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We show that, in the transitional regime of pulsatile pipe flow, at moderate-to-high
amplitudes 0.5 � A � 1, the first long-lived turbulent structures are localized and take the
form of the puffs and slugs observed in statistically steady pipe flow. We perform direct
numerical simulations at many pulsation frequencies (Wo), amplitudes, and Reynolds
number (Re) and observe different dynamics of puffs and slugs. At certain flow parameters
we find, using a causal analysis, that puffs actively make use of linear instabilities in the
laminar Sexl-Womersley (SW) profile to survive the pulsation. Using all these lessons
learned, we extend a low-order model by Barkley et al. [Nature (London) 526, 550 (2015)]
to reproduce these dynamics. We find a good agreement between the extended model and
our numerical results in a broad parametric space of pulsation amplitudes 0.5 � A � 1,
frequencies Wo � 5 and 2100 � Re � 3000. With the help of our numerical results, causal
analysis and model, we determine that turbulence production has two sources at these flow
parameters: the mean shear as in statistically steady pipe flow and the instabilities of the
instantaneous pulsatile mean profile.
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I. INTRODUCTION

More than a century after Reynolds experiments [1], we are closer to fully understand turbulence
transition in statistically steady pipe flow (SSPF), see Avila et al. [2] for a recent review. For
sufficiently perturbed flows, transition only depends on the Reynolds number Re = UD/ν, where U
is the time-averaged bulk velocity, D the diameter of the pipe, and ν the kinematic viscosity of the
fluid. Despite being linearly stable, at least up to Re � 107 [3], perturbations in SSPF can make use
of nonmodal mechanisms to grow, saturate, and trigger turbulence at much lower Re ∼ O(103) [4].
The optimal perturbation, the one that attains a higher energy growth in SSPF, is a pair of streamwise
vortices [5].

Once triggered, turbulence in SSPF first appears in the form of localized turbulent patches of
constant length, known as turbulent puffs. Depending on the Reynolds number, puffs are more
likely to either decay (at low Re � 2040), split (at 2040 � Re � 2250), or elongate into slugs (at
Re � 2250) [2]. Also depending on Re, puffs (slugs) move (and elongate) at a certain upstream (and
downstream) front speed cu (and cd ). The exact mechanisms by which turbulent puffs decay, split,
or elongate are still unclear.
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The low-order model proposed by Barkley et al. [6] (hereafter referred to as the Barkley model
(BM) is able to reproduce the front speeds of turbulent puffs and slugs in SSPF. In this paper
we provide a description of the model in Appendix B. The reader is referred to Barkley [7]
and references therein for a more detailed description. In short, the model considers only two
one-dimensional, time-dependent variables, q(x, t ) and u(x, t ), whose evolution is described by two
nonlinearly coupled advection-diffusion-reaction equations. These equations are inspired by, but
not derived from, the Navier-Stokes equations. In fact, the variables and the parameters represent
features of pipe flow but have arbitrary physical units. The variable q represents the turbulence
intensity, and u the state of the local mean shear of the flow, at each axial location x and time t . The
key feature of the BM is the nonlinear interaction between u and q. The turbulence intensity q takes
advantage of the mean shear u to grow. However, in the axial locations where q > 0, the local mean
shear is reduced [8], and in turn, adversely affects the growth of q. When fitted correctly, the model
returns the turbulent front speeds cu and cd of turbulent structures in SSPF with high accuracy in a
broad Re regime [6,9,10]. The remarkable success of this model has motivated some researchers to
use it to study puff split dynamics [11] or even turbulence transition of non-Newtonian pipe flow
[12]. The question still remains to what extent the assumptions and simplifications of the BM are
correct and if it can be easily adapted to similar flow setups, such us pipe flows driven at an unsteady
flow rate.

We study pulsatile pipe flows, whose bulk velocity Ū (t ) has one harmonic component:

Ū (t ) = U [1 + A sin (2π f t )]. (1)

The flow depends on three parameters: the mean Re, the frequency of the pulsation f = 1/T or its
nondimensional counterpart, the Womersley number Wo = D/2

√
2π f /ν, and the amplitude A. In

the case of smooth rigid pipes, considered here, there is an analytical solution to laminar pulsatile
pipe flow, the Sexl-Womersley (SW) profile USW(r, t ) [13,14].

At small-to-moderate amplitudes A � 0.4 and transitional Re ≈ 2000, the first long-lived turbu-
lent structures found in pulsatile pipe flows are also turbulent puffs [15]. Their behavior depends
on the pulsation frequency. At high Wo � 20 (independently of A) puffs do not have enough
time to adapt to the fast harmonic driving [16], and their behavior is identical to the one found
in SSPF. At low Wo � 4 the behavior is quasisteady, and the puff dynamics depend on the
instantaneous Reynolds number Rei(t ) = Ū (t )

U Re [15]. At intermediate 5 � Wo � 19, the behavior
of puffs smoothly transitions between the two limiting cases described above. It is still unclear
whether this also happens at A � 0.5.

At moderate-to-large amplitudes 0.5 � A � 1, Re ≈ 2000, and intermediate frequencies, 5 �
Wo � 19, the SW profile is instantaneously unstable at some phases of the pulsation period [17].
This instability is linked to the presence and behavior of inflection points in the laminar profile
[18,19]. Helical perturbations can take advantage of this instability to grow, and trigger turbulence,
as first reported by Xu et al. [20]. At these flow parameters, although the optimal perturbation of
SSPF, the pair of streamwise vortices, can substantially grow in energy, helical perturbations exhibit
the maximum growth [21–23], consistent with experiments [20]. In direct numerical simulations
(DNS), helical perturbations rapidly grow, saturate, and trigger turbulence that, at some flow param-
eters, takes the form of localized puffs modulated in length and magnitude by the pulsation [17].
Recent results suggest that these turbulent puffs actively make use of the instantaneous instabilities
of the SW profile to survive during the phases of the period when Rei(t ) is too low [24]. This
hypothesis, however, has not been rigorously verified yet.

In this paper, we study turbulent puffs in transitional pulsatile pipe flow at 2100 � Re � 3000,
moderate-to-large amplitudes 0.5 � A � 1, and intermediate frequencies 5 � Wo � 19. We per-
form DNS at many Re, Wo, and A and study the behavior of turbulent puffs at these flow regimes.
We perform causal analyses to determine if they make use of the instabilities of the laminar profile
to survive the pulsation, as suggested by Feldmann et al. [24]. Using the lessons learned from these
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analyses, we extend the BM to a new extended Barkley model (EBM) that reproduces the dynamics
of turbulent puffs in pulsatile pipe flow throughout the parameter regime studied in the DNS.

The paper is organized as follows. In Sec. II we describe the numerical methods we use to
perform DNS of pulsatile pipe flow. In Sec. III, we analyze our DNS results of pulsatile pipe flows
at several flow parameters. In Sec. IV, we present the results of our causal analysis and in Sec. V
the comparison between the extended model and DNS results. Finally, in Sec. VI we draw some
conclusions.

II. METHODS

We consider a viscous Newtonian fluid with constant properties in a straight smooth rigid pipe
of circular cross section, with a time-dependent bulk velocity, Eq. (1). The flow is assumed to be
incompressible and governed by the dimensionless Navier-Stokes equations (NSE):

∂ �u
∂t

+ (�u · ∇)�u = −∇p + 1

Re
∇2�u + PG(t )�ex and ∇ · �u = 0. (2)

Here �u is the fluid velocity, p the pressure, and PG the time-dependent axial pressure gradient which
drives the flow at the bulk velocity defined in Eq. (1). All variables in this study are rendered
dimensionless using the pipe diameter (D), the time-averaged bulk velocity (U ), and the fluid density
(ρ f ).

A. Computational methods

We perform direct numerical simulations of Eq. (2) using our open-source pseudospectral
simulation code nsPipe [25]. In nsPipe, the governing equations are discretized in cylindrical
coordinates (r, θ, x) using a Fourier-Galerkin ansatz in θ , with wave number m ∈ Z, and x with
wave number α = α0k. Here α0 = 2π/L, where L is the pipe length and k ∈ Z. We use high-order
finite differences in r with stencils of length 7 for master-slave simulations (see Sec. IV) and of
length 9 in individual DNS simulations. Periodic boundary conditions are imposed in θ and x and
no-slip boundary conditions in the solid pipe wall. The discretized NSE are integrated forward
in time using a second-order predictor-corrector method with variable time-step size (�t) as in
openpipeflow [26]. Further details about the implementation of nsPipe are given in López et al.
[25] and references therein.

We perform single DNS of pulsatile pipe flow at different Re, Wo, and A. See the parameters of
all our simulations at the end of the paper, in Table I. The time-step size is always �t < 0.0025D/U ,
the length of the pipe is L = 100D, and the simulation with the coarsest grid in terms of + units
has 0.044 � �r+ � 2.39, D+�θ/2 = 4.08, and �x+ = 8.27. We initialize the simulations with the
corresponding SW profile in the whole domain. We trigger a single turbulent puff in each simulation
by introducing the corresponding optimal perturbation localized in a 5D axial section of the pipe
and scaled to |u′

0| ≈ 3 × 10−2, following Feldmann et al. [24] and Morón et al. [17]. We compute
the optimal perturbation using a transient growth analysis (TGA). The reader is referred to Xu et al.
[21] and Morón et al. [17] for more details on the transient growth analysis.

B. Averages

We compute averages of the three velocity components ur , uθ , and ux and the axial (streamwise)
vorticity ωx. Angled brackets 〈•〉ψ denote averaging with respect to ψ , where ψ denotes one or more
variables. Spatial averages are performed with respect to one or more coordinates: radial ψ ≡ r,
azimuthal ψ ≡ θ , and axial ψ ≡ x. Temporal averages are performed using the whole time series
and are denoted with ψ ≡ t . Ensemble averages, using Ni individual simulations, are denoted with
ψ ≡ Ni. Phase averages correspond to averaging at several phases of the period and are denoted
as ψ ≡ t∗. In the latter case, we split the pulsation period in 200 equispaced period phases and we
perform averages at each of them. The resulting signal is phase (t∗) but not time (t ) dependent.
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TABLE I. Simulations in a L = 100D long pipe of pulsatile pipe flow performed in this study. Columns
show the identification number of the simulation (Case); the flow parameters (Re, Wo, and A); the radial points
Nr and half the number of azimuthal and axial Fourier modes Nθ and Nx (the total number of physical points is
Nr × 3Nθ × 3Nx); the maximum Reτ and grid discretization in + units; the total number of periods run in the
simulation NT and the behavior of the simulation according to the description in Sec. III: rapid decay (RaD),
localized structures (Loc), stochastic decay (StD), and highly intermittent state (Int).

Case Re Wo A Nr Nθ Nx Reτ �r+
min �r+

max �Rθ+ �x+ NT Behavior

1 2100 8 0.50 96 80 1200 96.49 0.022 1.47 2.53 5.36 8.3 StD
2 2100 9 0.50 96 96 1600 99.52 0.023 1.52 2.17 4.15 12.4 Loc
3 2100 9 1.00 96 96 1536 123.55 0.028 1.89 2.70 5.36 23.0 StD
4 2100 11 0.50 96 80 1800 104.68 0.024 1.60 2.74 3.88 188.0 Loc
5 2100 11 0.75 96 80 1800 118.75 0.027 1.81 3.11 4.40 7.9 Loc
6 2100 11 1.00 96 80 1800 131.87 0.030 2.01 3.45 4.88 193.0 Loc
7 2100 15 0.50 96 80 1800 114.92 0.026 1.75 3.01 4.26 10.0 Loc
8 2100 15 1.00 96 80 1800 146.73 0.034 2.24 3.84 5.43 64.0 Loc
9 2100 17 0.50 96 80 1800 118.95 0.027 1.82 3.11 4.41 10.0 Loc
10 2100 17 1.00 96 80 1800 153.99 0.035 2.35 4.03 5.70 10.0 Loc
11 2200 5 0.50 96 80 1200 88.74 0.020 1.35 2.32 4.93 3.2 RaD
12 2200 8 0.50 96 80 1200 98.89 0.023 1.51 2.59 5.49 7.4 Loc
13 2200 8 1.00 96 80 1200 121.18 0.028 1.85 3.17 6.73 2.9 RaD
14 2200 9 0.50 96 80 1200 101.89 0.023 1.56 2.67 5.66 10.7 Loc
15 2200 11 0.50 96 96 1800 107.44 0.025 1.64 2.34 3.98 36.7 Loc
16 2200 11 1.00 96 96 1800 134.95 0.031 2.06 2.94 5.00 35.0 Loc
17 2400 8 0.50 96 96 2400 103.90 0.024 1.59 2.27 2.89 5.9 Loc
18 2400 8 1.00 96 96 2400 127.39 0.029 1.94 2.78 3.54 3.8 RaD
19 2500 8 1.00 96 80 1200 129.36 0.030 1.97 3.39 7.19 1.7 RaD
20 2500 9 1.00 96 80 1200 137.43 0.031 2.10 3.60 7.63 10.8 Int
21 2500 11 1.00 96 80 1200 147.43 0.034 2.25 3.86 8.19 12.5 Int
22 2600 8 1.00 96 80 1200 132.19 0.030 2.02 3.46 7.34 2.8 StD
23 2600 11 1.00 96 80 1200 148.81 0.034 2.27 3.90 8.27 11.6 Int
24 2700 8 1.00 128 96 1536 134.57 0.017 1.55 2.94 5.84 1.8 RaD
25 2700 9 1.00 128 96 1536 144.27 0.019 1.66 3.15 6.26 8.7 Int
26 2700 11 1.00 128 96 1536 154.13 0.020 1.77 3.36 6.69 9.2 Int
27 2800 8 1.00 128 96 1536 136.94 0.018 1.57 2.99 5.94 2.6 RaD
28 2800 11 1.00 128 96 1536 159.07 0.021 1.83 3.47 6.90 9.2 Int
29 2900 8 1.00 128 96 1536 143.55 0.019 1.65 3.13 6.23 6.5 Loc
30 2900 9 1.00 128 96 1536 150.14 0.019 1.73 3.28 6.52 8.3 Int
31 2900 11 1.00 128 96 1536 161.83 0.021 1.86 3.53 7.02 8.5 Int
32 3000 6 0.50 128 128 1536 114.48 0.015 1.32 1.87 4.97 3.5 Loc
33 3000 6 1.00 128 96 1536 129.97 0.017 1.49 2.84 5.64 1.5 RaD
34 3000 8 0.50 128 96 1536 118.80 0.015 1.37 2.59 5.16 4.0 Int
35 3000 8 1.00 128 96 1536 143.27 0.019 1.65 3.13 6.22 4.9 StD
36 3000 11 0.50 96 96 2800 136.95 0.031 2.09 2.99 3.26 4.6 Int
37 3000 11 1.00 128 96 1536 166.88 0.022 1.92 3.64 7.24 4.4 Int

III. DNS RESULTS

We perform DNS of pulsatile pipe flow at different combinations of Re � 2100, 5 � Wo � 19,
and 0.5 � A � 1. At these flow parameters, turbulence always takes the form of localized turbulent
puffs that are modulated by the pulsation, as shown in Fig. 1. See a list of the DNS we analyze here
at the end of the paper in Tables I and II.
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FIG. 1. Space-time diagrams of the cross-section integral of axial vorticity squared 〈ω2
x 〉r,θ of DNS in a

100D long pipe at different flow parameters. The DNS are initialized with the optimal perturbation scaled to
|u′

0| ≈ 3 × 10−2 of magnitude and localized in an axial span of 5D following Feldmann et al. [24]. The results
are shown with respect to a noninertial reference frame x∗(t ) = ∫ t

0 Ū (t ′)dt ′, moving with the bulk velocity
Ū (t ).

In the parametric space considered here, we observe four different behaviors of turbulent puffs.
We classify our DNS according to these four behaviors (see Tables I and II):

(1) First elongation and then rapid decay (RaD): The initial helical perturbation, used to initialize
the flow, first grows in length and magnitude and then decays in less than one pulsation period
[Fig. 1(a)]. We classify these decay events as deterministic. They are different from decay events
that happen (stochastically) after more than one pulsation period, which we classify in another
category (3 below).

(2) Localized turbulent structures (Loc): The initial helical perturbation localizes in a puff, that
is then modulated in length and magnitude by the pulsation and survives for long times without
splitting or decaying. See an example of this behavior in Fig. 1(b).
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TABLE II. Simulations of pulsatile pipe flow using the master-slave method described in Sec. IV performed
in this study. All the simulations correspond to a L = 100D long pipe. In columns find the identification number
of the simulation (Case); the flow parameters (Re, Wo, and A); the radial points Nr and half the number of
azimuthal and axial Fourier modes Nθ and Nx (the total number of physical points is Nr × 3Nθ × 3Nx); the
maximum Reτ and grid discretization in + units; the total number of periods run in the simulation NT and
the behavior of the master simulation according to the description in Sec. III: rapid decay (RaD), localized
structures (Loc), stochastic decay (StD), and highly intermittent state (Int).

Case Re Wo A Nr Nθ Nx Reτ �r+
min �r+

max �Rθ+ �x+ NT Behavior

1 2100 9 0.50 80 64 1152 99.35 0.032 1.81 3.25 5.75 5.8 Loc
2 2100 9 0.70 80 64 1152 109.47 0.036 2.00 3.58 6.33 5.8 Loc
3 2100 9 0.90 80 64 1152 118.58 0.039 2.17 3.88 6.86 5.8 StD
4 2100 11 0.50 80 64 1152 104.55 0.034 1.91 3.42 6.05 6.0 Loc
5 2100 11 0.70 80 64 1152 116.35 0.038 2.12 3.81 6.73 7.8 Loc
6 2100 11 0.90 80 64 1152 126.71 0.041 2.31 4.15 7.33 6.0 Loc
7 2100 13 0.50 76 64 1152 109.68 0.039 2.10 3.59 6.35 9.6 Loc
8 2100 13 0.70 76 64 1152 122.38 0.044 2.35 4.01 7.08 9.6 Loc
9 2100 13 0.90 76 64 1152 133.99 0.048 2.57 4.38 7.75 9.6 Loc
10 2100 15 0.50 76 64 1152 114.47 0.041 2.19 3.75 6.62 13.6 Loc
11 2100 15 0.70 76 64 1152 128.50 0.046 2.46 4.21 7.44 13.6 Loc
12 2100 15 0.90 76 64 1152 140.92 0.051 2.70 4.61 8.16 13.6 Loc
13 2100 17 0.50 80 64 1152 119.02 0.039 2.17 3.89 6.89 11.0 Loc
14 2100 17 0.70 80 64 1152 134.08 0.044 2.45 4.39 7.76 11.0 Loc
15 2100 17 0.90 80 64 1152 147.39 0.048 2.69 4.82 8.53 11.0 Loc
16 2300 9 0.50 80 64 1152 104.52 0.034 1.91 3.42 6.05 4.8 Loc
17 2300 9 0.70 76 64 1152 114.97 0.041 2.20 3.76 6.65 4.8 Loc
18 2300 9 0.90 76 64 1152 124.75 0.045 2.39 4.08 7.22 4.8 StD
19 2300 11 0.50 80 64 1152 109.92 0.036 2.01 3.60 6.36 19.7 Loc
20 2300 11 0.70 80 64 1152 122.10 0.040 2.23 4.00 7.07 6.7 Loc
21 2300 11 0.90 80 64 1152 140.15 0.046 2.56 4.59 8.11 7.1 Loc
22 2300 13 0.50 80 64 1152 115.25 0.038 2.10 3.77 6.67 9.9 Loc
23 2300 13 0.70 80 64 1152 128.47 0.042 2.35 4.20 7.43 9.9 Loc
24 2300 13 0.90 80 64 1152 140.58 0.046 2.57 4.60 8.14 9.9 Loc
25 2300 15 0.50 80 64 1152 120.55 0.039 2.20 3.94 6.98 13.2 Int
26 2300 15 0.70 76 64 1152 134.89 0.048 2.59 4.41 7.81 13.2 Loc
27 2300 15 0.90 76 64 1152 148.14 0.053 2.84 4.85 8.57 14.8 Loc
28 2300 17 0.50 80 64 1152 125.86 0.041 2.30 4.12 7.28 20.0 Loc
29 2300 17 0.70 80 64 1152 141.07 0.046 2.58 4.62 8.16 20.0 Loc
30 2300 17 0.90 80 64 1152 154.80 0.050 2.83 5.07 8.96 16.0 Loc
31 2500 9 0.50 80 64 1152 109.47 0.036 2.00 3.58 6.34 4.9 Loc
32 2500 11 0.50 80 64 1152 115.18 0.038 2.10 3.77 6.67 5.8 Loc
33 2500 17 0.50 80 64 1152 133.98 0.044 2.45 4.38 7.75 17.5 Int
34 2500 17 0.70 80 64 1152 149.59 0.049 2.73 4.90 8.66 17.5 Int

(3) Localized structures and then stochastic decay (StD): The initial helical perturbation localizes
in structures that are modulated, in length and magnitude by the pulsation. These structures,
however, tend to suddenly decay after typically a short number of pulsation periods [Fig. 1(c)].
Although we do not explicitly compute lifetime statistics of these cases here, these decay events
happen at random times, as in pulsatile pipe flows at lower A � 0.4 [16] or driven with more
complex waveforms [17]. In those analyses, the researchers report that turbulent structures decay
after a random number of pulsation periods. However, different to SSPF, these decay events are
more likely to happen at a particular phase of the period.
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FIG. 2. Time profile of 〈ω2
x 〉r,θ,x,t∗ (solid thick lines) compared with the bulk velocity Ū (t ) (dotted lines)

for Re = 2100, Wo, and A as indicated in the legend. The shaded regions delimit the volume of data between
the max-min 10% percentile of the corresponding 〈ω2

x 〉r,θ,x (t∗) phase-dependent statistics.

(4) Highly intermittent state (Int): The initial helical perturbation localizes in structures mod-
ulated by the pulsation. These structures, however, randomly split until the DNS reaches a highly
intermittent state where turbulence aggregates in localized structures modulated by the pulsation
and separated by laminar patches [Fig. 1(d)].

In the following section, Sec. IV, we study the mechanisms by which puffs are able to survive the
pulsation at certain flow parameters. Here we briefly analyze the behavior of puffs in pulsatile pipe
flow. We focus on two quantities, the upstream front speed of puffs cu and the phase difference �φ,
between the volume-averaged axial vorticity squared 〈ω2

x 〉r,θ,x (t ) and the bulk velocity Ū (t ). The
former is the main observable that the results of the EBM are meant to approximate. The latter has
to be considered in the EBM to correctly approximate the front speed of puffs, as shown in Sec. V
and Appendix B.

We compute the upstream front speed cu by tracking the upstream-most position in the turbulent
puff, defined as xu = min(u) such that 〈ω2

x 〉r,θ � 1 × 10−1 for x � xu. We observe that the time
signal of 〈ω2

x 〉r,θ,x (t ) approximates a harmonic function, see Fig. 2, at all the flow parameters
considered here. Thus, we compute the time-averaged phase difference 〈�φ〉t by projecting the
time signal of 〈ω2

x 〉r,θ,x (t ) to a harmonic function and comparing its phase with the sinusoidal
bulk velocity. We repeat this for the data of all the simulations listed in Table I and the master
DNS in Table II. We show the time-averaged upstream front speeds and phase difference of all the
simulations together in Fig. 3.

We observe a phase difference between the turbulence intensity [represented by 〈ω2
x 〉r,θ,x (t )] and

bulk velocity consistent with studies of small-to-moderate amplitude A � 0.4 pulsatile pipe flow
[16] and fully turbulent pulsatile channel flows [27]. There, they observed how the phase difference
increases for increasing Wo, as we also observe in the cases considered here, see Fig. 3(a). At small
Re ≈ 2100 the phase difference saturates at �φ ≈ 3π

2 . There is no apparent effect of A on �φ.
The upstream front speed, as in the case of SSPF, is mainly affected by Re, see Fig. 3(b). The

higher Re is, the smaller the upstream front speed becomes. According to our results, there is also a
weak dependence of the front speed on A. The upstream front speed tends to decrease for increasing
A. As Wo increases, the upstream front speed approximates the value of SSPF, as turbulence is less
affected by the pulsation.

IV. MASTER-SLAVE CAUSAL ANALYSIS

Our hypothesis is that, as in SSPF [6,9,10], the behavior of puffs in pulsatile pipe flow is
determined by the shape of the axial velocity profile 〈ux〉θ (x = xu, r, t ) at the upstream front x ≈ xu

of the puff. In the ideal case of an extremely long pipe, and a single localized turbulent puff, the
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FIG. 3. Effect of flow parameters on (a) the phase difference �φ between bulk velocity Ū and volume-
averaged turbulence intensity 〈ω2

x 〉r,θ,x (t ) and (b) upstream front speed cu. Each marker corresponds to the
time-averaged value of either cu or �φ of an individual DNS of pulsatile pipe flow listed in Table I (and master
simulations listed in Table II). Downward (upward) pointing triangles correspond to simulations at 0.5 � A �
0.8 (0.8 < A � 1). The face color indicates Re in (a) and Wo in(b). The dotted line in (b) corresponds to a fit
of the upstream front speed of puffs in SSPF: cu − U ≈ 0.28[0.024 + ( Re

1936 )−0.528 − 1.06] in U , according to
Chen et al. [10].

mean profile in the pipe 〈ux〉θ,x(r, t ) approximates this profile. The idea is that puffs take advantage
of two characteristics of the mean (upstream) velocity profile. One is the mean shear, as in SSPF,
that, for the pulsatile case, is time dependent. The other is the instability of the SW profile that is
linked with the presence of inflection points. We perform causal analysis of pulsatile pipe flow with
the goal to separate the two mechanisms. Inspired by Tuerke and Jiménez [28], we perform DNS of
pulsatile pipe flow with prescribed mean profiles in which inflection points are erased.

Following Vela-Martín [29] and references therein, we perform pairs of DNS that run in parallel
to each other. In each pair, one of the simulations is a full DNS of pulsatile pipe flow, referred to
as the master. The other simulation, referred to as the slave, uses the information of the master to
modify some of its characteristics. Specifically, the slave simulation uses the instantaneous mean
profile of the master UM = 〈ux〉θ,x(r, t ) to generate its instantaneous mean profile US (r, t ). A more
detailed explanation of the methods used to compute US (r, t ) is given in the Appendix A.

We design time-dependent artificial (slave) profiles that, in the laminar case, have a shear that
monotonically decreases from the center line to the pipe wall. Additionally, at each time step, the
slave profiles have the same kinetic energy as the corresponding SW profile. See an example of the
slave laminar profiles at Re = 2100, Wo = 11, and A = 0.5 in Figs. 4(a)–4(d). The slave profiles
US have a similar magnitude to the actual SW profile, they are also time dependent but, different to
the SW profile, they do not have inflection points.

A. Master-slave TGA

According to our hypothesis, the absence of inflection points prevents the outstanding transient
growth of helical perturbations [17]. We test this hypothesis by performing TGA on the slave
laminar profiles at many flow parameters and comparing the results with TGA on the corresponding
SW profile. Note that, in the laminar case, the mean profile of the master is equal to the SW profile.

The TGA returns the shape (the radial profile and the axial α and azimuthal m wave number)
of the infinitesimal perturbations that reach the highest energy growth G on top of a given flow
profile. The TGA also returns the optimal time t0 to trigger the perturbation and the final time t f

where perturbations reach the highest energy growth G. In this paper, we do not show the radial
shape of the optimal perturbations, as our main interest is to check whether the slave profiles are
highly susceptible to the growth of helical perturbations with α > 0 and m = 1 or not. We also do
not analyze t f or the optimal time to trigger the perturbations, which is always around t0 ≈ T/2
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FIG. 4. Phase- (t∗) averaged mean profiles of master (M) and slave (S) simulations at Re = 2100, Wo =
11, and A = 0.5 for the case of fully laminar [(a)–(d)] and turbulent flows [(e)–(h)]. The phase of the period is
indicated at the top of each subplot column.

[21]. We report the maximum transient growth we observe at any point in time during one pulsation
period t f − t0 � T . We plot as colormaps the results of our TGA in Fig. 5.

We perform two different TGA of our laminar (SW) master profiles. In the first TGA, we consider
all possible perturbations with α � 0 and m = 1. At several flow parameters, the energy growth of

FIG. 5. With colors, the maximum transient energy growth of perturbations on top of master USW [(a) and
(b)] and slave US (c) laminar profiles. Note that the color scale is limited to a maximum of G � 103 for clarity.
The results correspond to different Wo and A at Re = 2100. In (a) the maximum energy growth of any helical
or streamwise-constant perturbation with α � 0 and m = 1 on top of USW profiles. The symbols correspond to
DNS results in a L = 100D long pipe initialized with a localized turbulent puff. Symbols denote pairs of DNS
whose master simulation has puffs that survive for long times. Hollow symbols indicate pairs of DNS whose
slave simulation has puffs that decay at t � td = 120D/U , while filled symbols indicate slave DNS where puffs
survive for longer times. In (b), the maximum energy growth of streamwise-constant perturbations with axial
α = 0 and azimuthal m = 1 wave numbers on top of the USW profile. In (c) the maximum energy growth of
any perturbation α � 0 and m = 1 on top of the laminar slave US profile.
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helical perturbations, with α > 0, is much higher than for any other perturbation [21]. The flow
parameters at which this happens can be clearly identified as the intense red region in Fig. 5(a).
In the second TGA, we fix α = 0 and m = 1 and compute the growth of streamwise-constant
perturbations. According to our TGA, and as observed by Xu et al. [21], the SW profile is susceptible
to the growth of streamwise-constant perturbations, see Fig. 5(b). Only at high Wo or small A is the
growth of streamwise-constant perturbations larger than the growth of helical perturbations.

For slave profiles we perform just one TGA, in which we consider all possible perturbations with
α � 0 and m = 1. The results of this analysis are shown in Fig. 5(c). At all the flow parameters
we consider here, the perturbations that reach the highest energy growth are streamwise-constant
perturbations (with α = 0 and m = 1). Note that their energy growth is similar to the ones obtained
in the SW profile; compare Figs. 5(c) and 5(b). This confirms that our slave profiles qualitatively
capture the transient growth characteristics of streamwise-constant perturbations in the SW profile.
This growth is linked to the mean shear of the flow, as in SSPF, and not to the presence of inflection
points [17]. It also shows that, unlike the actual SW profile, our slave profiles are not susceptible to
the outstanding growth of helical perturbations.

B. Master-slave DNS

We perform pairs of master-slave DNS at several flow parameters. In each pair, both simulations
are initialized with the same turbulent field, that has a (single) turbulent structure. The slave profiles
have a shear that monotonically decreases from the center line to the pipe wall. However, by
construction, the kinetic energy of the slave profiles matches the kinetic energy of the instantaneous
master profile. The slave profiles are time dependent and do not have inflection points. They are
also more blunted, the more deformed the corresponding master profiles are with respect to the SW
profile; see Appendix A.

Find an example of the slave profiles, and their master counterparts, in DNS at Re = 2100,
Wo = 11, and A = 0.5 in Figs. 4(e)–4(h). For this parameter set, the USW profile is susceptible to
the growth of helical perturbations, as seen in Fig. 5(a), and, while the master simulation has a
localized puff that survives for a long time, Fig. 6(c), the puff in the slave simulation decays in less
than two pulsation periods, Fig. 6(d). At A = 0.1 and Wo = 11, see Figs. 6(a) and 6(b), both the
slave and master profiles are not susceptible to the growth of helical perturbations, Fig. 5. At these
parameters, puffs survive during the whole simulation time for both slave and master simulations.

In order to check whether this behavior is reproduced at other flow parameters, we set a heuristic
time threshold at td = 120D/U that corresponds to a time span of more than three pulsation periods
for all cases considered here td > 3T . Our master-slave DNS are classified according to whether the
slave simulation shows a decay event. See in Fig. 5(a) a graphic representation of this classification
for different combinations of A and Wo at Re = 2100. Full symbols denote slave simulation in
which the puff survives for long times. Hollow symbols indicate slave simulations that show puff
decay at t � td . In all the cases the master simulation survives. There is a clear boundary between
cases that show quick puff decay in the slave simulations and those which do not. At A � 0.5
and 8 � Wo � 17 pulsatile pipe flows are highly susceptible to the growth of helical perturbations,
Fig. 5(a). As seen in Fig. 5(a), at these flow parameters, after suppressing the inflection points,
puffs quickly decay in the corresponding slave DNS. At A � 0.3 and/or Wo � 20, the growth of
the helical perturbations is smaller than that of the streamwise-constant perturbations, see Fig. 5(a)
compared to Fig. 5(b). At these flow parameters, eliminating the inflection points has no effect on
the lifetime of turbulent puffs. This result further supports that, at certain Re, Wo, and A, as soon as
puffs cannot make use of the inflection points to survive, they quickly decay.

V. EBM RESULTS

In this section we compare the DNS results with the EBM. The EBM includes two main changes
compared to the BM. These changes are inspired by our analyses in the previous sections and model
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FIG. 6. Space-time diagrams of the cross-section integral of turbulent cross-section kinetic energy in
master-slave DNS at Re = 2100 and Wo = 11 and two different A. The results correspond to two pairs of
master-slave DNS in a L = 100D long pipe initialized with a localized turbulent puff. The results are plotted
with respect to a moving reference frame moving at the bulk velocity Ū . Panels (a) and (c) correspond to master
simulations and (b) and (d) to slave simulations.

the two turbulence production mechanisms discussed in this study. One is the phase-lagged effect
of a time-varying mean shear and the other the linear instabilities due to the inflection points in the
laminar profile. A detailed description of the EBM is in Appendix B.

In Fig. 7, we include three examples of DNS and EBM results comparisons. The model is able
to capture reasonably well the turbulent front speed and turbulence behavior of all the cases, as seen
qualitatively in Fig. 7. With only some exceptions, we observe a good agreement between the EBM
and all the DNS listed in Tables I and (only master DNS) II.

A. Turbulence production in the EBM

In the EBM, there are two main sources of turbulence intensity q production, see Eq. (B9). One
is the time-varying Re number that is modelled with the term rŪ (t + φ), being φ a phase lag that
only depends on Wo. The second one is the instability of the mean profile that is modelled by
the product γ λ(t ). Here λ(t ) is the growth rate of the instantaneous instability of the laminar SW
profile, as computed by Morón et al. [17] using a numerical method first developed by Meseguer
et al. [3]. The parameter γ only depends on Re and Wo. Here we test the effect of ignoring these two
mechanisms, one at a time. In Fig. 8 we show further comparisons between DNS and EBM results.
We show results of the EBM model with the fitted parameters listed in Table III and also with either
φ = 0 or γ = 0 that is without phase lag or without inflectional instability.

At φ = 0 the model results clearly differ from the DNS ones at most flow parameters; see
Figs. 8(d) and 8(h). For instance, at Re = 3000, Wo = 6, and A = 1, our DNS shows rapid
decaying puffs (RaD); see Fig. 8(a). However, at φ = 0, the EBM returns an ever-elongating puff;
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FIG. 7. Space-time diagrams of the cross-section integral of axial vorticity squared of DNS [(a), (c), and
(e)] and 10q of the EBM [(b), (d), and (f)] in a 100D long pipe. The DNS are initialized with the optimal
perturbation scaled to |u′

0| ≈ 3 × 10−2 of magnitude and localized in a span of 5D as in Ref. [24] and the
model simulations with a localized perturbation of length 5D. The figure is presented with respect to a moving
frame x∗, moving with the bulk velocity Ū . Panels (a) and (b) correspond to Re = 3000, Wo = 11, and A =
0.5. Panels (c) and (d) correspond to Re = 2100, Wo = 11, and A = 0.75. Panels (e) and (f) correspond to
Re = 2400, Wo = 8, and A = 1. This last result is reproduced from Feldmann et al. [24].

TABLE III. BM parameters as described in Barkley et al. [6] and the value of parameters used in the EBM.

R0 R1 ζ Dq σ δ ε

BM 1920 2250 0.79 0.13 � 0.5 0.1 0.2
EBM 1920 2250 0.79 0.13 0.2 � σ � 0.85 0.1 0.1
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FIG. 8. Space-time diagrams of the cross-section integral of axial vorticity squared of DNS [(a) and (e)]
and 10q of the EBM [(b), (c), (d), (f), (g), and (h)]. The results correspond to DNS and model simulations in a
100D long pipe at A = 1. The top panels [(a)–(d)] at Re = 3000 and Wo = 6. The bottom panels at Re = 2200
and Wo = 11. The DNS [(a) and (e)] are initialized with the optimal perturbation scaled to |u′

0| ≈ 3 × 10−2

of magnitude and localized in a span of 5D following Ref. [24], while the model simulations with a localized
perturbation of length 5D. The figure is presented with respect to a moving frame x∗, moving with the bulk
velocity Ū . Panels (b) and (f) correspond to EBM simulations with the fitted parameters listed in Table III.
Panels (c) and (g) correspond to EBM simulations with the parameters listed in Table III but γ = 0. Panels
(d) and (h) correspond to EBM simulations with the parameters listed in Table III but φ = 0.

see Fig. 8(d). Moreover, at Re = 2200, Wo = 11, and A = 1, puffs are highly modulated by the
pulsation in the DNS; see Fig. 8(e). However, if one sets φ = 0, then in the EBM the behavior
of the puff is less affected by the pulsation; see Fig. 8(h). Although we do not show it here, we
see further divergences between model and DNS results at additional flow parameters when φ = 0.
This confirms that turbulence perceives the pulsation at a certain Wo-dependent phase lag with
respect to the bulk velocity, as seen in Fig. 3(a), and also observed by Weng et al. [27] and other
studies.

We also show results of the EBM with γ = 0, see Figs. 8(c) and 8(g). At Re = 3000,
Wo = 6, and A = 1, there is no apparent effect of ignoring the linear instability of the mean
profile, see Figs. 8(a) and 8(c). At these flow parameters turbulence rapidly decays due to the
effect of the pulsation, regardless of the presence of inflection points in the profile. However,
at Re = 2200, Wo = 11, and A = 1, while puffs remain localized in the DNS [see Fig. 8(e)],
at γ = 0, puffs in the EBM quickly decay [see Fig. 8(g)]. This is similar to what we observe
in our master-slave DNS shown in Fig. 5(c). At these flow parameters, without the inflection
points and their corresponding linear instability, puffs quickly decay due to the effect of the
pulsation.

According to our results with the EBM, one needs to include the phase lag φ and the effect of
the instantaneous instability in the model to correctly approximate the behavior of puffs in pulsatile
pipe flow.
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FIG. 9. With colors, time (t ), and ensemble- (Ni ) averaged upstream front speed cu of q according to
simulations of the EBM at several Re and Wo and at three different pulsation amplitudes: In (a) at A = 0.5,
in (b) at A = 0.75, and in (c) at A = 1. Each panel corresponds to the interpolated results of an original set
of 39 × 37 Re and Wo combinations. Each combination of Re and Wo has Ni = 50 individual simulations.
The dotted lines denote the threshold between Re and Wo cases where more than half of the Ni simulations
show turbulence decay, 〈q〉x � 0.01, before t/T < 4. With black dots we denote the observed survive or decay
behaviors of different DNS at parameters close to the decay threshold. Filled dots correspond to simulations
where turbulence survives for long times or splits or elongates. Hollow points denote DNS where we observe
turbulence decay at t/T � 8.

B. Parametric study using the EBM

We use the EBM to perform simulations in a large Wo and Re parametric space at three different
amplitudes, A = 0.5, A = 0.75, and A = 1. At each A, we consider 39 equispaced Re values between
2050 � Re � 3000 and 37 Wo values between 5 � Wo � 16. For each combination of Wo, Re, and
A we perform Ni = 50 EBM simulations for t/T � 4 and compute the time- and ensemble-averaged
upstream front speed of turbulent patches, 〈cu − U 〉Ni,t . We stop the simulations either at t/T = 4
or when turbulence decays in the whole domain, 〈q〉x � 0.01.

We show the ensemble- and time-averaged upstream front speed of the EBM as a colormap
in Fig. 9, together with an empiric threshold for q decay. The threshold separates the parametric
regions where more than half of the Ni EBM simulations decay, at t/T � 4, from the rest. It can
be understood as a critical Rec(Wo, A), up to which all modelled puffs are more likely to decay
than survive. This critical Rec highly depends on Wo and A. At low Wo, the system behaves more
quasisteadily and puffs need a higher mean Re to survive the phases of the period where Ū (t + φ) <

U . The amplitude A sets the minimum Re at each Wo [15]. As A increases, this minimum Re
increases. At A = 1, independently of the selected Re � 3000, puffs show a high chance to decay
as long as Wo � 10.

Regarding the upstream front speed, at high Wo and independently of the selected A, 〈cu − U 〉Ni,t

decreases as Re increases. This is expected as the behavior of puffs at high Wo is similar to the
behavior of puffs in SSPF and the upstream front speed of puffs in SSPF decreases for increasing
Re [6]. As Wo decreases, at 10 � Wo � 16, 〈cu − U 〉Ni,t decreases. At these frequencies, γ λ > 0
for some phases of the period, which increases the q production. This effect, can be understood
as an increase of Re, and therefore causes a lower averaged cu. As A (and/or Re) increases, λ

increases [17], which results in a lower upstream front speed for all the parameters considered here.
At Wo ≈ 10 the system is close to the decay threshold discussed above. Puffs tend to accelerate as
they decay, which explains the increase of 〈cu − U 〉Ni,t at these pulsation frequencies.

However, our results show that, as Wo further decreases, 〈cu − U 〉Ni,t decreases again. This
is due to the way we initialize the EBM simulations. At t0 = T/2 puffs tend to elongate since
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rŪ (t + φ) � 0 and γ λ � 0. Therefore, during the initial phase of the EBM simulations, at Wo � 8
puffs first rapidly elongate (cu − U < 0) and then quickly decay when Ū (t + φ) < U . Since the
decay happens faster than the elongation, the averaged front speed is 〈cu − U < 0〉Ni,t .

C. Assessment of the EBM results

The EBM qualitatively captures the behavior of the upstream front speed observed in the DNS,
as seen after comparing Fig. 9 with Fig. 3(b). As in the DNS, the upstream front speed in the EBM
decreases for increasing Re and A, and, at high Wo, it approaches the values of the upstream front
speed of puffs in SSPF. The quantitative values of the upstream front speed of model and DNS are
also similar.

In Fig. 9(c), additionally we represent with symbols the survival or decay behaviors of the DNS
listed in Table I, whose flow parameters are close to the decay thresholds of the EBM. Hollow
symbols represent DNS where we observe puff decay at t/T � 8 and solid ones DNS that show
turbulence survival for long times. The model approximates relatively well the minimum Wo at
each Re and A, where turbulence does not decay after a short number of pulsation periods. The
match between EBM and DNS results is better at smaller A, like A = 0.5 than at higher A. At
A = 1, while the model has a threshold to decay close to Wo = 10, in the DNS the threshold seems
to be closer to Wo = 8 and slightly change as Re increases.

The observed discrepancies between model and DNS results are rooted in the limitations of the
EBM and the underlying BM which are described in detail in Appendix B 7.

VI. CONCLUSIONS

In this paper we study the behavior of turbulence in transitional pulsatile pipe flow at 2100 �
Re � 3000, 5 � Wo � 20, and 0.5 � A � 1. At these flow parameters, turbulence tends to first
appear in the form of localized turbulent structures whose length and magnitude are modulated by
the pulsation. We perform 71 DNS and identify different behaviors of these turbulent puffs. At some
flow parameters the structures decay after one pulsation period, or after a short number of periods,
but always at a fixed phase of the pulsation. At other flow parameters, they survive the pulsation
and remain localized for asymptotically long times or randomly split until the flow reaches a highly
intermittent state with localized turbulent patches that split or decay in a quiescent laminar flow.

By performing a causal analysis we show that, at certain flow parameters, these patches actively
make use of the inflection points in the quiescent laminar profile, and their corresponding instabili-
ties, to survive the pulsation.

Using the lessons learned from the DNS results and the results of our causal analysis, we adapt
the BM to pulsatile pipe flow. The new EBM is able to qualitatively approximate the behavior
of turbulent patches at all studied flow parameters. Specifically it reproduces reasonably well the
behavior of turbulent front speeds in pulsatile pipe flow, including their dependence on Re, A, and
Wo. It also approximates the thresholds of rapid turbulence decay in terms of Re, A, and Wo.

According to our DNS, causal analysis, and the EBM results, turbulence in pulsatile pipe flow at
these flow parameters makes use of mainly two mechanisms to survive. The first mechanism is the
turbulent production due to the mean shear, which is maximum in the phases of the period where the
bulk velocity Ū (t + φ) > U . This production has a certain lag φ with respect to the pulsation, which
is mainly set by Wo. The second mechanism is the instantaneous instability of the quiescent laminar
SW flow. As long as puffs remain localized in pulsatile pipe flow, and surrounded by a quiescent
laminar profile with inflection points, they can take advantage of this instability to increase the
turbulent production at certain phases of the period.

As future steps, one could extend the analysis to higher Re and different pulsation waveforms.
We expect that, as Re increases, nonlinear effects become more important, as reported by Pier
and Schmid [30], in detriment to the mean shear and the effect of inflection points. In fact, as
the turbulent fraction increases at high Re, the inflection points should play a smaller role in
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turbulence production. Also at higher Re recent studies show that the waveform of the pulsation
has a big impact on the behavior of the system [31,32]. It would be interesting to determine the
parametric thresholds where the behavior of turbulence in pulsatile pipe flow transitions from
localized modulated puffs to fully turbulent, but statistically phase-dependent, flow.
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APPENDIX A: DETAILED DESCRIPTION OF MASTER-SLAVE DNS

In this Appendix we provide a detail derivation of the slave profile and the methods we use to
integrate our master-slave DNS. Note that, in this Appendix, we normalize r using the radius R, and
not the pipe diameter.

The slave profile is defined so it complies with a series of conditions.

1. Condition 1: Boundary condition

The slave profile must comply with the no-slip boundary condition and thus vanish at the wall,

US (r = R, t ) = 0. (A1)

2. Condition 2: Time dependency and maximum energy

The slave profile must be time dependent. Its bulk velocity ŪS (t ),

ŪS (t ) = 2

R2

∫ R

0
USrdr, (A2)

is set equal to

ŪS (t ) =
√

3EL(t )

2
, (A3)

where

EL(t ) = 1

πR2

∫ 2π

0

∫ R

0

1

2
U 2

SWrdrdθ (A4)

as the kinetic energy of the laminar pulsatile pipe flow USW(r, t ). With this condition we ensure that
the energy of the profile is always equal or smaller than the corresponding laminar USW profile.

3. Condition 3: Monotonic shear

The average shear,

S = 2

R2

∫ R

0

1

2

(
∂US

∂r

)2

rdr, (A5)
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of the profile must be minimum. Given conditions (A1) and (A3), by minimizing S, we obtain
profiles whose shear monotonically decreases from the wall to the center line of the pipe, without
inflection points.

4. Laminar slave mean profile

The parabolic profile,

US0 (r, t ) = 2ŪS (t )

[
1 −

( r

R

)2
]

, (A6)

whose energy is exactly EL(t ), i.e., complies with these three initial requirements. By dropping the
time dependence of ŪS and EL in the notation and setting R = 1, one finds

∫ 1

0
U 2

S0
rdr = 4Ū 2

S

∫ 1

0
(1 − r2)2rdr = 4Ū 2

S

[
r2

2
− 2r4

4
+ r6

6

]1

0

= 4Ū 2
S

6
= EL. (A7)

In the case of turbulent flow, the energy of the mean profile is smaller than the laminar one [8]. To
enforce this condition, and avoid introducing excess kinetic energy in the slave simulations we use
an additional constraint.

5. Condition 4: Energy of the slave mean profile

The slave mean profile must have the same energy as the master mean profile,

2

R2

∫ R

0

1

2
U 2

S rdr = EM (t ) = 2

R2

∫ R

0

1

2
〈ux〉2

θ,xrdr. (A8)

If EM ≡ EL, then the flow in the master simulation is laminar, US ≡ US0 , and the energy of the slave
mean profile will be maximum. Otherwise, EM < EL, and the resultant US is blunted, as seen in
Fig. 4.

6. Method of small variations

We can express mathematically conditions (A3)–(A8) in a functional,

S = 2
∫ R

0
L(r,US,U ′

S )dr, (A9)

to be minimized, where U ′
S = ∂US

∂r ,

L = 1

2
U ′2

Sr + λL

(
USr − ŪS

2R

)
+ μL

(
1

2
U 2

S r − EM

2R

)
(A10)

is the Lagrangian, and λL and μL are two Lagrange multipliers. We have dropped the time
dependence of ŪS , EM , and US and therefore L, λL, and μL in the notation for clarity.

From the method of small variations, one can find the function US that minimizes L by solving
the Euler-Lagrange equation,

∂L
∂US

− ∂

∂r

∂L
∂U ′

S

= 0. (A11)

In this case, one finds

λLr + μLUSr − ∂

∂r
(rU ′

S ) = 0, (A12)
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that, after rearranging, results in the partial differential equation,

∂2US

∂r2
+ 1

r

∂US

∂r
− μLUS = λL, (A13)

with the boundary condition (A1),

US (r = R) = 0. (A14)

The homogeneous part of Eq. (A13) can be turned into a modified Bessel’s equation of order 0,

r2 ∂2US

∂r2
+ r

∂US

∂r
− μLUSr2 = 0, (A15)

being the modified Bessel’s equation of order νB,

x2y′′ + xy′ − (
a2x2 + ν2

B

)
y = 0, (A16)

with solution

y(x) = AIνB (ax) + BKνB (ax). (A17)

Here IνB and KνB are the modified Bessel functions of order νB of the first and second kind and A and
B integration constants. After comparing Eq. (A15) with (A17), a = √

μL and νB = 0. The solution
is written as

US = AI0(
√

μLr) + BK0(
√

μLr), (A18)

since K0 diverges at r = 0, B = 0. Regarding the particular solution, the constant US = C,

−μLC = λL → C = − λL

μL
, (A19)

is tried, yielding

US = AI0(
√

μLr) − λL

μL
. (A20)

One can determine the constant A from the boundary condition, at r = R ≡ 1, and find

US = λL

μL

[
I0(

√
μLr)

I0(
√

μL )
− 1

]
. (A21)

At each time step a Newton-Raphson method is used to find the correct μL and λL that allow US

to fulfill conditions (A5) and (A8).

7. Computational setup of master-slave DNS

We initialize each pair of master-slave DNS with the same flow field. This flow field is the
resultant field of a previous DNS at similar flow parameters, and has only one localized turbulent
structure. In order to integrate simultaneously the master and slave simulations, our code performs
the following substeps at each time step:

(1) The master simulation is integrated one time step.
(2) Using the instantaneous mean profile UM = 〈ux〉θ,x of the master, it computes the instanta-

neous energy EM , see Eq. (A8). In our pseudospectral code, UM = 〈ux〉θ,x, corresponds to the (0, 0)
Fourier mode of the axial velocity.

(3) Using the corresponding laminar pulsatile pipe flow kinetic energy EL it computes the
desired ŪS , see Eq. (A3).

(4) It uses a Newton-Raphson method to compute the US profile, Eq. (A21), that complies with
the desired ŪS and EM .
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(5) It overwrites the mean profile of the slave simulation and imposes US instead. (In the code,
it overwrites the (0, 0) Fourier mode of the axial velocity of the slave simulation.)

(6) It integrates one time step the slave simulation, ignoring the evolution of its mean profile.
The pipe length. The artificial profiles US depend on the selected length of the pipe L. For an

infinitely long pipe L → ∞, with a single localized turbulent puff, the mean profile of the master
simulation will tend to the laminar profile 〈ux〉θ,x → USW. This means that the energy of the mean
profile EM → EL and therefore US → US0 . The Newton-Raphson method works better as long as
EM ≈ EL. However the computational cost increases as the length of the pipe increases. A good
compromise is found, by setting a length of L = 100D.

APPENDIX B: DETAILED DESCRIPTION OF THE EBM

In this Appendix we first describe the BM [6]. We then justify the changes we use to extend the
BM to the EBM and we explain the methods by which we numerically integrate the EBM. At the
end of this Appendix we also comment on the limitations of the EBM.

1. The original BM

The original BM considers two one-dimensional time-dependent variables q(x, t ) and u(x, t )
[33]. The former corresponds to the turbulence intensity at each axial location and time. According
to Barkley et al. [6] q represents some form of the cross-section integral of the cross-section kinetic
energy, so q � 0. The variable u is a proxy of the state of the mean shear at each axial location
and time, represented by the axial center-line velocity in the model. The center-line velocity u is
bounded between the bulk velocity Ū = 1 and the laminar center-line velocity Uc = 2 so 1 � u � 2.
The evolution equations of q and u in the BM read [6]

∂q

∂t
= −(u − ζ )

∂q

∂x
+ f (q, u) + Dq

∂2q

∂x2
+ στ (t, x)q, (B1)

∂u

∂t
= −u

∂u

∂x
+ g(q, u), (B2)

with

f (q, u) = q[r + u − Uc − (r + δ)(q − 1)2], (B3)

g(q, u) = ε(Uc − u) + 2ε(Ū − u)q. (B4)

τ (t, x) is white Gaussian noise in space and time and

r = Re − R0

R1 − R0
(B5)

is a control parameter that represents a rescaled Reynolds number. The parameter R0 corresponds to
the first Re at which puffs survive for long times R0 = 1920. The parameter R1 corresponds to the
first Re at which puffs elongate into slugs R1 = 2250.

Overall, the model has seven parameters: ζ , Dq, σ , δ, R0, R1, and ε. When correctly fitted, see
Table III, the model perfectly reproduces the front speed of puffs and slugs in SSPF [6,10]. For a
comprehensive description of the model and its underlying ideas, the reader is referred to Ref. [7]
and references therein.

Timescale of the model. In order to compare the model and DNS or experiment front speeds,
Barkley et al. [6] proposes the velocity scale difference,

ψ = 2(C0 − C1) = 0.28. (B6)

Here C0 is the front speed velocity of puffs at Re = R0 and C1 the front speed of puffs at Re = R1.
This velocity scale difference can also be understood as a timescale difference between model

and DNS or experiments. In particular, an advective time unit (D/U ) in DNS or experiments,
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corresponds to ψ = 0.28 time units in the model. This scale difference is important for the pulsatile
case, where a pulsation period of length T = πRe

2Wo2 in advective time units in DNS or experiments,
corresponds to a period of length T ∗ = 0.28T in the model.

2. Equations of the EBM

In order to adapt the BM to pulsatile pipe flow we introduce several changes. The equations of
the EBM read

∂q

∂t
= −[u − ζŪ (t )]

∂q

∂x
+ fEBM(q, u) + Dq

∂2q

∂x2
+ σ (Re)τ (t, x)q, (B7)

∂u

∂t
= −u

∂u

∂x
+ gEBM(q, u), (B8)

with

fEBM(q, u) = q{rŪ (t + φ) + γ λ(t ) + u − Uc(t ) − [rŪ (t + φ) + δ](q − 1)2}, (B9)

gEBM(q, u) = ε[Uc(t ) − u] + 2ε[Ū (t ) − u]q + PG(t ) + Fv0 (t ), (B10)

where Ū , Uc, PG, and Fv0 are the corresponding bulk velocity, the laminar center-line velocity, the
pressure gradient, and the viscous force at the center line of the pipe. Note that, different to the BM,
these quantities are time dependent. Moreover, φ corresponds to a phase lag between the turbulence
intensity and the bulk velocity. The product of γ and λ models the effect of inflection points in
the USW profile on q. In order to better fit the model results to the DNS results we set ε = 0.1 and
change σ depending on Re,

σ = 6

5

(Re − 1933)

1000
, (B11)

with a lower limit of σ � 0.2, so there are always some stochastic behaviors, and an upper limit of
σ � 0.85, so the stochastic term is never too dominant. In Table III, we list the parameter values
we use for the EBM throughout the paper. In what follows we justify the changes introduced in the
EBM.

3. Extensions to the u equations

In pulsatile pipe flow, the laminar center-line velocity Uc(t ) and bulk velocity Ū (t ) are functions
of time. While the bulk velocity is set by the pulsation, the evolution of Uc(t ) can be obtained from
the NSE. First, we assume laminar flow, u(r, θ, x, t ) → (0, 0,USW(r, t )) and, from the NSE, obtain
an equation for the evolution of the (SW) laminar profile:

∂USW

∂t
= PG(t ) + Fvisc(r). (B12)

Here PG(t ) is the pressure gradient that drives the flow at the desired bulk velocity Ū (t ) and

Fvisc(r) = 1

Re

(
∂2USW

∂r2
+ 1

r

∂USW

∂r

)
(B13)

is the viscous forces. At the center line of the pipe r → 0,

Fv0 (t ) = lim
r→0

Fvisc = lim
r→0

[
1

Re

(
∂2USW

∂r2
+ 1

r

∂USW

∂r

)]
. (B14)

If one applies L’Hopital’s rule to the limit in Eq. (B14), then

Fv0 (t ) = 2

Re

∂2USW

∂r2
, (B15)

024601-20



TURBULENT PUFFS IN TRANSITIONAL PULSATILE …

FIG. 10. Laminar profile and instantaneous maximum eigenvalue λmax according the instantaneous stability
analysis by Morón et al. [17]. In yellow the instantaneous laminar profiles USW at Re = 2100, Wo = 11, and
A = 0.9. To not interfere with one another the profiles are scaled using a scalar with arbitrary units so the all
time maximum is smaller than t/T = 0.15, since only the development of USW in time is of interest. With
points find the existence and position ri of inflection points in the profile. Filled points correspond to inflection
points that also satisfy the Fjørtoft criterion locally ∂2USW

∂r2 [USW − USW(ri )] < 0. In red, the parameter λ =
max(0, λmax) used in the EBM.

and, because Uc(t ) = USW(t, r = 0),

∂Uc

∂t
= PG(t ) + Fv0 (t ). (B16)

Note that the time average of the right-hand side of Eq. (B16) yields 〈PG(t ) + Fv0 (t )〉t = 0. There-
fore in the BM there is no need to consider these terms as they cancel each other at each time step.
In the case of pulsatile pipe flow, however, the equilibrium of forces described in Eq. (B16) must be
included in the model, see Eq. (B10).

4. Extensions to the q equations

In the original BM, Barkley et al. [6] assumed that the turbulence intensity is advected at the
center-line velocity u, corrected with the parameter ζ . In the case of the EBM we multiply the
parameter ζ in Eq. (B7) by the bulk velocity Ū to account for the effect of the pulsation. In the rest
of this subsection we justify other changes to the evolution equations of q in the EBM.

a. Phase lag φ. In previous studies of pulsatile pipe flow, a phase lag between the driving bulk
velocity and turbulence has been reported [27]. In our DNS we observe a time delay between the
maximum integrated turbulence intensity 〈ω2

x 〉r,θ,x and the bulk velocity Ū (see Fig. 3) that is mainly
dependent on Wo. We find that, for the model purposes, the analytical phase lag φ(Wo) ≈ 32.34◦ +
35.17◦ arctan[0.75(Wo − 2)] between the pressure gradient and laminar profile, first derived by
Womersley [14], is a good approximation to this phase difference.

b. The effect of the inflection points: λ and γ . At 5 � Wo � 19 and A � 0.5, the laminar profile of
pulsatile pipe flow is very different to the parabolic profile of the steady case and is instantaneously
unstable at certain phases of the period [17]. The center-line velocity u alone is not able to capture
these features of the mean shear. In the EBM the instantaneous shape of the mean shear and its
effects are modeled by adding to Eq. (B9) the term +γ λ(t ).

Here λ(t ) represents how instantaneously linearly unstable the laminar profile is always λ �
0. We compute it using the method described in Morón et al. [17]. We compute the eigenvalues
of the laminar profile at certain time steps as if the profile was instantaneously steady, using the
method proposed by Meseguer and Trefethen [3]. We then assume that the maximum eigenvalue is
continuous in time and construct λ(t ). We then force λ to be λ � 0. For more details the reader is
referred to Morón et al. [17]. For an example of λ in the model, see Fig. 10. Note that, during the
phases of the period where there are inflection points in the profile, λ is most of the time λ > 0.
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FIG. 11. Space-time diagrams of the cross-section integral of axial vorticity squared of DNS (a) and 10q
of the BM [(b), (c), and (d)]. The results correspond to DNS and BM simulations in a 100D long pipe, at
Re = 2400, initialized with a localized perturbation of length 5D. The figure is presented with respect to a
moving frame x∗, moving with the bulk velocity Ū , and time t∗ in advective time units for DNS, and model
units for the BM. Subplot (b) corresponds to a simulation of the BM with the parameters listed in Table III and
σ = 0; (c) σ = 0.5 and (d) σ = 0.7.

The parameter γ sets the effect λ has on the growth of q in Eq. (B9). It models the quality of the
quasisteady assumption used to compute λ. It scales with the length of the period in terms of flow
units T = πRe

2Wo2 . The idea is that the longer the period is, the slower the mean shear evolves with
respect to the turbulent structures. We find a good compromise with

γ = min [1, 0.28 log (T )]. (B17)

We impose an upper boundary of γ = 1 so the dynamics of the model are not dominated by γ λ.
c. The noise intensity σ . The original BM does not capture all the chaotic behaviors of localized

turbulence in the Re regime at 2250 � Re � 2500. In this regime, according to the BM, puffs
elongate into slugs filling the whole pipe with turbulence, as seen in Figs. 11(b), 11(c) and 11(d).
However, in full DNS, at these Re the flow usually reaches a highly heterogeneous state, where
localized turbulent patches coexist with laminar flow patches; see Fig. 11(a). This behavior can only
be approximated by radically increasing the noise parameter σ in the model, see Fig. 11(d), but at
the same time losing the good agreement between model and DNS or experiments front speeds.

This limitation of the BM turns out to be even more detrimental in the case of the EBM as Re
increases. We find that a noise intensity σ that scales linearly with Re in Eq. (B11) produces better
results. The parameter has a lower bound so the model has some degree of stochastic behavior at
low Re and an upper bound so the noise term is never more dominant than the rest of the dynamics
of the model.

d. The parameter ε. In the original work of Barkley [7], they suggest that ε should be inversely
proportional to Re. But, since changing this parameter does not have a huge impact on turbulence
front speeds and survival in the case of SSPF, they keep it constant. In the case of pulsatile pipe
flow, in order to find a better match with the DNS results, it should be slightly decreased. This is
justified since, the maximum Remax = (1 + A)Re is, in the worst-case scenario, two times the mean
Re. Therefore ε is set to half its BM value in the EBM, see Table III.

5. Computational setup of the EBM

Equations (B7) and (B8) are integrated following Barkley et al. [6]. The second-order derivatives
are discretized with second-order central finite differences and the first-order derivatives with a
first-order upwind scheme. The system is integrated using an explicit Euler method, with a time-step
size �t = 0.0025. The results here correspond to a pipe of length L = 100 and a uniform grid
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spacing �x = 0.5. The stochastic term is modelled as white Gaussian noise in space and time. All
the EBM simulations are initialized with a localized 5D long disturbance with magnitude q � 0.5
at the initial time t0 = T ∗/2.

In order to prepare all the variables needed to integrate the EBM the following algorithm has
been implemented. After selecting the desired A, Re, and Wo the code first numerically integrates
the corresponding laminar profile to obtain all the time-dependent parameters: Ū , Uc, PG, Fv0 , and
λ. It then computes the phase shift angle φ(Wo) and the parameter σ using Eq. (B11) and scales
the pulsation period to adapt it to the timescale of the model using Eq. (B6). Finally, it integrates
Eqs. (B7), (B8), (B9), and (B10).

6. The EBM at A = 0.0

Note that if one sets A = 0 in the EBM, except for the new definitions of σ and ε, then one
recovers the original BM. At A = 0 the parameters derived from the laminar flow are constant in
time: Uc = 2, Ū = 1, PG + Fv0 = 0, and λ = 0 and the EBM Eqs. (B7)–(B10) return to the BM Eqs.
(B1)–(B4).

7. Limitations of the EBM

When correctly fitted the EBM captures the dynamics of pulsatile pipe flow in a broad parametric
regime, but it has some limitations that need to be mentioned. Some of its limitations are inherited
from the original BM. One is the intermittent behavior of turbulence at some flow parameters that is
only captured if σ is scaled with Re. The other is the magnitude of q in the core of the slugs that the
BM tends to overestimate [7]. This results in some qualitative differences in the structures observed
in the model and the DNS.

New to the EBM is the sensitivity to the parameter γ . The EBM is expected to work worse as
A increases. At higher A, and Wo > 5, the laminar profile is very different to the simple parabolic
profile of steady pipe flow, see Fig. 10, and the state of the mean shear can no longer be captured with
one variable u. Here, instead of introducing more variables in the analysis, we find a a workaround
by using the instantaneous linear instability λ and the parameter γ . Both work reasonably well, as
long as γ is correctly fitted. But as soon as γ is changed, puffs either decay or elongate when they
should not.

Also, due to the definition of γ the model overestimates the lifetime of puffs at certain flow
parameters. In particular, according to the EBM, puffs at 10 � Wo � 15, A = 1, and 1800 � Re �
2050 survive the pulsation. This is obviously not observed in DNS of pulsatile pipe flow, where at
Re � 2000 and A = 1 puffs tend to decay independently of the pulsation frequency [17]. Moreover,
at these flow parameters, the EBM is clearly dominated by the parameter λ and therefore by γ . We
do not show it here as we do not consider these flow parameters in our analysis, but we believe it to
be fair to at least mention these errors.

The EBM considers that, as long as λ > 0, turbulence can always make use of the instantaneous
linear instability to grow. However, this may not be the case in a full DNS. At a given time step, the
mean profile of a DNS can be highly perturbed. In this case, puffs would not have the chance to take
advantage of the linear instability to grow and could even decay. This feature should be considered
in future versions of the model.
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