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Multiphase volume-fraction-dependent quasisteady force models have recently been
developed. These models account for the mean force on a particle in the presence of
neighboring particles. Additionally, in shock-particle interaction, there is an unsteady
effect to the perturbation flow induced by the neighbors and their arrival to a particle.
Namely, there is an unsteady component to the volume fraction effect. The present work
advances a simple model to capture this time-dependent perturbative influence of neighbors
in the context of a shock propagating through a cloud of particles. This model makes
use of existing quasisteady force correlations that account for volume fraction within
the framework of the compressible Maxey-Riley-Gatignol equation. This new unsteady
neighbor force is applied via a time history kernel. The problem is examined in the context
of a shock propagating outward in cylindrical geometry. It is observed that for the radii
of curvatures examined, the model prediction is accurate in recovering the time history of
force and time-integrated impulse on the particles. By comparing with a classical model,
we also highlight the importance of volume fraction correction in accurately extracting the
long-time force and the importance of unsteady contribution in accurately predicting the
peak shock-induced force.

DOI: 10.1103/PhysRevFluids.9.024308

I. INTRODUCTION

Force modeling on particles in the context of multiphase flow has a rich history extending
over a century [1,2]. Many advancements have been made including in the Stokes regime, the
incompressible regime, the compressible regime, and the noncontinuum regime [3–11]. Continuous
improvement of these force models will result in more accurate Euler-Lagrange (EL) and Euler-
Euler (EE) simulations of mesoscale and macroscale phenomena that are of relevance in numerous
applied contexts. For instance, despite its importance in national security and industrial relevance
[12,13], the problem of multiphase instabilities in an explosive dispersal of particles in cylindrical
and spherical geometries is not well understood. These instabilities are fundamental and exist in the
incompressible limit [14] as well as in strongly compressible flows [15,16]. Improvement of drag
models will unlock a better understanding of such emergent mesoscale and macroscale effects.

The volume fraction effect due to fluid-mediated particle-particle interactions is significant in
many applications where the distribution of particles is far from dilute. Volume-fraction-dependent
drag correlations are actively being considered in the quasisteady (QS) regime and for uniform
random distributions of particles [10,11,17–19]. However, volume fraction effects remain largely
unexplored under unsteady and other complex conditions. In the quasisteady limit, investigations
have revealed that the force on individual particles within random distributions is highly dependent
on the microstructure of the neighboring particles in compressible flows [20,21] in ways more
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complex than in incompressible flow [19,22,23] due to propagation of compression and rarefaction
waves.

Here we examine the effect of volume fraction in the context of a shock expanding in cylindrical
geometry through a cloud of particles. The corresponding problem of a planar shock propagating
over a curtain of particles has been the subject of considerable research over the course of the past
decade [20,24–31]. Some of these investigations examined shock-particle interactions at the level of
individual particles with the aim of developing better closure models through improved fundamental
understanding. The interest here is to extend this understanding to the closely related problem of a
cylindrically expanding shock propagating through an annular bed of particles.

There are two main reasons for using cylindrical geometry for this work instead of planar
geometry. First, it demonstrates decisively that the force models used in the planar configuration
can be used in expanding geometry which is closer to practical applications [15,16,32–37]. Second,
and more importantly, it allows us to consider a wider range of flow parameters since the shock
strength decays due to curvature as it passes through the particle cloud. Therefore, the force models
can be evaluated over a wider continuous range of shock Mach numbers using cylindrical geometry
than would be possible using a planar configuration. Here we endeavor to understand and improve
the force models to be used in EL simulations with a focus on volume fraction effects.

In particular, in this work, we explore a hitherto unexplored effect of volume fraction on unsteady
force on particles, in the context of compressible flows. Under steady conditions, the effect of local
volume fraction on the mean force on particles should be interpreted as the average influence of
all the neighboring particles, including those upstream, downstream, and to the side. In contrast,
consider the unsteady situation of shock propagation. When the shock arrives at a particle (referred
to as the reference particle), it is influenced only by those neighbors that are directly upstream.
During the early time, soon after the shock arrival at the reference particle, its downstream neighbors
are still immersed in quiescent preshock fluid and their presence is not yet felt. Only when the shock
has propagated sufficiently downstream of the reference particle will the perturbations from the
downstream neighbors arrive at the reference particle. In other words, the full effect of local volume
fraction, i.e., the effect of all the neighbors, is felt in a delayed fashion. We term this the unsteady
neighbor effect, which will be an important focus of this work.

In this work, force prediction is pursued in the framework of the compressible version of the
Maxey-Riley-Gatignol (C-MRG) equation [38,39], which encapsulates the time history of the force
evolution in detail. The C-MRG equation is able to account for the inhomogeneous nature of the
shock by using the surface- and volume-averaged undisturbed flow quantities, where “undisturbed
flow” means what the flow would be without the particle present. The C-MRG model not only
captures quasisteady drag effects but also the inviscid unsteady force by applying a time-history
kernel to encode the effects of previous flow states on the current force. In the past, this model
has been shown to capture the force of a shock passing over an isolated particle well in both air
and water [40] at finite Mach numbers, although it does not attempt to take into account volume
fraction. In the present work, we use the recent volume-fraction-corrected quasisteady model [11]
along with the time-dependent effects of the shock passing over the particle as well as the neighbors
within the C-MRG framework.

The behavior of drag force in an unsteady compressible flow is substantially different from that in
the incompressible regime, and the difference is well captured by the C-MRG equation [38,39]. For
instance, in the case of an isolated particle encountering rapid flow acceleration in the compressible
regime, the inviscid unsteady force changes on the acoustic timescale, which is of the same order as
the flow acceleration. Therefore, the inviscid unsteady force must be evaluated using a time-history
kernel instead of being applied instantaneously as with the classical added mass force. Additionally,
if the flow Mach number is sufficiently high, shocklets or bow shocks form, which induce inviscid
drag [40]. Therefore, the effects of compressibility are significant and require detailed investigation.

The remainder of this paper is organized as follows. Section II outlines the computational
approach and the specifics of the problem geometry and initial conditions. Section III includes a
discussion of the flow fields in Sec. III A followed by a presentation of the drag force results in
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FIG. 1. Schematic of the simulation setup in cylindrical geometry. The dashed lines enclose the simulation
domain, and the solid lines encircle the particle cloud.

Sec. III B comprising an outline of the C-MRG model in Sec. III B 1, a proposed model for the
neighbor unsteady force in Sec. III B 3, and a comparison of the model to the particle-resolved (PR)
results in Sec. III B 4. Finally, conclusions are drawn in Sec. IV.

II. METHODS

A. Governing equations

The following compressible Navier-Stokes equations govern the gas flow:
∂ρ

∂t
+ �∇ · (ρ�u) = 0, (1)

∂ (ρ�u)

∂t
+ �∇ · (ρ�u�u) = −�∇p + �∇ · σ, (2)

and
∂ (ρE )

∂t
+ �∇ · (ρE �u + p�u) = �∇ · (σ�u) − �∇ · (λ �∇T ), (3)

where ρ is the density, �u is the velocity, p is the pressure, λ is the thermal conductivity, and T is the
temperature. The viscous stress tensor, σ, is given by

σ = μ
( �∇�u + ( �∇�u)� − 2

3 I �∇ · �u
)
, (4)

where μ is the dynamic viscosity, and I is the identity tensor. Additionally, the total energy per unit
volume, E , is defined as

E = ρe + 1
2ρ�u · �u, (5)

where e is the internal energy per unit mass. An ideal gas is assumed with a constant ratio of specific
heats of γ = 1.4. The Prandtl number is take to be a constant of 0.7. Finally, the viscosity is assumed
to have a power-law dependence on temperature with an exponent of 0.76 [41]. These equations are
solved using the code CHARLES from Cascade Technologies [42]. It uses third-order Runge-Kutta
time marching paired with an entropy-stable scheme [43].

B. Problem specification

This work examines a cylindrically expanding shock passing through a stationary cloud of
particles. The geometry of the domain is a section of a cylinder with a cloud of particles situated
beyond a diaphragm which breaks and initializes a shock that travels outward through the particle
bed. The domain is of radial length 2.4L, where L is the radial extent of the particle bed situated 0.9L
from the inner radius of the domain as shown in Fig. 1. The domain does not extend all the way to
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TABLE I. Various cases considered.

Case R0/L αp Ms Re Number of realizations Number of particles

1 1.0 0.1 2.6 5000 5 1397
2 1.25 0.1 2.6 5000 3 1303
3 1.5 0.1 2.6 5000 3 1241
4 2.0 0.1 2.6 5000 5 1164
5 ∞ 0.1 2.6 5000 5 931

the center point of the cylinder. The inner boundary of the particle cloud is at radius R0. The particle
diameters and the cloud length are held constant at Dp = 0.063 mm and L = 1.9 mm, respectively.
The arclength of the shell at the inner edge of the particle layer is held constant at 12.7Dp by
varying the angular dimension. Additionally, the axial shell thickness is also a constant of 12.7Dp.
The shock is initialized via a discontinuity, where the driver section has an initial pressure of 3.6619
MPa and density of 12.508 kg/m3. This discontinuity is located at a distance of 0.156L upstream of
the particle cloud. This results in an initial shock Mach number, Ms, of 2.6. The Reynolds number,
Re, is calculated using the initial postshock conditions and the particle diameter is approximately
5000. The radius of curvature, R0, is varied while the particle volume fraction, αp, is held constant at
0.1. An ensemble of simulations is performed with each realization consisting of a different random
distribution of particles to increase the sample size in the evaluation of the ensemble average for
better comparison with the drag models. The number of repeated simulations for the different cases
is shown in Table I. Each simulation is fully three dimensional with a body-fitted grid resolving
each particle.

The distribution of particles within the particle cloud is random with a minimum distance of
0.05Dp between particles. Given the geometry of the problem, it is convenient to define two different
timescales. The first is the particle timescale denoted as τ = Dp/us, where us is the shock velocity.
Additionally, following Osnes et al. [44], the geometry allows for a second timescale related to the
size of the particle cloud, τL = L/us.

A body-fitted Voronoi grid was used to resolve the flow around each particle. The details of the
body-fitted grid and the adequacy of grid resolution have been fully addressed in Refs. [44,45]. The
grid resolution of all the simulations, whose particle force results are being analyzed in the present
study, have been previously analyzed in Ref. [44], and found to be well converged with respect to
Reynolds stress as shown in Fig. 2 of Ref. [44]. Additionally, using a slightly less refined grid, and
the same computational method, Osnes et al. [45] observed the coefficient of drag on the particles
to be converged for the corresponding planar case. These results establish the adequacy of grid
resolution for the present investigation.

III. RESULTS AND FORCE MODELING

A. Flow fields

The flow fields may be summarized using average quantities which are denoted by 〈·〉. These
are spatial averages over the homogeneous angular and z directions. These are then averaged over
multiple realizations for better convergence. The various cases exhibit remarkable similarity as we
see from Fig. 2. Initially, the Mach number is zero throughout the domain and there is a pressure
jump just upstream of the particle bed as displayed in Fig. 3, where the reference pressure, pref ,
is the initial postshock pressure. After the simulation begins, this pressure jump results in a shock
that propagates downstream, steadily weakening due to the expanding geometry and the presence
of the particles. The leading edge of the particle bed reflects a shock upstream after the initial shock
interacts with the particles. The reflected shock then propagates upstream before reflecting off the
inner boundary. The simulation ends prior to this reflected shock interacting with the particles again.
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FIG. 2. Ensemble-averaged Mach number, 〈M〉, plotted as a function of scaled radius, (r − R0)/L, at
varying radii of curvature, R0/L, at several times. τL = L/us.

The primary shock travels through the particles and exits the particle bed at (r − R0)/L = 1. At this
outer edge of the particle bed, there is a peak in Mach number, and valleys in pressure and density
as shown in Figs. 2–4 where the fluid is expanding as it exits the particle cloud. Here ρref is the
initial postshock density. These features of a peak in Mach number and a negative pressure gradient
near the edge of the particle cloud result in higher drag for particles near the downstream edge
of the cloud. In applications where particles move freely over a longer time, this will cause the
particle cloud to expand radially as the particles near the rear edge move faster than particles near
the front. Throughout the simulation, there is a positive radial Mach number gradient extending
from the forward edge of the particle cloud to either the primary shock location before it exits
the particle cloud or the rear edge of the particle cloud indicating a weakening postshock flow as
exhibited by Fig. 2. At early times such as t/τL = 0.5 shown in Fig. 2(b), this gradient is relatively
steep and extends all the way to the forward edge of the particles, but as time progresses, such as at
t/τL = 1.0 displayed in Fig. 2(c), this gradient is localized to the neighborhood of the shock and the
mean Mach number throughout the particle bed is relatively constant with minor fluctuations. Just
after the shock has left the particle bed, at t/τL = 1.5 exhibited in Fig. 2(d), the gradient becomes
localized to the front and rear edges of the particle bed, but as time increases this gradient extends
to the remainder of the particle bed as at t/τL = 3.0 in Fig. 2(g).

Despite the notable similarities between cases, the radius of curvature plays a role in how the
flow fields develop over time. For instance, the pressure plots at t/τL = 2.0 in Fig. 3(e) exhibit
a change in the pressure gradient with decreasing radius of curvature. This becomes clear as
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FIG. 3. Ensemble-averaged pressure, 〈p〉, plotted as a function of scaled radius, (r − R0)/L, at varying radii
of curvature, R0/L, at several times. τL = L/us. The reference pressure, pref , is the initial postshock pressure.

time progresses and the enhanced decay of the shock manifests for smaller radii of curvature in
Figs. 3(d)–3(g). Similar features can also be seen in the density shown in Fig. 4. The Mach number
also shows substantial differences with changing radius of curvature. One prominent feature that
can be observed at t/τL = 2.0 in Fig. 2(e) is that as the shock exits the particle bed it is stronger
with decreasing radius of curvature. In the planar case shown in Fig. 2(e), the immediate postshock
flow appears to be supersonic just upstream of the shock propagating at (r − R0)/L ≈ 1.6, whereas
the postshock flow at a slightly upstream position in the R0/L = 1.0 case is just below the sonic
condition as exhibited in Fig. 2(e). Notice that in the high-curvature case the shock position is
also slightly behind the shock position in the planar case, indicating that the shock velocity has
decreased more in the R0/L = 1.0 case than the planar case. This enhanced weakening of the shock
in high-curvature environments is supported by the relative lowering of the postshock pressure and
density with increasing curvature shown in Figs. 3 and 4. Note that these features continuously
transition across intermediate levels of curvature.

Each of Figs. 2–4 represents an ensemble average of the flow across the multiple cases with
differing realizations of uniformly random particle distributions of constant volume fraction as
outlined in Table I. To examine the differences in the individual cases, Fig. 5 shows a comparison
of the spatially averaged pressure fields for the various cases having R0/L = 1. The ensemble
averages of these cases are plotted in Figs. 2–4. Clearly, the variation between the cases in each
realization is driven by the random particle distribution. The main features of the flow are not
sensitive to this distribution and are therefore recovered in each case. The advantage of having
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FIG. 4. Ensemble-averaged density, 〈ρ〉, plotted as a function of scaled radius, (r − R0)/L, at varying radii
of curvature, R0/L, at several times. τL = L/us. The reference density, ρref , is the initial postshock density.

a large sample size for averaging is that drag as a function of radial position can be obtained
statistically converged. Furthermore, a more converged approximation to the ensemble-averaged
flow can be used to evaluate the drag models.

For a more detailed perspective of the general qualities shared across the various cases, the
R0/L = 2.0 case is observed in Fig. 6 where the Mach number has been plotted at several times.
The common flow features, such as the shock propagating through the particle bed, the reflected
wave propagating leftward back upstream, and the high Mach number near the rightward edge of
the particles, are clear. However, additional detail beyond the average quantities can be observed,
such as the development of pseudoturbulent wakes behind each particle as shown in Fig. 6 which
intensify after the shock passes and form a complicated pattern of shocklets contributing to the
inviscid drag on the particles. A detailed discussion of pseudoturbulence was presented by Osnes
et al. [44].

B. Drag forces

1. C-MRG model

Reduced-order models of the forces experienced by particles are key for extending the microscale
understanding derived from PR simulations to mesoscale EL simulations. Here, we compare our
results to the C-MRG model [38,39]. This model extends to the compressible regime the pioneering
work on incompressible flow by Maxey and Riley [46] and Gatignol [47]. Neglecting the viscous
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FIG. 5. Average (spatial, not ensemble) pressure plotted as a function of radius at several times for R0/L =
1.0. The ensemble average of these make up some the results in Fig. 3. The only difference between cases is the
particle distribution, which has the same volume fraction but a different microstructure. The initial condition
has been omitted from this figure since the solutions are an exact match at that point. See Fig. 3 for the initial
condition. The reference pressure, pref , is the initial postshock pressure. τL = L/us.

unsteady term, the C-MRG model is given by

�F (t ) = −Sp pun�n + σ · �nS︸ ︷︷ ︸
�Fun

+ �Fqs + 3Vp

∫ t

−∞
Kiu

[
∂ρun�uun,r

S

∂t
+ �uun

V · �∇ρun�uun,r
S

]
ξ

dξ

︸ ︷︷ ︸
�Fiu= �Fiu,l + �Fiu,nl

, (6)

where �F is the force on the particle, the subscript un indicates an undisturbed quantity, Sp is the
surface area of the particle, Vp is the volume of the particle, �n is the outward pointing unit normal
vector, ·S denotes the surface average, ·V denotes the volume average, Kiu is the inviscid unsteady
kernel, and the subscript r indicates the radial component in the coordinate system of the particle,

FIG. 6. Slice of Mach number for R0/L = 2.0, plotted at t/τL values of (a) 0.20, (b) 0.96, (c) 1.51, (d) 2.00,
(e) 2.49, and (f) 3.02.
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such that for an arbitrary vector field, �w, �wr = ( �w · �n)�n. Here undisturbed flow of a particle is
defined as that which would exist without that particle present, but in the presence of all other
particles. The viscous unsteady force is neglected because it is not important in shock-particle
interaction, especially at early times where excellent agreement has been shown between experiment
and inviscid simulations [40]. At long times, quasisteady force becomes dominant and includes
compressible inviscid effects as well as viscous effects. The undisturbed flow exerts the undisturbed
force �Fun on the particle, which can be directly calculated if the undisturbed flow is known. The
quasisteady force, �Fqs, is the force that the particle will experience at long times under the current
instantaneous conditions. In contrast, the inviscid unsteady force, which can be divided into linear
and nonlinear components, �Fiu, is a generalization of the added mass force in compressible flows.
A convolution integral with a time-history kernel is needed to take into account the finite speed of
sound in a compressible flow.

In the linear limit, the inviscid unsteady kernel was analytically obtained by Parmar et al. [48],
and extended empirically via a volume-averaged formulation by Behrendt et al. [30] to nonlinear
conditions as

Kiu(t − ξ ; M
V

) = (1 + 3.32αp)
cV |ξ
Rp

exp

[
−A

(t − ξ )cV |ξ
Rp

]
cos

[
B

(t − ξ )cV |ξ
Rp

]
, (7)

where c is the speed of sound, Rp is the particle radius, and M is the Mach number. Behrendt et al.
[30] empirically found that in the subcritical regime of 0 < M < 0.6, A = 1.47M2 − 0.23M + 1.00,
and B = −1.74M2 − 0.10M + 1.00, thereby extending the zero Mach number limit of A = B = 1.
Additionally, the first factor of (1 + 3.32αp) is a volume fraction correction derived asymptotically
in the dilute limit [49].

In the case of a single particle, the undisturbed flow is known analytically in the case of a shock
passing over the particle, which can be used to calculate all the force contributions. In the presence
of neighboring particles, the undisturbed flow of a particle is the flow that would exist in the absence
of that particle, but in the presence of all other neighbors. Thus the true undisturbed flow of each
particle will be slightly different due to the random arrangement of particles within the cloud. Here
we do not have direct access to the undisturbed flow. Therefore, we instead use the averaged flow
quantities 〈ρ〉(r), ũr (r), and 〈p〉(r) as the undisturbed flow of a particle to evaluate the undisturbed
flow force. This assumption is reasonable since there are many particles and thus removing one
particle will not significantly modify the average flow. The quasisteady force is evaluated using the
Reynolds number, Mach number, and volume-fraction-dependent correlation for the compressible
flows presented by Osnes et al. [11]. This model is applied locally and then surface averaged as

�Fqs = 1
2 Apρun|�uun|�uun	(M, Re, αp)

S
, (8)

where 	 is the volume-fraction-dependent drag correlation [11].
In order to evaluate the accuracy of the C-MRG model, we evaluate the model using the mean

flow quantities obtained from the simulation and use them as the undisturbed quantities. The model
results will be compared against the drag data obtained from the PR simulations postprocessed in
the following manner. The particle bed is divided into 60 radial bins of width Wb = L/60 extending
from the innermost particles (located close to r = R0) to the outermost particles (located close
to r = R0 + L). The drag values on all the particles with a radial bin were averaged over all
the realizations to approximate the ensemble average. The bin size was chosen as a compromise
between two competing requirements. A narrow bin of small radial thickness would provide more
accurate resolution of the ensemble-averaged flow information. On the other hand, a narrow bin
size will require more realizations of random particle distributions to obtain a sufficiently converged
ensemble-averaged flow. The present bin width is able to accurately capture the peak force, although
the time duration of the peak is broadened somewhat due to the smearing of the ensemble-averaged
flow properties.

024308-9



SAM BRINEY et al.

FIG. 7. C-MRG comparison to PR data without time delay (a) with volume fraction effects and (b) without
volume fraction effects: 	(M, Re, αp = 0). R0/L = 2.0. Every fifth bin is shown here to make the plot easier
to read.

For further analysis we neglect the particles that are within two particle diameters of the
sidewalls. Prior to averaging, the drag data of each particle obtained from the PR simulations are
shifted to align the initial peak location to match their shock arrival times. Also, the particles that are
in the upstream- and downstream-most radial bins must be considered carefully when comparing
with the quasisteady drag model of Ref. [11] since the particles in these bins are not completely
surrounded on all sides by neighbors.

2. Preliminary comparison

Figures 7(a) and 7(b) show the early time comparison of bin-averaged drag force on the particles
against two different versions of the C-MRG drag model. In Fig. 7(a) the quasisteady force term
given in Eq. (8) is used with the volume fraction αp = 0.1, whereas in Fig. 7(b) the quasisteady
force term was evaluated without the volume fraction correction by setting αp = 0.0. It is important
to note that here and henceforth force evaluation using the C-MRG model (6) is always with all the
force contributions (undisturbed flow force, quasisteady force, and inviscid unsteady force), unless
otherwise stated. In Fig. 7, only the quasisteady term is varied by including volume fraction or not.
Therefore, Fig. 7 exhibits the effect of including volume fraction effects in the quasisteady term,
while including the other force contributions in the C-MRG model. We notice that in Fig. 7(a), the
volume-fraction-corrected quasisteady drag causes the C-MRG model to overpredict the peak drag,
but is reasonably accurate in capturing the postshock drag evolution. In contrast, in Fig. 7(b), the
quasisteady drag of an isolated particle without the volume fraction correction within the C-MRG
framework captures the peak drag quite well, but substantially underpredicts the postshock drag
evolution. This suggests that the finite volume fraction correction does not apply during the initial
interaction with the propagating primary shock. This observation seems reasonable considering
the fact that the volume fraction effects are due to perturbation flow arising from the neighboring
particles influencing the force on a particle. Clearly, during the interaction of the primary shock
with a particle, only the perturbing effect of the particles directly upstream are felt. Since each
particle is unaware of the presence of most of the neighbors to the side and downstream during this
early interaction, including the volume fraction correction in the quasisteady drag is inappropriate.
However, after the shock has passed, the perturbation effect of all the neighbors begins to influence
the flow around a particle and comparison with the model that includes volume fraction effects in
Fig. 7(a) is significantly better.

A more detailed plot of the peaks is shown in Fig. 8 where the peak force obtained for all the
particles is plotted as a function of their streamwise location for case 4 (R0/L = 2). The scatter plot
shows the large number of particles used in approximating the ensemble average. Furthermore, the
weakening of the shock as it propagated through the bed of particles is responsible for the steady
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FIG. 8. C-MRG comparison of peak drag to PR data without time delay (a) with volume fraction effects
and (b) without volume fraction effects: 	(M, Re, αp = 0). R0/L = 2.0. Note that while the C-MRG model
includes all three force contributions (undisturbed flow, quasisteady, and inviscid unsteady), only the form of
the quasisteady force changes between (a) and (b). The orange shading represents the 95% confidence interval
for the PR data.

reduction in the peak drag force with increasing (r − R0)/L. The mean drag force averaged over
particles within each radial bin along with the 95% confidence interval is also shown in the figure as
the orange-shaded region. Again in Fig. 8(a) we see that the peaks are substantially overpredicted
when applying the volume fraction effects in the evaluation of the quasisteady force. As seen
earlier, Fig. 8(b) shows that the peak force prediction substantially improves without the inclusion
of volume fraction effect in the quasisteady force model.

3. Time-delayed volume fraction effect

Based on results presented in Figs. 7 and 8, it is clear that volume fraction effects should be
carefully applied in high-speed compressible flows involving shock-particle interaction. The effect
of neighboring particles must be based on the physical reasoning as to the delay in time a particle
will experience the perturbation influence of its upstream, downstream, and lateral neighbors. When
a shock wave approaches a particle surrounded by a random distribution of neighbors, in addition
to the direct interaction of the shock as well as the postshock flow with the particle, perturbations
arising from the interaction of the shock and the postshock flow with each neighbor will also play
a role. But the influence of a neighbor is felt only in a delayed manner, since the perturbation
flow of the neighbor initiates only upon the arrival of the shock wave at the neighbor and then that
perturbation must also travel from the neighbor to the particle. Thus, the perturbation effect of lateral
and downstream neighbors will be felt only after the passage of the initial shock past the particle
and will not influence the peak drag force.

It must be noted that, had the flow in the neighborhood of the particle been time independent,
then the perturbative effect of all the neighbors would also be time independent and the finite volume
fraction quasisteady drag model presented in Eq. (8) will apply. Under unsteady conditions, when
the flow seen by the neighbors is different from that of the reference particle (whose aerodynamic
force modeling is being discussed), the volume fraction correction to quasisteady drag cannot
be based solely on the instantaneous flow seen by the particle, due to the time-delayed effects
described above. This effect is hitherto unexplored. It is an unsteady force contribution since it
vanishes under steady conditions. The traditional added-mass (or inviscid unsteady) and Basset
history (or viscous unsteady) forces given in Eq. (6) account for only the unsteady effects of the
undisturbed flow “at the reference particle.” Here we are interested in accounting for the unsteady
flow seen by the neighbors in the volume fraction correction. In the following, we develop a model
that accounts for the unsteady fluid-mediated particle-particle interaction. In principle, the C-MRG
equation can account for the unsteady neighbor effects if the detailed undisturbed flow is known at
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each particle. However, in an Euler-Lagrange context, the undisturbed flow of a particle is only
known in an average sense such that the volume fraction effect is not resolved. The neighbor
unsteady contribution is to properly account for the time-delayed application of the volume fraction
effects.

Here we account for the time dependence of the volume fraction effect with an additional
contribution to the force model, �Fnu, termed the unsteady (or time-dependent) neighbor force. This
contribution is expected to be substantial only in the case of substantial variation in the mesoscale
flow seen by the neighbors of a particle. In the case of a propagating shock, we expect some of
the neighboring particles to be under preshock and others to be under postshock conditions, and
more importantly, the distribution of pre- and postshock condition changes rapidly with time. Under
nonshock conditions, we do not expect the particle-particle variation of the mesoscale flow to be
large and therefore this additional contribution to the force model may not be important. With this
argument, we seek a very simple empirical model of the form

�Fnu = − �Fqs,α +
∫ t

−∞
Knu(t − ξ ) �Fqs,αdξ, (9)

where

�Fqs,α = 1
2 Apρun|�uun|�uun	(M, Re, αp)

S − 1
2 Apρun|�uun|�uun	(M, Re, αp = 0)

S
(10)

is the quasisteady force difference with and without the finite volume fraction correction. Concep-
tually, the idea is to compensate for the initial premature inclusion of volume fraction effects in
the quasisteady term. As the shock passes and acoustic waves are reflected from the neighboring
particles to the reference particle, the volume fraction effects are applied gradually. At long times,
this compensation is unnecessary and the model recovers to the quasisteady force with volume
fraction effects, as the neighbor unsteady and inviscid unsteady forces approach zero. Therefore,
the kernel encodes the distribution of acoustic wave arrival time from neighboring particles. We
also need to enforce the condition ∫ t

−∞
Knu(t − ξ )dξ = 1, (11)

in order to recover the long-time value of the correct quasisteady force with the volume fraction
correction.

These requirements are easily satisfied by selecting a kernel based on an approximate probability
density function (PDF) of arrival time of perturbation from surrounding neighbors. Here we select
a log-normal distribution because of the qualitative behavior of having a peak at some point beyond
zero followed by a decay,

Knu(t − ξ ) = 1

βnuta

1

[(t − ξ )/(βnuta)]
√

2π
exp

[
− (ln [(t − ξ )/(βnuta)])2

2

]
, (12)

where βnu is a fitting parameter, and ta is an acoustic timescale. Additionally, the mean and variance
of the corresponding normal distribution are set to 0 and 1, respectively. We propose a simple model
for ta based on a length scale, l , and the speed of sound,

ta = l

cV . (13)

The length scale is representative of the distance the perturbation must travel from the neighbor to
arrive at the reference particle. We propose a model based on the following assumption,

α1/3
p = Cl

Dp

l + Dp
, (14)
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FIG. 9. C-MRG drag prediction compared to average PR data with the QS volume fraction delay kernel for
R0/L = 2.0 with (a) βnu = 1/3, (b) βnu = 2/3, and (c) βnu = 1. Notice that for βnu values too small, the volume
fraction effects are applied too early, and for βnu values too large, the volume fraction effects are applied too
late.

which yields

l = Dp
(
Clα

−1/3
p − 1

)
. (15)

We use Cl = 0.87 to guarantee that l > 0 for the close random packed case of αp = 0.65. The
constant βnu remains to be determined. Figure 9 shows the model prediction for one of the cases
considered for a few values of βnu. Here, the coefficient of drag is defined in the usual way as

CD = 2Fr

Apρref u2
ref

, (16)

where Fr is the radial component of the force in the global cylindrical coordinates and uref is the
initial postshock radial velocity. For βnu = 1/3 shown in Fig. 9(a), the volume fraction effect is
applied too early, resulting in an overprediction of peak drag. Conversely, in Fig. 9(c), for the
larger value of βnu = 1, the volume fraction effect is applied too late, resulting in a noticeable
secondary dip. For βnu = 2/3 as shown in Fig. 9(b) the agreement between the model prediction
and the simulation results is reasonable. We emphasize that the above model, although motivated
by physical reasoning, is empirical and involves significant uncertainty. Nevertheless, the model
demonstrates a viable approach to capturing both the peak drag as well as the long-time behavior in
a finite volume fraction compressible environment.

4. Comparison of the model to PR data

The C-MRG predictions of the drag history curves for all cases are compared to the bin-averaged
drag data from the PR simulations in Fig. 10. The effect of the curvature is noticeable when
comparing the R0/L = 1.0 case in Fig. 10(a) to the planar (R0/L = ∞) case in Fig. 10(e). Here,
the latter peaks in the R0/L = 1.0 case are much lower than those in the planar case as evidenced by
comparing the peaks near t/τ = 40 in Fig. 10. This is further evidenced by the plots of peak drag in
Fig. 11 where we observe that the peak drag exhibits stronger decay for higher radii of curvature. In
Fig. 11(f) the mean peaks are plotted for the various radii of curvature showing an enhanced peak
decay due to increased radii of curvature. Additionally, the peak predictions appear to be best near
the trailing edge of the particle bed where the prediction is often within the 95% confidence interval
shown in Fig. 11. The 95% confidence interval refers to the confidence interval for the mean drag
calculated directly from the PR data presented in this work. The small overprediction of peaks at the
early part of the particle bed is a limitation of the current model. It is also worth noting that the peak
predicted with the model is somewhat wider than the PR data; however, this seems to be the case
with or without inclusion of the neighbor unsteady force (compare Figs. 10 and 9) regardless of
the choice of β. This error in prediction will greatly decrease when the PR fluid flow data finely
resolve the shock structure as in the work of Behrendt et al. [40]. Therefore, the wider peak predicted
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FIG. 10. C-MRG drag prediction comparison to PR for early to intermediate times for (a) R0/L = 1.0, (b)
R0/L = 1.25, (c) R0/L = 1.5, (d) R0/L = 2.0, and (e) R0/L = ∞. Every fifth bin is shown for clarity.

FIG. 11. Peak drag for the C-MRG prediction compared to the PR data plotted with its mean for (a) R0/L =
1.0, (b) R0/L = 1.25, (c) R0/L = 1.5, (d) R0/L = 2.0, and (e) R0/L = ∞. The bounds surrounding the mean
PR values indicate the 95% confidence interval. (f) A comparison of the mean peaks from the other plots to
highlight the effect of curvature.
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FIG. 12. Long-time drag comparison for the C-MRG prediction compared to the PR data plotted with its
mean for (a) R0/L = 1.0, (b) R0/L = 1.25, (c) R0/L = 1.5, (d) R0/L = 2.0, and (e) R0/L = ∞. Every fifth bin
is shown for clarity.

here is due to the coarse resolution of the bin-averaged flow data. As a result, in the evaluation of
the C-MRG equation, the shock is effectively not sharp.

As can be seen in Fig. 10, the model overpredicts the drag for particles near the front of the
particle bed at intermediate times after the shock passage. For example, in Fig. 10(b), we clearly
see the C-MRG prediction for the first particle is still somewhat higher than the bin-averaged drag
from the PR simulations at t/τ = 50. This overprediction of drag at early times is not due to the
quasisteady component since we see an excellent match of the quasisteady force at late times after
transient effects have diminished as displayed in Fig. 12. This figure shows a comparison of the
quasisteady model prediction (dashed lines) against the bin-averaged simulation data (solid lines)
for every fifth bin as a function of time. The agreement is quite good and offers additional support
for the Reynolds number, Mach number, and volume-fraction-dependent compressible quasisteady
drag model presented by Osnes et al. [11]. For the downstream half of the particle bed, whose force
remains substantial during the time period of investigation, we observe the model prediction to be
generally very good and within the error bounds.

The downstream motion of the particles depends on the time-integrated force (or impulse) on the
particles. Here we define the aerodynamic impulse on a particle as

I (t/τ ) = 1

τ

∫ t

0
CDdt . (17)

The resultant impulse at t/τ = 100 for all the particles is presented as a scatter plot in Fig. 13 as
a function of the particle’s normalized radial location. Near the rear of the particle bed there is a
significant increase in impulse due to the substantial rise in Mach number shown in Fig. 2, and strong
negative pressure gradient displayed in Fig. 3. In this region, the C-MRG model captures the impulse
adequately. However, for the cases shown in Figs. 13(c) and 13(d), the impulse is substantially
overpredicted in the upstream third of the particle bed. Again, this overprediction is likely not due
to the quasisteady drag model because, at late times when the unsteady terms are negligible, the QS
drag prediction is excellent as exhibited by Fig. 12.
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FIG. 13. Long-time impulse at t/τ = 100 for the C-MRG prediction compared to the PR data plotted with
its mean for (a) R0/L = 1.0, (b) R0/L = 1.25, (c) R0/L = 1.5, (d) R0/L = 2.0, and (e) R0/L = ∞. The bounds
surrounding the mean PR values indicate the 95% confidence interval.

The late-time agreement presented in Fig. 12 suggests the accuracy of the quasisteady model
presented in Ref. [11] for the present cylindrical configuration. As a result, the difference observed
in the model prediction at intermediate time is likely due to the limitations of the inviscid unsteady
force. The quasisteady force, by itself, is appropriate only when the postshock flow reaches its final
value and the pseudoturbulent wakes fully develop. In the intermediate time before this occurs, the
inviscid unsteady force must account for the transient nature of the evolving wake. To examine these
contributions, the components of the force model are shown in Fig. 14, where the inviscid unsteady
force and the undisturbed forces rise first as the shock passes and then decline sharply. The inviscid
unsteady force then becomes negative, which has been observed by others [50,51] and remains
negative but low in magnitude for some time. It remains nearly zero as time continues. Based on
the present comparison it can be argued that an improved version of the inviscid unsteady force
is needed to more accurately capture the force dynamics at intermediate times while the turbulent
wake is developing after the shock has passed in multiparticle systems.

To highlight the importance of accurate modeling of Reynolds number, Mach number, and
volume-fraction-dependent quasisteady drag, and the unsteady forces, as an example we compare
with the performance of the force model of Boiko et al. [52] that was used in the simulations by
Jacobs et al. [53] to predict a shock interacting with a particle cloud. This force model (termed the
QS-PG model) only includes the quasisteady and pressure gradient terms, neglecting the inviscid
unsteady term as well as the volume fraction effects in the quasisteady contribution. Additionally,
the model treats the particles as point particles instead of using surface and volume averaging as
in the C-MRG equation. The PR results averaged over radial bins are compared with the QS-PG
model prediction in Fig. 15. The QS-PG model leads to substantial error at early times where the
peak drag is not captured well because the inviscid unsteady force is neglected as displayed in
Fig. 15(b). Additionally, the pressure gradient force is diminished at early times since the filter
width is substantially larger than a single particle. At late times, when the volume fraction effects
are significant, the model also substantially underpredicts drag because this effect is neglected.
This also leads to an underprediction of impulse as illustrated in Fig. 15(c). Therefore, the volume
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FIG. 14. C-MRG prediction components compared to the PR data plotted with its mean for (a) R0/L = 1.0,
(b) R0/L = 1.25, (c) R0/L = 1.5, (d) R0/L = 2.0, and (e) R0/L = ∞. Every fifth bin is shown for clarity.

fraction effects are very important when the long-time impulse is desired. Additionally, the inviscid
unsteady and neighbor unsteady terms become important when accuracy is desired as the shock
passes over the particles.

IV. CONCLUSION

The ability to accurately model the time-dependent force on a particle subjected to a time-varying
flow is of fundamental interest in Euler-Lagrange computations of particle-laden flows. The mod-
eling task becomes far more complicated when the particle is surrounded by a random distribution
of neighboring particles. The average influence of neighbors is traditionally included in terms of a
volume fraction correction to the quasisteady drag and also to the added mass or inviscid unsteady
force. The volume fraction correction is intended to account for the perturbation flow induced on a
particle due to the presence of neighbors and as the local volume fraction tends to zero, perturbation
due to neighbors approaches zero, as does the volume fraction correction. The quasisteady drag is

FIG. 15. Drag model used by Jacobs et al. [53] for shock-particle interaction compared to the present
particle-resolved data for R0/L = 2. The plots are comparisons of (a) time history of drag, (b) peak drag as a
function of position, and (c) long-time impulse (t/τ = 100) as a function of position.

024308-17



SAM BRINEY et al.

calculated on the assumption that the undisturbed flow of the particle that existed at the time of
evaluation of the force existed for a long time. In applying the volume fraction correction it is also
assumed that the undisturbed flow of the particle applies at all the neighboring particles.

The key finding of this work is the realization that, under unsteady conditions at finite volume
fraction, there must be an additional force contribution to account for the fact that the flow seen by
the neighbors may not be the same as that of the reference particle whose force is being evaluated.
This contribution is particularly important in compressible flows under conditions of shock propa-
gation, where, as the shock propagates over the reference particle, many of the reference particle’s
lateral and downstream neighbors are still immersed in the preshock quiescent condition and do
not contribute to neighbor-induced perturbation at the particle. Thus, evaluating the quasisteady
force using the Reynolds number, Mach number, and volume-fraction-dependent drag correlation
of Ref. [11] overpredicts the peak drag during the early period of shock-particle interaction. This
overprediction is due to the finite volume fraction correction, since the shock has not reached most
of the downstream neighbors and the perturbation of many others has not yet reached the reference
particle due to finite speed of propagation. It is observed that the peak drag of each particle can
be better predicted ignoring the volume fraction effect and computing the quasisteady force as
that of an isolated particle. On the other hand, after the shock has propagated several diameters
downstream, the long-time evolution of the force is well predicted with the finite volume fraction
correction of Ref. [11]. That is, once the shock propagates over all the surrounding neighbors and
their perturbation flows propagate back to influence the reference particle, the finite volume fraction
effect is fully realized. Here we present a simple model for the unsteady effect of neighbors, �Fnu,
which in conjunction with the quasisteady force model (8) offers a good representation of the
particle force obtained in particle-resolved simulations.

The PR simulations of shocks in expanding cylindrical geometry were used to capture much
of the three-dimensional physics associated with random arrays of particles. Unlike planar shock
tube simulations, the shock strength decayed as it progressed through the particle bed due to both
the presence of the particles and the expanding nature of the geometry. These viscous simulations
provided accurate drag data for each particle in the cloud, allowing for comparison to the C-MRG
model. The C-MRG model appears to work as well in cylindrical geometry as in planar geometry
since the radii of curvature were much larger than the particle diameter. The key finding was that a
neighbor-induced unsteady force must be included if peak drag is to be predicted accurately in the
presence of neighbors. When including volume fraction dependence in the quasisteady term only,
the C-MRG model compares favorably to simpler models in the literature with respect to prediction
of long-term impulse. However, even with this improved formulation, the inviscid unsteady and
neighbor unsteady forces must be included to accurately capture the significant transient peak in
drag that occurs as the shock passes.
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