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Observations from various missions to Jupiter and Saturn showed that temperature of
heavy-ion plasma contained in expanding discs around planets is increasing with radial
distance. Magnetospheres of Jovian planets are successfully heating ions in a plasma fluid
and magnetic field system. Turbulent fluctuations were suggested as a plasma heating
mechanism. Suitability of turbulence to heat heavy-ion dense plasma and the source of
turbulent fluctuations in Jupiter’s magnetosphere is investigated. Relation between ion
velocity variations and magnetic field fluctuations is derived from magnetohydrodynamic
principles. This is then used to obtain turbulent power density contained in plasma fluid
and magnetic field. Energy cascade in magnetohydrodynamic and kinetic subranges in
different mediums is demonstrated. Measurements from magnetometer instrument on Juno
mission to Jupiter are used to observe turbulent fluctuations in the magnetic field and to
infer dynamics in plasma fluid. Extensive radial map of turbulent power density in Jupiter’s
magnetosphere inside and outside of the plasma disk is presented.

DOI: 10.1103/PhysRevFluids.9.024602

I. INTRODUCTION

Jupiter’s magnetosphere is a natural laboratory with highly dynamic plasma fluid and magnetic
field system. Volcanic activity on Jupiter’s moon Io introduces neutral gas into planet’s magneto-
sphere at the rate of about 1 ton/s. Most of neutrals are ionized and are picked up by the planet’s
strong magnetic field and then move around the planet. Flowing plasma consisting mostly of heavy
sulfur and oxygen ions expands radially forming a plasma disk. Observations on various missions to
the giant planet showed that Jupiter’s plasma disk expands nonadiabatically. Temperature of plasma
is increasing with increase in radial distance. Jupiter’s magnetosphere contains within a mechanism
of heating plasma. One suggestion for a process of increase in ion temperature is heating of plasma
fluid with turbulent fluctuations.

Turbulent power is introduced to the system at the stirring scale. It is then used to generate smaller
and smaller eddies. The flow of energy is local and one way, meaning energy cascades down from
larger eddies with lower frequencies to smaller eddies with higher frequencies without jumping over
the frequency range [1]. Locality of energy transfer means that only the state of neighboring scales
is relevant and information of stirring mechanism is eventually lost down the frequency range. This
then implies some commonality of turbulent flow in different systems.

Power density in turbulent plasma flow is contained in two different mediums: variation of ion ve-
locities in plasma fluid and fluctuations of the magnetic field. At low frequencies motion of particles
is governed by MHD principles where variation in ion velocities is associated with magnetic field
fluctuations. Power spectrum in this frequency subrange decays at roughly Kolmogorov rate ∝ k−5/3

or ∝ f −5/3 in frequency domain. In the kinetic subrange variations in ion velocities and magnetic
fluctuations disassociate. In this subrange spectral index changes, resulting in a steeper power-law
decay. These two subranges are separated by frequency of gyration of ions in the magnetic field,
which is a significant marker in plasma fluid power spectrum. Aptness of turbulent fluctuations to
heat plasma fluid depends on the ability of energy in ion velocity variations to cascade from larger
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fluctuations in MHD subrange in to kinetic subrange so that eventually ion motion would look like
temperature.

Power spectrum analysis of the time series was used to study turbulent dynamics in three-
dimensional (3D) hybrid simulations to observe ion heating in Saturn and Jupiter magnetospheres
[2]. A weak turbulence model was used to examine magnetic fluctuations in Jupiter’s plasma disk
from Galileo magnetometer measurements [3].

In this paper power density in turbulent cascade is examined to study plausibility of turbulence
as a plasma fluid heating mechanism. Magnetometer measurements from Juno mission are used to
observe turbulent processes in Jupiter’s magnetosphere. More physically relevant model is used to
describe power density in turbulent plasma flow. Relation of ion velocity variations and magnetic
field fluctuations are derived in Sec. II. Energy cascade in ion fluid and magnetic field in MHD and
kinetic subranges is discussed in Sec. IV. Turbulent power density is derived in Sec. V. Turbulent
power observations in Jupiter’s magnetosphere are presented in Sec. IX. Discussion is in Sec. X.

II. MAGNETOHYDRODYNAMIC MOMENTUM RELATION

In this work turbulence is modeled as a superposition of shear Alfvén waves. Magnetic field
topology is assumed to be a steady, homogeneous main magnetic field with vanishing magnetic
stress B0, without external pressure waves and a steady-state oscillation shear Alfvén wave counter-
propagating parallel to the direction of the main field δB⊥ = δB⊥eik‖x−iωt . Then the total magnetic
field is B = B0 + δB⊥.

Starting with Cauchy momentum equation, here convective derivative of the momentum equals
to electromagnetic and pressure forces

D

Dt
(ρδv) = ρeE + J × B − ∇P.

In absence of external pressure waves ∂ρ

∂t = 0 and ∇ρ = 0. In addition, for steady-state oscillations
∇δv2 = 0. Expanding convective derivative and using Ampére-Maxwell equation for J

ρ
∂

∂t
δv − ρδv × W = ρeδE − 1

μ0
B × (∇ × B) + ε0B × ∂

∂t
δE − kB

mi
ρ∇T, (1)

where E = δE is electric field induced by magnetic field fluctuations, W is vorticity of ion fluid
flow, ρ is mass density, and ρe is charge density. For now ∇T is retained for further discussion
below. Equation (1) can then be broken down in to ion motion perpendicular and parallel to the
main magnetic field

∂

∂t
δv⊥ − δv⊥ × W = e

mi
δE − 1

μ0ρ
B × (∇ × B) − iε0ω

ρ
B0 × δE (2)

∂

∂t
δv‖ = − iε0ω

ρ
δB⊥ × δE − kB

mi
∇T . (3)

Component of variation of velocity parallel to the main magnetic field is due to the radiation pressure
δB⊥ × δE term generated by magnetic field fluctuation and induced electric field.

Using oscillating form of inducted electric field δE = δEeik‖x−iωt , from Faraday’s law δE =
− ω

k‖
δB⊥ê′

⊥, where ê′
⊥ is a unit vector perpendicular to B0, δB⊥ plane. Magnetic force density term

in Eq. (2) can be expanded using identity − 1
μ0

B × (∇ × B) = 1
μ0

[B · (∇‖ + ∇⊥)]B − 1
2μ0

∇B2.
This can then be simplified by noting that since B0 · δB⊥ = 0 then for steady-state oscillations
the gradient of magnetic pressure vanishes 1

2μ0
∇B2 = 0. Also bear in mind that from assumptions

on the magnetic field (B0 · ∇‖)B0 = 0 and (δB⊥ · ∇⊥)B0 = 0. In addition from the chosen form of
δB⊥, (δB⊥ · ∇⊥)δB⊥ = 0. Then the time derivative of the fluid momentum in that direction equals
to the only remaining term of the magnetic stress (B0 · ∇‖)δB⊥ plus inductive terms. Equation (2)
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can then be written as

∂

∂t
δv⊥ − δv⊥ × W = −eB0

mi

ω

k‖

δB⊥
B0

ê′
⊥ + iv2

Ak‖
δB⊥
B0

− i
ω2

k‖

v2
A

c2

δB⊥
B0

.

Separating real and imaginary terms and assuming time oscillating form of velocity δv ∝ e−iωt

equation of motion can be solved for velocity vector component

δv⊥ = −v2
A

k‖
ω

δB⊥
B0

+ v2
A

c2

ω

k‖

δB⊥
B0

(4)

and vorticity term

δv⊥ × W = �g
ω

k‖

δB⊥
B0

ê′
⊥, (5)

where vA is Alfvén speed, c is speed of light, and �g is angular velocity of ion gyration in the
magnetic field (also unfortunately known as gyrofrequency).

Motion of ions parallel to B0 from Eq. (3) can be written as

∂

∂t
δv‖ = −i

ω2

k‖

v2
A

c2

(
δB⊥
B0

)2

ê‖ − kB

mi
∇‖T .

For steady-state oscillations this will apply uniformly along the main magnetic field so that this term
acts to increase ambient temperature rather than to generate temperature gradient. So with absence
of other pressure waves along the magnetic field ∇‖T = 0. Note that ∇‖ρ = 0 an ∂ρ

∂t = 0 still holds.
So that

δv‖ = v2
A

c2

ω

k‖

(
δB⊥
B0

)2

ê‖. (6)

In Jupiter plasma disk typically vA
c ∼ 10−2 so that in the MHD limit second term of δv⊥ is about

four orders of magnitude and δv‖ is four to six orders of magnitude smaller than the first term of
δv⊥. In that case neglecting δv‖ and second term in δv⊥ is a very reasonable approximation. The
motion of ions in MHD subrange then for all practical purposes become 1D oscillations associated
with local magnetic field variations. Heavy-ion motion of dense plasma fluid can then be summed
from magnetohydrodynamic momentum conservation as

δv⊥ = −v2
A

k‖
ω

δB⊥
B0

. (7)

Here note a negative sign in the ion velocity variation and magnetic field fluctuation relation. For
shear Alfvén wave model with dense heavy-ion plasma result in (7) is similar to what is found in
textbooks [4,5].

This picture, however, is different at very low densities when vA ∼ c. Then in MHD limit
second term δv⊥ and δv‖ become comparable to the first term in δv⊥. So the process of converting
shear motion of charged particles in to oscillating helixlike motion through inducted electric field
and radiation pressure could work for electrons or maybe even for lighter ions at low densities.
However, for dense heavy-ion plasma fluid frozen in condition kicks in and any transition become
indiscernible. The relation of different velocity components in the kinetic subrange is discussed in
more detail is Sec. VII.
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III. DISPERSION AND WAVE NUMBER RELATIONS

A. Dispersion relation

In this work dispersion relation of the form similar to [6]

ω2 = k2
‖v

2
A

[
1 +

(
3

4
+ Te

Ti

)
k2
⊥ρ2

i

]
is used. In this work turbulent power in heavy-ion plasma in presence of cold electrons is investi-
gated.

ω = ±k‖vA

√
1 + k2

⊥ρ2
i , (8)

where k⊥ is a wave number perpendicular to the main magnetic field and ρi is ion gyroradius.
Wave number k⊥ is estimated using Taylor approximation 2π f = k⊥v sin θvB [7]. Here θvB is the
angle between direction of the ion bulk velocity and the main magnetic field. In this estimate k⊥
is assumed to measure fluctuations that are mainly due to features moving past the instrument and
ignoring fluctuations that happen in the time it takes for plasma to pass the spacecraft. This form of
dispersion relation is consistent with shear Alfvén wave model derived in the reference frame of the
main magnetic field used above. Comparison of oscillation features in different reference frames
(spacecraft and plasma flow) is discussed in Ref. [8].

B. Wave number relation in different medium

Variations in ion velocities and fluctuations in magnetic field decouple in the kinetic subrange. It
is then very possible that relations k‖

k⊥
in different media have different forms. Wave number relation

due to variations in ion velocities is considered as

ki
‖

k⊥
∼ δv⊥

vA
= 1√

1 + k2
⊥ρ2

i

δB⊥
B0

(9)

and wave number relation in power density due to fluctuations of the magnetic field is

kB
‖

k⊥
∼ δB⊥

B0
=

√
1 + k2

⊥ρ2
i

δv⊥
vA

. (10)

These two equations are derived from magnetohydrodynamic relation [Eq. (7)] using dispersion
relation [Eq. (8)].

Dispersion relation for fluid in kinetic subrange can then be written in terms δv⊥ and k⊥ using
wave number relation [Eq. (9)] as

ωi = k⊥δv⊥
√

1 + k2
⊥ρ2

i ∼ k2
⊥δv⊥ρi ∝ k2

⊥. (11)

Dispersion relation in the field is then written using [Eq. (10)]

ωB = k⊥δv⊥
(
1 + k2

⊥ρ2
i

) ∼ k3
⊥δv⊥ρ2

i ∝ k3
⊥ (12)

so that oscillation rate and the rate of cascade of energy in kinetic subrange scales differently with
the wave number in different mediums.

IV. ENERGY CASCADE IN DIFFERENT SUBRANGES

A. Energy cascade in MHD subrange

The form of the relation of energy contained in the scale associated with a wave number is
inferred as a product of power laws of energy transfer rate and a wave number

Ek = Cεxky. (13)
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In MHD subrange k⊥ρi � 1 and ω ∼ k‖vA ∼ k⊥δv. Then characteristic oscillation time of the scale
l is τ ∼ l/δv⊥. Energy per unit mass contained in motion is E ∼ δv2

⊥. Energy transfer rate between
scales is ε ∼ E/τ . Distribution of energy in wave number is Ek = ∂E

∂k ∼ δv2
⊥l .

Expressing Eq. (13) in quantities associated with the scale

δv2
⊥l = C

(
δv2

⊥
δv⊥

l

)x

l−y,

where C is a dimensionless constant. Then

δv2
⊥l = Cδv3x

⊥ l−x−y.

Isolating power laws associated with individual variables then gives x = 2/3 and y = −5/3. In
MHD subrange energy spectrum S(k) cascades as ∝ k−5/3. This result is similar to what was
obtained by Kolmogorov using self-similarity argument based on the universality assumed for the
equilibrium range [9,10]. Note that spectrum index shallower than Kolmogorov cascade implies
wave number relation k‖

k⊥
∝ δvβ with β < 1.

B. Energy cascade in kinetic subrange

In the kinetic subrange k⊥ρi � 1 so that ω ∼ k‖vAk⊥ρi. Energy per unit mass contained in fluc-
tuations is again written as E ∼ δv2

⊥. This is an oversimplified estimation used to gauge power-law
dependence. The energy in variations in plasma fluid and magnetic field system is contained in two
different medium. As motions of magnetic field and ions decouple the amount of energy contained
in fluctuations of the fluid and the field does not have to be the same. A more through treatment of
energy budget in fluid and field system is presented in Sec. V.

1. Kinetic subrange cascade in plasma fluid

Estimation of oscillation time in the kinetic subrange is more involved as fluctuations in plasma
fluid and magnetic field disassociate. If k‖

k⊥
∼ δv⊥

vA
then oscillation time can be estimated as τ ∼

l2/(δv⊥ρi ) [Eqs. (9) and (11)]. Then expressing Eq. (13) in quantities associated with the scale in
kinetic subrange.

δv2
⊥l = C

(
δv2

⊥
δv⊥ρi

l2

)x

l−y.

Here cyclotron radius ρi does not vary with change in the size of fluctuations. Simplifying for
quantities associated with the scale.

δv2
⊥l = C′δv3x

⊥ l−2x−y.

Note that C′ is no longer dimensionless. Then isolating power laws associated with individual
variables gives ∝ k−7/3 power-law decay of energy of ion fluid velocity variations in the kinetic
subrange.

2. Kinetic subrange cascade in magnetic field

On the other hand if k‖
k⊥

∼ δB⊥
B0

then oscillation time is estimated as τ ∼ l3/δv⊥ρ2
i [Eqs. (10) and

(12)]. Then expressing Eq. (13) in quantities associated with the scale in kinetic subrange.

δv2
⊥l = C

(
δv2

⊥
δv⊥ρ2

i

l3

)x

l−y.

So then a steeper decay of power spectrum in the kinetic subrange ∝ k−3 is expected. More likely
is that decoupling effect is gradual and power spectrum decay in the kinetic subrange gradually
changes from fluid like ∝ k−7/3 to field like ∝ k−3. Note that considering natural quantities δv⊥ and
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l associated with motion on the scale allows to gauge power-law dependence that otherwise would
not have been available using a dimensional analysis alone.

V. TURBULENT POWER DENSITY DERIVATION

A. Turbulent power density derivation

Turbulent power in dense heavy-ion plasma fluid flow is generated by variations in ion velocity
δv⊥ and perpendicular fluctuations of the magnetic field δB⊥. Total energy density is then

Etot = Ei + EB = 1

2
δv2

⊥ + 1

2

δB2
⊥

μ0ρ
. (14)

Substituting for δv⊥ from magnetohydrodynamic momentum conservation for shear Alfvén waves
[Eq. (7)] into (14).

Etot = 1

2

δB2
⊥k2

‖v
4
A

B2
0ω

2
+ 1

2

δB2
⊥

μ0ρ
.

Transfer rate of energy between different neighboring scales is [9] ε ∼ Etot
τ

∼ Etotω. Total power
density of the turbulent environment is then

q ∼ ρEtotω ∼ 1

2

δB2
⊥k2

‖v
4
A

B2
0ω

ρ + 1

2

δB2
⊥

μ0
ω.

Substituting dispersion relation [Eq. (8)] into turbulent power density then gives

q ∼ 1

2

δB2
⊥

B2
0

v3
Aki

‖
ρ√

1 + k2
⊥ρ2

i

+ 1

2

δB2
⊥

μ0
vAkB

‖
√

1 + k2
⊥ρ2

i . (15)

Here superscript on wave number ki
‖ and kB

‖ denotes different wave number relations in ion plasma
fluid and field in the kinetic subrange. Substituting wave number relation in different medium from
Eqs. (9) and (10) and using vA = B0√

μ0ρ
for the Alfvén speed turbulent power density is then written

as

q ∼ 1

2

δB3
⊥√

μ3
0ρ

k⊥
√

1 + k2
⊥ρ2

i

[
1 + 1(

1 + k2
⊥ρ2

i

)3/2

]
. (16)

Then in the MHD limit k⊥ρi � 1 so that

qMHD ∼ δB3
⊥√

μ3
0ρ

k⊥

the same as used in the turbulent heating model for Jupiter in Ref. [11]. In the kinetic subrange
k⊥ρi � 1 so that

qKAW ∼ 1

2

δB3
⊥√

μ3
0ρ

k2
⊥ρi.

1. Notes on q

Equation (16) is similar to the model used in Ref. [2] to calculate turbulent heating in the Kelvin-
Helmholtz simulation.

q′ ∼ 1

2

δB3
⊥k⊥√
μ3

0ρ

√
1 + k2

⊥ρ2
i

[
1 +

(
1

1 + k2
⊥ρ2

i

)(
1

1 + 1.25k2
⊥ρ2

i

)2
]
. (17)
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That equation was derived using form of Walen relation [12],

δv ∼ δvA

(
1

1 + k2
⊥ρ2

i

)1/2( 1

1 + 1.25k2
⊥ρ2

i

)
,

wave number relation
k‖
k⊥

∼ δB⊥
B0

,

and dispersion relation similar to Eq. (8). This set of equations, however, is inconsistent with
magnetohydrodynamic momentum relation [Eqs. (4) and (7)].

During the derivation of Eq. (17) in Ref. [2] q′ was divided by half in the kinetic subrange. This
was rationalized by turbulent power being mostly contained in the magnetic field and not in the
plasma fluid at frequencies higher than the gyrofrequency. This half, however, propagated and was
used in the entire range of frequencies in kinetic and in MHD subranges. Effectively turbulent power
in plasma fluid was ignored in the paper dedicated to turbulent heating of ions.

2. Effect of electron population on turbulent power density

In this work turbulent power cascade in heavy-ion dense plasma in presence of cold electrons
is investigated, which is a typical condition in magnetospheres of Jovian planets [13]. In principle
fluctuations in the magnetic field in a heavy-ion turbulent cascade would result in electron velocity
variations so that turbulent power is shared within two species. To more accurately describe particle
velocity variations a system of equations would need to be considered.∑

j

D

Dt
(n jmjδv j ) =

∑
j

n je jδE + J j × B − ∇Pj

1

μ0
∇ × B − ε0

∂

∂t
δE =

∑
j

J j,

where j is a particle species.
This study also shows that to accurately describe turbulent power density in different particle

species populations in all subranges, energy density relation

q = 1

2

∑
j

[
δv2

⊥ j + δv2
‖ j

]
ω jρ j + 1

2

δB2
⊥

μ0
ω j

should be used. Since turbulent power cascade is proportional to mass density, the contribution of
electron particle motion to the total power budget will be orders of magnitude below the contribution
of the ion fluid. The effect of electron motion on field fluctuations, however, needs to be more
carefully considered. Here the challenge is that electrons and heavy ions would have very different
gyrofrequencies.

In principle Te
Ti

� 1
k2
⊥( fg)ρ2

i
in dispersion relation would result in different scaling of ion velocity

variations and magnetic field fluctuations in both MHD and kinetic subranges. One consequence
of this is that frozen-in assumption then could no longer be made at any frequency. Observation
Te � Ti in magnetospheres of Jovian planets point to that perhaps the effect of turbulent cascade
in heavy-ion plasma and magnetic field system does not result in turbulent cascade in electron
population but rather manifests in a pulse like accelerations. This work, however, is outside the
scope of this paper and is a subject for future study.

B. Turbulent power density inside and outside of the plasma environment

Examination of balance of turbulent power density inside and outside of the plasma disk might
allow us to get an insight in the generating mechanisms of turbulent dynamics in Jupiter’s magne-
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tosphere. Energy cascade in the kinetic subrange is indicative of the turbulent plasma environment.
However, it should be possible to compare balance of turbulent power density in and out of the
plasma disk in MHD subrange. Using k‖

k⊥
∼ δv⊥

vA
∼ δB⊥

B0
in the MHD limit (k⊥ρi � 1) in Eq. (15)

q ∼ 1

2

δB3
⊥

B3
0

v′3
A k⊥ρ + 1

2

δB3
⊥

μ0B0
v′

Ak⊥. (18)

To allow for a smooth transition from inside of the plasma environment to the outside, a group

velocity of the wave is used v′
A = c/

√
1 + μ0ρc2

B2
0

.

So then as ρ → 0 and v′
A → c the contribution of turbulent power from plasma fluid goes to zero

and the total power becomes

q → 1

2
c
δB2

⊥
μ0

k‖ = S · k‖,

where S is a Poynting vector so that power density of the turbulent environment outside of the
plasma disk describes power contained in the wave packet moving along bending main magnetic
field.

VI. COUNTERPROPAGATING WAVES

Here the effect of counterpropagating waves on turbulent power in plasma fluid is described by
interaction of linearly polarized plain waves. Figure 1 shows three limiting cases that differ by the
angle between polarization vector. Primary effect of counterpropagating waves is that amplitudes of
superposition of δB⊥ and δE add and subtract asymmetrically. ‘

Expressing perpendicular, parallel velocity and vorticity in Eqs. (4), (3), and (5) in terms of δB⊥
and δE.

δv⊥ = −v2
A

k‖
ω

δB⊥
B0

+ ε0

ρ
B0 × δE

δv⊥ × W = e

mi
δE

δv‖ = ε0

ρ
δB⊥ × δE.

To emphasize the effect of counterpropagating waves limiting cases with similar amplitudes δB⊥1 ∼
δB⊥2 and no phase difference are considered.

A. Cases 1 and 2

In the first case superposition of waves with similar amplitudes results with δB⊥ = 2δB⊥1 and
δE → 0. Here δv⊥ × W → 0, δv‖ → 0 and δv⊥ = −v2

A
k‖
ω

δB⊥
B0

. This case is very similar to results

FIG. 1. Schematic of counter propagating fluctuations.
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gained for the heavy-ion dense plasma va � c discussed in Sec. II. Case 1 counterpropagating waves
results in doubling of amplitudes of oscillations of magnetic field and variation of ion velocities. In
this case correlation of ion velocities and field oscillations is expected in MHD subrange with a
dissociation of velocity variations and field oscillations in kinetic subrange. In this case power is
contained in the field in kinetic subrange for both dense and thin plasma fluids.

Case 2 with δB⊥1 ∼ δB⊥2 results in δB⊥ = √
2δB⊥1 and δE = √

2δE1. Notice that since su-
perimposed δB⊥ and δE are no longer perpendicular this results in δv‖ → 0, which is consistent
with cancellation of radiation pressure from two counterpropagating waves. Perpendicular velocity
variations and vorticity have the same form as in Eqs. (4) and (5) with same implications for
turbulent power in heavy-ion dense plasma fluid. Here it is important to note that phase difference in
this case would result in elliptical polarization [5] that in principle could contribute to ion velocity
variations and vorticity.

B. Case 3

Now that cases 1 and 2 are out of the way we can look at something that can be interesting. In the
third case counterpropagating waves with similar amplitudes cancel out δB⊥ terms, isolating and
doubling δE terms.

δv⊥ = −v2
A

c2

δE

B0
ê⊥

δv⊥ × W = e

mi
δE. (19)

So that in this case vorticity increases as well as perpendicular ion velocity variations in the kinetic
subrange.

In this case wave number relation in ion velocity variations has the form

ki
‖

k⊥
∼ δv⊥

vA
=

(
v2

A

c2

)
1

vA

δE

B0

and wave number relation in electric field variations has the form

kE
‖

k⊥
∼ − 1

vA

√
1 + k2

⊥ρ2
i

δE

B0
= 1√

1 + k2
⊥ρ2

i

(
c2

v2
A

)
δv⊥
vA

.

The dispersion relation for electric field fluctuations is then

ωE = k⊥
δE

B0
=

(
c2

v2
A

)
δv⊥k⊥.

Oscillation time is τ ∼ (v2
A/c2)l/δv⊥ so that in this case spectral index in the induced electric field

fluctuation is ∝ k−5/3 across the whole frequency range and no break is expected in superimposed
δE power spectrum. This is the consequence of δE = − ω

k‖
δB⊥ê′

⊥ form of relation and using
dispersion relation in Eq. (8) so that induced electric field fluctuations scale differently in different
subranges with respect to magnetic field fluctuations.

Total energy density Etot in the fluid and field system can then be expressed in terms of induced
electric field fluctuations δE as

Etot = 1

2

(
v2

A

c2

)2
δE2

B2
0

+ 1

2

k2
‖

ω2

δE2

μ0ρ
.
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Then turbulent power is

q ∼ 1

2

(
v2

A

c2

)2
δE2

B2
0

vAρki
‖
√

1 + k2
⊥ρ2

i + 1

2

δE2

μ0

kE
‖

vA

1√
1 + k2

⊥ρ2
i

.

This form is an equivalent of Eq. (15) for limiting case 3. Notice here the term that determines
dynamics in the kinetic subrange

√
1 + k2

⊥ρ2
i has changed the role in fluid and the field terms. Now

the turbulent power in the kinetic subrange is contained in the plasma fluid. Substituting for ki
‖, kE

‖ ,
and vA and combining we have

q = 1

2

δE3

B3
0

ρk⊥
√

1 + k2
⊥ρ2

i

[(
v2

A

c2

)3

+ 1

(1 + k2
⊥ρ2

i )3/2

]
.

The challenge is that during the turbulent cascade counterpropagating waves would need to
have opposite linear polarization over all frequency ranges from mixing scale through the kinetic
subrange. Realistically it is more likely that modes will be mixed with sporadic increases and
decreases of vorticity and perpendicular ion velocity variations in the kinetic subrange. In addition
counterpropagating waves with similar amplitudes will negate radiation pressure variations limiting
turbulent fluctuations to two dimensions.

VII. SCALING OF VELOCITY VARIATIONS, FIELD FLUCTUATIONS,
AND POWER IN MHD AND KINETIC SUBRANGES

In this work dispersion relation [Eq. (8)] was used. Energy in the power spectrum needs to be
conserved as it cascades from larger to lower scales in different subranges with different decay rates.
The form of dispersion relation above was chosen because it scales differently in MHD (k⊥ρi � 1)
and kinetic (k⊥ρi � 1) subranges. Note that in the MHD limit use of this choice of ω in (7) recovers
Walen relation.

Turbulent power contribution from plasma fluid flow and magnetic field varies in different
subranges. Interdependence of magnetic field fluctuations and ion velocity variations was shown
for heavy-ion dense plasma fluid in MHD subrange from magnetohydrodynamic principles. In
MHD limit fluctuations of ions in plasma fluid and magnetic field contribute equally to the turbulent
power density. In the kinetic subrange velocity variations of heavy ions and magnetic fluctuations
disassociate. Velocity variations scale as δv⊥ ∝ δB⊥ f −1. Contribution of turbulent fluid fluctuations
to the power budget decreases with increase in frequency. In the kinetic subrange heavy-ion
velocity variations rapidly decay and turbulent power is contained within magnetic field fluctuations.
Increase in the decay of magnetic fluctuations is compensated by a faster rate of energy transfer
between scales, so that amount of cascading energy is conserved. This way power density does not
scale with frequency.

Terms in Eqs. (4) and (6) that are due to induced electric field have opposite dynamics and scale
as ∝ δB⊥ f in the kinetic subrange. This implies that δE fluctuations are key to keeping turbulent
power in the plasma in kinetic subrange. These terms, however, are also proportional to ( vA

c )2 and
are only relevant in light particle, low-density plasma. Counterpropagating waves could be used to
emphasize superposition of electric field fluctuations and in principle allowing us to keep turbulent
power in the fluid. The difficulty is that mixed polarization of waves along the cascade will result in
sporadic increases and decreases of vorticity and ion velocity variations in the kinetic subrange.

Often in the literature correlation of magnetic field fluctuations and ion velocity variations is
assumed across the frequency range (critical balance argument) [14]. However, this study shows that
velocity variations scale as δv⊥ ∝ δB⊥ f −1 in the kinetic subrange and critical balance argument can
no longer be used.

On the other side of the spectrum is the estimate of velocity variations scaling and magnetic field
fluctuations using Ampere’s law [15,16]. Ampere’s law, however, describes the effect of moving
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FIG. 2. (a) Radial components of magnetic field time series. Blue line is the 200 s centered moving average
showing main direction of the magnetic field. Area outside dashed lines is a buffer necessary to populate
moving average sliding window. Buffer zones for consecutive sampling windows overlap with neighboring
sample time series to avoid data gaps. (b) Power spectrum of perpendicular fluctuations. (c) Calculated δB⊥
over sampled frequency range.

charge on the magnetic field. In order to describe the effect of magnetic field perturbations on the
moving charge, force equation has to be used [5]. Use of Ampere’s law results in δv⊥ ∝ lδB⊥
scaling across the frequency range, in MHD as well as kinetic subranges. Implying that ion velocity
variations do not correlate to magnetic field fluctuations at any frequency. This was then used to
estimate power spectrum cascade as ∝ k−7/3 of magnetic field fluctuations in the kinetic subrange,
which was then compared to the power spectrum in the fluid velocity variations while assuming
Kolmogorov τ ∼ l/δv cascade in the fluid at the same time.

VIII. MAGNETOMETER MEASUREMENTS

A. Magnetic field fluctuations

Magnetic field fluctuations in Jupiter’s magnetosphere were observed with magnetometer mea-
surements on Juno mission to Jupiter. Juno’s spacecraft polar orbit enable for comprehensive in
situ observations of turbulent activity in Jupiter’s night side magnetosphere inside and outside of
the plasma disk. Location of the magnetodisc is described in terms of centrifugal equator that is
derived from magnetic field topology of the tilted dipole and centrifugal forces on the plasma.
Latitude off the centrifugal equator latcent is calculated as in Ref. [17] and then distance from the
centrifugal equator is calculated as Zcent = r sin(latsysIII − latcent ) [8]. Where latsysIII is latitude in
planet’s rotating frame [18] and r is radial distance in Jupiter radii.

Time series of the magnetic field measured by Juno spacecraft [19] were analyzed in 10 min
window intervals with 1 s resolution [Fig. 2(a)]. Magnetic perturbations were observed in radial
Jupiter magnetic (VIP4) coordinates [18]. The main magnetic field B0(t ) was calculated from
moving average of the magnetometer time series (blue line in Fig. 2) [3]. Fluctuations of the
magnetic field were calculated as δB(t ) = B(t ) − B0(t ). Parallel perturbations of the magnetic field
were then found by δB(t )‖ = [δB(t ) · n̂(t )]n̂(t ) where n̂(t ) is a unit vector in the direction of B0(t ).
Perpendicular perturbations were then calculated as δB(t )⊥ = δB(t ) − δB(t )‖ [8].
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FIG. 3. Turbulent power profile as calculated by Eq. (16) (blue curve) and by Eq. (17) (red curve) from
δB⊥ sample in Fig. 2. Horizontal lines are average of power density across the frequency range to get a value
for the time series sample.

B. Power spectrum

Power spectrum is calculated from time series of δB⊥ components with continuous wave
transform using Morlet wavelet [20]

P( f ) = 2

N�t

N∑
i=1

�t |Wi(ti, f )|2.

Total power density was then calculated as a square root of sum of squares of power spectrum
of vector components [shown in Fig. 2(b)]. Perpendicular perturbation of the magnetic field in
frequency space is calculated from the power spectrum as (δB)2 = P( f ) f [Fig. 2(c)] [8,21,22]. Here
gyrofrequency is calculated as fg = qB

2πmi
. Break in the power spectrum was found by a subroutine

using slope fit to the expected power-law decay [8] independently from gyrofrequency [Fig. 2(b)].

IX. TURBULENT POWER IN JUPITER’S MAGNETOSPHERE

A. Turbulent power density in plasma disk

1. Turbulent power density profile across MHD and kinetic subranges

In this study it was observed that δB⊥
B0

k⊥
k‖

∼ 1. This implies that weak turbulence is not appropriate
to describe turbulent dynamics in Jupiter’s magnetosphere [3]. Turbulent power spectrum profiles
calculated by Eqs. q (16) and q′ (17) are shown in Fig. 3. Here ion gyroradius is calculated in
terms of the ion temperature ρi =

√
mikbTi

eB . Ion mass is an average of oxygen and sulfur masses.
Bulk plasma velocity v is calculated with corotation model [13]. Temperature T and density ρ are
taken from profiles in Ref. [13]. Figure 3 shows turbulent power density calculated across MHD and
kinetic subranges for time series sample in Fig. 2. Overall power density profiles are very similar.
Difference in the power of the denominator is not very noticeable on the log scale. A very common
feature in power spectrum density profiles is an increase in turbulent power near the break frequency.

Turbulent power density measurements inside Jupiter’s plasma disk are shown in Fig. 4. Range
chosen is in well defined plasma disk thoroughly covered by Juno’s orbit r ∈ [12, 40] RJ, Zcent ∈
[−2, 2] RJ over all sampled local time (azimuthal direction). Turbulent power for 10 min intervals is
calculated as in Fig. 3 with Eq. (16). The spread of measurements is about three orders of magnitude.
There is an increase of turbulent power towards the middle of the plasma disk Zcent ∈ [−0.5, 0.5] RJ

with maximum values higher by about an order of magnitude than in the rest of the Zcent range.
Comparison of turbulent power in MHD vs KAW subranges is shown in Fig. 5. The median

is qKAW

qMHD
∼ 0.7. In general calculated turbulent power density in different subranges are close to be
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FIG. 4. Turbulent power density inside plasma disk calculated with Eq. (16).

balanced, slightly underestimating power in the kinetic subrange. This is possibly due to not using

small ( v2
A

c2 ) terms of Eqs. (4) and (6) in turbulent power calculation.

2. Cases when break in power spectrum occurs near gyrofrequency

Turbulent waves traveling in the bulk velocity plain model was used to describe the role of gyro
and break frequencies in estimation of ion temperature in plasma flow [8]. Compressional and shear
wave modes are mixed inside Juptier’s plasma disk. Here magnetometer observations were used to
see if the effect described in Ref. [8] could be seen using a shear wave turbulence model [Eq. (16)].

A common feature in power spectrum density profiles is an increase in turbulent power near break
frequency of the power spectrum (Fig. 3). To demonstrate this an overplot of a subset of turbulent
power profiles is shown in Fig. 6. Profiles closer to the middle of the plasma disk are chosen in
r ∈ [12, 40] RJ and Zcent ∈ [−1, 1] RJ with calculated gyro and break frequencies [Figs. 2(b), 2(c),
and 3] similar to each other fg− fb

fg
< 1. For comparison purposes frequency was scaled by break

frequency and power density was scaled by the value of power density at the break frequency for
each sample. Curves are plotted opaque so that color shows density of over plotted power spectrum.

In this subset there is a peak of about an order of magnitude towards frequency of break in the
power spectrum. Moreover, in these cases turbulent power is overall higher in the kinetic subrange
than in MHD subrange. This demonstrates that oscillations near break and gyrofrequencies play an
important role in transferring energy to plasma fluid in Jupiter’s magnetosphere.

FIG. 5. Difference between turbulent power density calculated in MHD and kinetic subranges.
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FIG. 6. Overplot of turbulent power density profiles with fg− fb
fg

< 1.

B. Turbulent power density outside of the plasma disk

Turbulent power in nightside Jupiter’s magnetosphere calculated with Eq. (18) from magnetome-
ter measurements on Juno spacecraft are shown in Fig. 7. Turbulent power values are calculated in
MHD subrange from 10 min intervals and then averaged along all measured local time. In this study
break in the power spectrum is determined by a curve fitting routine independently from calculation
of gyrofrequency [Figs. 2(b), 2(c), and 3]. So as sampling moves from inside of the plasma disk to
the outside, power spectrum unbends and the full range of sampling frequencies is used as MHD
subrange.

Turbulent power density is distributed nonuniformly in Jupiter’s magnetosphere. Higher power
density measurements near the middle of the plasma disk (Figs. 4 and 7) point to that this is where
turbulent power is introduced. Energy is then transferred outside of the plasma disk with shear
Alfvén waves dissipating out of the system along the way. Figure 7 also shows some active areas
outside of the plasma disk. Equation (18) is sensitive to the estimate of ρ. In this a study model of
density distribution from Ref. [13] is used. If, however, there are pockets of plasma with increased
magnetic activity outside of the plasma disk, where it is not anticipated by the model, then these
areas will light up due to the overestimate of v′

A. A more thorough study in conjunction with plasma
instruments on Juno spacecraft can potentially point to transport mechanisms outside of the plasma
disk. This, however, is outside of the scope of this paper.

FIG. 7. Radial profile of turbulent power density in MHD subrange inside and outside of the plasma disk
calculated with Eq. (18).
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X. DISCUSSION

Turbulent oscillations were suggested as a mechanism for increase of plasma fluid temperature
in plasma disks of Jovian planets. In this study, the plausibility of heating of heavy-ion dense
plasma in presence of a strong magnetic field with turbulent oscillations was examined. Relation
of ion velocity variations and fluctuations in the magnetic field was derived for MHD and kinetic
subranges. This was then used to determine turbulent power density in the magnetic field and plasma
fluid system. Magnetometer data from Juno mission to Jupiter was used to demonstrate turbulent
power in MHD and kinetic subranges. Extensive map of turbulent activity in Jupiter’s night side
magnetosphere is presented.

In this work interdependence of ion motion variations with magnetic field fluctuations for
heavy-ion dense plasma in MHD subrange was shown from magnetohydrodynamic principles.
It was also demonstrated that in the kinetic subrange velocity variations and field fluctuations
disassociate. Heavy-ion velocity variations decay rapidly at frequencies higher than the gyrofre-
quency and turbulent power is mostly contained in fluctuations of the magnetic field. So that
critical balance argument [14] does not have a physical meaning at frequencies higher than the
gyrofrequency.

This study shows that perpendicular field fluctuations generate ion velocity variations parallel to
the main magnetic field through radiation pressure by inducing perpendicular electric field oscilla-
tions. These variations, however, scale as ( vA

c )2 so that perpendicular magnetic field variations can
generate helixlike oscillations in electron or maybe even in light-ion plasma, however, in heavy-ion
dense plasma in MHD subrange parallel velocity variations generated by radiation pressure are
negligible.

Interestingly the decay dynamics of δv‖ are opposite to that of δv⊥. Parallel velocity variations
decay more rapidly in the MHD than in the kinetic subrange. In fact in the kinetic subrange once
frozen-in approximation no longer applies, decay in motion due to radiation pressure with increase
in frequency is comparable to decay of shear motion in the MHD subrange. In case of shear Alfvén
wave turbulence, δv‖ terms have negligible amplitudes near gyration scales so that shallower decay
in the kinetic subrange will not do much to improve plasma heating. However, the step up in velocity
amplitudes near gyration scales (not letting them to decay in MHD subrange) will allow shear wave
turbulence process to keep energy in the plasma fluid via parallel velocity variations letting it to
cascade down scales, heating ions.

Use of counterpropagating waves to heat plasma fluid was examined. This study shows that in
the case of interaction of waves with the same linear polarization, turbulent power in the kinetic
subrange is contained in the magnetic field with rapid decay of ion velocity variations in the kinetic
subrange. However, interaction of waves with opposite linear polarization results in turbulent power
to be carried by the plasma fluid instead. The challenge is that along the cascade through different
scales different linear polarization modes will be mixed, which will result in sporadic increases and
decreases of vorticity and ion velocity variations in the kinetic subrange.

Turbulent power in Jupiter’s night side magnetosphere was observed from magnetometer mea-
surements on the Juno mission. Observations of break frequency in the power spectrum of moving
plasma point to that fluctuations at gyrofrequencies can play an important role in converting kinetic
energy of plasma flow into thermal [8]. Examination of turbulent power density across MHD and
kinetic subranges in Jupiter’s magnetosphere demonstrate that cases with the observed break in
power spectrum similar to gyrofrequency indeed correspond with an increase in observed power
density near break frequency. This study shows that in heavy-ion dense plasma fluid turbulent
oscillations by themselves are not good candidates for plasma heating mechanism. However,
fluctuations at frequencies near break and gyrofrequencies play an important role in plasma heating.

Detailed radial map of turbulent power is presented. Observations show that power density is
higher in the plasma disk, indicating that turbulent fluctuations are generated within the plasma
fluid. Turbulent power then travels out of the plasma disk via shear Alfvén waves, dissipating out of
the system along the way.
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