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We analyze the effect of large-scale coherent structures on the deposition of low-inertia
particles in a turbulent pipe flow using extended proper orthogonal decomposition (EPOD)
and spectral analysis. We perform direct numerical simulations (DNSs) at two the Reynolds
numbers 5300 and 10 300 (based on bulk parameters) with the particles released at the pipe
inlet. The equilibrium Eulerian model is employed for calculating particle velocity, and
the analysis is limited to particles with Stokes number (based on wall units) less than 1.
Increasing the Stokes number increases the energy at small streamwise wavelengths (due
to inertial clustering), and the spectral energy peak moves from λ+

z ≈ 1000 to λ+
z ≈ 150.

The spectral peak in the (λ+
z , y+) plane, where y+ is the wall-normal distance, moves

from the buffer layer to the logarithmic region. Gravity has a substantial effect on the
POD mode shapes. For the downward flow, a second peak appears closer to the center.
A new Fukagata-Iwamoto-Kasagi (FIK) identity is derived for the wall deposition rate
coefficient (Sherwood number, Sh) and employed to quantify the contributions of the mean
and fluctuating velocity and particle concentration fields for different Stokes, Froude, and
Reynolds numbers. Modes with azimuthal wave numbers kθ equal to three or four are found
to contribute most to deposition. Application of the developed methodology to higher
Reynolds number can elucidate the role of large- and very-large-scale flow structures on
particle deposition to the wall. It is well known these structures leave their footprint at the
wall but their contribution to deposition is not well understood.

DOI: 10.1103/PhysRevFluids.9.024303

I. INTRODUCTION

The paper investigates the interaction between low-inertia particles and coherent fluid structures
inside a pipe, with the aim to quantify the effect of different structures on particle deposition on
the wall. More specifically, we investigate the effect of two parameters, gravity and inertia, at two
Reynolds numbers. Understanding the effect of these parameters on particle concentration could
lead to better control of deposition in pipes and channels.

Coherent structures in wall-bounded flows have different streamwise and radial extents and four
different types have been identified [1]. The first group is near-wall streaks that are located in the
viscous and buffer layers and are characterized by alternating high- and low-momentum fluid with
a spanwise distance of approximately 100ν/uτ , where ν is the kinematic viscosity and uτ is the
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friction velocity [2]. The next group consists of hairpin or horseshoe vortices and is also found
in the near-wall and log regions [3]. The last two groups contain large-scale motions (LSMs) and
very-large-scale motions (VLSMs), have a presence in the log layer and the outer region of the
boundary layer, and a streamwise length from around 1δ to 10δ, where δ is the outer length scale
(in the present case the pipe radius). The VLSMs are centered in the log region but also have a
footprint on the wall [4]. For an in-depth review of coherent motions in wall-bounded flows, refer
to Refs. [5,6].

Inertial particles in wall-bounded flows and their interaction with the aforementioned coherent
structures, especially near-wall streaks, have long been investigated both experimentally and nu-
merically. Inertia prevents particles from completely following the turbulent motion, and this leads
to preferential concentration. This was first observed in Squires and Eaton [7]; it is sometimes
referred to as the particle centrifuge effect and leads to local areas of very large concentration. In
wall-bounded flows, inertial particles are also subject to turbophoresis [8,9], which is the migration
of particles from the bulk flow to the wall region. This has been linked to the sweep and ejection
events, see Rouson et al. [10]. It has been shown that either a particle is re-entrained immediately
by the same vortex that carried the particle to the wall, or it stays in the viscous region for a long
time [11].

Gravity also affects particle concentration and deposition. Gravitational effects have been inves-
tigated numerically using Lagrangian simulations by Uijttewaal et al. [12], Marchioli et al. [13],
and Nilsen et al. [14] and experimentally among others by Oliveira et al. [15] and Fong et al. [16].
The effect of gravity is not easy to quantify because it depends on inertia. In Nilsen et al. [14] and
Uijttewaal et al. [12], an increase in particle concentration in the log region was observed for upward
flow, while an increase in concentration in the center was observed for downward flow. More details
on particle transport in turbulent flows can be found in the review papers [17,18].

The numerical simulations referred to above track a large number of point particles as they
disperse in the turbulent flow; this is known as Lagrangian simulation. For sufficiently low inertia, an
alternative is the equilibrium Eulerian particle transport model, originally proposed by Maxey [19],
and later extended by Druzhinin [20] and Ferry and Balachandar [21]. The model assumes that
the particle velocity at each time instant and spatial location is unique and is in equilibrium with
the surrounding fluid velocity. This assumption requires small inertia so that the effect of initial
conditions decays exponentially fast. Most importantly, it allows a series expansion of the particle
velocity in terms of the Stokes number, a nondimensional parameter that quantifies particle inertia.
Substitution of the expansion to the particle motion equation and matching terms of the same order
leads to an analytical expression of the particle velocity in terms of the surrounding fluid velocity
and its derivatives. This velocity is subsequently employed in the transport equation for particle
concentration, therefore providing an entirely Eulerian description of the problem. More details can
be found in Refs. [17,21,22].

This approach is numerically more efficient than the Lagrangian approach and can be easily
implemented in existing DNS codes. It is accurate provided that the Stokes number based on
the Kolmogorov timescale is smaller than 0.2 for homogeneous isotropic turbulence [17,23,24]
or 0.6 for homogeneous shear flows [25] and can capture phenomena such as preferential particle
concentration and turbophoresis [17]. It has been used in laminar as well as turbulent flows. For
example, Pilou et al. [26] analyzed the deposition of inertial particles in a 90◦ pipe bend under
laminar flow conditions, Icardi et al. [27] simulated polydispersed particles in a turbulent channel
flow, Cerminara et al. [28] simulated volcanic ash plume using large eddy simulations (LESs), Yang
et al. [29] studied bubbles in a jet with LESs, Aiyer et al. [30] investigated oil droplets in a cross-flow
jet, and Balachandar et al. [31] suggested this as a method to simulate the airborne transmission of
Covid-19 to establish social distancing guidelines.

So far inertial particle dispersion and wall deposition have been investigated mainly with La-
grangian methods. The aforementioned Eulerian equilibrium model offers an alternative perspective
and allows the application of a variety of tools that have been developed for passive scalars to
low-inertia particles. This in turn can lead to new insights and the discovery of mechanisms that are
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not easy to extract using Lagrangian methods. More specifically, in this paper we extract proper
orthogonal decomposition (POD) modes of the particle concentration fluctuations and employ
extended POD (EPOD) [32] to find the velocity modes most correlated to the concentration modes.
EPOD has been used previously to analyze correlated events, such as velocity in two different
regions [33], pressure and velocity fluctuations [34], temperature and velocity fluctuations in
wall-heated pipes [35], passive scalars in swirling jets [36], etc. To the best of our knowledge,
this is the first time POD and EPOD is employed to study particle-laden turbulent flows.

To relate the fluctuating components (and thus flow structures) to particle deposition, an equa-
tion similar to the Fukagata-Iwamoto-Kasagi (FIK) identity [37] is also derived. The new equation is
valid for low-inertia particles and extends the one derived in Ref. [38] for a passive scalar. The
identity is employed to quantify the contribution of individual POD and EPOD modes to the
time-average particle deposition rate to the pipe wall. In particular, the coherent structures that
have the biggest contribution to Sh can be identified. Also, it provides closed-form expressions of
the effects of particle inertia and gravity on deposition.

The article is structured as follows: the case examined, computational details of the DNS datasets,
and a brief overview of POD and EPOD are presented in Sec. II. The FIK identity for low-inertia
particles is presented in Sec. III. We analyze the spectra and the POD/EPOD modes in Sec. IV and
conclude in Sec. V.

II. MODELLING DETAILS

A. Governing equations

We consider the turbulent flow inside a circular pipe with low-inertia particles injected at the
inlet. The flow is assumed to be incompressible and the continuity and momentum equations are
written in Cartesian tensor notation as

∂ui

∂xi
= 0, (1a)

∂ui

∂t
+ ∂uiu j

∂x j
= − ∂ p

∂xi
+ 1

Re

∂2ui

∂x j∂x j
, (1b)

where ui is the instantaneous fluid velocity in the ith direction, p is the static pressure, and
t is the time. The notation x = (x1, x2, x3) for the spatial coordinates is used interchangeably
with the notation x = (x, y, z), where z = x3 is the axial (streamwise) direction. Due to rotational
symmetry, it is convenient (especially for data plotting) to use polar coordinates (r, θ, z), where
(x, y) = (r cos θ, r sin θ ). Velocities are nondimensionalized with the bulk velocity UB and distances
with the pipe diameter D. The Reynolds number is defined as Re = UBD/ν, where ν is the kinematic
viscosity. The mean, i.e. time-average, and fluctuating quantities are denoted by an overbar and a
prime, respectively, for example, ui and u′

i.
We assume that the particles have diameters much smaller than the Kolmogorov length scale, the

volume fraction is small (so that there are no interparticle collisions and the presence of the particles
does not affect the flow), and only the Stokes drag force and gravity act on the particles. Under these
conditions, the particles can be considered as discrete points that follow the equation of motion

Dv∗
i

Dt∗ = 1

τ
(u∗

i − v∗
i ) + gi, (2)

where t∗ is the dimensional time, D/Dt∗ is the material derivative along the particle trajectory, u∗
i ,

v∗
i , gi denote the dimensional fluid velocity, particle velocity and gravitational acceleration in the

ith direction, respectively. The particle relaxation time τ is defined as

τ = ρpD2
p

18μ f
, (3)

024303-3



SCHLANDER, RIGOPOULOS, AND PAPADAKIS

where ρ f and μ f are the fluid density and dynamic viscosity, respectively, ρp and Dp are the particle
density and diameter, respectively. In the present simulations, we take ρp/ρ f ≈ 1000. If τ is small,
v∗

i can be expanded in a Taylor series as (see Ref. [19])

v∗
i = v

(0)
i + v

(1)
i τ + · · · . (4)

Substituting in (2) and equating terms with the same order of τ , we get

v∗
i = u∗

i − τ

(
Du∗

i

Dt∗ − gi

)
, (5)

where only the linear term in the expansion (4) was retained. Extensions of the model to account for
other forces in the equation of motion and quadratic terms of O(τ 2) can be found in Refs. [19–21].
The model assumes that v∗

i (x, t ) is unique and is determined solely by the surrounding fluid velocity
and its derivatives. The effect of initial conditions is therefore considered to be exponentially
decreasing with time; the conditions under which this is satisfied are elaborated in Ref. [21]. Note
that (5) implies a continuous particle velocity field, v∗

i (x, t ).
We now define the particle concentration c∗(x, t ) as the volume of particles per unit volume of

fluid and assume that this is also a continuous field. The reference quantity for c∗(x, t ) is the particle
concentration at the pipe inlet, cI , i.e., c(x, t ) = c∗(x, t )/cI . The transport equation for c(x, t ) is

∂c

∂t
+ ∂v jc

∂x j
= 1

ReSc

∂2c

∂x j∂x j
, (6)

where Sc is the Schmidt number, defined as Sc = ν/	C , where 	C is the particle diffusivity. The
diffusion coefficient 	C due to Brownian motion is much smaller than ν, and Sc values range from
102 to 106, see Table 3 of Ref. [39]. Such high values of Sc result in Batchelor scales which are
much smaller than the Kolmogorov scale (their ratio scales as Sc−0.5), and are computationally very
expensive to resolve. Coarser resolution creates over- and under-shoots in the particle concentration
field necessitating the introduction of a total variation diminishing (TVD) scheme in the convection
term, or some other form of filtering, such as spectral filtering of high wave numbers as in
Refs. [24,40]. To avoid the excessive cost of simulation or the need to employ a filtering scheme, we
adopt a compromise approach, where the diffusion term is retained and the Schmidt number is set
to Sc = 1. In Richter et al. [41], Sc was also set to unity, while in the LESs of Yang et al. [29] and
Aiyer et al. [30] molecular diffusion was neglected but an eddy diffusivity model was employed for
the subgrid-scale concentration fluxes. Pilou et al. [26] investigated particle deposition in a laminar
flow and used the diffusion coefficient due to Brownian motion. For a laminar flow, this is the correct
approach because there is no other mechanism to diffuse particle concentration. For a turbulent flow
however, diffusion due to turbulence [represented by the second term in equation (6)] is expected to
be dominant and this term is well resolved with the current grid (see computational details below).
The problem with the Sc number is well known and appears in many other areas. For example, in
turbulent reacting flows in liquids the true Sc is very high, but values close to one are also used for
the viscous terms of the reactants to make the simulations tractable, see Ref. [42].

Inserting the nondimensional form of (5) into (6), we obtain

∂c

∂t
+ ∂

∂x j

{[
u j + St

(
1

Fr j
− ∂u j

∂t
− uk

∂u j

∂xk

)]
c

}
= 1

ReSc

∂2c

∂x j∂x j
, (7)

where Fri = U 2
B/giD and St = τUB/D are the Froude and Stokes numbers, respectively (based

on global variables). When Frz > 0, gravity is aligned with the mean streamwise velocity,
corresponding to downward flow in a vertical pipe. Similarly, when Frz < 0 the flow is moving
upwards in a vertical pipe.
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FIG. 1. Variation of Stk (based on the Kolmogorov timescale τk) in the wall-normal direction. The dissipa-
tion rate used to calculate τk is taken from Refs. [43,44].

B. Computational details

We perform DNS of a fully developed turbulent flow in a pipe of length L = 7.5D. Two Reynolds
numbers are considered, Re = 5300 and 10 300. The flow is driven by a constant streamwise
pressure gradient. For velocities, periodic boundary conditions are employed at the inlet and outlet
planes, while a no-slip condition is imposed at the wall.

Three Stokes numbers are defined. The first is based on wall values, St+ = τu2
τ /ν, where uτ is

the friction velocity (we take St+ = 1.0 for both Reynolds numbers). The second is based on bulk
values, St = τUB/D, and is equal to 0.04 for Re = 5300 and 0.026 for Re = 10 300. Finally, we
define Stk = τ/τk , where τk is the Kolmogorov timescale. The value of Stk (based on the time-,
streamwise- and azimuthally averaged dissipation) changes along the radius, see Fig. 1. It can be
seen that the maximum is approximately 0.4 for Re = 5300 and 0.45 for Re = 10 300. These values
are located at the wall, where the dissipation rate is maximized, and the Kolmogorov timescale τk is
minimized. The minimum Stk value is approximately 0.1 for both Reynolds numbers and located at
the center of the pipe. For Froude number three cases are considered, 1/Frz = 0 (no gravity effect)
and Frz = ±0.4 (upward or downward flow in a vertical pipe).

The particles are inserted at the inlet of the pipe with uniform concentration c∗(r, θ, 0) = cI .
Since we are interested in particle deposition, we assume a totally absorbing wall with c(R, θ, z) =
0. This boundary condition is known as a perfect sink model; particles are irreversibly absorbed
at the wall upon impact [45]. At the exit plane, a nonreflecting boundary condition is employed,
∂c/∂t + ∂vzc/∂z = 0, where vz(r, θ, L) is the local instantaneous axial particle velocity.

The governing equations are solved using an in-house unstructured finite-volume solver Pan-
tarhei [46–49]. The convection and diffusion terms are discretized using a second-order central
approximation. A third-order backward difference scheme is employed for the transient term.
Orthogonal diffusion terms are treated implicitly, while the convection and non-orthogonal diffusion
terms are treated explicitly using third-order extrapolation in time. The fractional step method is
employed to correct velocities and pressure to satisfy the continuity equation at the end of each
time step. The resulting linear systems are solved with the generalized minimal residual method
(GMRES) iterative algorithm implemented in the PETSc library [50]. Convergence is accelerated
using an algebraic multigrid preconditioner from the Hypre library [51].

The grid near the center is H type and transitions to O type closer to the wall to fit the
cylindrical boundary. The computational domain spans 7.5D, large enough to resolve the largest
coherent structures according to Wu et al. [52], and the particles are reinserted from the outlet
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TABLE I. Parameter settings for the simulations.

Re Reτ Nc 
r+
wall 
θr+

max 
r+
center,max 
z+ 
t[ R

UB
] Nt

5300 180 8.8×106 0.35 3.75 2.29 5.25 0.008 600
10 300 323 25.6×106 0.1 4.84 2.63 8.2 0.004 600

to the inlet to artificially increase the length from 7.5D to 15D to ensure that the normalized
concentration profiles become self-similar (see more details on this below). For Re = 5300, the
cross section is discretized with Nc,cross = 1.7×104 cells and Nz = 512 layers are employed in the
streamwise direction, resulting in a total of Nc = 8.8×106 cells (for Re = 10 300 we use 25.6×106

cells). Grid spacings (in wall units) in the radial, azimuthal and axial directions are provided in
Table I. The ratio of the local grid size (computed as the cubic root of the cell volume) to the
Kolmogorov length scale η = (ν3/ε)0.25, where ε is the average dissipation rate, is less than 1.8 in
most parts of the domain, which indicates that the flow is well resolved [53]. The time steps are

t = 0.008R/UB and 
t = 0.004R/UB for Re = 5300 and 10 300, respectively, corresponding to
a maximum Courant–Friedrichs–Lewy number of 0.6. Statistics were collected over 20 000 time
steps, corresponding to 160R/UB. In total 600 velocity and particle concentration snapshots are
stored every 250
t (corresponding to 
ts = 2R/UB for the lowest Re number) and processed to
extract POD and EPOD modes. More details and validation against reference data for Re = 5300
can be found in Schlander et al. [38].

To validate the equilibrium Eulerian model, we perform additional DNS simulations in a channel
flow at Reτ = 180 (same as in the pipe flow for the case of Re = 5300) and compare the par-
ticle velocity field against the Lagrangian simulations of Ref. [22]. The channel has dimensions
(Lx, Ly, Lz ) = (4π, 2, 4/3π ) and the domain is discretized with (Nx, Ny, Nz ) = (256, 128, 256) cells
in each direction (9.3 million cells in total). Using equation (5), the following expressions are
obtained for the streamwise and wall-normal particle velocities for channel flow,

vy = −St
∂u′2

y

∂y
, (8)

vx = ux − St
∂u′

xu′
y

∂y
. (9)

As shown in Fig. 2(a), the mean wall-normal particle velocity for St+ = 1 and St+ = 3 matches
very well with the Lagrangian simulation results reported in Ref. [22]. However, for the streamwise
fluid and particle velocity difference, shown in Fig. 2(b), the agreement is good for St+ = 1, but
there are deviations (especially around the minimum value) for St+ = 3. This is in agreement with
the results of Ref. [40], where instantaneous particle concentration histograms using the Eulerian
model match well with Lagrangian simulations for St+ = 1 [see Fig. 6(b) of Ref. [40]]. Based on the
above results, we conclude that the equilibrium Eulerian model is sufficiently accurate for St+ = 1
(at least for the geometry and conditions examined in this paper) and in the following sections we
restrict our investigations to St+ � 1.

C. Proper and extended proper orthogonal decomposition (POD and EPOD)

POD is a modal technique that decomposes a fluctuating field in terms of modes ranked according
to their energy [54]. Below we give a brief description of POD and EPOD modes; for more details
see Schlander et al. [38]. In particular, refer to Appendix A of Ref. [38] for the weighting matrix that
is used to define the inner product in the vector space that consists of the three velocity components
and the scalar.
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FIG. 2. (a) Wall-normal particle velocity and (b) the difference between the average streamwise particle and
fluid velocities for channel flow at Reτ = 180; profiles are compared with the Lagrangian simulation results of
Ferry et al. [22]. Solid lines denote the present DNS and ◦ the Lagrangian simulations. The blue line denotes
St+ = 1 and the red line St+ = 3.

We define the normalized particle concentration ch(r, θ, z, t ) as

ch(r, θ, z, t ) = cw − c(r, θ, z, t )

cw − cB(z)
= c(r, θ, z, t )

cB(z)
, (10)

because cw = cw = 0 and cB(z) is the bulk concentration, defined as cB(z) = 8
∫ 1/2

0 uzcrdr. As will
be shown later in Fig. 3, for z > 10D, the time average c̄h(r, θ, z) is independent of z, thus z becomes
a homogeneous direction (this is denoted by the subscript h in ch). We apply POD on a section of
the dataset, from z = 10D to 15D, where ch is homogeneous.

In homogeneous directions, the POD modes reduce to sinusoidal (Fourier) modes. Therefore, the
fluctuating velocity and normalized particle concentration fields, denoted by the generic variable
q(r, θ, z, t ) below, can be Fourier transformed in the azimuthal and streamwise directions as

q(r, θ, z, t ) =
+∞∑

kz=−∞

+∞∑
kθ=−∞

q̂kθ ,kz (r, t )ei(kθ θ+2πkz
z
L ), (11)

where q̂kz,kθ
(r, t ) is the Fourier coefficient, kz is the streamwise wave number, and kθ is the azimuthal

wave number. The Fourier coefficients are stacked column-wise in one snapshot matrix for each
wave number pair,

Q̂kθ ,kz = [
q̂(1)

kθ ,kz
, q̂(2)

kθ ,kz
, . . . , q̂(Nt )

kθ ,kz

]
, (12)

where Nt is the total number of snapshots. We then solve the eigenvalue problem of size Nt ,

1

Nt
Q̂∗

kθ ,kz
WQ̂kθ ,kz�kθ ,kz = �kθ ,kz�kθ ,kz , (13)

where �kθ ,kz is the temporal eigenvector, �kθ ,kz = diag[λ(1)
kθ ,kz

, λ
(2)
kθ ,kz

, . . . , λ
(Nt )
kθ ,kz

] is a diagonal matrix

containing the eigenvalues (by convention λ
(1)
kθ ,kz

� λ
(2)
kθ ,kz

� · · · � λ
(Nt )
kθ ,kz

) and W is a weighting
matrix that accounts for the area expansion in the radial direction. The spatial modes can be
recovered from

�kθ ,kz = 1√
Nt

Q̂kθ ,kz�kθ ,kz�
−1/2
kθ ,kz

, (14)
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FIG. 3. Variation of Sh number and the constituent components ShFIK along the length of the pipe for
Re = 5300, where panel (a) is for St+ = 0, panel (b) is for St+ = 1, 1/Frz = 0, panel (c) is for St+ = 1,
Frz = 0.4, and panel (d) is for St+ = 1, Frz = −0.4.

where �kθ ,kz = [φ(1)
kθ ,kz

, φ
(2)
kθ ,kz

, . . . , φ
(Nt )
kθ ,kz

]. The last factor, �
−1/2
kθ ,kz

, ensures that the modes φ
(n)
kθ ,kz

are
orthonormal. Keeping only the k � Nt largest eigenvalues, an approximate reconstruction of the
flow or particle concentration fields can be obtained from

Q̂(k)
kθ ,kz

= √
Nt�

(�k)
kθ ,kz

�
(�k)1/2
kθ ,kz

�
(�k)∗
kθ ,kz

, (15)

where the superscript (�k) denotes the truncated version of the corresponding matrices, for exam-
ple, �

(�k)
kθ ,kz

= [φ(1)
kθ ,kz

, φ
(2)
kθ ,kz

, . . . , φ
(k)
kθ ,kz

] and �
(�k)
kθ ,kz

= diag[λ(1)
kθ ,kz

, λ
(2)
kθ ,kz

, . . . , λ
(k)
kθ ,kz

].
The extended POD (EPOD), introduced by Maurell et al. [33] and Boree [32], is employed

to analyze correlations between different variables. The temporal basis, �kθ ,kz , obtained from the
standard POD of one variable, is used to find the spatial modes of another synchronized variable.
Here we aim to investigate the correlation between velocity and particle concentration fluctuations.
Therefore, the temporal basis obtained from the POD analysis of the particle concentration fluctua-
tions will be used to decompose the velocity field. The velocity EPOD modes are obtained from:

�kθ ,kz,e = 1√
Nt

Q̂kθ ,kz,v�kθ ,kz,s�
−1/2
kθ ,kz,s

, (16)
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where �kθ ,kz,e = [φ(1)
kθ ,kz,e

, φ
(2)
kθ ,kz,e

, . . . , φ
(Nt )
kθ ,kz,e

] is the matrix containing the EPOD modes (the

subscript e stands for extended), Q̂kθ ,kz,v is the snapshot matrix containing the Fourier-transformed
velocities (as indicated by the subscript v), and �kθ ,kz,s is the temporal mode of the particle
concentration field (indicated by the subscript s). The kinetic energy associated with each EPOD
velocity mode is stored in the diagonal matrix,

�kθ ,kz,e = �kθ ,kz,s�kθ ,kz,e�
∗
kθ ,kz,eW, (17)

see Boree [32]. The energy contained in each EPOD mode will be lower compared with the standard
velocity POD mode because the extended modes are no longer ranked based on their kinetic energy.
The reconstruction of the velocity field using the k-largest EPOD modes is obtained from

Q̂(k)
kθ ,kz,e

= √
Nt�

(�k)
kθ ,kz,e

�
(�k)1/2
kθ ,kz,s

�
(�k)∗
kθ ,kz,s

, (18)

where we have retained the notation of (15). Here, by largest EPOD modes, we mean the EPOD
modes with the largest associated POD scalar variance.

III. FIK IDENTITY FOR WALL DEPOSITION OF LOW-INERTIA PARTICLES

The FIK identity was first derived by Fukagata et al. [37] for the skin friction coefficient for
channel, pipe, and flat plate boundary layer flows. In the present paper, we follow the same steps
to derive an expression for the wall deposition of low-inertia particles, which is quantified by the
nondimensional Sherwood number,

Sh = − 1

(cB − cW )

∂c

∂r

∣∣∣∣
r=1

, (19)

where c̄W is the concentration at the wall (in our case c̄W = 0). For the derivation of the FIK identity
for the Sh number, we first write the particle concentration equation (6) in polar coordinates, take
the time average, assume rotational symmetry and integrate over the cross section of the pipe (the
full derivation can be found in Appendix). The resulting expression can be written as a sum of a
noninertial component (valid for passive scalars with St = 0) and an inertial component,

Sh = Shpassive + Shinertial. (20)

The noninertial component was derived in Schlander et al. [38]:

Shpassive = − 8

(cB − cW )

∫ 1

0
r2 ∂c

∂r
dr︸ ︷︷ ︸

ShFIK,1

+ 8ReSc

(cB − cW )

∫ 1

0
r2u′

rc′dr︸ ︷︷ ︸
ShFIK,2

+ 4ReSc

(cB − cW )

∫ 1

0
r(1 − r2)

〈
∂uzc

∂z

〉
dr︸ ︷︷ ︸

ShFIK,3

+ 4ReSc

(cB − cW )

∫ 1

0
r
(
1 − r2

)〈∂u′
zc

′

∂z

〉
dr

︸ ︷︷ ︸
ShFIK,4

− 4

(cB − cW )

∫ 1

0
r(1 − r2)

〈
∂2c

∂z2

〉
dr︸ ︷︷ ︸

ShFIK,5

. (21)

The inertial component, which applies only to particles, takes the form

Shinertial = 8StReSc

(cB − cW )

∫ 1

0
r2Irdr︸ ︷︷ ︸

ShFIK,Ir

+ 4StReSc

(cB − cW )

∫ 1

0
r(1 − r2)

1

Frz

〈
∂c

∂z

〉
dr︸ ︷︷ ︸

ShFIK,Fr

+ 4StReSc

(cB − cW )

∫ 1

0
r(1 − r2)〈Iz〉dr︸ ︷︷ ︸

ShFIK,Iz

, (22)
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where Ir contains the terms arising from vr , Iz the terms arising from vz, and Frz accounts for the
effect of streamwise gravity. The expressions for Ir and Iz can be found in Appendix. Angular
brackets 〈.〉 indicate the operation

〈 f 〉 = f − 2
∫ 1

0
f rdr, (23)

where f is a generic variable. Note that for equations (21) and (22), the reference quantities for
distance and velocity are the pipe radius R and twice the bulk velocity 2UB (instead of D and UB,
respectively). This is done in order to facilitate the derivation and simplify the form of the FIK
identity.

We later show that Iz is negligible in the entire domain. The nonzero terms in ShFIK,Ir are found
to be

ShFIK,Ir

≈ − 8StReSc

(cB − cW )

∫ 1

0
r2c

∂u′2
r

∂r
dr︸ ︷︷ ︸

ShFIK,Ir1

− 8StReSc

(cB − cW )

∫ 1

0
r2c

u′2
r − u′2

θ

r
dr︸ ︷︷ ︸

ShFIK,Ir2

− 8StReSc

(cB − cW )

∫ 1

0
r2c′ Du′

r

Dt
dr︸ ︷︷ ︸

ShFIK,Ir3

.

(24)

The first two terms represent the effect of turbophoresis, a mechanism whereby inertia causes a drift
against the gradient of turbulent kinetic energy, see Reeks [9]. The third term represents correlations
between particle concentration fluctuations and radial acceleration and was analyzed by Richter
et al. [41].

The Sherwood number can be obtained directly from the wall gradient and is shown with a black
line in Fig. 3. The maximum value of Sh is found close to the inlet, where the boundary layer of
particle concentration is very thin (recall that the distribution is uniform at the inlet). For z > 10D,
Sh is approximately constant (and equal to 20.5 at the exit); this indicates that the ratio c̄h(r, θ, z) =
c̄(r, θ, z)/c̄W (z) does not vary in the streamwise direction, thus z becomes a homogeneous direction
justifying the Fourier transform (11). In Ref. [55] particles with St+ = 1 require a longer distance,
approximately 25D, to reach equilibrium; similar results are reported in Ref. [56]. However, in
both papers, the particles were released close to the center of the pipe and this results in a longer
development length.

The different terms on the right-hand side of equations (21) and (22) are shown with colored
solid lines in Fig. 3 for Re = 5300. To validate the FIK identity, the sum of the right-hand
side of equation (20) is plotted as circles, and matches DNS with a level of accuracy similar to
Refs. [57–59]. ShFIK,1 is the contribution from the mean field, see Ref. [38] for discussion about this
term. The turbulent flux term, ShFIK,2, grows steadily and attains a maximum value at 10D, where
it stabilizes. Close to the inlet, ShFIK,3 is large and positive, but it quickly decays and stabilizes
to a negative value for z > 10D. This was also observed for the Nusselt number FIK identity in
Ref. [58]. Note that ShFIK,3 would have decreased to zero, if we had normalized c∗(z) with the
bulk concentration cB(z), instead of the inlet value, cI . Terms ShFIK,4 and ShFIK,5 are negligible in
the whole domain, apart from the inlet. For larger Re, the contribution of ShFIK,2 is expected to
increase; this will be shown in the next section. The inertial term, ShFIK,Fr, is negligible except near
the inlet, and ShFIK,Iz is negligible in the whole domain.

At the outlet Sh ≈ ShFIK,1 + ShFIK,2 + ShFIK,3 + ShFIK,Ir . For St+ = 1, the radial inertial term
ShFIK,Ir ≈ 2 for 1/Frz = 0 (i.e., no gravity), ShFIK,Ir ≈ 4 for Frz = 0.4, and ShFIK,Ir ≈ 1 for Frz =
−0.4. Thus ShFIK,Ir accounts for between 5% and 20% of the total Sh, depending on gravity.

We now analyze the effect of Reynolds number on particle deposition. The Sherwood number
plot along the streamwise direction for Re = 10 300 is qualitatively very similar to Fig. 3, so it is
omitted here for brevity. Instead, in Fig. 4 bar charts are shown with the contributions of the nonzero
components of equation (21) at the pipe outlet for Re = 5300 and 10 300. Absolute and normalized
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FIG. 4. Bar charts of the nonzero FIK components at z = 15D for Re = 5300 and Re = 10 300. (a) Abso-
lute values and (b) values normalized with Sh.

(with Sh) values are shown at the top and bottom panels, respectively. The normalized contribution
of ShFIK,1 [see Fig. 4(b)] is reduced significantly for the larger Reynolds number; this is expected as
ShFIK,1 corresponds to the laminar contribution. This term is slightly affected by the flow direction
(effect of gravity). The inertial term ShFIK,Ir increases with Reynolds number, the increase is largest
for the positive Froude number (downward flow), but the effect is rather small. The absolute value
of Sh increases significantly with Re [see Fig. 4(a)] and the largest contribution arises from ShFIK,2,
as expected. The effect of inertial terms is more noticeable at the highest Re, especially for the
no-gravity and downward flow cases.
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FIG. 5. Bar charts of the absolute values of the nonzero inertial FIK components at z = 15D for Re = 5300
and Re = 10 300.

A bar chart of the components of the ShFIK,Ir term is shown in Fig. 5. The turbophoresis terms
ShFIK,Ir1 and ShFIK,Ir2 are almost independent of gravity. The ShFIK,Ir3 term increases significantly
with Re (it becomes the dominant term for Re = 10 300) and is also the one that is primarily affected
by gravity.

IV. RESULTS

A. Spectra

We now analyze the spectra of the particle concentration fluctuations. In Fig. 6 contours of the
premultiplied spectra kzkθEchch are shown in the wavelength plane (λ+

z , λ+
θ ) at y+ = 15 for St+ = 0

and St+ = 1. A log scale in both axes together with premultiplied spectra allows us to identify the
wavelengths that carry most of the energy (variance in the present case). Such plots are more difficult
to obtain with Lagrangian simulations because of the sensitivity to the bin size when computing
Eulerian statistics from discrete particle positions, see Ref. [56] for details.

The effect of Stokes number is to increase the energy of the low wavelengths, see top-row
Figs. 6(a) and 6(b) where gravity omitted, 1/Frz = 0. This is due to inertial clustering. A contour
plot of concentration for two Stokes numbers is shown in Fig. 7. For St+ = 1 localized patches of
a high concentration of particles as well as regions almost void of particles can be clearly seen.
These localized regions result in the shift of the spectra to lower wavelengths. This amplification of
smaller wavelengths was also observed in the one-dimensional spectra of the Lagrangian particle
simulation in Ref. [60]. The mechanism for particle clustering was explained by Maxey [19] and it
is due to the nonzero divergence of the particle velocity field, ∇ · v �= 0. Using the (nondimensional
form) of equation (5) and taking into account that ∇ · u = 0, we have

∇ · v = −St
∂u j

∂xi

∂ui

∂x j
= −St

4

[(
∂ui

∂x j
+ ∂u j

∂xi

)2

−
(

∂ui

∂x j
− ∂u j

∂xi

)2
]

= −St(‖S‖2 − ‖�‖2), (25)

where ‖S‖2 = Si jSi j and ‖�‖2 = �i j�i j are the Frobenius norms of the strain-rate S and rotation-
rate � tensors, respectively. From equation (25), it can be seen that particles will cluster (∇ · v < 0)
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FIG. 6. Premultiplied spectra of particle concentration for (a), (c) Re = 5300 and (b), (d) Re = 10 300 at
y+ = 15 for (a), (b) no-gravity flow, and (c), (d) downward flow or upward flow. The blue line marks 10%,
the red line 50%, and the yellow line 75% of the maximum value. In panels (a) and (b) the solid line denotes
St+ = 0 (passive scalar) and the dashed line St+ = 1. In panels (c) and (d) the Stokes number is constant
(St+ = 1), the solid line denotes the downward flow and the dashed line the upward flow.

in areas where the strain rate dominates the rotation rate, for example, at the edge of vortices, see
Ref. [61].

The peak of the spectra shifts from λ+
z ≈ 1000, λ+

θ ≈ 100, which are the well-known spacings
of near-wall streaks, to around λ+

z ≈ 600, λ+
θ ≈ 100. The effect of the Stokes number is the same

for both Reynolds numbers, namely, smaller wavelengths are amplified, but it is more prominent in
the low Reynolds number spectra, where the shift to smaller wavelengths is more pronounced.

In Figs. 6(c) and 6(d) the spectra at y+ = 15 are plotted for Frz = ±0.4 and St+ = 1. For the
downward flow (Frz > 0), the smaller wavelengths are slightly further amplified for the lowest

FIG. 7. Instantaneous contours of particle concentration at Re = 10 300 for (a) St+ = 0.0 and (b) St+ = 1
with 1/Frz = 0 (no gravity case).
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FIG. 8. Premultiplied spectra of particle concentration in the streamwise direction (averaged over the
azimuthal direction) for (a), (c) Re = 5300 and (b), (d) Re = 10 300. In panels (a) and (b) St+ = 0 and in
panels (c) and (d) St+ = 1.0. Gravity is omitted, 1/Frz = 0. The plots are normalized so the maximum energy
is unity.

Re number. However, for the larger Re there are essentially no differences between upward and
downward flow.

In Fig. 8, the premultiplied streamwise spectra kzEchch averaged over the θ direction are plotted at
different wall-normal distances y+ for St+ = 0 (top row) and St+ = 1 (bottom row) and Reynolds
numbers Re = 5300 and 10 300, with gravity omitted 1/Fr = 0. Close to the wall, the spectra for
St+ = 0 in Figs. 8(a) and 8(b) are qualitatively similar to the spectra of the streamwise fluctuating
velocity field (omitted here for brevity). The peak is located at (y+, λ+

z ) ≈ (15, 1000), thus the
scalar streaks have very similar characteristic dimensions as the velocity streaks. Further away
from the wall, energy is concentrated at smaller wavelengths; these findings are in accordance with
Refs. [62,63]. For St+ = 1 however, the picture is different. While close to the wall the spectra are
similar to passive scalar and the length scales decrease away from the wall, the spectral peak has
moved from the buffer layer to the logarithmic region, and it is now located at (y+, λ+

z ) ≈ (50, 150).
Further away from the wall, the dominant streamwise length scale remains almost constant. This
once again agrees with the contour plots of Fig. 7. Increasing the Reynolds number results in
a qualitatively similar picture; the peak is shifted to lower wavelengths and into the logarithmic
region of the flow. For the Re = 10 300 case there is a relatively larger amount of energy in the high
wavelength region close to the wall.

The shift of the peak to smaller length scales is due to inertial clustering, as explained earlier.
The displacement to the logarithmic layer is more difficult to explain. It is very likely caused by the
imposed boundary conditions. The values of both velocity and particle concentration are zero at the
wall, and for small y+ values (less than 10) the spectra are similar. Further away from the wall
the effect of the boundary condition is weakened and inertial clustering takes over.

In Fig. 9, the streamwise spectra are plotted for Froude numbers Frz = ±0.4 for St+ = 1 and
Re = 5300 and 10 300. The same overall trends are observed as for the no-gravity case of Fig. 8.
The main difference is in the bulk of the flow, where it seems the downward flow (top row) has
structures with slightly larger wavelengths compared with the upward flow (bottom row); this can
be seen by comparing the top-right corners of the two panels, and is more evident for the low Re
number case (left column). From this figure it is clear that the effect of Re is stronger than the
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FIG. 9. Premultiplied spectra of particle concentration fluctuations in the streamwise direction (averaged
over the azimuthal direction) for (a), (c) Re = 5300 and (b), (d) Re = 10 300. In panels (a) and (b) Frz = 0.4
and in panels (c) and (d) Frz = −0.4. In all plots St+ = 1. The plots are normalized so the maximum energy is
unity.

effect of gravity. In Fig. 10, the premultiplied spectra in the azimuthal direction kθEchch are plotted
in the (y+, λ+

θ ) plane, for St+ = 0 and 1, Re = 5300 and 10 300, and 1/Frz = 0 (effect of gravity
omitted). The spectral peak is located at λ+

θ = 100 regardless of Stokes and Reynolds numbers.
For Re = 5300 and St+ = 1 the peak moves in the logarithmic region, consistent with the results of
Fig. 8. For Re = 10 300 the shift of the peak is very small, but the energy is significantly increased in

FIG. 10. Premultiplied spectra of particle concentration fluctuations in the azimuthal direction (averaged
over the streamwise direction) for (a), (c) Re = 5300 and (b), (d) Re = 10 300. In panels (a) and (b) St+ = 0
and in panels (c) and (d) St+ = 1.0. Gravity is omitted, 1/Frz = 0. The plots are normalized so the maximum
energy is unity.
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FIG. 11. Premultiplied spectra of particle concentration fluctuations in the azimuthal direction (averaged
over the streamwise direction) for (a), (c) Re = 5300 and (b), (d) Re = 10 300. In panels (a) and (b) Frz = 0.4
and in panels (c) and (d) Frz = −0.4. In all plots St+ = 1. The plots are normalized so the maximum energy is
unity.

the logarithmic region (compare top and bottom panels of Fig. 10 in the right column); this indicates
that the peak becomes broader and less sharp. As observed in Figs. 6 and 8, the effect of the Stokes
number is larger for the lower Reynolds number so it is likely that the peak would shift towards the
log-layer for larger Stokes number.

Finally, in Fig. 11, the effect of gravity of the premultiplied spectra in the (y+, λ+
θ ) plane is

examined for Froude numbers Frz = ±0.4 and Reynolds numbers Re = 5300 and 10 300; the
Stokes number is kept constant at St+ = 1. As in Fig. 10, the peak location of the azimuthal
wavelength does not change significantly. The downward flow seems to somewhat increase the
energy of the large wavelengths near the center, and for the upward flow the peak is slightly closer
to the wall.

B. POD modes

The normalized particle concentration field ch is Fourier transformed into the azimuthal and
streamwise directions and for each wave number pair (kz, kθ ) POD modes are extracted, as explained
in Sec. II C. We denote with n the mode order for each pair.

We compute the ratio λ1/λT (where λ1 is the dominant, i.e. n = 1, eigenvalue for each pair,
and λT is the concentration variance integrated over the pipe volume) and sum over all kz wave
numbers. The result denotes the fraction of the variance contained in the dominant POD mode
across all streamwise wave numbers and is plotted against kθ in Fig. 12. The peak for Re = 5300 is
at kθ = 3, while for Re = 10 300 is at kθ = 4, regardless of Stokes or Froude numbers. The fraction
of the variance contained in the dominant mode is reduced for St+ = 1 compared with St+ = 0.
This means that higher-order modes become more prevalent. It is well known, see Duggleby et al.
[64], that higher-order modes are oscillatory in the radial direction, thus represent smaller scales.
Increasing the Stokes number results in smaller scales, as seen in Fig. 7, and this explains why
modes with n > 1 assume a larger role. Gravity seems to have a secondary effect on the eigenvalue
distribution, especially for the lower Re. Upward flow (Frz < 0) amplifies small wave numbers,
while downward flow (Frz > 0) suppresses small wave numbers.
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FIG. 12. Eigenvalue distribution of the dominant particle concentration POD mode over kθ for (a)
Re = 5300 and (b) Re = 10 300.

The ratio λ1/λT is also summed over all azimuthal wave numbers and plotted against kz in
Fig. 13. The peak in all cases is at kz = 1 (in agreement with Ref. [64] for the velocity field),
but it is reduced significantly for St+ = 1 compared with St+ = 0 in all cases, again in agreement
with Fig. 7.

In Fig. 14, the ratios λn/λT are summed across all wave numbers in both azimuthal and
streamwise directions and plotted against n. For the low-inertia particles the variance fraction of
the dominant mode is smaller compared with passive scalar, and larger for the higher-order modes.
This is consistent with the previous figures. Gravity plays no role for both Re numbers.

In Fig. 15 we analyze the shapes of the dominant (n = 1) POD modes. We have limited the
analysis to wave numbers kθ = 4, 7 and kz = 1. The modes have similar shapes. The peaks are
closer to the wall for the higher Reynolds number as expected (the horizontal axis is in physical
units). Although gravity does not affect much the energy content as shown in the previous figures,
it has a more noticeable effect on the mode shapes, especially for downward flow. In this case, the
modes with kθ = 4 (top row) have more pronounced presence in the bulk of the flow; notice also

FIG. 13. Eigenvalue distribution of the dominant particle concentration POD mode over kz for (a)
Re = 5300 and (b) Re = 10 300.
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FIG. 14. Eigenvalue distribution of the particle concentration POD modes, n, normalized with the total
particle concentration variance, integrated over streamwise mode numbers kz and azimuthal wave numbers kθ ,
for (a) Re = 5300 and (b) Re = 10 300.

that a second peak appears closer to the center for both Re numbers. For modes with kθ = 7 (bottom
row) that have less energy (see Fig. 12) the effect of gravity is less noticeable.

Contour plots of the modes with kθ = 4 in streamwise and cross-stream planes are shown in
Fig. 16. There are small differences between St+ = 0 and 1 in the no-gravity case (top row), but the
two peaks in the radial direction for the downward flow can be clearly noticed in the bottom-left
figure (red region peaks closer to the wall and blue region further away from the wall).

FIG. 15. Particle concentration POD modes for (a), (b) kz = 1, kθ = 4, n = 1 and (c), (d) kz = 1, kθ = 7,

n = 1 at (a), (c) Re = 5300 and (b), (d) Re = 10 300.
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FIG. 16. Dual-plane contour plots of the particle concentration POD modes at (a) Re = 5300 for kz =
1, kθ = 4, n = 1 and St+ = 0, 1/Fr = 0, (b) St+ = 1, 1/Fr = 0, (c) St+ = 1, Frz = 0.4, and (d) St+ = 1,
Frz = −0.4.

C. EPOD modes and analysis of deposition with the aid of the FIK identity

As shown in Sec. III, inertia adds three new terms to the FIK identity, but for z > 10D only
ShFIK,Ir contributes to deposition, refer to Fig. 3. Thus the contribution of turbulent fluctuations to
Sh can be written as

Shturb = ShFIK,2 + ShFIK,Ir. (26)

Substituting decomposition (18) of the fluctuating particle concentration field and (correlated)
velocity field into the analytic expressions of ShFIK,2 and ShFIK,Ir [see equations (21) and (22),
respectively], we can calculate the contribution of each POD and EPOD mode pair to the time-
average deposition.

We start by evaluating the contribution to Shturb of the first (dominant, n = 1) POD or EPOD
mode summed over all streamwise wave numbers and plot the result against kθ in Fig. 17. The
peak is located at kθ = 3 or 4 for the low and high Reynolds numbers, respectively. When gravity
is omitted, Stokes number does not seem to have an effect, although the eigenvalue of the first
mode pair is smaller for St+ = 1, as shown in Fig. 14. The effect of gravity is more pronounced
for downward flow where the contribution of the dominant POD mode is weaker. This is probably
because of the shape of the modes that become more uniform, have a suppressed peak close to
the wall (see Figs. 15 and 16) and thus less effective at wall deposition due to the r2 weighting in
ShFIK,2, see equation (21).

The contribution of the dominant modes to the particle inertia tern ShFIK,Ir (summed over all kz)
is depicted in Fig. 18. The effect of gravity can be more clearly seen in this plot. For both Re
numbers, inertia effects are strongest for downward flow and weakest for upward flow. Modes
with low azimuthal wave numbers, kθ = 1–3, contribute most to deposition; instead the highest
concentration variance is contained in modes kθ = 3–7, refer to Fig. 17.
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FIG. 17. Contribution to Shturb of the dominant mode (n = 1) summed over all streamwise wave numbers
for (a) Re = 5300 and (b) Re = 10 300.

Attention is now turned to the number of POD modes that are required to reconstruct Shturb. To
this end, we evaluate the cumulative Shturb for kθ = 1–30 and for n = 1 and n = 1–50 for different
kz values. The results are plotted in Fig. 19 for Re = 5300. For all cases, with kθ = 1–15, kz =
1–10, and n = 1, it is possible to reconstruct roughly 70% of the total deposition arising from
turbulent fluctuations; the value changes slightly with Stokes and Froude numbers. This corresponds
to 150 modes out of the total number of 64×128×600 ≈ 5×106 (i.e., only 0.003% of the modes
are required). Inertia seems to increase the contribution from the largest wave numbers, especially
for n = 1–50. Shturb is found to be 20% higher for St+ = 1 when calculated for kz = 11–20. This is
consistent with the observation that the Stokes number results in smaller structures in the flow. The
upward flow seems to require fewer POD modes compared with the downward flow. This is visible
in the kz = 1–5 line in Fig. 19, where the n = 1–50 dashed line almost overlaps with the n = 1 solid
line in the case of the upward flow, but the two lines are further apart in the case of the downward
flow. For Re = 10 300 (plot not shown for brevity), a larger number of modes are required for the
reconstruction. Using 150 modes will now only reconstruct 40%–50% of Shturb. The observations
regarding the effect of Stokes number and gravity remain the same.

FIG. 18. Contribution to ShFIK,Ir of the dominant mode (n = 1) summed over all streamwise wave numbers
for (a) Re = 5300 and (b) Re = 10 300.
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FIG. 19. Cumulative plot of Shturb against kθ for different kz values at Re = 5300. The solid lines denote
n = 1, and the dashed lines n = 1–50, where panel (a) is for St+ = 0, 1/Frz = 0, panel (b) is for St+ = 1,
1/Frz = 0, panel (c) is for St+ = 1, Frz = 0.4, and panel (d) is for St+ = 1, Frz = −0.4.

V. CONCLUSIONS

We investigate the role of coherent structures on the transport and wall deposition of low-inertia
particles in a turbulent pipe flow at Re = 5300 and Re = 10 300 (based on bulk velocity). We
employ the equilibrium Eulerian approach to model particle velocity and concentration. The model
is valid only for particles with low Stokes number but captures important physical aspects, such as
inertial clustering and turbophoresis. This approach has allowed us to study particle transport and
deposition with the same techniques that are employed for passive scalar transport, namely, POD
and extended POD. To the best of our knowledge, this is the first time these two techniques are
applied to analyze particle transport.

We aim to analyze individual coherent structures and their contribution to the time-average rate
of particle deposition at the wall. Toward this end, we derive a new FIK identity that provides
explicit analytical expressions for the contributions of inertia terms to deposition. We then examine
the spectra of particle concentration fluctuations and compare them with the spectra of passive scalar
to reveal the roles of inertia and gravity.

The premultiplied spectra of the particle concentration field clearly demonstrate that smaller
wavelengths are amplified when the Stokes number is increased. The peak of the streamwise
spectra in the wall-normal direction shifts from λ+

z ≈ 1000 to ≈150 and from the buffer layer,
y+ ≈ 15 to the logarithmic layer y+ ≈ 50 of the pipe. The main effect of gravity seems to amplify
larger wavelengths further from the wall for a downward flow and reduce the same structures for
the upward flow. This can be observed for both Reynolds numbers but it is more pronounced for
Re = 5300.

The particle concentration modes were identified with POD, while the flow structures correlated
with the particle concentration structures were extracted using Extended POD. Both velocity
and normalized particle concentration fields were first Fourier transformed in the homogeneous
azimuthal and streamwise directions. Increasing Stokes number reduces the fraction of the variance
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contained in the first POD mode and increases the fraction of higher other modes. Visualization of
the modes allows us to gain insight into how inertia and gravity affect particle transport behavior.

Using the FIK identity, we evaluated the contribution of turbulent particle flux to the time-
average deposition rate or Sherwood number Sh. Approximately 70% of Sh is due to velocity and
concentration correlations; the exact value depends on the Reynolds, Stokes, and Froude numbers.
POD and EPOD modes were subsequently employed to decompose the correlations and analyze
the contribution of individual modes to Sh. In the Re = 5300 flow, mode kθ = 3 contributes the
most to the deposition, and in Re = 10 300 it is mode kθ = 4. About 70% of the deposition can
be reconstructed using 150 POD modes in the Re = 5300 flow and 40%–50% in the Re = 10 300,
depending on Stokes number and direction of gravity.

The methodology developed can be applied to higher Reynolds numbers to quantify the effect of
large- and very-large-scale flow structures on particle deposition to the wall. In this case, care should
be exercised to make sure that the range of validity of the Eulerian equilibrium model is satisfied. As
Re increases, the Kolmogorov timescale τk decreases, so only particles with correspondingly smaller
relaxation time τ can be considered. It is well known that large structures leave their footprint at the
wall but their contribution to deposition is not well understood. This knowledge can be exploited
for active or passive control of deposition, in the same way that the understanding of the effect of
different flow structures in the skin friction has recently led to the development of drag-reducing
actuation strategies that offer net power savings even for large Re numbers, see Ref. [65]. Finally,
the methodology can be also employed to provide insight into more complex flow settings that may
include two-way coupling, chemical reactions, and different geometries.
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APPENDIX: DERIVATION OF FIK IDENTITY FOR DEPOSITION
OF LOW-INERTIA PARTICLES

The particle velocity field is obtained from the Eulerian equilibrium model of Ferry et al. [21],
see equation (5), and can be written in dimensionless form in polar coordinates as

vr = ur − St

(
∂ur

∂t
+ 1

r

∂ru2
r

∂r
+ 1

r

∂uruθ

∂uθ

+ ∂uzur

∂z
− u2

θ

r

)
, (A1)

vz = uz + St

Frz
− St

(
∂uz

∂t
+ 1

r

∂ruruz

∂r
+ 1

r

∂uθuz

∂θ
+ ∂u2

z

∂z

)
. (A2)

The derivation of the FIK identity follows the process of Kasagi et al. [66] and Schlander et al. [38].
In the transport equation (6), distances are normalized with radius R, velocities with twice the bulk
velocity, 2UB and the particle concentration with the inlet concentration, cI . Reynolds averaging
(6), taking into account that ur = 0, and that the particulate flow is homogeneous in the azimuthal
direction, i.e., vθ = 0, ∂c/∂θ = 0, we get

∂u′
rc′

∂r
+ Iz,passive + St

∂Ir

∂r
+ StIz + St

Fr

∂c

∂z
= 1

ReSc

[
1

r

∂

∂r

(
r
∂c

∂r

)]
, (A3)
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where

Iz,passive = − 1

Re Sc

∂2c

∂z2
+ ∂uzc

∂z
+ ∂u′

zc
′

∂z
, (A4)

Ir = −
(

∂u′
ru′

r

∂r
c + u′2

r − u′2
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r
c + u′2

r c′ − u′2
θ c′

r
+ ∂u′

ru′
r

∂r
c′ + ∂u′

ru′
z

∂z
c′ + uz

∂u′
r

∂z
c′

)
, (A5)

Iz = − ∂

∂z

(
u′

ru′
zc + u′

ru′
zc

′ + uzu′
rc′

r
+ uz

∂u′
r

∂r
c′ + ∂u′

ru′
z
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c + ∂u′

ru′
z

∂r
c′ + 2uz

∂u′
z

∂z
c′ + ∂u′2

z

∂z
c′

)
.

(A6)

Iz,passive is the streamwise inhomogeneity term, Ir and Iz are new terms that arise because the particle
velocity is different from the fluid velocity.

The Sherwood number is defined as

Sh = 2kR

	C
= −2

dc

dr

∣∣∣∣
wall

1

cB − cW
, (A7)

where k = Jw/(cB − cW ) is the deposition rate coefficient, Jw = 	C∂c/∂r is the wall flux, and 	C

is the diffusivity.
Equation (A3) is integrated over the cross section of the pipe to give

0 =
∫ 1

0

1

r

∂

∂r
r

[
u′

rc′ + StIr − 1

Re Sc

∂c

∂r

]
rdr +

∫ 1

0

(
Iz,passive + StIz + St

Fr

∂c
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)
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⇒ 0 = − 1

ReSc

dc

dr

∣∣∣∣
wall

+
∫ 1

0

(
Iz,passive + StIz + St

Fr

∂c

∂z

)
rdr. (A8)

The above equation is now multiplied by two and subtracted from (A3):

0 = 1

r

∂

∂r
r

[
u′

rc′ + StIr − 1

Re Sc

∂c
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Fr

〈
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〉
+ 2

ReSc

dc

dr

∣∣∣∣
wall

, (A9)

where the angular brackets 〈.〉 define the operator 〈 f 〉 = f − 2
∫ 1

0 f rdr for the general variable f .
Integrating equation (A9) over a cross section of radius r we get
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(A10)

where the definition of Sherwood number, equation (A7), was used. Finally, (A10) is integrated
again over the cross section of the pipe,∫ 1

0

Sh(cB − cW )

ReSc

r2

2
rdr

=
∫ 1

0
r

[
u′

rc′ + StIr − 1

Re Sc

∂c

∂r

]
rdr +

∫ 1

0

[∫ r

0

(
〈Iz,passive〉 + St〈Iz〉 + St

Fr

〈
∂c

∂z

〉)
rdr

]
rdr,


⇒ Sh(cB − cW )

ReSc

1

8

024303-23



SCHLANDER, RIGOPOULOS, AND PAPADAKIS

=
∫ 1
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Using integration by parts, the final expression for Sh becomes,

Sh = − 8
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and
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(A14)
Form (A12) is used in the rest of the paper.
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