
PHYSICAL REVIEW FLUIDS 9, 024304 (2024)

From discrete to continuum description of weakly inertial bedload transport

Benjamin Fry, Laurent Lacaze ,* Thomas Bonometti, Pierre Elyakime, and François Charru
Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse,

CNRS, Toulouse INP, UPS, Toulouse, France

(Received 21 November 2019; accepted 8 January 2024; published 20 February 2024)

Granular bed motion induced by a liquid shear flow is considered as a model of bedload.
This flow is characterized by a localization of the granular flow close to the upper surface
of the bed. In such a framework, the paper aims at discussing and proposing continuum
effective models describing the physical properties, as the rheology, of the two-phase
granular suspension at a so-called mesoscale larger than the grain size. The main questions
addressed here concern the relevance and the extension of effective rheological models for
granular suspensions often extracted from simple-shear flow configurations in a viscous
limit, to situations of both granular shear localization as in bedload and weakly inertial flow
regime. For this purpose, we consider the steady transport of a granular bed by a laminar
Couette fluid flow above it and close to the onset of motion, for a grain-to-fluid density
ratio of 2.5, as silica in water, and a range of particle Reynolds numbers Rep ∈ [0.1, 10]
and Shields numbers θ ∈ [0.1, 0.7]. To provide accurate continuum models, the dynamics
into the granular shear layer has to be first known down to a scale smaller than each grain, a
so-called microscale. Numerical simulations are thus performed at the microscale at which
individual grain dynamics is resolved, using an immersed boundary method (IBM) coupled
to a discrete element method (DEM) granular solver. Upscaling is then performed to obtain
the equivalent momentum balance at the mesoscale, characterized by continuum phases,
using a spatial averaging method on volume element larger than the grain diameter. This
approach allows us obtaining stresses, strains, and their relationships for the fluid phase,
the granular phase, and the equivalent mixture, independently. The main contribution of
this work is threefold: (i) we highlight the relevance of mesoscopic rheological continuum
law for localized granular shear flow; (ii) we extract rheological models from direct
numerical simulations (IBM/DEM) in a weakly inertial regime, going beyond purely
viscous situations; and (iii) we extend Coulomb-like model μ(I ) of a granular suspension
to incorporate fluid/particle inertial effects showing a different dependence of fluid phase
and granular phase contributions with dimensionless numbers.

DOI: 10.1103/PhysRevFluids.9.024304

I. INTRODUCTION

Immersed granular transport occurs in many environmental situations and industrial processes,
such as sediment transport in rivers and oceans [1,2], oil extraction, pharmaceutic or food processes
[3], to mention but a few. The modeling of granular flows at these scales imposes a minimum scale
of resolution which is greater than the grain size. For this reason, the granular phase is usually
modeled as a continuum phase.

Yet, modeling immersed granular flows at a scale large enough so the granular medium can be
viewed as a continuum (denoted mesoscale hereafter) remains a challenging task [4]. On the one
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hand, two-phase Eulerian models such as those developed by R. Jackson [5,6] suffer from the lack
of accurate and robust closure models [see, e.g., Ref. [7]]. In particular, the apparent rheological
behavior of the various phases (fluid, granular, mixture) still raises some open questions. Moreover,
the validity of this mesoscale description usually requires a clear separation between the grain size
and the macroscopic scale of deformation of the granular material. This assumption can be drastic
for localized shear and sharp interface as for instance when a bed of grains is sheared and transported
by a fluid flow as encountered in sediment transport. The strategy to adopt to model the granular
phase then remains uncertain.

In the viscous limit, the effective fluid phase at a scale larger than the grains is usually described
as an equivalent fluid whose effective viscosity is a function of the particle volume fraction φ.
This allows to recover well-known results of the effective viscosity at low particle concentration
[8–10]. The apparent viscosity of the fluid phase at larger particle concentration is approximated
by semiempirical relations [11]. The influence of inertia on these models remains an open-question.
As for the granular phase, several rheological models have been proposed. Recent advances on the
understanding of dense granular flows have led to some rheological models for suspensions [12,13].
Finally, the rheology of the mixture is generally modeled by the Krieger and Dougherty (1959)’s
correlation [14]. More recently, a mixture model has been proposed following recent developments
on the rheology of dense granular medium [12]. All these models need to be assessed for a wider
range of granular flows, including bedload sediment transport, for which the mesoscale description
can suffer grain size effects as mentioned previously.

Yet, recent experimental works have shown the pertinence of large-scale mixture rheological
model even for this drastic configuration [15–17]. At the same time, Euler-Lagrange approaches
have been used to assess these rheological models for the granular phase [18,19] and the mixture
phase [20]. These approaches are useful to cover a wide range of granular transport regimes (bed-
load, saltation, suspension). For instance, Pähtz and coworkers used such an approach to propose
a model predicting the bulk transport cessation threshold for both aeolian and fluvial systems [21].
They were also able to assess the local rheological models in a large range of granular flows
including wet, dry, dense, and dilute granular flows [22]. Note, however, that these Euler-Lagrange
approaches make use of some approximations as the flow is solved at a larger scale than the
particle scale. For this purpose, numerical simulations resolved at the grain scales are needed to
complement these approaches. Bedload transport has been investigated by Uhlmann and coworkers
using fully resolved simulations [23–25], however, to our knowledge, the question of the relevance
of the mesoscale models was not addressed. Recently, Vowinckel et al. (2021) [26] used such an
approach to investigate the rheology of mobile sediment beds in viscous pressure driven flows, for
which the layer of carried grains remain thick. The latter study was focused on a specific flow
regime associated with small particle Reynolds number for comparison with experiments presented
in Ref. [15]. On the other hand, a similar approach, but based on lattice Boltzmann method for
the fluid phase resolution, has been used to study the case of sediment transport in an inertial
regime [27].

Here, we consider the generic problem of bedload sediment transport of a bed of grains, induced
by a linear shear-driven fluid flow. The problem is sketched in Fig. 1(a). A bed of grains of mean
diameter d and density ρp is subjected to a Couette flow with shear rate �̇, in a fluid of density ρ f

and viscosity η f . For such typical flow, the subsequent granular transport is mostly confined to a
relatively thin layer at the top of the bed. The present problem depends on three dimensionless pa-
rameters, namely the density ratio r = ρp/ρ f , the particle Reynolds number Rep = ρ f �̇d2/η f and
the Shields number θ = η f �̇/(�ρgd ), where �ρ = ρp − ρ f and g is the gravitational acceleration.
These numbers characterize the local dynamics at the grain scale, they are thus based on the particle
diameter d as the characteristic length scale and �̇ as the inverse time scale. In the following, �̇

is defined far from the granular bed where the fluid shear rate is constant. The two independent
parameters used here, namely Rep and θ , both depend on the shear rate. Alternatively, one may
replace Rep or θ by the Galileo number Ga = √

gd3ρ f �ρ/η f = √
Rep/θ which only depends on
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FIG. 1. (a) Scheme of the considered problem at the microscale. (b) Domain of simulation. (c) Scheme
of the considered problem at the mesoscale. (d) Vertical profile of the streamwise velocity in the fluid phase
(blue, 〈u〉 f ), the granular phase (red, 〈u〉p), and solid volume fraction (black, φ) for Rep = 1 and θ = 0.67.
Note that the velocity profile of the granular phase is represented with a solid line for φ � 0.025 and with
a dashed line otherwise. Here, we use a characteristic length of the weighting function hg = d . hbed is the
mean height of the granular bed defined as the barycentre of the local granular flow rate hbed = ∫

y dq/
∫

dq =∫
y φ up dy/

∫
φ up dy as suggested by Durán et al. (2012) [32].

the fluid and particle properties. To finish with, note that Stokes numbers can also be found in the
literature, characterizing the ratio between particle inertia and fluid dissipation, and can be defined
here as combinations of the independent dimensionless numbers defined previously. Depending on
the considered inertial term of the particle, vertical one due to the weight of the particle or horizontal
one due to the shear-driven fluid forcing, the Stokes number can take different form. The former is√

rGa, the latter being r Rep, respectively.
In the present work, we perform three-dimensional “fully resolved” simulations of this problem

using an immersed boundary method (IBM) [28,29] coupled to a granular solver [30] based on a
discrete element method (DEM) [31]. We refer to “fully resolved” simulations because almost all
the scales of the flow are resolved (except some part of the lubrication effects below the fluid mesh
resolution). By temporally and spatially averaging these results, we can compute the flow properties
at the mesoscale, which only depend on the vertical direction.

The motivations of the present work are twofold: (1) to compute all the terms of the Eulerian two-
phase equations and propose some parametrization of the closure terms; (2) to assess the existing
rheological models of the various phases in the generic case of bedload transport localised to a thin
(few grains) shear layer.

The paper first presents the IBM-DEM numerical approach and setup used for computing the
flow at the microscale. In Sec. III, we describe some theoretical background, namely the upscaling
procedure giving the Eulerian equations at the mesoscale and rheological models for the various
phases. In Sec. IV, spatial and temporal averaging is performed and the flow properties and rheology
at the mesoscale are obtained for each phase. Finally, the influence of the particle Reynolds number
and Shields number on the mesoscale behavior is discussed.

II. GOVERNING EQUATIONS AND NUMERICAL SETUP

A. Fluid solver

The fluid solver is the in-house code JADIM based on an immersed boundary method (IBM)
for computing the fluid flow around moving particles on a fixed Cartesian grid [28–30,33]. Note
that the present IBM method is of the body-force type similar to that of Ref. [34]. Assuming
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an incompressible Newtonian fluid of density ρ f and dynamic viscosity η f , the flow evolution is
described by

∇ · u = 0, (1)

∂u
∂t

+ ∇ · (u ⊗ u) = 1

ρ f
∇ · σ + fIBM + g, (2)

where σ = −PI + η f (∇u + ∇uT) is the local hydrodynamic stress tensor. In the previous expres-
sions, u and P denote the local velocity and pressure, respectively, g is the gravitational acceleration
and fIBM is a volume force term used to account for the presence of solid particles in the domain, as
will be explained in the following.

The present approach is based on a finite-volume method with a three steps mixed third-order
Runge-Kutta/Crank-Nicolson scheme. Pressure is solved using a projection method [35]. Domain
decomposition and message passing interface parallelization are performed.

Equations (1) and (2) are resolved in the whole domain, in fluid cells but also in cells containing
the solid particles. As the boundary location of the moving spheres almost never coincide with the
mesh, so-called local solid volume fraction αIBM is introduced to materialize the particles. αIBM is
equal to one in cells filled with solid, zero in cells filled with fluid, and in the boundary region αIBM

is varying with a sinusoidal shape from one to zero. The characteristic length �α of the transition is
typically of the order of one to three mesh cells of size �x. In the present work, �α = 1.3�x [28,34].

The body force term fIBM is then defined as

fIBM = αIBM
Ud − ũ

�t
, (3)

where �t is the numerical time step, ũ is a predictor fluid velocity, and Ud is a prescribed particle
velocity. fIBM basically ensures the velocity to be the actual particle velocity within solid particles.
Ikeno and Kajishima (2007) [36] showed that using the local particle velocity as the prescribed
velocity, namely Ud = up + ωp × r may tend to overestimate boundary layer effects (hence the
drag on the body) in the fluid region near the particle surface. To reduce this effect, we impose
Ud = αIBM(up + ωp × r) + (1 − αIBM)UI, as done by these authors and Pierson (2015) [33], where
UI is a local fluid velocity resulting from a multidirectional linear interpolation of ũ over the
neighboring cells.

A subloop on the entire forcing/Crank-Nicolson step is performed to improve the enforcement of
the no-slip condition at the particle boundary [see Refs. [29,33], for more details]. More specifically,
ũ is first computed without considering the particles, then the IBM force is computed, thirdly an
unsteady Stokes equation is solved and finally ũ is updated. This forcing subloop is computationally
expensive and is therefore used only twice per Runge-Kutta loop (tests showed that using more
subloops did not improve the results significantly).

B. Granular solver

The granular solver is the in-house code GraDyM [30] based on a soft-sphere discrete element
method (DEM) which allows to describe multicontact grains interaction [31,37,38]. It solves the
Newton’s equations for linear and angular momentum, with velocity up and angular velocity ωp,
which read

ρpVp
dup

dt
= ρpVp g + fh +

∑
q �=p

fc
pq, (4)

Ip
dωp

dt
= Th +

∑
q �=p

Tc
pq, (5)
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TABLE I. Parameters used in the simulations. Here, Rep = ρ f �̇d2/η f is particle Reynolds number, θ =
η f �̇/(�ρgd ) is the Shields number, St = ρp�̇d2/η f = rRep is the Stokes number, and Ga = √

gd3ρ f �ρ/η f =√
Rep/θ is the Galileo number. In all the cases, the density ratio is r = ρp/ρ f = 2.5.

Rep = 0.1 (St = 0.25) Rep = 1 (St = 2.5) Rep = 10 (St = 25)

θ = 0.11 + (Ga = 9.5)
θ = 0.22 × (Ga = 0.67) × (Ga = 2.1) × (Ga = 6.7)
θ = 0.33 ∗ (Ga = 0.55) ∗ (Ga = 1.7) ∗ (Ga = 5.5)
θ = 0.4 ◦ (Ga = 0.50) ◦ (Ga = 1.6) ◦ (Ga = 5.0)
θ = 0.5 � (Ga = 0.45) � (Ga = 1.4) � (Ga = 4.5)
θ = 0.67 ♦ (Ga = 0.39) ♦ (Ga = 1.2) ♦ (Ga = 3.9)

where Vp = πd3/6 is the volume of particle p, Ip is the moment of inertia tensor,
∑

q �=p fc
pq

(
∑

q �=p Tc
pq) is the total contact force (torque) induced by particles q in contact with the particle

p, and fh (Th) is the total hydrodynamic force (torque) acting on the particle.
The contact force and torque fc and Tc are computed using a soft-sphere model where the particles

are allowed to slightly overlap, with a linear mass-spring model with dissipation in the normal
direction and a mass-spring model coupled to a Coulomb type behavior above the slip threshold.

This model introduces four new dimensionless parameters, namely the dry restitution coefficient
e, the characteristic contact time �̇tcol which are both related to dissipation during bouncing and
contact stiffness; the ratio between the normal and tangential stiffnesses kt/kn and the friction
coefficient μ used for the Coulomb threshold. We choose a dry restitution coefficient of e = 0.7, a
collision time small enough to ensure rigid behavior of the particles and loose dependency with this
parameter [39,40], typically tcol � 10−3√d/g; here kt/kn = 0.2857 as suggested by Schafer et al.
(1996) [37] and μ = 0.25.

The hydrodynamic force and torque fh and Th acting on each particle are computed using fIBM as

fh =
∫

Sp

σ · n dS = ρ f

[
−

∫
Vp

fIBM dν + d

dt

(∫
Vp

u dν

)
− Vpg

]
, (6)

Th = ρ f

[
−

∫
Vp

r × fIBMdν + d

dt

∫
Vp

r × udν

]
, (7)

where Sp (Vp) is the surface (volume) of particle p, fIBM is the body-force source term used in the
fluid solver to impose the local particle velocity at the particle location. As explained in previous
studies [41], an extra lubrication force close to contact between particles can be required to capture
unavailable details of the fluid flow in the gap between two bouncing particles. However, as done
in Ref. [42], no lubrication force is used here as it is shown not to affect significantly the present
results, in particular those related to the rheological laws (see Appendix D).

Equations (4) and (5) are solved using the third-order Gear’s predictor-corrector scheme
[39,43–45]. The time step for the time advancement of the procedure is set to �tDEM = tcol/50.

The reader is referred to Refs. [28,29] for a validation of the present immersed boundary method
without any contact and Refs. [41,46] for validations in the case where contacts are present.

C. Numerical setup

In the present work, we set the particle-to-fluid density ratio to r = 2.5, we vary the Shields
number in the range 0.1 � θ � 0.7 and the particle Reynolds number in the range 0.1 � Rep � 10
(0.39 � Ga � 10). Most of the explored values of θ are above the transport threshold and below
the threshold of suspension initiation; hence the granular bed is moving as bedload. The various
simulations are summarized in Table I. As the particle Reynolds numbers is lower than 10, this study
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FIG. 2. Time evolution of the instantaneous granular flow rate per unit depth scaled by Vs with Vs = (ρp −
ρ f )gd2/(18η f ) the Stokes velocity (Rep = 1, θ = 0.67, Ga = 1.22). Black line: IBM-DEM results. Red line:
mean value at steady state. Blue line: qconv as defined using Eq. (8) with tmax = 1300�̇−1).

may be considered as relevant for all the situations where the bedload layer lies within the viscous
sublayer of turbulent flows. Note that in Ref. [26], the simulations were for a fixed Ga = 0.85 and a
range of Reynolds number 0.1 � Rep � 1 (using our scaling) and hence, our simulations covered a
wider range of Galileo numbers and Reynolds numbers.

To vary the Shields number θ , we varied the intensity of the gravitational acceleration g in the
range [1, 6] d�̇2, which does not modify the particle Reynolds number Rep. We varied �̇ and η f

simultaneously to vary Rep without modifying the Shields parameter θ . For this, we kept the product
�̇η f constant while modifying the ratio �̇/η f .

The flow configuration is sketched in Fig. 1(a). We define the Cartesian frame axes (x, y, z)
such as the x and z axes lie in the horizontal plane (perpendicular to gravity), x being aligned
with the imposed fluid flow velocity, and y is the vertical direction. The simulations are performed
in a Vtot = Lx × Ly × Lz = 4d × 20d × 4d computational domain. In addition, we set the spatial
resolution of the fluid solver to �x = �y = �z = 0.1d . Periodic boundary conditions are imposed
along the horizontal x and z directions. Note that we verified that varying the size of the domain and
spatial resolution did not change the results significantly (see Appendix A for more details). The
bottom of the domain, of size Lx × Lz = 4d × 4d , consists in a rough wall composed of a network
of fixed half-grains. Moreover, we benefit from the steadiness of the flow to extract converged
average quantities of the granular phase for such a small extension of the spatial domain. Half
of the domain is initially filled with Np = 170 grains. The particles have a mean diameter d with
a dispersion of 5% around the mean value to avoid crystallization and segregation phenomena.
The speed at the top of the domain is imposed as �̇Ly/2 (where Ly/2 is the fluid thickness), or
equivalently Ly/(2d ) = 10 in its dimensionless form. Then the bulk Reynolds number of the fluid
phase ReB = ρ f �̇L2

y/8η f ≡ 50Rep ∈ [5, 500], confirming the laminar state of the fluid phase flow.
The initial state of the simulation is obtained as follows. First we let the particles settle down

without any interstitial fluid (i.e., using the GraDyM code only in the dry configuration). Second,
we fix the particles (the granular bed thus becomes a porous medium) and simulate the Couette flow
until a steady state is reached (i.e., using the JADIM code only). Finally, at t = 0, the grains are
released and become free to move and rotate.

The physical duration of a run is then about 1300�̇−1 including a transient regime of about
200 �̇−1 prior a quasi-steady state of the fluid-particle flow is reached. As an example, Fig. 2
presents the instantaneous dimensionless granular flow rate q/Vsd , with Vs the Stokes velocity of a
settling particle as defined in the caption of Fig. 2, for Rep = 1 and θ = 0.67 (Ga = 1.22). To ensure
statistical convergence, we compute the cumulative time averaging of the considered quantity by
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starting from the end of the simulation (corresponding to a time denoted tmax). In particular, we
define fconv for an arbitrary time-dependent quantity f , as

fconv(t ) = 1

tmax − t

∫ tmax

t
f (τ )dτ. (8)

For instance, qconv/Vsd is shown in Fig. 2 (solid blue line). Starting from tmax, the function
converge to a mean value as t decreases. Note that the convergence should disappear when t → 0 as
the initial transient regime is then included in the integral of Eq. (8). Therefore, we can consider that
the statistical convergence is reached when a plateau is observed on a significant interval of time t .
In Fig. 2, the plateau of statical convergence of q/Vsd is obtained between 200�̇−1 and 600�̇−1. In
our case, we therefore perform temporal averaging over the time interval [550�̇−1, tmax] using 150
samples separated by a time laps of 5�̇t . The obtained mean value for the granular flow rate q/Vsd
is shown in Fig. 2 (solid red line).

III. MESOSCALE STRESSES: THEORETICAL BACKGROUND

A. Volume average approach

To obtain the mesoscopic mass and momentum equations from the microscopic (particle size)
ones, Jackson proposed a spatial averaging procedure which is summarized below, for a steady flow,
and keeping his notation. The reader is referred to Jackson (1997, 2000) [5,6] for more details. This
spatial averaging allows to obtain an equivalent fluid phase and an equivalent solid phase which
are both defined at any position x in the domain Vtot. These two phases are therefore weighted by
mean of a local volume fraction for both the fluid phase ε(x) and the solid phase φ(x) = 1 − ε(x)
(as both fluid and solid particle are considered incompressible). The latter quantities represent the
portion of each phases on a length scale l around x prescribed through a spatial averaging—or
weighting—function G, such as

ε(x) =
∫

Vf

Ĝ(|x − x′|)dvx′ , (9)

φ(x) =
∑

p

∫
Vp

Ĝ(|x − x′|)dvx′ , (10)

where x = (x, y, z)T , x′ = (x′, y′, z′)T , Vp is the volume of the particle p, and Vf the part of the
volume Vtot filled with fluid. To be consistent, G has to be defined as a decreasing function from
the considered position x with a characteristic spatial extension l , normalized (

∫
Vtot

Ĝ dv = 1) and
differentiable. Note that due to the symmetries of the considered system, averaged quantities shall
only be a function of the vertical direction y, while remaining invariant of the horizontal directions
(x, z). The averaging length scale l has thus only to be applied in the vertical direction, l = hg. In
other words, we choose a weighting function invariant in the horizontal directions, as the flow is,
and Gaussian in the vertical direction, as

Ĝ(|x − x′|) ≡ G(|y − y′|) = 1

LxLz

e−( y−y′
hg

)2

∫ Ly

0 e
−(

y−y′′
hg

)2

dy′′
. (11)

Using Eqs. (11), (9), and (10) then read

ε(y) =
∫

Vtot

G(|y − y′|)[1 − αIBM(x′)]dvx′ , (12)

φ(y) =
∑

p

∫
Vtot

G(|y − y′|)αIBM(x′)dvx′ , (13)

recalling αIBM = 0 in the fluid phase and αIBM = 1 in the particles.
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An example of the vertical profile of the steady solid volume fraction φ(y) obtained in the present
configuration of a sheared granular bed for Rep = 1 and θ = 0.67 (Ga = 1.22) is shown in Fig. 1(d)
(black line). Here hg = d has been chosen as the characteristic length scale of the weight function
(11). As expected, one observes that φ is close to its maximum packing fraction ≈0.6 in a static
region close to the bottom and rapidly decreases close to its upper surface to reach zero in top
fluid layer. The vertical variation of φ depends on the dynamics of the moving layer which will be
discussed later on in this section.

As the grains are rigid, we can also compute the number of particles per unit volume n(y) at the
altitude y as

n(y) =
∑

p

G(|y − yp|), (14)

where yp is the vertical coordinate of the position of particle p center. Note that assuming
y − yp � hg over a particle diameter d , i.e., G varies slowly over a particle diameter and thus
d/2 � hg, one can easily link φ and n as [5]

φ(y) = Vp n(y) + O
[(

d

2hg

)2
]
. (15)

It is worth mentioning here that d/2 � hg would be the first condition of scale separation
necessary for the validity of the upscaling approach. As a second condition, the characteristic
spatial extension hg of the weighting function G must be much smaller than the macroscopic scale
L, namely hg � L. The latter condition can be seen as preventing unexpected smoothing of flow
properties gradients at the mesoscale. These conditions are not straightforwardly fulfilled in the
present configuration as L is typically associated with the vertical gradient length scale, which could
be typically of order d .

B. Eulerian two-phase equations

Following the procedure describes in Sec. III A, the fluid phase average 〈 f 〉 f of an arbitrary
quantity f obtained from the IBM solver is then defined as

〈 f 〉 f (y) = 1

ε(y)

∫
Vtot

[1 − αIBM(x′)] f (x′)G(y − y′)dv′
x. (16)

As explained in Ref. [5], one may define two types of averages for the granular phase, namely the
particle phase average (which uses n) and the solid phase average (which uses φ). For simplicity,
we only present the particle phase average. In the following, we refer indifferently the “solid”
or “particulate” quantities to as “granular.” Then, the particle phase average 〈 f 〉p of an arbitrary
quantity f p of particle p is defined by

〈 f 〉p(y) = 1

n(y)

∑
p

f pG(|y − yp|). (17)

For example, Fig. 1(d) shows the vertical profiles of the streamwise steady fluid velocity 〈ux〉 f (y)
(blue line) and the streamwise steady granular velocity 〈up|x〉p(y) (red line) obtained for Rep = 1
and θ = 0.67 (Ga = 1.22). Again, hg = d has been chosen as the characteristic length scale of the
weight function (11). The fluid phase is shown to be everywhere moving faster than the granular,
as it is expected for such a fluid-driven transport configuration. Moreover, velocity profiles rapidly
decreases in the moving layer to reach zero simultaneously with the volume fraction reaching its
maximum packing fraction in the static layer.

Applying the averaging procedure to the equations solved at the microscale, namely Eqs. (2)
and (4), leads to the mesoscopic system of Eulerian two-phase equations. The complete set of
equations are found in Ref. [5]. For sake of clarity, we simplify the momentum equation for the
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fluid phase and the granular phase, obtained at the order O((d/L)2), for the specific case of the
steady flow considered here. These read, respectively,

ρ f ε〈u〉 f · ∇〈u〉 f = ∇ · � f − n 〈fh〉p + ρ f εg, (18)

ρpφ〈up〉p · ∇〈up〉p = ∇ · �p + n 〈fh〉p + ρpφg, (19)

which are 2D and for which variables only depend on y. Hence ∇ = (0, d/dy), 〈u〉 f =
(〈ux〉 f , 〈uy〉 f ), 〈up〉p = (〈up|x〉p, 〈up|y〉p) and so on. The fluid-particle interaction force denoted 〈fh〉p

reads

n(y) 〈fh〉p(y) =
∑

p

G(|y − yp|)
∫

Sp

(σ · n) dS ≡
∑

p

G(|y − yp|)fh(xp), (20)

which can be explicitly calculated from the microscale using Eq. (6). Note that this fluid-particle
force is usually split as n 〈fh〉p = n 〈f1〉p + φ ∇ · � f , with φ ∇ · � f the so-called generalized buoy-
ancy. Then 〈f1〉p corresponds to the rest of local hydrodynamics interaction including drag among
others.

� f and �p are the 2D apparent stress tensors of the equivalent fluid phase and granular phase,
respectively. They can be split into different contributions, defined from microscale, as

� f = ε〈σ〉 f + n〈s f 〉p − ρ f ε〈u′ ⊗ u′〉 f , (21)

�p = n〈ss〉p − ρpφ〈u′
p ⊗ u′

p〉p, (22)

where u′ = (1 − αIBM(y))u − 〈u〉 f (respectively, u′
p = up − 〈up〉p) is the spatially fluctuating part

of the local fluid (respectively, granular) velocity and the tensors 〈s f 〉p and 〈ss〉p read

n〈s f 〉p = d

2

∑
p

G(|y − yp|)
∫

Sp

(σ · n) ⊗ n dS = d

2

∑
p

G(|y − yp|)

×
∫

Vtot

[
αIBMρ f

(
du
dt

− fIBM

)
⊗ r

]
dv, (23)

n〈ss〉p = d

2

∑
p

G(|y − yp|)
∑
q �=p

fc
pq ⊗ npq, (24)

where npq = (xq − xp)/(|xq − xp|) is the unit outward vector normal to the surface of the particle
p at the contact point.

It shall be noted that the effective fluid stress tensor (21) contains a contribution n〈s f 〉p coming
from the presence of the grains, leading to a differential stress contribution arising from the vertical
variation of the local fluid stress at the particle scale, and probably leading to a φ-dependent effective
fluid viscosity as discussed in the following.

Moreover, mass conservation for the fluid phase and the granular phase shall impose, for the shear
flow configuration considered here, ε〈uy〉 f = 0 and φ〈up|y〉p = 0, respectively. Then, the left-hand
sides of Eqs. (18) and (19) have to be zero. We suggest here to keep these terms for now, to verify
in the following the validity of averaged momentum equations obtained from the microscale.

C. Eulerian equations for the mixture

In the previous section, upscaling has been performed in a way that both the fluid phase and the
granular phase remain separate. One may also represent the system by a single equivalent phase that
contains both the fluid and the grains. This phase is here called the mixture phase and its velocity is
defined as

ρ̄ 〈u〉m = ρp φ〈up〉p + ρ f ε〈u〉 f , (25)
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where ρ̄ = φ ρp + ε ρ f is the local density of the mixture. Using Eqs. (18), (19), (25) and mass
continuity, one can show that the momentum equation for the mixture phase reads [5]

ρ̄〈u〉m · ∇〈u〉m = ∇ · �tot + ρ̄g, (26)

where �tot is the total apparent stress. Again, due to the properties of the configuration studied here,
all variables are only y-dependent, and the spatial gradient can be written as ∇ = (0, d/dy).

Mass conservation for the mixture phase implies d〈uy〉m/dy = 0 leading to 〈uy〉m = 0 over the
domain to satisfy upper and bottom boundary conditions, as for the fluid and granular phases (see
previous section). This means that Eq. (26) can be simplify as

0 = ∇ · �tot + ρ̄g. (27)

Then assuming left-hand sides of Eqs. (18) and (19) to be nought, as it shall be, it thus follows that
�tot = � f + �p with � f and �p defined as in Eqs. (21) and (22), respectively. The latter equality is
not necessarily straightforward as the contribution of the effective stress emanating from the inertial
nonlinear term in the mixture phase is not the sum of the contribution of each phase in a general
case [5,47]. Note that here, this is not a viscous approximation disregarding velocity differences
between granular phase and fluid phase, but that any contribution due to this velocity differences
are included in � f + �p.

D. Constitutive laws for the various phases (fluid, granular, mixture)

In the paper, we assume all effective stresses to be symmetric Cauchy-type tensors, as done for
generalized Newtonian fluid models, whatever the phase considered (fluid, granular, or mixture).
This means that stresses would be the sum of an isotropic pressure and a deviatoric viscous
part, characterized by an effective (or equivalent) viscosity. The difference between phases (fluid,
granular, mixture) being the structure of this equivalent viscosity and its dependance with state
variable, as the solid fraction φ for instance. This assumption, which is quite strong, allows to test
and possibly to extend some of the rheological models obtained in the literature, which are described
in the following.

We present here the rheological models that we will use to characterize the different phases. They
are not exhaustive but share many similarities with most of the available models of the literature.
They are considered here as the base state of our current knowledge on suspension and granular
rheology, as simple models for a description as a generalized fluid. Let us first consider the mixture
phase. At low particle concentration (and zero particle Reynolds number), Einstein [8,9] showed
that the apparent viscosity of the mixture in the presence of a dilute suspension is

ηm
eq/η f = 1 + 5

2φ. (28)

Reference [48] included small inertial expansion to this solution, highlighting an extra Re3/2
p

term into the φ contribution of Eq. (28). Batchelor and Green (1972) [10] made the second-order
development, in the viscous limit, which extends the range of applicability of the model to larger
particle concentrations (typically φ � 0.1). For a shear flow, their model reads

ηm
eq/η f = 1 + 5

2φ + 7.6φ2. (29)

Models (28) and (29) are exact solutions based on theoretical development, which obviously
implies some limitations, as pairwise long-distance interaction and no solid contact. The conse-
quence is that they can only be applied to situations of small solid fraction. For denser situation,
the previous assumptions are no longer expected to be valid leading to a significant increase of the
dissipation with solid fraction which is not captured by the previous models. In this case, theoretical
development of the effective viscosity is not conceivable. Then empirical correlations based on
experimental or numerical results have been proposed and can be found in the literature. One of the
popular one for the case of dense and neutrally buoyant suspension is the empirical correlation of
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Krieger and Dougherty (1959) [49]

ηm
eq

η f
=

(
1 − φ

φm

)− 5
2 φm

, (30)

with φm = 0.62. This correlation provides a good approximation but it does not allow to separate
the different contributions to the dissipation in the system (viscosity of the fluid, solid frictional
contacts).

To understand and theorize the rheology of dense suspensions, the contributions of fluid and par-
ticles to momentum transfer have to be separated. For this purpose, Boyer, Guazzelli, and Pouliquen
(2011) [12] focused on the rheology of neutrally buoyant suspension with an imposed pressure
on the particle phase to control the frictional viscosity usually observed for granular material.
Based on independent viscosities for frictional dry granular medium [50] and expected-contactless
correlations for the fluid phase, they proposed constitutive laws which unify suspension and granular
rheology, modeled as the sum of two contributions, coming from hydrodynamic stresses and contact

ηm
eq = η f

eq + ηp
eq, (31)

where η
f
eq and η

p
eq are, respectively, the fluid and granular contributions. Summation of effective

viscosity as in Eq. (31) is not necessarily justified. However, it is indeed reasonable if one assumes
the shear rate of each phases to be roughly similar and therefore both equal to the shear rate of the
mixture phase. As the total stress is split between each phases, then Eq. (31) holds.

Even if the approach of splitting the two contributions as in Eq. (31) could allow to improve
our understanding of physical ingredients emanating from each phase, it still requires to model the
effective viscosity of each contribution.

Let us first consider the apparent rheology of the fluid phase. At low concentration, the contribu-
tion of the contacts vanish and then, the apparent rheology of the fluid phase equals the one of the
mixture. At larger particle concentrations and nonzero particle Reynolds numbers, Gibilaro et al.
(2007) [11] propose an empirical expression of the apparent viscosity of the fluid phase, namely,

η f
eq/η f = ε−β = (1 − φ)−β, (32)

with β = 2.8. This model can be seen as an empirical extension of models (28) and (29) at larger
concentration, still disregarding solid contact between particles. Among other models, it has the
advantage of being quite simple, even if it does not satisfy theoretical models when developed at
small φ.

Let us finally consider the apparent rheology of the granular phase. According to the present
configuration, we focus here on rheological models dealing with dense granular flows of frictional
particles, for which the stress is usually assumed to be Coulomb-type

�p
xy = μp

eqPp, (33)

where μ
p
eq is an effective friction to be modelled and Pp is the granular pressure defined as Pp =

−(�p
xx + �

p
yy + �

p
zz )/3. In particular, we make use of the popular μ − I rheology which has been

extensively developed in the last decade for dry granular flows [39,50,51]. Trulsson et al. (2012)
[13] extended this rheology by using both the inertial number

I = |γ̇ p|d√
Pp/ρp

, (34)

and the viscous number [12,52]

J = |γ̇ p|η f

Pp
, (35)
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in their model, where |γ̇ p| is the norm of the local shear of the granular phase, y-dependent in our
situation. This leads to a new dimensionless number

K = J + αI2, (36)

where α is some constant of order unity. This theory attempts to unify rheological models obtained
in viscous (J ) and inertial (I) configurations, including the transition from one regime to another.
Trulsson et al. (2012) [13] obtained a value of α = 0.635 from two-dimensional Euler-Lagrange
simulations. Note that Lacaze et al. [42] recently performed fully resolved three-dimensional
simulations of the collapse of a granular column in a viscous fluid which seems to support the
present value of α.

It is worth noting that K can be expressed as a function of the local Reynold number Rep
l =

ρ f |γ̇ p|d2/η f as K = J (1 + α r Rep
l ). K can thus be interpreted as a viscous number J including

some inertial effects via the extra term α r Rep
l . In this study, this extra term was observed to be of

order one or more. For instance, in the case Rep = 1 and θ = 0.67 (Ga = 1.22), α r Rep
l ranges from

0 in the static bed of grain up to 1.6 at the top of the moving layer. This means that both regimes are
considered here, namely the viscous and the inertial regime, as well as the transition between them.

Following previous results from dry configurations, the authors of Ref. [13] propose models for
the effective friction coefficient μ

p
eq and the volume fraction φ depending on K. As their model for

φ(K) was obtained in the small K limit, their result can be combined to the viscous model proposed
by Ref. [12] to obtain

φ(K) = φc

1 + b
√
K

, (37)

where φc is the jamming volume fraction, which shall be expected to be equivalent to φm in Eq. (30),
and the value of b then varies from authors. In particular, b = 1 to recover the model of Ref. [12]
and b = 0.42/φc for Ref. [13]. The model usually proposes that the friction can be written as

μp
eq(K) = μ1 + μ2 − μ1

1 + √
K0/K

, (38)

where μ1, μ2, and K0 are fitting parameters. Note that, for instance, Trulsson et al. found μ1 ≈
0.277, μ2 ≈ 0.85, and

√
K0 ≈ 0.29 from two-dimensional Euler-Lagrange simulations.

Suppressing K from Eqs. (37) and (38) allows us to express uniquely the friction as a function of
the state φ, only valid for steady state,

μp
eq(φ) = μ1 + (μ2 − μ1)(φc − φ)

φc − (1 − b
√
K0)φ

. (39)

Based on this frictional granular model, an effective viscosity for the granular phase can be built as
[50]

ηp
eq(φ) = μ

p
eq(φ)Pp

|γ̇ p| . (40)

Expressing the pressure term as a function of φ using Eq. (37), one obtains

ηp
eq/η f = (

1 + α r Rep
l

)
μp

eq(φ)

(
bφ

φc − φ

)2

. (41)

Equation (41) is an extension of the model in Ref. [12] which was derived for the viscous case.
Finally, all effective models described in this section were obtained for viscous flow, even if some

validation has been proposed for inertial situations, and for mostly homogenous suspensions. Their
validity and extension to inertial and localised shear flows remain sparse and are not yet conclusive.
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IV. RESULTS

The results presented in this section were obtained by applying to the DNS the upscaling
procedure based on the volume average approach as described in Sec. III. In particular, we use
as characteristic length of the weighting function hg = d as was used for volume fraction and
velocities profile in Fig. 1(d). Other values were tested (especially smaller ones) and some results
with hg �= d are presented in Appendix B. The value of hg can be crucial in the present configuration.
In particular, larger values of hg could be chosen to satisfy the condition hg � d/2. Recall that
this condition is required to fulfill the scale separation necessary for the validity of the upscaling
approach. However, Fig. 20 shows that increasing hg tends to underestimate the mesoscale granular
velocity close to the granular bed surface. This can lead to an overestimation of the velocity
difference, and then the drag, between the two phases (a presentation of the drag force in the granular
bed is given in Appendix C). This highlights the main difficulty in performing spatial averaging in
such shear-localised configuration. However, decreasing hg, even below d/2 allows these profiles
to converge. Nevertheless, strong oscillations of the volume fraction profiles, and actually of other
mesoscopic quantities, are observed in the bed with an increase of their amplitude when reaching
the static bed. Decreasing these oscillations would require to significantly increase the horizontal
length scales of the domain. However, it will be shown in the following that this does not modify the
physical properties of the sheared mixture. We thus choose in the following to use and discuss main
results for hg = d for sake of clarity, but we will pay attention to discuss its influence according to
the results shown in Appendix B.

A. Momentum balance at the mesoscale

The relevance of the spatial averaging procedure for the configuration considered in this study is
first discussed. This is done by verifying the validity of momentum balances at the mesoscale (18)
and (19) which shall be satisfied by the equivalent phases, when each terms contributing to these
equations are calculated from the resolved IBM simulation, as explained previously. This validity
is quantified by two estimated inaccuracies, say a “balance error” ζb and an “integral cumulative
error” ζic. The former corresponds to the error in the balance of the mesoscale momentum equations.
The latter error characterizes the difference between the stress tensor calculated from the average
procedure and the estimated stress tensor obtained by integrating momentum equation at the
mesoscale.

All the results presented in this section are for θ = 0.67 and Rep = 1 (Ga = 1.22), but can be
extended to all cases.

1. The equivalent fluid phase

Let us consider the momentum balance of the equivalent fluid phase [see Eq. (18)] in the vertical
direction

ρ f ε〈uy〉 f ∂〈uy〉 f

∂y︸ ︷︷ ︸
(1)

= ε
∂�

f
yy

∂y︸ ︷︷ ︸
(2)

− n 〈 f1〉p
y︸ ︷︷ ︸

(3)

+ ρ f εg︸︷︷︸
(4)

, (42)

with

� f
yy︸︷︷︸

(a)

= ε〈σyy〉 f︸ ︷︷ ︸
(b)

+ n
〈
s f

yy

〉p︸ ︷︷ ︸
(c)

−ρ f ε
〈
u′2

y

〉 f︸ ︷︷ ︸
(d)

. (43)

Each individual term in Eqs. (42) and (43) are calculated from IBM-simulation results following
the volume average procedure. In particular, the obtained vertical profiles of the different terms
in Eq. (42) are shown in Fig. 3(a). It appears first that the inertial term (42.1) is negligible. As
already mentioned, this proves that mass conservation is actually satisfied, as 〈uy〉 f shall be nought
in the present configuration. Moreover, the magnitude of the lift force exerted on the granular phase
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FIG. 3. Vertical profiles of the vertical projection of the equivalent-fluid momentum balance at the
mesoscale (42) and (43), for Rep = 1, θ = 0.67, Ga = 1.22. (a) Vertical profiles of all the terms in Eq. (42),
labeled from (1) to (4). The black dotted line corresponds to the “balance error” profile ζ

f ,y
b (see text for

details). (b) Vertical profiles of all the terms in Eq. (43), namely � f
yy (blue), ε〈σyy〉 f (cyan), n〈s f

yy〉p (magenta),
and −ρ f ε〈u′2

y 〉 f (yellow). The black dotted line is � f
yy obtained by vertically integrating Eq. (42), indicating

the “integral cumulative” error ζ
f ,y

ic .

[Eq. (42.3); green curve in Fig. 3(a)] is also negligible. Therefore, the momentum balance in the
vertical direction for the equivalent fluid phase is ensured by a balance between the buoyancy force
(42.2) and the weight of the fluid (42.4), as actually expected.

The “balance error” ζ
f ,y

b caused by the upscaling procedure on the vertical momentum equation at
the mesoscale is obtained by summing the terms on the right hand side of Eq. (42) [black dotted line
in Fig. 3(a)]. ζ

f ,y
b is found to be reasonably small, i.e., with a maximum of 7.3% of ρ f g. Not that

ζ
f ,y

b becomes large close to the bottom rough wall due to the averaging procedure limitation close
to the boundaries of the domain. Nevertheless, this part of the domain is not accounted for in the
following analysis as it does not influence the dynamics close to the bed surface.

Focusing on the stress contribution �
f
yy, Fig. 3(b) presents the obtained vertical profiles of the

normal stress �
f
yy and its different contributions obtained as in Eq. (43), namely the fluid phase

normal stress ε〈σyy〉 f (43.b), the contribution of the grains to the fluid normal stress n〈s f
yy〉p (43.c)

and the Reynolds stress term −ρ f ε〈v′2〉 f (43.d). All contributions are discussed according to their
amplitude | · | which all increase from top to bottom due to the weight of the fluid. One first obtains
that the normal stress satisfies a hydrostatic balance as expected from the previous discussion on
Eq. (42), i.e., |� f

yy| linearly increases with decreasing y with a slope ρ f g [blue line (a) in Fig. 3(b)].
Contributions to this hydrostatic balance are as follows. Inertia −ρ f ε〈u′2

y 〉 f is almost negligible.

|n〈s f
yy〉p| is zero above the bed of grains and increases as one goes deeper in the bed. Alternatively,

|ε〈σyy〉 f | linearly increases in the pure fluid column from the top wall down to the granular bed
surface. Below the bed surface, |ε〈σyy〉 f | suddenly decreases with decreasing height y in the moving
layer while increasing again when reaching the static bed.

A vertical integration of Eq. (42) also leads to �
f
yy estimated from integral values of the other

force contributions. Its vertical profile is reported in Fig. 3(b) (black dotted line). The relative error
between these two estimations of the normal stress [blue line and black dotted line in Fig. 3(b)] is
referred to as its “cumulative integral error” ζ

f ,y
ic . Here, the maximum of ζ

f ,y
ic is about 3.6% close to

the fixed rough wall.
Let us now consider the momentum balance of the equivalent fluid phase in the streamwise

direction. For the present flow configuration, the projection of Eq. (18) along the x axis reads

ρ f ε〈uy〉 f ∂〈ux〉 f

∂y︸ ︷︷ ︸
(1)

= ε
∂�

f
xy

∂y︸ ︷︷ ︸
(2)

− n 〈 f1〉p
x︸ ︷︷ ︸

(3)

, (44)
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FIG. 4. Vertical profiles of the horizontal projection of the equivalent-fluid momentum balance at the
mesoscale (44) and (45), for Rep = 1, θ = 0.67, Ga = 1.22. (a) Vertical profiles of all the terms in Eq. (44),
labeled from (1) to (3). The black dotted line corresponds to the “balance error” profile ζ

f ,x
b (see text for

details). (b) Vertical profiles of all the terms in Eq. (45), namely � f
xy (blue), ε〈σxy〉 f (cyan), n〈s f

xy〉p (magenta),
and −ρ f ε〈u′

x u′
y〉 f (yellow). The black dotted line is � f

xy obtained by vertically integrating Eq. (44), indicating

the “integral cumulative” error ζ
f ,x

ic .

with

� f
xy︸︷︷︸

(a)

= ε〈σxy〉 f︸ ︷︷ ︸
(b)

+ n
〈
s f

xy

〉p︸ ︷︷ ︸
(c)

−ρ f ε〈u′
x u′

y〉 f︸ ︷︷ ︸
(d)

. (45)

Following a similar approach as for the previous discussion on vertical momentum balance,
results for the streamwise momentum balance of the fluid phase are presented in Fig. 4. Note that
we scaled the forces in the streamwise direction by η f �̇/d while in the vertical direction ρ f g was
used, the ratio between these scaling being (r − 1)θ . The vertical profiles of the terms of Eq. (44)
are shown in Fig. 4(a). As in Fig. 3(a), we plot as black dotted line ζ

f ,x
b as an estimation of the local

balance error. Figure 4(b) presents the vertical profile of the shear stress �
f
xy (blue) and its three

contributions given in Eq. (45). The black dotted line corresponds to the “integral cumulative error”
in the streamwise direction ζ

f ,x
ic .

Again, the inertial term in the streamwise direction (44.1) is negligible, as mass balance imposes
zero vertical velocity [blue dashed line in Fig. 4(a)]. Unlike vertical balance, the fluid-particle forces
only occur due to motion of grains in the streamwise direction, and are therefore nonzero in the
bedload region of the moving layers only. In this region, the drag force acting on the grains (44.3)
is balanced by the divergence of the shear stress in the fluid (44.2) [see Fig. 4(a)]. As in the vertical
direction, the error balance ζ

f ,x
b is small but, here, the maximum error is located at the top of the

bedload layer. The shear stress �
f
xy profile (45) is shown to decrease from a constant value in the pure

fluid phase scaling with η f �̇ towards zero in the static granular bed, i.e., for decreasing y [blue line
(a) in Fig. 4(b)]. As will be discussed later, the equivalent fluid shear stress �

f
xy is actually transferred

to the granular one �
p
xy in the granular bed, leading to a constant total shear stress (mixture) in the

whole domain, as expected for such configuration (27). The different contributions of this equivalent
fluid shear stress profile can also be seen in Fig. 4(b). First, the streamwise contribution of the
Reynolds stress is again negligible for the present range of parameters. The main contribution to
the shear stress is shown to be the viscous shear stress of the interstitial fluid ε〈σxy〉 f (45.b), at least
in the pure fluid layer where it is equal to the equivalent total fluid stress. This contribution then
decreases to zero in the static bed, as does the equivalent fluid stress, but it is compensated by an
extra contribution n〈s f

xy〉p (45.c) in the moving granular layer [magenta line in Fig. 4(b)], which can
actually becomes larger. This granular contribution shifts, in a way, the influence of the total fluid
shear stress �

f
xy deeper in the granular bed, which therefore decreases slower than ε〈σxy〉 f . Note that
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FIG. 5. Vertical profiles of the vertical projection of the equivalent-granular momentum balance at the
mesoscale (46) and (47), for Rep = 1, θ = 0.67, Ga = 1.22. (a) Vertical profiles of all the terms in Eq. (46),
labeled from (1) to (5). The black dotted line corresponds to the “balance error” profile ζ

p,y
b (see text for details).

(b) Vertical profiles of all the terms in Eq. (47), namely � p
yy (red), n〈sp

yy〉p (magenta), and −ρpφ〈u′2
p|y〉 f (yellow).

Note that here � p
yy ≈ n〈sp

yy〉p. The black dotted line is �p
yy obtained by vertically integrating Eq. (46), indicating

the “integral cumulative” error ζ
p,y

ic .

here, the maximum of ζ
f ,x

ic is around 3.4% of the total shear stress (black dotted line). This is again
due to small discrepancies close to the bed surface which is cumulated when integrating down to
the static bed.

2. The equivalent granular phase

The procedure to analyze the granular phase is exactly the same as the one described in the
previous section and is not recalled here for the sake of conciseness. The momentum balance for the
granular phase in the vertical direction (19) reads

ρpφ〈up|y〉p ∂〈up|y〉p

∂y︸ ︷︷ ︸
(1)

= ∂�
p
yy

∂y︸ ︷︷ ︸
(2)

+φ
∂�

f
yy

∂y︸ ︷︷ ︸
(3)

+ n 〈 f1〉p
y︸ ︷︷ ︸

(4)

+ ρpφgy︸ ︷︷ ︸
(5)

, (46)

with

�p
yy = n

〈
sp

yy

〉p − ρpε
〈
u′2

p|y
〉p

. (47)

The vertical profiles of the terms (46.1–5) and the relative contribution of the particle stress
(47) are plotted in Figs. 5(a) and 5(b), respectively. Again, the inertial term (46.1) vanishes due
to mass conservation, i.e., 〈up|y〉p = 0. The apparent weight of the granular phase [grain weight
plus generalized buoyancy, i.e., (46.3)+(46.5)] is shown to be balanced by the divergence of the
granular normal stress �

p
yy (46.2), often referred to as granular pressure. This implies a granulostatic

equilibrium in the granular bed, i.e., a linear profile of �
p
yy in the bed which becomes zero in the pure

fluid upper layer [see Fig. 5(b)]. Note that only particle-particle contacts contribute to this granular
stress, as the inertial term ρpε〈u′2

p|y〉p in the particle stress term (47) is found negligible here. Again,
the vertical contribution of the fluid-particle force n 〈 f1〉p

y (46.4) is found to be negligible, even in
the moving layer. Errors ζ

p,y
b and ζ

p,y
ic estimated as for the fluid phase remain small in the moving

layer of grains. However, they can significantly increase in the static bed [see black dotted lines
in Figs. 5(a) and 5(b)]. The reason for that inaccuracy has already been mentioned previously as
a limitation in upscaling approach using the present procedure in the static bed, which is not a
limitation according to the purpose of the paper.
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FIG. 6. Vertical profiles of the horizontal projection of the equivalent-granular momentum balance at the
mesoscale (48) and (49), for Rep = 1, θ = 0.67, Ga = 1.22. (a) Vertical profiles of all the terms in Eq. (48),
labeled from (1) to (4). The black dotted line corresponds to the “balance error” profile ζ

p,x
b (see text for details).

(b) Vertical profiles of all the terms in Eq. (49), namely � p
xy (red), n〈sp

yy〉p (magenta), and −ρpφ〈u′2
p|y〉 f (yellow).

Note that here � p
xy ≈ n〈sp

xy〉p. The black dotted line is �p
xy obtained by vertically integrating (48), indicating the

“integral cumulative” error ζ
p,x

ic .

The momentum balance in the streamwise direction (19) of the equivalent granular phase reads

ρp〈up|y〉p ∂〈up|x〉p

∂y︸ ︷︷ ︸
(1)

= ∂�
p
xy

∂y︸ ︷︷ ︸
(2)

+φ
∂�

f
xy

∂y︸ ︷︷ ︸
(3)

+ n 〈 f1〉p
x︸ ︷︷ ︸

(4)

, (48)

with

�p
xy = n

〈
sp

xy

〉p − ρpε〈u′
p|x u′

p|y〉p. (49)

The vertical profiles of Eqs. (48) and (49) are shown in Figs. 6(a) and 6(b), respectively. Similarly
to the vertical balance, Eq. (48.1) vanishes. Then, dissipation term associated with the vertical
gradient of the shear stress (48.2) is balanced by the sum of the streamwise fluid-particle drag
force (48.4) and the generalized buoyancy gradient (48.3), the latter playing also as a driving term
emanating from the shear at the particle scale. Note that the drag contribution is dominant in this
bedload moving layer and contributes to about 60% of the driving force in the streamwise direction.
However, the presence of the buoyancy gradient, in the sense of Ref. [5], on the force balance in the
streamwise direction, has to be associated with localised shear contributions at the particle scale,
leading to significant stress variation from the top to the bottom of each grain. To finish with, the
shear stress �

p
xy, whose contribution only comes from particle-particle contact [first term of Eq. (49)]

as shown in Fig. 6(b), is zero in the pure fluid top layer while increasing with decreasing y in the
bedload moving layer and reaches a roughly constant value of ≈η f �̇ in the static bed region. Hence,
the fluid shear stress in the pure fluid region has been fully transferred, as expected and mentioned
previously, to the granular phase in the static bed via the bedload moving layer. Again ζ

p,x
b and ζ

p,x
ic

remain small only in the moving layer of grains.
To conclude on the mesoscale momentum equations estimated here, the expected balance

between the two phases are obtained in both the vertical direction and the horizontal direction.
Moreover, such approach allows to extract the main contributions to the fluid stress and the particle
stress emanating from the fluid-particle interaction. It is worth noting that, a significant discrepancy
in momentum balance for the granular phase, ζ

p
b and ζ

p
ic, has been observed in the whole static bed

region. The latter is due to the time averaging of correlated samples when particles remain static (in
particular when we time average forces for particles at the exact same location). Those fluctuations,
however, are limited in amplitude and localized in the static bed (a more detailed discussion is
given in Appendix A). Note that rheological flow curves for an equivalent generalized Newtonian
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fluid as discussed in Sec. III D are only valid above the threshold of motion, i.e., in the moving
layer here. Fluctuations in the static bed then do not affect such rheological description, and will be
disregarded. Beyond these observations, discrepancies in momentum balance ζ

f
b , ζ f

ic , ζ p
b , ζ p

ic pointed
out in Figs. 3–6 remain small in the moving layer. An improvement could however be expected
by considering larger-order terms in the asymptotic expansion used to derive the mesoscopic
equations (see Sec. III B). According to the small influence of these terms, such analyses remain
beyond the scope of the present paper.

B. Rheological models at the mesoscale

In this section, we discuss the rheology of the different equivalent phases computed from the
microscale simulations, IBM-DEM. In all cases, to prevent over-interpretation of our results, we
exclude the data coming from the static zone (y � hbed − 4d), which corresponds to φ � 0.601 and
K � 10−5, and where fluctuations of the mesoscale quantities were observed in the mean vertical
profiles (see related discussion at the end of the previous section).

1. The equivalent fluid phase

First consider the apparent rheology of the equivalent fluid phase. Assuming that the equivalent
fluid phase is a generalized Netwonian fluid, its apparent viscosity η

f
eq is a scalar which can

be determined as η
f
eq = �

f
xy/(∂〈ux〉 f /∂y) ≡ �

f
xy/γ̇

f for the 1D shear flow considered here. For
convenience, it is usually preferred to use (� f

xy + �
f
yx )/2 instead of �

f
xy for symmetry reasons (even

if those two terms are almost equal, the maximum difference being of the order of 0.02 η f �̇ in our
case). According to the previous definition of the effective fluid viscosity, the equivalent fluid stress
is then proportional to the effective fluid strain rate. However, this link is far from being obvious, and
remains an open question. In particular, using this definition for the effective stress would require
to define a bulk viscosity according to the compressibility of the equivalent fluid phase. Another
approach, which has been commonly used in the literature according to solution derived for dilute
suspension in a viscous Stokes regime, is to make use of the incompressibility of the mixture phase
〈u〉 = φ〈up〉p + ε〈u〉 f to define the stress as a function of its strain rate even for the equivalent fluid
phase [6,53,54]. Note that such a definition is also convenient as we anticipate defining the mixture
phase viscosity as the sum of the equivalent phases contribution (31). Then, we use the following
definition for computing the apparent viscosity of the equivalent fluid phase

η f
eq =

1
2

(
�

f
xy + �

f
yx

)
∂〈ux〉
∂y

≡
1
2

(
�

f
xy + �

f
yx

)
γ̇

. (50)

More specifically, from the vertical evolution of �
f
xy, �

f
yx and 〈ux〉, we compute η

f
eq(y)/η f . As

the solid fraction also depends on the vertical position, φ(y) [see, e.g., the black line in Fig. 1(d)],
one obtains η

f
eq/η f as a single-valued function of φ, as shown in Fig. 7 (dot symbols) for Rep = 1,

θ = 0.67 (Ga = 1.22).
The apparent viscosity of the fluid phase obtained in this latter case is very well fitted by

the power law (32) with β = 1.71, at least for φ < 0.55. Note that this value is rather different
from β = 2.8 as obtained by Ref. [11], and do not moreover lead to the Einstein viscosity (28) at
small φ.

Figure 8(a) is similar to Fig. 7 but displays the apparent viscosity of the fluid phase for all the
cases considered here, i.e., Rep = {0.1, 1, 10} and θ ∈ [0.1, 0.7]. One observes that the rheological
curve strongly varies with these two parameters. In any case, η

f
eq/η f can be fitted with a law

of the form (1 − φ)−β as previously, but now with β = β(θ, Rep). In particular, increasing θ or
Rep increase the effective fluid viscosity. In Fig. 8(a), green solid lines show the obtained fit for
(Rep, θ, Ga) = (0.1, 0.22, 0.67) and (Rep, θ, Ga) = (10, 0.67, 3.9) corresponding to β = 0.83 and
β = 3.24, respectively.
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FIG. 7. Apparent viscosity η f
eq/η f of the fluid phase vs solid volume fraction φ: (•), present IBM-DEM

simulation for Rep = 1, θ = 0.67, Ga = 1.22 [Eq. (50)]; (dashed black) Einstein’s model [8,9] η f
eq/η f =

1 + 5
2 φ; (solid black) Gibilaro et al. (2007)’s correlation [11] η f

eq/η f = (1 − φ)−β with β = 2.8; and (red)
adjustment with η f

eq/η f = (1 − φ)−1.71. Confidence intervals of 95% are computed using the geometric stan-
dard deviation of the apparent viscosity for each uncorrelated time sample.

Figure 8(b) presents the corresponding value of the β exponent used in the constitutive law
η

f
eq/η f = (1 − φ)−β as a function of θ and Rep and obtained from a best fit of the data of Fig. 8(a).

As already mentioned, the exponent β obtained here strongly depends on the particle Reynolds
number and the Shields number. It is found that β has a power-law dependence on both Rep and
θ . In particular, the θ -dependency seems linear and the Rep-dependency is well described by a
square root function. Note that at small Rep (black symbols for Rep = 0.1 here), β becomes nearly
independent of θ . To summarize and to highlight these observations, Fig. 8(c) shows the evolution

0 0.1 0.2 0.3 0.4 0.5 0.6

100

101
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0 0.1 0.2

1

1.5
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0 0.2 0.4 0.6 0.8
0

2

4

10-1 100 101
10-1

100

101

FIG. 8. (a) Apparent viscosity η f
eq/η f of the fluid phase vs solid volume fraction φ for all the cases (Rep,

θ , Ga) considered in the present work: see Table I for detail of the various symbols. Green solid lines show
the obtained fit of the constitutive law η f

eq/η f = (1 − φ)−β for (Rep, θ, Ga) = (0.1, 0.67, 0.22) (black crosses)
and (Rep, θ, Ga) = (10, 0.67, 3.9) (red diamonds), respectively. Green dashed lines in the insert are the small-φ
expansion (52). (b) Corresponding exponent β as a function of θ . (c) β − β0 as a function of r θ

√
Rep with

β0 = 0.565. Lines correspond to 2/3 power-law functions with scale factor 1 (dotted line) and 0.85 (dashed
line).
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of β − β0 as a function of rθ
√

Rep with β0 = 0.565 an offset constant value. One finally obtains

β =

∣∣∣∣∣∣∣∣
β0 + a (r θ

√
Rep)2/3,

β0 + a r2/3 θ Ga2/3,

β0 + a r2/3 Rep Ga−4/3,

(51)

depending on the set of the three independent dimensionless numbers chosen. In Eq. (51), a is found
to be a = 0.85 for the explored values of θ and Rep [dashed line in Fig. 8(c), dotted line corresponds
to a = 1]. Note in particular that this scaling is not expected to hold at large Rep and θ for which
different mechanisms probably become dominant. To understand the obtain scaling law (51), one
can discuss its implication at small φ. If φ � 1, combining Eqs. (32) and (51) leads to

η f
eq/η f = 1 + φ

[
β0 + a (r θ

√
Rep)2/3

]
,

≡ 1 + β0φ
[
1 + l2

g ρ f �̇/η f
]
,

= 1 + β0φ

[
1 +

(
lg
d

)2

Rep

]
, (52)

where lg = √
a/β0 r1/3Ga−2/3d is a length scale. Note that we found lg in the range 0.4 � lg/d � 3

in our simulations. Green dashed lines in the insert of 8(a) highlight the relevance of such
small-φ expansion, again for (Rep, θ, Ga) = (0.1, 0.22, 0.67) and (Rep, θ, Ga) = (10, 0.67, 3.9).
By analogy with the eddy viscosity in turbulent flow, in which lg would be a mixing length, here
it characterizes a viscous length scale associated with the vertical motion of grains induced by
their own weight along the vertical direction during transport. This shall therefore somehow be
linked to the thickness of the viscous boundary layer developing at the surface of these grains
because of relative motion with the fluid along the vertical direction. In other words, this “eddy”
viscosity is induced by vertical agitation of the grains moving at the surface of the granular bed
and subjected to the characteristic shear flow �̇. This contribution to the fluid-phase dissipation is
therefore associated with grain weight. This probably explain why the obtained Rep contribution
differs from Ref. [48], which found a Re3/2

p correction in the case of dilute and homogeneous
neutrally buoyant suspension in a simple shear flow, i.e., in which inertial contribution comes from
other mechanisms.

The value of β0 then specifies the viscous limit for the effective viscosity of the equivalent fluid
phase in the dilute regime, φ � 1. It is observed to be quite smaller than 2.5 which would be the
expected value obtained for homogeneous suspension. However, it shall be noted that such viscous
limit has usually been obtained for nearly neutrally buoyant suspension, i.e., for Ga → 0 and thus
lg/d → ∞ here. Such limit is thus undefined with the obtained scaling Eqs. (51) and (52), as this
would actually be the θ → ∞ limit, which is not relevant for bedload. Here, the φ-dependency at
small φ is a very different process, and is therefore not comparable to a dilute neutrally buoyant
suspension. The dissipation in the fluid phase remains associated with the specific dynamics of
heavy grains in close contact, which can modify a purely 1D-vertical diffusive process due to vertical
agitation of grains.

Moreover, in the finite range of parameters (θ, Ga, Rep) covered here for bedload application,
the transition from the top fluid layer towards the granular bed remains a sharp interface at the grain
scale (as the bed remains relatively dense, even if φ varies within this bed layer as discussed in the
next section). The present spatial upscaling is performed accross the entire system and hence it leads
to an equivalent diffuse interface as grains remain microscale. The smooth φ-transition observed in
Fig. 8(a) is therefore the consequence of this diffuse interface between the bed and the fluid layer
at the continuous scale. Such diffuse interface includes the dissipative mechanisms associated with
heavy grains mentioned above. θ → 0 corresponds to the sharpest interface, i.e., for a fluid flow
over a porous medium built of solid grains. In the range of Rep covered here, and according to (51),
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FIG. 9. Vertical distribution of the normal components of the equivalent granular phase (Rep = 1, θ = 0.67,
Ga = 1.22): (solid black) �p

yy; (blue) � p
xx; (red) � p

zz; and (dashed black) Pp = (� p
xx + � p

yy + � p
zz )/3.

β → β0 when θ → 0 for nonzero Rep flow. In the latter case, the bed surface is a sharp transition
between the pure fluid phase and the maximum bed packing, φm ≈ 0.6 here (see next section). For
simplicity, one can assume the flow in the limit φ = 0 to be dominated by the pure fluid (top layer)
and to be zero within the porous medium, comparatively. With this in mind and using our present
upscaling approach, we can show that, in this case, the effective viscosity of the diffuse interface is
simply linear in φ as η

f
eq/η f = 1 + φ/φm (not detailed here). Here, one obtains β0 < φ−1

m indicating
a more complex flow condition at the bed surface, such as slip velocity which would actually lead
to 0 < β0 < φ−1

m < 2.5.
For now, the interpretation of the model proposed for the fluid-phase effective viscosity is

only consistent with the obtained scaling laws mentioned previously. This should deserve specific
attention in future works for validation and extension on other configurations and parameter ranges.

2. The equivalent granular phase

We now consider the apparent rheology of the equivalent granular phase. We compute the
vertical distribution of the inertial number I (y) = |γ̇ p|d/

√
Pp/ρp and the viscous number J (y) =

|γ̇ p|η f /Pp to obtain K(y) = J + αI2 (with α = 0.635, as Ref. [13]).
It has been checked that the diagonal contribution of the stress is nearly isotropic, i.e., �

p
xx ≈

�
p
yy ≈ �

p
zz (see Fig. 9 obtained for Rep = 1, θ = 0.67, Ga = 1.22). However, the y component �

p
yy

(solid black line) is smoother and closer to Pp (dashed black line), while the other contributions
show more oscillations in the granular bed. We therefore use −�

p
yy instead of Pp.

As done in the previous section, the vertical coordinate y can be eliminated to obtain relationship
between state variables, still assuming a single-valued relationship. We first focus on the case
(Rep = 1, θ = 0.67, Ga = 1.22). Then, for instance, the solid volume fraction φ is plotted as a
function of K in Fig. 10(a) (dot symbols). φ(K) is well represented by model (37) up to K � 25
as shown in Fig. 10(a). In particular, the black thin dash line corresponds to b = 1 as proposed by
Ref. [12] and the red solid line is for b = 0.7 which allows to provide a more accurate prediction
of φ(K) over a large range of K. In both cases, φc is found to be φc = 0.615. Note that this range
of validity is larger than intervals explored by Boyer et al. (2011) [12] and Trulsson et al. (2012)
[13] for which K � 0.1, i.e., for φ � 0.45. Figure 10(a) then shows that the validity of Eq. (37)
seems to be extended to the range φ � 0.1, which therefore includes the upper part of the moving
granular layer and more surprisingly most of the diffuse interface at the mesoscale (as discussed in
the previous section).
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FIG. 10. Constitutive law of the equivalent granular phase (Rep = 1, θ = 0.67, Ga = 1.22). (a) Solid
volume fraction φ versus K, (b) apparent friction coefficient μp

eq versus K, (c) apparent friction coefficient μp
eq

versus φ: (•) present IBM-DEM simulation; [red solid lines in panels (a)–(c)] φ(K), μp
eq(K), and μp

eq(φ) given
by Eqs. (37), (38), and (39), respectively, with φc = 0.615, b = 0.7, μ1 = 0.23, μ2 = 0.8, and

√
K0 = 0.15;

(black thin dash line) in panel (a), same as red line but for b = 1; (green dashed lines) in panels (b), (c), same
as red line but for fitting parameters μ2 and

√
K0 as in Fig. 11. Confidence intervals of 95% are computed

using the geometric standard deviation of the solid fraction (a) or the apparent friction coefficient (b) for each
uncorrelated time sample.

We now compute the equivalent friction coefficient of the granular medium μ
p
eq as

μp
eq =

1
2

(
�

p
xy + �

p
yx

)
−�

p
yy

. (53)

Again, we here used −�
p
yy as an estimation of Pp. The effective friction coefficient is shown in

Fig. 10(b) for Rep = 1 and θ = 0.67 (dot symbols). The model (38) allows to capture the present
numerical results on the range of K covered (red solid line), with μ1 = 0.23, μ2 = 0.8 and

√
K0 =

0.15 which are, not surprisingly, slightly different from the values obtained by Ref. [13] in 2D.
To finish with, μ

p
eq(φ) can also be extracted with the same procedure [Fig. 10(c)]. Previous fitting

parameters are used to provide model (39), shown as red solid line.
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FIG. 11. Constitutive laws φ(K) (a), μp
eq(K) (b), and μp

eq(φ) (c) of the equivalent granular phase for all the
cases (Rep, θ , Ga) considered in the present work: see Table I for detail of the various symbols and Fig. 10
for legend. Green solid lines are Eqs. (37), (38), and (39), respectively, with φc = 0.615, b = 0.7, μ1 = 0.23,
μ2 = 0.75, and

√
K0 = 0.18. Note that the cases corresponding to the smaller Shield numbers considered here,

namely θ � 0.22, are not shown because they are too close to the threshold of motion of the granular phase.
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Similar analysis can be obtained for all cases (Rep, θ , Ga) considered in this study. Figure 11
presents these results, similarly to Fig. 10. One can observe that the rheology of the granular phase
is not much dependent on θ and Rep, compared to the rheology of the fluid phase. It is therefore
assumed to be captured by a unique model of the form of Eqs. (37), (38), and (39). As best fit, one
obtains b = 0.7, μ1 = 0.23, μ2 = 0.75,

√
K0 = 0.18 shown with green solid lines in Figs. 11(a)–

11(c). Note that obtained values of μ2 and
√
K0 are slightly different from the one obtained for

the specific case Rep = 1, θ = 0.67, Ga = 1.22) considered previously. This highlights the small
discrepancy from case to case; this new fitting model is also shown in Figs. 10(b) and 10(c) for
comparison.

3. The equivalent mixture phase

Let us finally consider the equivalent mixture phase. As shown in Eq. (27), the forces acting
on this phase correspond to the divergence of the total apparent stress tensor and the weight of
the mixture. Hence, the vertical distribution of the forces and stresses acting on this phase are
equivalent to the sum of the forces and stresses on the fluid and granular equivalent phases presented
in Figs. 3–6, respectively. As done for the apparent fluid and granular phases, we now investigate
the rheological behavior of the mixture phase.

First, one considers the apparent viscosity ηm
eq of the mixture phase. The ‘natural’ way for

computing ηm
eq is to use ηm

eq = �tot
xy /(∂〈ux〉m/∂y) ≡ �tot

xy /γ̇ m, with 〈u〉m defined as in Eq. (25). Here,
however, and for the same reasons as those mentioned in Sec. IV A 1, we compute the velocity
gradient using 〈u〉 = φ〈u〉p + ε〈u〉 f . In the present work, ηm

eq is thus computed as

ηm
eq = �tot

xy

γ̇
=

1
2

(
�

p
xy + �

p
yx + �

f
xy + �

f
yx

)
∂〈ux〉
∂y

, (54)

with γ̇ defined as in Eq. (50)
From the vertical profiles of both ηm

eq(y)/η f and φ(y), we extract the evolution of the appar-
ent viscosity of the equivalent mixture phase ηm

eq/η f as a function of φ for Rep = 1, θ = 0.67,
Ga = 1.22 (see Fig. 12). For comparison, various models are also plotted in Fig. 12, namely that of
Einstein [8,9] (black dotted line), Batchelor and Green (1972) [10] (black dashed line), Krieger and
Dougherty (1959) [49] (red dashed line), and Boyer et al. (2011) [12] (blue dashed line).

One can notice, quite surprisingly as will be discussed later on, a good agreement with Einstein’s
model, Batchelor and Green’s model, and Krieger and Dougherty’s model up to φ � 0.1, 0.3,
and 0.5, respectively. Recall that the range 0.5 � φ � φm corresponds the the static bed region
for which the samples used for the time averaging are correlated. Nevertheless, the agreement
between the present IBM-DEM results and Krieger and Dougherty’s model for 0.5 � φ � φm is
reasonable. Good agreement is also observed with Boyer et al. (2011)’s model for the whole range
of φ. Moreover, the apparent viscosity of the mixture obtained in the fully resolved simulations of
Ref. [26] is shown for comparison in the insert of Fig. 12. The three curves are in fair agreement
with our simulation at Rep = 1, θ = 0.67, Ga = 1.22 as they fall within the 95% confidence range.
It is worth noting a slight increase of the apparent viscosity as the particle Reynolds number is
increased in the range 0.1 � Rep � 0.3 for their simulations.

Figure 13(a) presents the evolution of the apparent friction coefficient for the mixture phase
μm

eq (defined in Sec. IV B 4) as a function of the viscous number J . A general good agreement is
observed between the μm

eq obtained by experiments and DNS (ours and others). A comparison with
model proposed by Ref. [12] shows a relatively good prediction of the total friction. However, the
local overestimation of this model around J ≈ 10−2 indicates over-dissipation due to the choice for
the fluid viscosity model. An extension of this model using the present results is discussed in the
next section (solid line in Fig. 13). Note that the present DNS results show a deviation of the total
friction at high J , i.e., close to the pure fluid layer, compared to other studies. The transition toward
the pure fluid layer in our specific configuration will be discussed in the next section. However, the
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FIG. 12. Apparent viscosity ηm
eq/η f of the equivalent mixture phase vs solid volume fraction φ: (•) present

IBM-DEM simulation for Rep = 1, θ = 0.67, Ga = 1.22 [Eq. (54)]; (dotted black) Einstein’s model [8,9]
ηm

eq/η f = 1 + 5
2 φ; (dashed black) Batchelor and Green’s model [10] ηm

eq/η f = 1 + 5
2 φ + 7.6φ2; (dashed red)

Krieger and Dougherty’s model [49] ηm
eq/η f = (1 − φ/φm )−

5
2 φm with φm = 0.615; (dashed blue) Boyer et al.’s

model [12] ηm
eq/η f = 1 + 5

2 φ(1 − φ/φc )−1 + μp
eq(φ)[φ/(φc − φ)]2 using fittings parameters as obtained for the

granular phase (see legend of Fig. 11). Insert: linear representation. Confidence intervals of 95% are computed
using the geometric standard deviation of the apparent viscosity for each uncorrelated time sample. Insert:
comparison with the resolved simulations of Vowinckel et al. (2021) [26] (colored circles, see the legend of
Fig. 13 for key).

Euler-Lagrange simulations slightly underestimate the total friction over the entire range of J . This
is probably due to the choice of the viscosity model used in the equivalent fluid phase usually found
for these methods. As different models of fluid stress can be found in the literature [20,55] for this
method, it would be interesting to deserve a specific attention on that point in future works. All
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FIG. 13. (a) Apparent friction coefficient for the mixture phase μm
eq as a function of the viscous number

J : a comparison between the experiments of Houssais et al. (2016) [16] here denoted H16 (blue dots), the
Euler-Lagrange simulations of Pahtz and Duran (2018) [20] here denoted PD18 (gray triangles), the resolved
simulations of Vowinckel et al. (2021) [26] here denoted V21 (gray dots) and the present simulations (black
diamonds). The dot line corresponds to the apparent friction coefficient of a suspension flow proposed by
Ref. [12], μBGP = J + 5

2 φm

√
J , with φm = 0.585. Red line corresponds to the combination of effective

friction models for granular and fluid phases, F−1η f
eq/η f + μp

eq, as developed in the present paper, using
Eqs. (32) and (51) to model the equivalent fluid phase, and Eqs. (37) and (38) and fitting parameters from
Fig. 10 to model the equivalent granular phase. F−1 is computed using Eq. (57). (b) Constitutive law μm

eq(K)
of the equivalent mixture phase for all the cases (Rep, θ , Ga) considered in the present work: see Table I for
detail of the various symbols and Fig. 10 for legend.
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FIG. 14. (a) Apparent viscosity ηm
eq/η f of the mixture phase vs solid volume fraction φ for all the cases

considered in the present work: see Table I for detail of the various symbols (solid gray line correspond to
Einstein’s model (28) at small φ). (b) Values of φm from a best fit of Krieger and Dougherty’s model [49]
ηm

eq/η f = (1 − φ/φm )−
5
2 φm ; (�), Rep = 0.1; (	), Rep = 1; (
), Rep = 10; for all θ with the same markers as

in Fig. 8. The dashed line indicates the corresponding mean value: φm � 0.622.

this indicates that the contribution of fluid phase and accounting for the transition from the granular
bed to the pure fluid layer in mixture models for localized-shear and inertial configurations remain
crucial (Sec. IV B 4).

Now, Figs. 13(b) and 14(a) present the apparent friction μm
eq of the mixture phase versus the

inertial number K and the apparent viscosity ηm
eq/η f of the mixture phase versus solid volume

fraction φ, respectively, for all the cases considered in the present work. Even if all curves are
close to collapse to a single curve on a large range of φ and K in both cases, some deviation is
observed. From a granular perspective, i.e., μm

eq(K), one notes that deviation occurs when increasing
K. This could seem in contradiction with the single law φ(K ) reported in Sec. IV B 2. However, this
is in line with recent results of rheological laws of granular suspension obtained from rheometer
measurements [56]. Moreover, as the granular law induced by contact, μ

p
eq(K), was also found

unique in Sec. IV B 2, we state that the deviation observed on the mixture law comes from the
equivalent fluid contribution. As reported in Sec. IV B 1, fluid inertia influences the fluid-particle
dissipation law of Einstein-type, which then explain the deviation in mixture rheological law from
case-to-case reported here. Note that surprisingly, quasi invariance of φ(K ) would suggests that the
φ law is mostly controlled by the contact law between particles and not on details of the fluid flow
regime around the particles. At the other end, from a suspension perspective, i.e., ηm

eq(φ)/η f , the
previously mentioned inertial effect is more clearly observed at relatively small φ when linking to
the pure fluid phase φ → 0 [see Fig. 14(a) and insert]. As a first attempt, the obtained results for
the apparent viscosity are fitted by the Krieger and Dougherty’s model (30) in which only φm can
be adjusted. Figure 14(b) displays the value of φm obtained as a function of θ and for the different
values of Rep considered. The range of variation of φm is rather small, i.e., φm = 0.62 ± 0.02.
This is in line with the variations of φc for the equivalent granular phase. However, we can see in
Fig. 14(a) that ηm

eq/η f may vary significantly depending on θ and Rep, for φ � 0.1 (corresponding
to ηm

eq/η f � 1.25). This suggests that such model can not fully capture the mixture rheology in the
present configuration of bedload transport. This is actually clearly depicted in Fig. 16(a) in which
the obtained effective viscosity ηm

eq/η f is compared to the Krieger and Dougherty’s model (30) at
the corresponding φ. More surprisingly, it is worth mentioning that ηm

eq/η f seems to converge to
the same trend as φ � 0.1, which is actually close to the Einstein viscosity (28). This observation
previously reported in Fig. 12, and generalized in Fig. 14(a) (gray line) suggests that part of the
contribution, missing in the equivalent fluid phase as η

f
eq/η f was shown to deviate from Einstein

model [Fig. 8(a)], is now balanced by the granular contact contribution.
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4. Extending models of mixture viscosity

To improve the mixture rheological model based on the characterization of each phase, we
propose to split the apparent viscosity of the mixture phase, as the sum of the fluid and granular
contributions, following Boyer et al. (2011) [12]. In particular, using previous definition of the
different viscosities, one has

�tot
xy ≡ ηm

eqγ̇ = � f
xy + �p

xy ≡ η f
eqγ̇ + μp

eqPp,

leading to

ηm
eq = η f

eq + μp
eqPp/γ̇ .

Equivalently, the effective friction is

μm
eq = η f

eqγ̇ /Pp + μp
eq,

using the granular pressure Pp as the only relevant pressure for a Coulomb-type model of the mixture
phase. Then, using the correlations obtained previously for the equivalent fluid phase (see Fig. 8)
and for the equivalent granular phase, respectively, one proposes

ηM
eq

η f
= (1 − φ)−β︸ ︷︷ ︸

η
f
eq/η f

+μp
eq(φ)F (φ, Rep)︸ ︷︷ ︸

η
p
eq/η f

, (55)

with β = β0(1 + l2
g ρ f γ̇ /η f ) = β0(1 + (lg/d )2Rep) as obtained in Sec. IV B 1 and μ

p
eq(φ) from

Eq. (39) with φc = 0.615, b = 0.7, μ1 = 0.23, μ2 = 0.75, and
√
K0 = 0.18 as obtained in

Sec. IV B 2. In Eq. (55), F models Pp/(η f γ̇ ), which corresponds to the friction-to-viscosity
relationship, or equivalently the dimensionless granular pressure. It shall be noted that F ≡ J −1 as
long as γ̇ = γ̇ p. It will be assumed to be mostly the case in the following for simplicity. Moreover, if
the flow is purely viscous then F ≡ J −1 = K−1. For inertial situations, F could be more complex
as J �= K and then it is no longer the relevant dimensionless parameter to characterize the granular
phase [see Eqs. (40) and (41)]. Then, F shall be explicitly written as a function of both φ and the
local Rep

l , as long as γ̇ = γ̇ p [see Eq. (41)]. It then depends on the local value of Rep
l , and we

propose here to simplify by giving an estimation based on the control parameter Rep, as

F (φ, Rep) ≡ J −1 = (1 + α r Rep)

(
bφ

φc − φ

)2

. (56)

The associated model for the effective viscosity is labeled as ηF
eq. In Fig. 16, we compare the

effective viscosity obtained from the present IBM-DEM simulations ηm
eq with ηF

eq [Fig. 16(c)]. For
comparison, the models of Refs. [49] and [12], labeled as ηKD

eq and ηBGP
eq , respectively, are shown

in Figs. 16(a) and 16(b), respectively. For clarity, all the models used in Fig. 16 are summarized
in Table II. The model of Ref. [12] corresponds to Rep = 0 in Eq. (56) and a different fluid
contribution, namely, ηBGP

eq /η f = 1 + 5
2φ(1 − φ/φc)−1 + μ

p
eq(φ)F (φ, Rep = 0). Note that equiv-

alent models have been recently proposed leading to similar results as the latter model [27,57].
Disregarding too large φ, i.e., large viscosity, such approach clearly improves the collapse of the
different cases (Rep, θ ) considered in this study, when using model (56) (as dispersion of the data
clearly diminishes in [Fig. 16(c)]. This is not necessarily the case for other models as in [Fig. 16(a)]
or [Fig. 16(b)]. Nevertheless, the present model [Fig. 16(c)] seems to fail at perfectly capturing the
expected trend at small φ (solid black line), even if all data collapse on a same curve.

To understand previous observations, we report (ηp
eq/η f )/μp

eq ≡ Pp/(η f γ̇ ), i.e., F as a function
of φ in Fig. 15. It is shown to depend only weakly on Rep. Yet, J −1 = K−1, i.e., F (φ, Rep = 0) as
modeled by Eq. (56), fails at predicting the evolution of F at small φ (blue line). This suggests that
the local inertia of the grains Rep

l strongly depends on the state variable φ and more weakly on Rep.
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TABLE II. Rheological models assessed in Fig. 16. Here, μp
eq(φ) is given by (39) with b = 0.7, μ1 = 0.23,

μ2 = 0.75 and
√
K0 = 0.18 and β = β0 + a r2/3 Rep Ga−4/3 with β0 = 0.565 and a = 0.85.

Name Reference
Apparent viscosity of

the fluid phase
Apparent viscosity of

the granular phase
Apparent viscosity of

the mixture phase

KD [49] N/A N/A
ηKD

eq

η f
= (1 − φ

φm
)−

5
2 φm φm = 0.62

BGP [12]
η

f
eq

η f
=

1 + 5
2 φ(1 − φ

φc
)−1

η
p
eq

η f
= μp

eq(φ)( φ

φc−φ
)2 ηBGP

eq

η f
= η

f
eq

η f
+ η

p
eq

η f
φc = 0.615

F
η

f
eq

η f
= (1 − φ)−β η

p
eq

η f
= μp

eq(φ)(1 +
α r Rep)( bφ

φc−φ
)2

ηF
eq

η f
= η

f
eq

η f
+ η

p
eq

η f
φc = 0.615

α = 0.635

FLBC
η

f
eq

η f
= (1 − φ)−β η

p
eq

η f
= μp

eq(φ)( bφ

φc−φ
)2 +

( φ

φc−φ
)

ηFLBC
eq

η f
= η

f
eq

η f
+ η

p
eq

η f
φc = 0.615

b = 0.7

As r Rep
l = I2/J , then beyond K, the ratio I2/J is also mostly a function of φ. We obtain from

our data

F (φ) ≡ J −1 ≡ K−1

(
1 + α

I2

J

)
=

(
bφ

φc − φ

)2

+
(

φ

φc − φ

)
. (57)

Note that the last term in Eq. (57) fits the term αI2J −1K−1. This new model is shown in Fig. 15
(green solid line) to predict more accurately the trend of F on the entire range of φ. It shall be
noted that the influence of the average length scale hg/d , which could affect the nature of the diffuse
interface between the top of the granular bed and the pure fluid layer, does not seem to significantly
modify the relevance of model (57) as long as φ > 0.05 (see Fig. 22 in Appendix B).

Using the latter model for F (57) leads to ηFLBC
eq , shown in Fig. 16(d). This is shown to improve

the prediction of the mixture viscosity at moderate φ, i.e., for ηm
eq/η f � 10, to capture the diffuse

interface. It can also be used to predict the effective friction μm
eq as shown in Fig. 13 (solid red line).

V. SUMMARY OF THE MAIN FINDINGS

The bedload transport of a granular bed by a laminar Couette flow, has been studied numerically
using a fully resolved IBM-DEM approach, referred here to as the microscale description. Bedload

10-3 10-2 10-1 100
10-4

10-2

100

102

104

FIG. 15. (ηp
eq/η f )/μp

eq ≡ F as a function of φ for all the cases considered in the present work: blue solid
line corresponds to model (56) for Rep = 0 and green solid line is Eq. (57) (see text for details).
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FIG. 16. Comparison of the predicted apparent viscosity of the mixture versus that obtained from present
simulations ηm

eq/η f : (a) Krieger and Dougherty (1959) ηKD
eq /η f ; (b) Boyer et al. (2011) ηBGP

eq /η f ; (c) model
(55) and (56) ηF

eq/η f ; (c) model (55)–(57) ηFLBC
eq /η f : see Table I for detail of symbols. The two dashed lines

represents the discrepancy ratio of 2 and 0.5, respectively.

transport is known for decades to be strongly dependent on the Shields number θ . Above a critical
Shileds number θc at which the granular bed starts moving, increasing θ leads to more significant
granular transport. As θ → θc from above, this therefore tends to a singular sharp interface of the
granular bed with only a thin layer of the order of the grain diameter moving. However, when θ

increases, the interface between the static granular bed and the pure fluid phase becomes more
diffuse and is characterized by a thicker moving layer. Accordingly, the vertical distribution of
the solid fraction φ evolves from a nearly singular one at the bed surface when θ ≈ θc towards a
smoother shape when θ increases. Yet, in bedload transport, the upper bed surface hardly gets rid of
some sharp transition or discontinuity.

Accordingly, the strategy to model bedload transport at a scale larger than the grain, referred
to as mesoscale, remains uncertain, while this is obviously unmissable when dealing with large
scale systems. To unify physical processes of the granular suspension system from weak transport
to intense transport, we have proposed here to provide a mixture approach, for which the entire
system, including the granular phase and the fluid phase, is solved using a single equivalent fluid.
For that purpose, an upscaling—or averaging—method from microscale simulation results has been
adopted to provide an independent description of each phase at the mesoscale prior describing the
mixture phase. This approach leads to a diffuse interface at the upper surface of the granular bed
whatever the Shields number θ .

A. Volume-average homogenization remains relevant even in a system presenting
a significant shear at the micrograin scale

When upscaling, separation between the grain size d and the averaging scale hg is required for the
validity of the asymptotic development at the mesoscale, which reads hg � d/2. We have shown
that this constraint has to be released to capture the high velocity gradient at the bed surface, as
for instance shown for the velocity profiles in Fig. 20 with hg in the range [d/10, d]. Obviously,
the invariance of the flow in the horizontal plane and in time allowed us to decrease hg to capture
gradients, but only down to a certain point. For too small hg, mesoscale quantities becomes noisy
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and strong oscillations along the shear direction in the granular phase appear. This is actually the
limit of validity of the mesoscale approach: microscopic structures—granular arrangement—are
not filtered out by this mesoscale, breaking the isotropic condition for equations validity at a scale
smaller than the mesoscale. This highlights that the grain size and the macroscopic length scale of
deformation are of the same order of magnitude, in bedload transport.

The influence of hg on velocity profiles, and particularly the granular profiles, have been shown
to be quite significant, i.e., on the length scale of the diffuse mesoscale interface (Fig. 20). Yet, and
more surprisingly, the apparent viscosity of the granular phase seems to be relatively independent
of hg, as shown in Fig. 21 (besides an increase of the dispersion of the data when hg is decreased).
Diffusing the bed interface with volume average thus keeps the right momentum balance within the
diffuse interface (Sec. IV A). Then, choosing setting hg = d gives a reasonable description of the
flow at the mesoscale, and has therefore been used to discuss the rheological models for the different
phases. This is supported by results discussed in Appendix B.

B. Weak inertia Rep and shear localization modify mixture rheological models

Regarding the second question, we have shown that the effective viscosity η
f
eq of the equivalent

fluid evolves with the granular volume fraction φ within the bed, with in particular η
f
eq increasing

with φ. This is in line with previous studies on homogeneous suspension flows. However, η
f
eq is

found to be smaller than that found for homogeneous neutrally buoyant suspensions. Moreover, we
observe a dependency of this effective viscosity with θ and Rep. These have been discussed as a
consequence of the very specific nature of the mixture flow in bedload application in Sec. IV B 1.
Weight of the grain remains crucial to describe such system and the associated dissipation in the
equivalent fluid phase. In particular, it leads to both sharpening of bed interface in the limit of
relatively small θ and a vertical agitation of the grain influencing fluid dissipation at finite inertia
Rep. Combinations of these two effects in bedload hardly allow to reach assumptions required to
obtain more classical viscosity model for homogeneous neutrally buoyant suspension. A model
extended from homogeneous and buoyant systems has therefore been proposed to describe the fluid-
phase effective viscosity Eqs. (51) and (52) for such configuration including its specific dynamics.
This model was shown to capture η

f
eq(φ) in the range of parameters covered here, and therefore

including both sharp interface effect and weak inertia. For finite inertia Rep, it was shown that this
model combined Rep and a characteristic dimensionless length scale lg/d to be associated with
fluid structure induced by vertical agitation of the granular phase, by analogy to eddy viscosity in
turbulent models.

However, the granular phase is shown to be well described by the classical μ-I rheology of the
granular effective friction, now extended to the μ-K rheology for immersed granular flows. The
parameters which characterize this rheology, are found to be independent of θ and Rep.

Finally, in line with Ref. [12], we discuss the model of mixture viscosity as the sum of that of
the fluid and granular phases, respectively. Accordingly, as long as the model for each individual
phases found before are used, the main input on the mixture viscosity modeling concerns the
friction-to-viscosity law F (55) required to set the granular viscosity law from a granular friction
law. Assuming no difference between fluid shear and granular shear, this terms corresponds to the
so-called viscous number J in granular rheology, i.e., F ≡ J −1. Based on that assumption, we
found that inertia has to be accounted for to extract its relevant dependency with φ close to the bed
surface (Sec. IV B 4 and Fig. 15). This leads to an extra order φ term in the mixture viscosity in
the small φ limit (i.e., close to the bed surface) emanating from the granular phase (i.e., contacts),
unlike homogeneous neutrally buoyant suspension, for which this term only comes from the fluid
contribution, and is usually referred to as equivalent to the Einstein’s viscosity. Surprisingly the
effective viscosity of the mixture phase in the limit of small φ becomes in the present configuration
closer to the Einstein’s viscosity than the equivalent fluid phase was. Moreover, the newly proposed
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FIG. 17. Vertical profiles of streamwise granular velocity (filled symbols), fluid velocity (open symbols),
and solid volume fraction (solid lines). (•) case A; (�) case B; (
) case C; (�) case D.

model for the mixture viscosity is found to capture nicely mixture viscosity laws obtained from
micro-scale simulations in the range of θ and Rep considered here.

ACKNOWLEDGMENTS

We thank Prof. Alessandro Bottaro for helpful discussions and suggestions. This work was
supported by the Chaire Bioskins of the IdEx of the University of Toulouse, of which A. Bottaro
is the holder. We also thank Annaig Pedrono for her support regarding the solvers JADIM and
GraDyM. This work was performed using HPC resources from CALMIP (Grant 2018-[P1027]).

APPENDIX A: EFFECT OF THE SPATIAL RESOLUTION AND THE DOMAIN SIZE
ON THE MESOSCALE RESULTS

Here, we assess the effect of the spatial resolution, the domain size and the “thickness” of the
immersed boundary �α (see Sec. II A for definition). Four cases are considered and presented in
Table III. The first one is the numerical setup used in the main text of the present work, the three
others correspond to a larger domain, a higher spatial resolution and a thinner immersed boundary
�α . Note that for all these cases, we set as characteristic size of the weighting function hg = d (see
Sec. III B).

Figures 17 and 18 present the mesoscopic velocity profiles and constitutive laws, respectively, for
the various phases. The results of the four cases are roughly identical. As for the velocity profiles,
results are superimposed except at the top of the moving bedload layer. In this region, the granular

TABLE III. Summary of the different cases considered in Appendix A. Here, Rep = 1 and θ = 0.67 (Ga =
1.22).

Case Spatial resolution
Computational

domain size
Thickness of the

immersed boundary Comment

d/�x Lx × Ly × Lz �α

A (•) 10 4d × 20d × 4d 1.3�x = 0.13d reference
B (�) 10 8d × 20d × 8d 1.3�x = 0.13d larger domain
C (
) 20 4d × 20d × 4d 2.6�x = 0.13d refined grid
D (�) 20 4d × 20d × 4d 1.3�x = 0.065d reduced IBM thickness
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FIG. 18. Effect of the spatial resolution and size of the domain on the constitutive laws of the equivalent
(a) fluid phase, (b), (c) granular phase, and (d), (e) mixture phase: (black) case A; (magenta) case B; (red) case
C; (blue) case D.

velocity is slightly faster for cases A and B than for cases C and D. The maximum difference is
0.11�̇d which corresponds to about 19% of the maximum velocity of case A.

As for the constitutive laws, the results are mostly superimposed. The apparent viscosity of the
fluid phase slightly depends on mesh refinement [see Fig. 18(a) for φ � 0.5]. At higher solid volume
fraction, variations induced by the averaging procedure occur and interpretation of the results
becomes more difficult. A best-fit of the results using the model (32), namely η

eq
f /η f = (1 − φ)−β ,

gives β = 1.71 and 1.62 for cases A and B, respectively, and 1.73 and 1.71 for cases C and D,
respectively (note that here we only use data for φ � 0.5).

As for the equivalent granular phase [Figs. 18(b) and 18(c)], fluctuations are observed at small
K where the bed is static. Results are roughly similar between the four cases. The same conclusion
can be drawn for the equivalent mixture phase [Fig. 18(d)].

Figure 19 compares the vertical distribution of volumetric forces acting on the equivalent
granular phase for cases A and B. The results are mostly superimposed except in the static zone
y � hbed − 4d . In this zone, the amplitude of the oscillations is observed to decrease as the domain’s
size is increased. More quantitatively, when the size is doubled in both horizontal directions, the
oscillations amplitude is reduced by about 30% in frame (a) and 60% in frame (b). This supports the
argument that these oscillations are due to the somewhat limited number of static grains on which
we apply the coarse-graining approach. As they remain at the exact same location, the time
averaging of these correlated samples leads to such oscillations. We verified that this effect is not
problematic for the results presented in the main text, since it corresponds to very low values of
K � 10−5 which are not considered here, and a very limited range of the solid volume fraction
φ � 0.601, close to that of jamming.

Overall, Figs. 17–19 allow us to conclude that the results presented in the main text are not
significantly influenced by the size of the domain, the spatial resolution, and the “thickness” of
the immersed boundary. In addition, they provide an explanation about the oscillations in the static
region of the granular bed observed in the vertical profiles.
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FIG. 19. Comparison of vertical distribution of all the terms of the momentum balance Eqs. (42) and (44)
of the equivalent granular phase in the (a) vertical direction, (b) streamwise direction, for the cases A (pale)
and B (bright). Same legend as Figs. 5(a) and 6(a). See Eqs. (46) and (48).

APPENDIX B: INFLUENCE OF THE CHARACTERISTIC LENGTH OF THE WEIGHTING
FUNCTION hg ON THE MESOSCOPIC RESULTS

In this Appendix, we assess the dependency of the mesoscopic results on the characteristic length
of the weighting function hg. Here, Rep = 1 and θ = 0.67 (Ga = 1.22) and we use the setup of case
A of Table III.

The equations of the averaged phases (18) and (19) are supposed to be valid only if hg � d .
Conversely, one needs a hg not too large to capture the local variations of the mesoscopic quantities.
Therefore, it is of crucial importance to assess the effect of hg on the results.

Figure 20 presents the streamwise velocity profiles for both phases and for the solid volume
fraction for hg = d, d/2, d/4 and d/10. Note that hg = d/10 here corresponds to hg = �x, that is
the smallest value of hg which can be considered here.

The velocity profiles strongly depends on the value of hg. In particular, the velocity of the granular
phase in the moving bedload layer is quite sensitive to the specific value of hg. For instance, at
y = hbed + d , the granular velocity decreases by about 40% from hg/d = 1/10 to hg/d = 1. The
velocity difference between the fluid phase and the granular phase is about 4Vs for hg/d = 1 and
almost zero for hg/d = 1/10 [see the inset of Fig. 20(a)]. The influence of hg on the solid volume
fraction φ is even more dramatic, as shown in Fig. 20(b). For hg/d < 1/2, the fluctuations of φ are
of the same order of magnitude as φ itself. Note that the observed oscillations have a period of d .

FIG. 20. (a) Velocity profile of the fluid phase (dashed) and the granular phase (solid) for various of hg =
{d/10, d/4, d/2, d}. Velocity is scaled by Vs with Vs = (ρp − ρ f )gd2/(18η f ) the Stokes velocity. (b) Solid
volume fraction for the same values of hg. Here, Rep = 1 and θ = 0.67 (Ga = 1.22) and we use the setup of
case A of Table III.
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FIG. 21. Apparent rheology of the mesoscopic fluid phase (top row), granular phase (second and third
rows) and mixture phase (bottom row): (a, blue) hg = d/2, (b, magenta) hg = d/4; (c, red) hg = d/10. Results
for hg = d are also plotted as reference (black). For the apparent viscosity of the fluid phase, the model
η f

eq/η f = (1 − φ)−1.71 is also plotted (solid black line). Here, Rep = 1 and θ = 0.67 (Ga = 1.22) and we use
the setup of case A of Table III.

Figure 21 presents the constitutive laws of the fluid phase η f (φ), the granular phase μp(K) −
φ(K) and the mixture phase ηm(φ) for hg = d/2, d/4 and d/10, respectively (see Sec. IV B for more
details and definitions). Results obtained for hg = d are also plotted on each graph as reference.

One can see that, as in Fig. 20(b), fluctuations and dispersion appear when hg decreases.
Nevertheless, the dispersed data seems to remained centered around the results obtained at
large hg.

Note also that the rheology of the mixture phase for φ < 0.3 is well captured even for hg = d/10.
This part of the rheology correspond to the moving bedload layer of particles. In this flow region,
temporal averaging is efficient in reducing spatial fluctuations; furthermore, a significant part of the
total viscosity comes from the fluid which was shown to be less sensitive to the value of hg. For
φ = 0.3 and hg = d , we obtain a total viscosity of 2.67η f and an apparent viscosity of the fluid
phase of 1.84η f , that is almost 70% of the total viscosity comes from the fluid contribution.
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FIG. 22. F ≡ Pp/(η f γ̇ ) as a function of φ for hg = d (black symbols), hg = d/2 (blue symbols), hg = d/4
(magenta symbols), hg = d/10 (red symbols). As d/4 and d/10 are shown to be dispersed (see Fig. 21), hg = d
and hg = d/2 symbols are slightly larger for clarity. Here, Rep = 1 and θ = 0.67 (Ga = 1.22) and we use the
setup of case A of Table III. Dash line and solid are reported from Fig. 15, i.e., from Ref. [12] and the extended
model (57).

Similarly, the influence of hg on the friction-to-viscosity parameter F is shown in Fig. 22. Clearly,
hg affects the obtained results at small φ, which indicates that the extended model (57) includes the
influence of the transition from the granular bed to to the pure fluid layer. However, this separation
is mostly visible for φ < 0.1, even lower. Then, it clearly shows that the model (57) is, at least,
required to capture the rapid transition observed in 0.05 < φ < 0.4 whatever hg.

APPENDIX C: DRAG FORCE ON THE PARTICLES

In this Appendix, we present the results for the drag force acting on the particles within the
granular bed. To this end, we assume that the term n 〈 f1〉p

x present in Eqs. (44) and (48) contains the
drag force only, that is we neglect the added-mass force. This is relevant in the present work since
we verified that the local acceleration of the apparent fluid and granular phase, namely D f 〈u〉 f /Dt
and Dp〈u〉p/Dt were negligible.

Richardson and Zaki (1954) [58] proposed a drag law for a suspension of mono-dispersed
spherical particles in an infinite medium which is valid for arbitrary particle Reynolds numbers,
which reads

FD = (ρp − ρ f )φg

Vt (1 − φ)l−2
(〈u〉 f − 〈u〉p), (C1)

where Vt is the terminal velocity of the particle and l is an exponent which depends on the particle
Reynolds number. In the present range of Rep, one can assume that (i) the terminal velocity follows
the Stokes law, i.e., Vt = Vs = (ρp − ρ f )gd2/(18η f ); (ii) the value of l is roughly constant and we
set l = 4.65. The mean drag force, after Ref. [58], reads

FD

η f �̇/d︸ ︷︷ ︸
(F ∗ )

= 18φ

(1 − φ)2.65︸ ︷︷ ︸
(�∗ )

(〈u〉 f − 〈u〉p)

�̇d︸ ︷︷ ︸
(�U ∗ )

. (C2)

Figure 23 assesses the validity of Eq. (C2) on one configuration, namely Rep = 1, θ = 0.67,
Ga = 1.22, by showing either �U ∗ versus F ∗/�∗, or F ∗/�U ∗ versus �∗ for various values of
the characteristic length of the weighting function hg. Note that that in our problem, we have
FD = n 〈 f1〉p

x . The validity of Eq. (C2) would correspond to a perfect superimposition of the two
curves. A better agreement is observed as hg is decreased; however, the fluctuations of the force
also increase in the static region within the granular bed. Conversely, for large hg, the slip velocity
〈u〉 f − 〈u〉p is artificially increased, in line with Fig. 20(a). This leads to a larger discrepancy
between the curves in Fig. 23. Nevertheless, the present results suggest that Richardson and Zaki’s
(1954) drag law may be a good approximation for predicting the drag force on grains which are
transported as bedload.
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FIG. 23. Vertical profile of the drag force on the grains compared with Richardson and Zaki’s drag law
[58] given in Eq. (C2) (Rep = 1, θ = 0.67, Ga = 1.22). Left: �U ∗ vs F ∗/�∗. Right: F ∗/�U ∗ vs �∗ with

F ∗ = FD
η f �̇/d

, �U ∗ = 〈u〉 f −〈u〉p

�̇d
and �∗ = 18φ

(1−φ)2.65 . Each row corresponds to one value of the characteristic length

of the weighting function hg, namely (from top to bottom) hg = {d, d/2, d/4, d/10}.
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FIG. 24. Effect of including a lubrication force on the phases rheologies: (a) Apparent viscosity η f
eq/η f of

the equivalent fluid phase vs solid volume fraction φ. (b) Apparent friction coefficient μp
eq of the equivalent

granular phase vs J . (c) Apparent viscosity ηm
eq/η f of the equivalent mixture phase vs solid volume fraction

φ. (d) Apparent friction coefficient μm
eq of the equivalent mixture phase vs J : present IBM-DEM simulations

for (♦) Rep = 1, θ = 0.67, Ga = 1.2 and (∗) Rep = 1, θ = 0.33, Ga = 1.7, with a lubrication force (small
symbols) and without lubrication force (large symbols).

APPENDIX D: EFFECT OF INCLUDING A LUBRICATION FORCE
ON THE MESOSCALE RESULTS

In this Appendix, we assess the effect of including a normal lubrication force in the forces applied
to the grains (4). Here, only the normal component of the lubrication force is considered between
particle i and j of velocity upi and upj and radius Ri and Rj , respectively, and is denoted flub. This
force here reads [59]

flub = −6πμ(upi.n − upj.n)

δn + ηe

(
RiRj

Ri + Rj

)2

n, (D1)

where n is the unit normal vector parallel to the grains centers, δn is the minimum distance between
the grain surfaces, ηe is an effective roughness height which is purposely added in Eq. (D1) to mimic
real particles and avoid the divergence of the force when contact occurs (δn = 0). In the following,
we set ηe/R = 4 × 10−4. The present lubrication force is switched on when the distance between
particles is such as 0 � δn � R/2. More details about the present modeling of the lubrication force
can be found in Ref. [41].

Figure 24 illustrates the effect of including a lubrication force on the rheology of the fluid phase,
the granular phase and the mixture phase, respectively, for one value of the Reynolds number
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(Rep = 1) and two values of the Shields number (θ = 0.33 and 0.67). The friction coefficient of the
granular phase [Fig. 24(b)] is observed to be roughly unchanged when adding a lubrication force.
The apparent viscosity of the fluid phase and the mixture phase is slightly smaller when lubrication
force is included [Figs. 24(a) and 24(c)], while the friction coefficient of the mixture phase seems
to be slightly larger [Fig. 24(d), θ = 0.67]. However, the variation of these parameters due to the
addition of a lubrication force is observed to be smaller than that due to the Shields number θ . It is
therefore reasonable to conclude that in the present problem and the present range of parameters,
the effect of adding a normal lubrication force is marginal.
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[40] O. Baran, D. Ertaş, T. C. Halsey, G. S. Grest, and J. B. Lechman, Velocity correlations in dense gravity-
driven granular chute flow, Phys. Rev. E 74, 051302 (2006).

[41] E. Izard, T. Bonometti, and L. Lacaze, Modelling the dynamics of a sphere approaching and bouncing on
a wall in a viscous fluid, J. Fluid Mech. 747, 422 (2014).

[42] L. Lacaze, J. Bouteloup, B. Fry, and E. Izard, Immersed granular collapse: From viscous to free-fall
unsteady granular flows, J. Fluid Mech. 912, A15 (2021).

[43] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice Hall PTR,
Hoboken, NJ, 1971).

[44] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, UK,
1987).

024304-38

https://doi.org/10.1029/2017JF004580
https://doi.org/10.1103/PhysRevLett.123.048001
https://doi.org/10.1017/jfm.2014.284
https://doi.org/10.1017/jfm.2017.147
https://doi.org/10.1017/jfm.2020.423
https://doi.org/10.1017/jfm.2021.457
https://doi.org/10.1029/2021JF006504
https://doi.org/10.1016/j.compfluid.2014.03.030
https://doi.org/10.1017/jfm.2017.748
http://ethesis.inp-toulouse.fr/archive/00002887/
https://doi.org/10.1680/geot.1979.29.1.47
https://doi.org/10.1063/1.4757662
https://oatao.univ-toulouse.fr/15754/
https://doi.org/10.1299/jfst.2.1
https://www.theses.fr/1995INPT110H
https://doi.org/10.1016/j.jcp.2007.05.028
https://doi.org/10.1051/jp1:1996129
https://doi.org/10.1016/j.jsv.2007.07.034
https://doi.org/10.1103/PhysRevE.72.021309
https://doi.org/10.1103/PhysRevE.74.051302
https://doi.org/10.1017/jfm.2014.145
https://doi.org/10.1017/jfm.2020.1088


FROM DISCRETE TO CONTINUUM DESCRIPTION OF …

[45] T. Pöschel and T. Schwager, Computational Granular Dynamics: Models and Algorithms (Springer
Science & Business Media, Cham, 2005).

[46] E. Izard, T. Bonometti, and L. Lacaze, Simulation of an avalanche in a fluid with a soft-sphere/immersed
boundary method including a lubrication force, J. Comput. Multiphase Flows 6, 391 (2014).

[47] S. B. Savage, M. H. Babaei, and T. Dabros, Modeling gravitational collapse of rectangular granular piles
in air and water, Mech. Res. Commun. 56, 1 (2014).

[48] C.-J. Lin, J. H. Peery, and W. R. Schowalter, Simple shear flow round a rigid sphere: Inertial effects and
suspension rheology, J. Fluid Mech. 44, 1 (1970).

[49] I. M. Krieger and T. J. Dougherty, A mechanism for non-Newtonian flow in suspensions of rigid spheres,
Trans. Soc. Rheol. 3, 137 (1959).

[50] P. Jop, Y. Forterre, and O. Pouliquen, A constitutive law for dense granular flows, Nature (London) 441,
727 (2006).

[51] GDR MiDi, On dense granular flows, Eur. Phys. J. E 14, 341 (2004).
[52] C. Cassar, M. Nicolas, and O. Pouliquen, Submarine granular flows down inclined planes, Phys. Fluids

17, 103301 (2005).
[53] H. Brinkman, A calculation of the viscosity and the sedimentation constant for solutions of large chain

molecules taking into account the hampered flow of the solvent through these molecules, Physica 13, 447
(1947).

[54] M. Ouriemi, P. Aussillous, and E. Guazzelli, Sediment dynamics. Part 1. Bed-load transport by laminar
shearing flows, J. Fluid Mech. 636, 295 (2009).

[55] F. Charru, J. Bouteloup, T. Bonometti, and L. Lacaze, Sediment transport and bedforms: A numerical
study of two-phase viscous shear flow, Meccanica 51, 3055 (2016).

[56] F. Tapia, M. Ichihara, O. Pouliquen, and É. Guazzelli, Viscous to inertial transition in dense granular
suspension, Phys. Rev. Lett. 129, 078001 (2022).

[57] A. S. Baumgarten and K. Kamrin, A general fluid–sediment mixture model and constitutive theory
validated in many flow regimes, J. Fluid Mech. 861, 721 (2019).

[58] J. Richardson and W. Zaki, The sedimentation of a suspension of uniform spheres under conditions of
viscous flow, Chem. Eng. Sci. 3, 65 (1954).

[59] H. Brenner, The slow motion of a sphere through a viscous fluid towards a plane surface, Chem. Eng. Sci.
16, 242 (1961).

024304-39

https://doi.org/10.1260/1757-482X.6.4.391
https://doi.org/10.1016/j.mechrescom.2013.11.001
https://doi.org/10.1017/S0022112070001659
https://doi.org/10.1122/1.548848
https://doi.org/10.1038/nature04801
https://doi.org/10.1140/epje/i2003-10153-0
https://doi.org/10.1063/1.2069864
https://doi.org/10.1016/0031-8914(47)90030-X
https://doi.org/10.1017/S0022112009007915
https://doi.org/10.1007/s11012-016-0553-5
https://doi.org/10.1103/PhysRevLett.129.078001
https://doi.org/10.1017/jfm.2018.914
https://doi.org/10.1016/0009-2509(54)85015-9
https://doi.org/10.1016/0009-2509(61)80035-3

