistency among DNS v, DNS w, and predicted u of channel flow cases is
verified by computing the continuity equation [Eq. (12)] using these parameters. All the computing
results of channel flows at various Reynolds numbers approximate 0, indicating the predicted
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Reτ = 550.

parameter is physically consistent with the DNS parameters. Ultimately, all the results will be
summarized through an error analysis computed using L2-norm relative error

∇ · u = ∂upred.

∂x
+ ∂vDNS

∂y
+ ∂wDNS

∂z
≈ 0, (12)

ε2 = 1

N

N∑

n=1

∥∥αDNS
n − αM-GAN

n

∥∥
2

‖αDNS
n ‖2

× 100%, (13)

where, αDNS and αM-GAN represent the DNS data and predicted results from M-GAN. As observed
from Fig. 15, the Rayleigh-Bénard flow case has a minimum error of around 3%. The smallest error
indicates that T is easier to predict from u and v in the 2D Rayleigh-Bénard flow case because of the
less chaotic and more periodic behavior the 2D Rayleigh-Bénard flow has compared to all channel
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FIG. 13. Predicted instantaneous streamwise (a) velocity and (b) pressure fields of the turbulent channel
flow at Reτ = 395.
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flow cases. As expected, the relative error values of both u and p for the interpolating channel
flow case at Reτ = 395 are maximal. Furthermore, the truth that pressure field and higher Reynolds
number case are more difficult to reconstruct than streamwise velocity filed and lower Reynolds
number case is proved by analyzing the Fig. 15.

V. CONCLUSIONS

We proposed an efficient deep-learning-based model, namely, M-GAN to predict unavailable
flow parameters from existing ones. Two cases of classical fluid flows were used to validate the
performance and interpolation ability of M-GAN.

First, the 2D Rayleigh-Bénard flow was used as a demonstrating case to show the capability of
M-GAN for mapping available parameters u and v to unavailable parameters T . In this case, the
results indicated that the M-GAN could indeed predict the temperature field of the 2D Rayleigh-
Bénard flow from its velocity field.

Then, two turbulent channel flows at Reτ = 180 and 550 were used together to train M-GAN
and validate the predicting performance of M-GAN. In this case, wall-normal velocity v and
spanwise velocity w were regarded as available data and passed into M-GAN to predict unavailable
parameters that are streamwise velocity u and pressure p. Here, LIG was applied to help M-GAN
decide which parameter (u or p) should be output when the input layer received the same v and
w. The prediction’s instant contours and turbulence statistics were exhibited and compared to DNS
data. The results illustrated that M-GAN successfully predicted u and p from the corresponding
v and w in both turbulent channel flow cases. However, the pressure field and the flow fields
of the channel flow at Reτ = 550 were relatively more difficult to be predicted because of their
more chaotic turbulence characteristics. Finally, turbulent channel flow at Reτ = 395, which was
never used to train the M-GAN, was employed to test the interpolation ability of M-GAN. As the
results showed, the pretrained M-GAN, which was based on the training data set of channel flows
at Reτ = 180 and 550, also could predict the unavailable parameters u and p from v and w from
channel flow data at Reτ = 395. Thus, it was proved that M-GAN learned the mapping law from
v and w to u and p of the channel flows at a range of Reynolds numbers (Reτ = 180–550). In
other words, M-GAN showed a good interpolation ability for a specific range of Reynolds numbers.
In conclusion, this paper has shown that M-GAN can predict unavailable flow parameters from
existing ones, i.e., velocity fields. Besides, with good interpolation ability, M-GAN can work, even
for turbulent flows with a range of Reynolds number.

The data that supports the findings of this study are available within this paper.
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