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Hamad El Kahza 1,* and Pejman Sanaei 2,†

1Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716, USA
2Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia 30302, USA

(Received 7 May 2023; accepted 12 January 2024; published 16 February 2024)

Erosion and deposition are represented as the evolution of solid bodies due to the forces
exerted by the fluid or air on the contact surfaces, which both often lead to reconfiguration
and change of the topology and structure of the porous media. These processes are notably
very complicated and challenging to study. In this work, we formulate simplified and
idealized mathematical models to examine the internal evolution of flow networks in the
setting of cylindrical channels, undergoing a unidirectional flow, by using asymptotic and
numerical techniques. Starting from the Stokes equations combined with the advection-
diffusion equation for solid transport, we propose a model to construct a complete analysis
of both the erosion and deposition. The considered approach is of the form of threshold
laws: the fluid-solid interface erosion and deposition occur when the total shear stress is,
respectively, greater or lower than some specified critical values, depending on the solid
material. As a consequence of the erosion and deposition, the radii of the channels in
the structure expand and shrink, respectively, due to several key parameters, which we find
and investigate in this paper. We also perform a parametric study to quantify the correlation
between these threshold values and the particle concentration in the flow. A comprehensive
parametric study of the constructed model reveals that the final configuration of the
structure can be predicted from the system parameters.

DOI: 10.1103/PhysRevFluids.9.024301

I. INTRODUCTION

Erosion and deposition of particles alter the solid interface and the internal morphology of
porous media, which as a consequence affect the flow property: notably the fluid velocity, the
exerted shear stress by the flow, and the particle concentration in the feed. These two processes are
ubiquitous in nature as well as industry; therefore investigating them is instrumental to address their
desirability within fluid flow systems. Specific easily observable examples from geomorphology
include soil erosion and land degradation (due to wind or floodwaters), erosion of riverbanks [1,2],
and formation of yardangs or pillar and toadstool-shaped rock formations known as hoodoos (due
to wind erosion) [3,4]. Less obvious examples found in biology include the formation of arterial
plaques, bacterial colonies known as biofilms, as well as the erosion and particle deposition in
porous media and membrane filters [5–9].

In the environmental context, erosion represents the destruction of mass as a result of forces
exerted on the contact interface between a solid and fluid phase over a long period. For instance,
tunnel erosion is one type of erosion caused by water penetrating through a hole in a subsurface;
parts of the soil are carried away with flow, which leaves behind a small tunnel underneath
the surface. The tunnel becomes larger due to water flow resulting in a substantial likelihood for the
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FIG. 1. Schematic showing a structure and channels with the channel radii A(X,Y, Z, T ) and particle
concentration C(X,Y, Z, T ).

soil to collapse. Generally speaking, in geological contexts, erosion of solid bodies and deposition
of debris on or into them are essential in carving and shaping various morphologies in nature and
the environment. The interactions of air and water with the earth’s surface have been modeled and
studied by many researchers (see, for example, [10–12] and references therein). Similarly, fluid
flow can erode the internal structure of a porous medium and/or deposit particles there. This leads
to an evolution in the morphology of the porous medium, which results in a change in the flow path
[13–18].

Depending on the flow and the porous medium structure, two scenarios are of interest to consider
in modeling of the erosion and deposition processes: (1) external and (2) internal flow within the
porous media. In the former case, it is assumed that the structure has a gradient in porosity and
consists of a collection of solid obstacles or fibers, which fluid flows around [19,20]. On the other
hand, for the internal flow, which is the focus of this paper, the structure is assumed to consist of
slender channels/pores that span the structure from upstream to downstream side, and the viscous
fluid flow moves inside the channels/pores [21,22], as shown in Fig. 1. One may consider internal
erosion in structures such as embankment dams [23] and porous media, which can be interpreted as
reverse deposition and filtration processes. There are, therefore, many mathematical similarities in
the modeling of erosion and deposition processes. The purpose of our modeling effort is to propose a
model tracing the erosion/deposition occurrence and their influences on a porous medium structure,
given specific identifiable parameters.

Numerous numerical schemes have been developed by researchers to model the erosion process
[24]. One of the approaches is the resolved computational fluid dynamics (CFD) method. Consider-
able effort has been devoted to analyze and conduct this direct method. The fluid flow and particle
interactions are investigated through basic empirical systems of formulas, where the governing
equations are being solved using finite element method (FEM); i.e., the Navier-Stokes equations are
simulated using a collocated mesh grid in which the channel geometry defines the structure [25,26].
Each step taken towards convergence is expensive, and adaptive remeshing is often used to account
for microstructure evolution. Therefore, many other authors considered a second approach using an
unresolved CFD approach consisting of a coupled hybrid model. Various works adopted this newly
emerged technique to investigate further the fluid path after a reconfiguration of the system structure
[27,28]. This technique is less expensive to implement and solves the considered equations on
fluid cells much larger than the channel-scale level. It does not require remeshing, and thus, the
microscopic description of the problem is comparatively inefficient.
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Another approach is the lattice Boltzmann method (LBM), which relies on discretizing the
particle-based model. In LBM, the flow is solved for on a channel-scale level, replacing the
Navier-Stokes equations by the discrete Boltzmann equation. The fluid/particle behavior is resolved
through interpolation and extrapolation schemes, modeling the Navier-Stokes equations beyond the
known points by drawing a likely approximate form through a fixed lattice [13,14,29]. Similar to
CFD, this technique simulate the fluid behavior by discretizing the flow velocity vectors relative
to the channel scale. Despite its ability to resolve a three-dimensional lattice, the LBM is an
expensive method to implement and requires high computation power. The fourth approach is
the pore network model (PNM), which consists of simplifying the system geometry into channel
spaces interconnected via their respective inlet structure. In this method the complexity of the flow
is reduced to the exchange laws between the adjacent edges. The formulation of the flow equation is
based on the assumption of a unique pressure at each computational node. This technique achieves
high-resolution accuracy with lower computing costs for small-scale domains, compared with other
simulation methods such as LBM [24,30].

In this paper, we take an integrated approach to formulate and study mathematical models of
erosion and deposition in reconfigurable flow networks, specifically in porous media, alongside
analytically exact validation from experimental data in the literature [16,17,31]. The experiments
will help calibrate and validate our mathematical models and of course are much cheaper than
gathering data from real-world examples. Modeling erosion and deposition are still computationally
complex, and the choice of the computational approach implicates limitations on uncovering
channel-scale behaviors. Numerical implementations are limited to a small-scale analysis of the
erosive behavior in the setting of a channel or other geometries undergoing the Stokes flow.
Implementing an erosion-deposition model still poses complex numerical challenges and therefore
has been confined to date to the LBM method. This uses parallel computing, which again poses
limitations on unveiling the coarse-grained description behind these phenomena. Our work aims to
cover this gap in the literature by capturing the different regimes in the fluid-structure interaction in
a channel subject to erosion and deposition. The derivation of analytical solutions allows classifying
behavior of expansion or clogging in porous media according to the dimensionless parameters in
the governing equations.

This paper is organized as follows: in Sec. II, we introduce the mathematical models for the flow
in a porous medium channel, as well as the governing equations for the particle concentration in
the feed. In Sec. III, we introduce appropriate scalings, for the flow and particle concentration, to
nondimensionalize the models from Sec. II. Then, in Sec. IV, we present the simulations of channel
evolution due to the erosion and deposition of particles. We also compare and validate our models
and results with the experimental literature. Finally, we summarize our modeling results in Sec. V
and provide some insight into real-world applications as well.

II. MODEL FORMULATION

We assume that the porous medium consists of an array of axisymmetric channels, with thickness
D. It lies in the (Y, Z ) plane in a flat way and the unidirectional viscous flow passes the structure in
the positive X direction as the basic setup is schematized in Fig. 1. The structure morphology and
flow does not necessarily need to be assumed homogeneous in the (Y, Z ) plane; therefore the solu-
tion for the flow within each channel of radius A(X,Y, Z, T ), enclosed in a box of 2W × 2W × D,
can be obtained in the cylindrical coordinates (R, θ, X ) in which properties vary only in the special
directions X , the radial direction R, and time T . While considering channels of different sizes and
shapes would offer a more comprehensive understanding of erosion and deposition processes, our
primary objective in this work is to analyze a single representative channel. Extending our model to
accommodate nonidentical channels would require a thorough analysis based on homogenization
theory [32–34], which is beyond the scope of this study. Therefore, without loss of generality,
one can consider only one channel or pore, drop Y and Z dependency and formulate the model,
and replicate the results in the (Y, Z ) plane for the rest of the channels. Therefore, for brevity, we
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consider the channel radius is A(X, T ) with small aspect ratio ε = W/D � 1, while for the internal
structure, it is assumed to be axisymmetric and identical [35–37]; however, it may change in the
X and R directions. Our model represents the average state across the (Y, Z ) cross section of the
structure, where spatial fluctuations in the plane of the structure are present. Needless to say, in
reality, the structure has a much more sophisticated topology, and most structures have a rather
complex morphology [20,38–41]. Note that we consider an incompressible Newtonian fluid and
the transport of eroded and dilute suspension of particles via advection and diffusion through the
structure, which evolves in the course of time.

A. Stokes equations

Note that stars on the dependent variables here indicate R dependence, while the unstarred
dependent variables are averaged over the channel/pore cross section. There are two timescales
introduced in our model: the first one comes from the flow velocity and the second one is originated
from the rate of change in the channel radius due to particle erosion/deposition. Since the timescale
associated with the evolution of the porous medium morphology due to particle erosion/deposition
is much longer compared to the one originated from the flow velocity, we employ a quasistatic
model, where we consider the domain of the flow as 0 � R � A and 0 � X � D. The channel
velocity vector U∗

p(R, X, T ) is defined as U∗
p = (V ∗

p , 0,U ∗
p ) and the pressure P∗(R, X, T ) satis-

fies the Stokes equations (the Reynolds number is small in many erosion/deposition scenarios
[13,16,18,31,42]). Therefore, we have

∇P∗ = μ∇2U∗
p, ∇ · U∗

p = 0, 0 � X � D, 0 � R � A, (1)

where μ is the fluid viscosity. The Stokes equation is subject to the continuity of the mass flux of
eroded and deposited material [43] and no-slip boundary conditions

Ṁ = ρ(Vn − U∗
p · n), U∗

p · t = 0 at R = A, (2)

where Ṁ is the total flux of eroded or deposited material per unit area, ρ is the total density of the
fluid and particles per unit area, Vn is the normal velocity of the channel wall, and n and t are the
unit normal and tangent vectors to the channel wall, respectively, where

n ‖ ∇(R − A). (3)

We consider a constant pressure-driven flow scenario here, therefore the boundary conditions for
the pressure P∗(X, T ) across the structure are

P∗|X=0 = Pin, P∗|X=D = 0. (4)

In addition, the total shear stress �(R, X, T ) at the channel walls, exerted by the flow [41,44], is
given by

� = μ
(∇U∗

p + ∇U∗
p
ᵀ)n · t|R=A, (5)

where the superscript ᵀ denotes the transpose of the matrix. The modeling challenge here is how
to link the fluid channel velocity U∗

p to measurable particle concentration characteristics in order to
obtain a predictive model of erosion deposition coincides with experiments and reality.

B. Advection-diffusion equation

The channel radius varies in the porous-medium depth, and the system dynamics are tracked
over time as the internal morphology of the porous medium changes due to the particle erosion
and deposition. This can be modeled by a particle concentration C∗ that varies with channel depth
X , radius R, and time T . In general, particles are advected and diffuse within the flow, and are
eroded from or adhered to the channel wall, at rates determined by a detailed and careful asymptotic
analysis of the governing advection-diffusion model. The channel radius A(X, T ) expands and
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shrinks in response to the erosion and deposition, respectively. While considering particles relative
inertia and particle-particle interactions would offer a more comprehensive understanding of erosion
and deposition processes, our primary objective in this work is to analyze particle erosion and
deposition, in the dilute suspension limit, through the porous medium. Extending our model to
accommodate particles’ relative inertia and particle-particle interactions would require a thorough
analysis based on the boundary integral method, which is beyond the scope of this study. The full
advection-diffusion equation for the particles with concentration C∗(R, X, T ) follows

∂C∗

∂T
+ ∇ · Q∗

c = 0, Q∗
c = −�∇C∗ + U∗

pC
∗, (6)

where Q∗
c (R, X, T ) is the flux of total particles, and � is the diffusion coefficient of particles, with

the boundary conditions [7,13,45]

C∗|X=0 = Cin,
∂C∗

∂X

∣∣∣∣
X=D

= 0, Q∗
c · n = �e

2
�H

∣∣∣∣
�−�e

− �d

2
C∗H

∣∣∣∣
�d −�

at R = A, (7)

where H is the Heaviside function defined as

H (�) =
{

0 if � < 0,

1 if � � 0.
(8)

Here �e and �d are the erosion and deposition shear stress thresholds depending on the eroded
material, Cin is the particle concentration at the channel inlet, and �e and �d are the erosion and the
stickiness coefficients, respectively. The second boundary condition in (7) enforces that the particle
concentration does not change at the channel outlet [45]. The last boundary condition is a general
particle erosion and deposition law at the channel wall, describing erosion and deposition, when
the total shear stress is, respectively, greater and lower than some specific threshold values. Since
the model is assumed to be quasistatic, we have the steady-state form of the advection-diffusion
equation as

�

[
1

R

∂

∂R

(
R

∂C∗

∂R

)
+ ∂2C∗

∂X 2

]
= V ∗

p

∂C∗

∂R
+ U ∗

p

∂C∗

∂X
. (9)

Note that to obtain (9) from (6), we use the continuity equation, ∇ · U∗
p = 0, given in (1). Moreover,

with the assumption that n‖∇(R − A(X )), the wall deposition boundary condition given in (7),
becomes

�
∂C∗

∂R
− �

∂C∗

∂X

∂A

∂X
= �e

2
�H

∣∣∣∣
�−�e

− �d

2
C∗H

∣∣∣∣
�d −�

, at R = A. (10)

To gain further insight into the dynamics of flow through the channel, we define the averaged version
of the channel velocity U p = (Vp, 0,Up), the pressure P, and the particle concentration C as

y = 1

πA2

∫ A

0

∫ 2π

0
y∗ R dθ dR, y ∈ {Vp,Up, P,C}. (11)

C. Erosion and deposition models

Erosion stems from the removal of solid particles by the fluid-mechanical shear stress, when it
is more than some specific threshold �e, whereas below a lower threshold �d the adhesive force
of the suspended particles is dominant and deposition occurs [11,13,16,18,31,42,44,46]. Note that
no erosion and deposition happen when the total shear stress exerted by the fluid flow lies between
these two thresholds, �e and �d . Therefore, the suggested model for erosion and deposition follows

Ṁ

ρs
= Be (� − �e) H |�−�e︸ ︷︷ ︸

erosion

− Bd C (�d − �)H |�d −�︸ ︷︷ ︸
deposition

, at R = A, (12)
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where ρs is the density of the solid wall. Be and Bd are the erosion and deposition coeffi-
cients, respectively, depending on the properties of the solid structure such as the cohesive forces
[11,13,16,18,31,42,44,46]. Note that Be and Bd depend on the erosion and the stickiness coefficients,
�e and �d , respectively. We consider Be = αe�e and Bd = αd�d , where αe = αd is related to the
particle size [22]. Note that the channel wall normal velocity is related to the channel radius by

Vn = ∂A

∂T

[
1 +

(
∂A

∂X

)2
]−1/2

, (13)

and the initial channel radius is prescribed

A|T =0 = Ain, (14)

where Ain(X ).

III. SCALING AND NONDIMENSIONALIZATION

In this section, we use the following scalings to nondimensionalize the presented models (1)–(14)
in order to reduce the number of independent parameters:

(U∗
p,Vn) = W 2Pin

μD
(u∗

p, vn), X = Dx, (A, R) = W (a, r), P∗ = Pin p∗, C∗ = Ctyp c∗,

(�,�d , �e) = W Pin

2D
(τ, τd , τe), T = μD

W Pin
t, H (�) = h(τ ), Ṁ = ρW 2Pin

μD
ṁ, (15)

where u∗
p(r, x, t ) defined as u∗

p = (εv∗
p, 0, u∗

p) is the dimensionless channel velocity and Ctyp is a
typical value for the particle concentration.

A. Stokes equations

With the scalings in (15), the Stokes equations (1) become

1

ε2

∂ p∗

∂r
= 1

r

∂

∂r

(
r
∂v∗

p

∂r

)
+ ε2

∂2v∗
p

∂x2
− v∗

p

r2
, (16)

∂ p∗

∂x
= 1

r

∂

∂r

(
r
∂u∗

p

∂r

)
+ ε2

∂2u∗
p

∂x2
, (17)

1

r

∂ (rv∗
p)

∂r
+ ∂u∗

p

∂x
= 0. (18)

The dimensional boundary condition (2) can be simplified as

ṁ = vn − ε

(
v∗

p − u∗
p

∂a

∂x

)
, u∗

p + ε2v∗
p

∂a

∂x
= 0, at r = a, (19)

since

n = 1√
1 + (

ε ∂a
∂x

)2

(
1, 0,−ε

∂a

∂x

)
, t = 1√

1 + (
ε ∂a

∂x

)2

(
ε
∂a

∂x
, 0, 1

)
, (20)

obtained from (3) and (15). The dimensionless pressure boundary conditions in (4), after scaling,
become

p∗|x=0 = 1, p∗|x=1 = 0. (21)
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We now introduce expansion of all dependent variables in powers of ε:

y(x, r, t ) = y0(x, r, t ) + εy1(x, r, t ) + ε2y2(x, r, t ) + · · · , y, yi ∈ {p, p∗, vp, v
∗
p, up, u∗

p, c, c∗, τ },
× i ∈ {0, 1, 2, . . . }. (22)

From (16) and (22), we obtain that the pressure p∗ is independent of the radial coordinate r at the
leading order, p∗

0(t ) = p∗
0(x, t ). Solving for the leading order channel velocity (17) and (18) along

with the boundary conditions (19) and (21) yields the leading orders channel velocity and pressure,
respectively,

u∗
p0

= 1

4

d p∗
0

dx
(r2 − a2), v∗

p0
= − 1

16

∂

∂x

(
d p∗

0

dx
(r3 − 2a2r)

)
, p∗

0 =
∫ 1

x
dx′

a4(x′,t )∫ 1
0

dx′
a4(x′,t )

. (23)

So far, we have solved the Stokes equations in a single porous medium channel. Using the same
velocity scalings for (11) as in (15), the dimensionless cross-sectionally averaged [see (11)] channel
fluid velocity up(x, t ), which is defined as up = (εvp, 0, up), and the pressure p(x, t ) become, to
leading order,

up0 = −1

8
a2 ∂ p0

∂x
, vp0 = 1

8a2

(
7

15

∂2 p0

∂x2
a5 + 4

3

∂ p0

∂x

∂a

∂x
a4

)
, p0 =

∫ 1
x

dx′
a4(x′,t )∫ 1

0
dx′

a4(x′,t )

. (24)

We now continue to find a simplified solution to the shear stress. Using (15), (20), and (22)
together in the total shear stress equation (5), after some manipulations, gives the dimensionless
shear stress at leading order τ0(x, t )

τ0 = 2
∂u∗

p0

∂r

∣∣∣∣
r=a

. (25)

We further simplify (25) by using the expressions for the axial channel velocity and pressure, u∗
p0

and p∗
0, respectively, given in (23) to obtain

τ0 = 1

a3(x, t )
∫ 1

0
dx

a4(x,t )

. (26)

B. Advection-diffusion equation

We can find a simplified solution to the advection-diffusion equation and nondimensionalize (7),
(9), and (10) using the scalings in (15), to arrive at

1

ε2Pe

[
1

r

∂

∂r

(
r
∂c∗

∂r

)
+ ε2 ∂2c∗

∂x2

]
= v∗

p

∂c∗

∂r
+ u∗

p

∂c∗

∂x
, Pe = W 2Pin

μ�
, (27)

with the dimensionless boundary conditions

c∗|x=0 = cin,
∂c∗

∂x

∣∣∣∣
x=1

= 0,
1

ε2Pe

∂c∗

∂r
− 1

Pe

∂c∗

∂x

∂a

∂x

∣∣∣∣
r=a

= λe

2
τh

∣∣∣∣
τ−τe

− λd

2
c∗h

∣∣∣∣
τd −τ

,

at r = a, λe = �eμD

2W 2Ctyp
, λd = �dμD2

W 3Pin
, (28)

where Pe is the particles Péclet number, describing the ratio of advective to diffusive transport rates
of particles. λe and λd are the dimensionless erosion and stickiness coefficients, respectively. By
using (22) and conducting asymptotic analysis for (27), we find that the particle concentration and
therefore their cross-sectionally averaged forms, at O(1) and O(ε) are independent of r, as a result,

c∗
0 = c0, c∗

1 = c1. (29)
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At O(1), (27) reduces to

1

Pe

[
1

r

∂

∂r

(
r
∂c∗

2

∂r

)
+ ∂2c∗

0

∂x2

]
= u∗

p0

∂c∗
0

∂x
. (30)

Applying the dimensionless version of the cross-sectionally averaged operator given in (11) on (30)
gives

−2

a

1

Pe

∂c∗
2

∂r

∣∣∣∣
r=a

= 1

Pe

∂2c0

∂x2
− up0

∂c0

∂x
. (31)

Note that the third boundary condition in (28) reduces to ∂c∗
0

∂r |r=a = 0 and ∂c∗
1

∂r |r=a = 0, respectively,
which are consistent with (29). In addition, the third boundary condition in (28) at O(1), along with
(29) and (31) yields

1

Pe

∂c∗
2

∂r
− 1

Pe

∂c0

∂x

∂a

∂x
= λe

2
τ0h

∣∣∣∣
τ0−τe

− λd

2
c0h

∣∣∣∣
τd −τ0

, at r = a. (32)

Combining (31) and (32), we obtain the full dimensionless advection-diffusion equation as

− 1

Pe

∂2c0

∂x2
+

(
up0 − 2

aPe

∂a

∂x

)
∂c0

∂x
− λe

a
τ0h

∣∣∣∣
τ0−τe

+ λd

a
c0h

∣∣∣∣
τd −τ0

= 0, (33)

where

λe = �eμD

2W 2Ctyp
, λd = �dμD2

W 3Pin
, h(τ ) =

{
0 if τ < 0,

1 if τ � 0,
(34)

subject to the boundary conditions

c0|x=0 = cin,
∂c0

∂x

∣∣∣∣
x=1

= 0, (35)

obtained from (28).

C. Erosion and deposition models

By using the scalings (15) in the dimensional erosion model (12) along with (13), (19), and (20)
at the leading order, we find the dimensionless erosion model as

∂a

∂t
= βe(τ0 − τe)h|τ0−τe︸ ︷︷ ︸

erosion

− βd c0(τd − τ0)h|τd −τ0︸ ︷︷ ︸
deposition

, βe = ρsBeμ

2ρW
, βd = ρsBdμCtyp

2ρW
, (36)

with the prescribed initial channel radius

a|t=0 = ain, (37)

which is obtained from (14). An interaction between the liquid phase and the channel solid wall
occurs due to the particle erosion and deposition. After dropping subscripts 0 from the leading-order
parameters up0 , τ0, c0, τe0 , and τd0 in (24), (26), (33), (35), and (36), we present the schematic
diagram in Fig. 2 describing the flow and channel interactions as below:

(1) For a given initial channel profile, the flow velocity and shear stress are calculated by (24)
and (26), respectively.

(2) With those, the particle transport equation [see (33)] gives the particle concentration along
the channel axis.

(3) The channel radius will be updated due to erosion and deposition according to (36) based on
the shear stress and the particle concentration calculated in steps 1 and 2.

(4) Return to step 1.
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FIG. 2. Erosion and deposition system diagram.

IV. RESULTS

In this section, we use several dimensionless key parameters summarized in Table II, which
are based on the dimensional parameters given in Table I. These parameters affect the occurrence
of erosion and deposition in the porous-medium channels. Our model is based on several key
dimensionless parameters for erosion and deposition as well as functional inputs. The Péclet number
Pe describes the ratio of advective to diffusive transport rates of particles. As the Péclet number
tends to infinity, the diffusive transport vanishes, resulting in an advection-only model. On the
other hand, the transport model becomes more diffusive as Péclet number approaches zero. The
erosion coefficient, λe, characterizes the erodibility of the solid interface and is a material-dependent
parameter. The stickiness coefficient, λd , is the attraction coefficient between particles and the
channel wall, characterizing the strength of particle deposition. The coefficients βe and βd determine
the rate of erosion and deposition, respectively. According to (36), particle erosion and deposition
also depend on the wall shear stress (WSS) τ , as well as the shear stress thresholds τe and τd , which
in turn depend on the solid material properties at the channel interface. Erosion and deposition
occur when WSS is larger and less than τe and τd , respectively. We calculate the range of these
dimensionless parameters based on the dimensional quantities of the system under investigation.

TABLE I. Dimensional parameters for simulations [13,17,47,48].

Description Symbol Value

Porous medium thickness D 300 µm
Channel width 2W 0.1 to 1 µm
Viscosity μ 10−3 kg m−1 s−1

Initial pressure Pin 600 to 1000 kg m−1 s−2

Total density of the fluid and particles ρ 1000 kg m−3

Diffusion coefficient � 10−12 to 10−7 m2 s−1

Typical particles concentration Ctyp 0–1 mol m−3

Particles concentration at the channel inlet Cin 0–1 mol m−3

Erosion coefficient �e 10−12 to 2 × 10−8 mol kg−1 m−1 s
Stickiness coefficient �d 10−12 to 2 × 10−8 m s−1

Erosion shear threshold �e 0–100 kg m−1 s−2

Deposition shear threshold �d 0–100 kg m−1 s−2

Erosion coefficient Be 10−8 to 6.25 × 10−5 kg−1 m2 s
Deposition coefficient Bd 10−8 to 6.25 × 10−5 mol−1 kg−1 m5 s
Solid wall density ρs 1600 kg m−3
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TABLE II. Dimensionless parameters for simulations [13,17,47].

Description Symbol/Formula Value

Péclet number Pe = W 2Pin
μ�

0–50 000
Erosion coefficient λe = �eμD

2W 2Ctyp
0–3

Stickiness coefficient λd = �d μD2

W 3Pin
0–3

Erosion shear threshold τe = 2D�e
W Pin

0–10

Deposition shear threshold τd = 2D�d
W Pin

0–10
Erosion coefficient βe = ρsBeμ

2ρW 0–1

Deposition coefficient βd = ρsBd μCtyp

2ρW 0–1

We choose dimensional parameters as reported by Bonelli et al. [17]. Other parameters in our model
are calculated based on quantities reported by other researchers [13,47,48].

Our numerical scheme is straightforward, based on second-order accurate finite-difference spatial
discretization of the governing equations with explicit time stepping of the channel evolution for
(33) and (36), respectively. We also use the trapezoidal quadrature to evaluate the integrals in (24)
and (26). We organize our investigation of erosion and deposition in a channel as follows: First,
the simulations are conducted under an erosion-only regime in Sec. IV A. We then analyze our
model for the deposition scenario in Sec. IV B. Finally, we simultaneously investigate erosion and
deposition in Sec. IV C. For the first two cases, we compare our results with experimental literature
[13,17] in Sec. IV A 1 and Sec. IV B 1.

A. Validation of erosion

In this section we first compare our erosion model with the results developed by Bonnelli et al.
[17] in Sec. IV A 1. Then we investigate the effects of the dimensionless erosion threshold τe and
the dimensionless erosion rate coefficient β on the channel evolution in Sec. IV A 2 and Sec. IV A 3,
respectively [17].

1. Channel evolution, comparison to experiments

Matching the erosion parameters when comparing our erosion model with the experimental
works is challenging. Many studies have taken a conventional approach to validate the constitutive
erosion model using the “hole erosion test” experiment. The experiment consists of flowing water
through a cylindrical pipe made of a specific material of which the physical properties are known.
Several parameters are extrapolated to study the pipe expansion during this test, undergoing a
constant pressure-drop-driven flow. Bonnelli et al. [17] developed an analytical law based on
the experiment to predict the expansion of a pipe given specific solid interface properties. They
discovered a closed-form formula for the evolution of the dimensional channel radius A(T ) in terms
of the pressure difference between the inlet and outlet of the channel Pin − Pout, the critical erosion
threshold �e, and the characteristic erosion time Ter:

A(T )

Ain
= 1 +

(
1 − 2D�e

Ain(Pin − Pout )

)[
exp

(
T

Ter

)
− 1

]
. (38)

Here D is the length of the channel, Ain is initial channel radius, and Ter is given by

Ter = 2Dρs

(Pin − Pout )κer
, (39)

where ρs and κer (m−1 s) are the solid wall density and the erosion coefficient, respectively.
The dimensional erosion coefficient Be, appearing in our model in (12), is related to the erosion
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FIG. 3. Channel erosion: comparison of the channel radius a(t ) vs time t , based on our model and the
dimensionless version of model proposed by Bonnelli et al. [17] given in (36) and (38), respectively, for three
dimensionless erosion coefficients κer . The following parameters are used: W = 0.5 µm, ρ = 1000 kg m−3,
ρs = 1600 kg m−3, �e = 0 kg m−1 s−2, �d = 0 kg m−1 s−2, Pin − Pout = 10 kg m−1 s−2, and Bd = 0 mol−1

kg−1 m5 s. For all simulations, the corresponding dimensionless parameters are τe = 0, τd = 0, βe = 1, 1.5, 2
[βe = κerμ/(2ρW )], βd = 0, and ain = 0.5.

coefficient κer by

Be = κer

ρs
; (40)

therefore we have βe = κerμ/(2ρW ) by using Table II. Here we set Be = 10−6 (kg−1 m2 s), which
is notably used for modeling purposes. The pipe erosion law given in (38) and derived by Bonnelli
et al. [17] shows good compliance with the “hole erosion” experiment and is analytically exact
for slow erosion. This closed-form formula has been widely used by researchers to validate their
analytical and numerical approaches; for instance, Jägger et al. [13], who used a LBM to model
erosion and deposition numerically. The parameters used to compare our model given in (36) with
(38) proposed by Bonnelli et al. [17] are the initial channel radius of Ain = 0.5 µm, the channel
length D = 300 µm, κer = 1–2 m−1s, ρs = 1600 kg m−3, and a pressure difference of Pin − Pout =
10 kg m−1 s−2. In order to allow maximum erosion, we set the erosion threshold �e = 0 in both our
model in (12) [i.e., the Heaviside function in (36) is continuously equal to one] and the exponential
law in (38). We use the same parameters to evaluate and compare our model with the experiment.
In Fig. 3 we compare our model given in (36) with the exponential law expression given in (38) for
several values of the dimensional erosion coefficient κer. Our model shows good agreement with
the model given in (38) proposed by Bonnelli et al. [17]. We note the discrepancy observed in the
validation of our model with that of Bonnelli et al. [17], notably for the simulation with κer = 1 as
showcased in Fig. 3. We note that the black markers, corresponding to our simulation, are produced
by the forward Euler discretization of the temporal term in (36). Setting τe = 0, we obtain

an+1 − an

�t
= βean ⇒ an+1 = (1 + βe�t )an, (41)
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FIG. 4. Channel erosion: comparison of the channel radius a(t ) vs time t , based on our model and the
dimensionless version of model proposed by Bonnelli et al. [17] given in (36) and (38), respectively, for
two dimensionless erosion coefficients κer . The following parameters are used: W = 0.5 µm, ρ = 1000 kg
m−3, ρs = 1600 kg m−3, �e = 0 kg m−1 s−2, �d = 0 kg m−1 s−2, Pin − Pout = 10 kg m−1 s−2, and Bd = 0
mol−1 kg−1 m5 s. For all simulations, the corresponding dimensionless parameters are τe = 0, τd = 0, βe =
0.001, 0.01 [βe = κerμ/(2ρW )], βd = 0, and ain = 0.5.

where an = a(n�t ). Hence, it can easily be shown that the forward Euler approximation takes the
form of

an = (1 + βe�t )na0. (42)

Since the exact solution is given by the following, letting t n = n�t :

a(t n) = eβt n
a0 = en�tβa0 = (e�tβ )na0. (43)

Therefore, we see that the forward Euler scheme approximates the exponential term e�tβ ≈ 1 +
β�t , and the error is of O[(β�t )2], explaining the discrepancy in Fig. 3. Notably, the forward Euler
discretization with specific time steps introduces some error in approximating the exponential law
derived by Bonnelli et al. [17]. Of course, such a discrepancy could be overcome by using a finer
temporal mesh.

When setting the erosion coefficient to the reference values in Bonnelli’s work [31], i.e., 10−3–
10−2, the erosion process exhibits slow dynamics, particularly when coupled with a deposition term.
Therefore, the order of magnitude of our parameter selection is based on the work by Jägger et al.
[13], which is more pertinent to our study as it incorporates both erosion and deposition. In their
research, Jägger et al. [13] utilized the parameter κer within the range of 0.05 to 1. To underscore
that our choice of parameters is a deliberate modeling decision rather than a reflection of the model’s
validity, we run a simulation replicating the erosion validation plot using the parameters from
Bonelli’s work. In Fig. 4, we vary the parameter κer from 10−3 to 10−2. The observed trend reveals a
significantly prolonged time required for complete erosion compared to Fig. 3. This outcome aligns
with the findings presented in Sec. IV A 3, notably that the erosion coefficient is responsible for the
time at which the complete erosion of the channel occurs.

Next, we validate our model against the work proposed by Bonelli et al. [17] for the dimensional
erosion threshold, �e. It is noteworthy that �e is directly related to the dimensionless erosion
threshold, denoted as τe = 2D�e

W Pin
. While keeping the erosion coefficient κer fixed at 8, we conduct
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FIG. 5. Channel erosion: comparison of the channel radius a(t ) vs time t , based on our model and the
dimensionless version of model proposed by Bonnelli et al. [17] given in (36) and (38), respectively, for three
dimensionless erosion thresholds �e. The following parameters are used: W = 0.5 µm, ρ = 1000 kg m−3,
ρs = 1600 kg m−3, κer = 4 m−1s, �d = 0 kg m−1 s−2, Pin − Pout = 10 kg m−1 s−2, and Bd = 0 mol−1 kg−1

m5 s. For all simulations, the corresponding dimensionless parameters are τd = 0, τe = 0.0017, 0.1667, 0.5,
(βe = 8), βd = 0, and ain = 0.5.

simulations with varying parameters, specifically for �e = 0.1, 10, 30. The comparison between our
model and that of Bonelli et al. [17] is presented in Fig. 5, illustrating a good agreement between the
two approaches. We point to the linear and nonlinear growth of the channels as a function of time
and attempt to present an intuitive picture behind this phenomenon. Equation (36) suggests that the
radius profile under an erosion-only regime evolves as

∂a

∂t
= βe(τ − τe)h|τ0−τe

. (44)

Again, assuming a cylindrical channel which widens uniformly across time, the shear stress is equal
to the radius profile as τ (t ) = a(t ). Letting τe < τ , we obtain

∂a

∂t
= βe(a − τe), (45)

which admits an analytical solution after integrating both sides:

a = (a0 − τe)eβt + τe. (46)

The expression, although written differently, agrees with the model presented by Bonelli et al. [17],
i.e., (38). Moreover, Taylor expansion of the exponential term in the expression above about t = 0,
yields

a = (a0 − τe)
[
1 + βet + (βet )2 + O

(
β3

e t3
)] + τe ⇒ a = a0 + βe(a0 − τe)t + (a0 − τe)β2

e t2.

(47)

Several insights can be derived from the form above:
(1) If a0 = τe, then the channel does not erode, a scenario illustrated in Fig. 5, where the erosion

threshold τe is set to 0.5, corresponding to the initial radius of the channel.
(2) At the beginning of the simulation, that is for t ≈ 0, the growth is linear, as can be seen by

the validation figures, i.e., Figs. 3–5.
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FIG. 6. Channel radius evolution a(x, t ) [black curves in (a)–(c)] and the particle concentration profile
c(x, t ) [red curves in (d)–(f)], at several different times, for three different erosion shear stress thresholds τe

with their corresponding erosion coefficients λe: τe = 0.8 and λe = 0.6; τe = 0.4 and λe = 0.3; and τe = 0.1
and λe = 0.075. For all simulations, the following parameters are used: Pe = 2, αe = 0.75, αd = 0.75 λd = 0,
τd = 0, βe = 1, βd = 0, cin = 0, and ain = 0.65

0.55 ( 6.5+cos(20πx)
10 )e−x .

(3) When βe � 1, then the growth is linear. That is the second-order temporal term in the
expression above [see (47)] vanishes, yielding a linear growth: a = a0 + βe(a0 − τe)t . Of course,
the erosion would be much slower, since the only terms contributing to erosion are linear in time.

2. Effects of erosion shear threshold τe

In this section, we present a parametric study of the effect of the shear stress threshold τe on the
channel evolution and particle concentration within the channel. We set the deposition shear stress
threshold τd = 0, the stickiness coefficient λd = 0, and the inlet particle concentration cin = 0 in
order to have an erosion-only model. We fix the erosion coefficient βe=1 and consider the initial
channel profile as a cosine function to be able to capture the effects of shear stress on the channel
erosion. The initial channel profile is given in the caption of Fig. 6. Figures 6(a)–6(c) show the
pore evolution a(x, t ) vs x and Figs. 6(d)–6(f) represent the corresponding particle concentration
evolution c(x, t ) for several values of τe equal to 0.8, 0.4, and 0.1, respectively, at various times
throughout the erosion process. Here the final time t f = 1, which is the time that we stop the
simulation or it might be the time that the channel radius at any cross section becomes 1, or
equivalently the channel expands up to the lattice border. The variation of the shear threshold τe,
clearly affects the shape of the final radius profile of the channel and the maximum erosion depth.
For a low shear threshold τe = 0.1, the entire surface along the channel length erodes. We notice that
the significant enlargement of the channel occurs first towards the channel outlet. Since the initial
channel radius decreases with the channel depth, WWS has a larger magnitude towards the channel
outlet, leading to higher downstream erosion. For higher values of τe, as shown in Figs. 6(a) and
6(b), erosion is less pronounced [compared to Fig. 6(c), where τe has a lower value] and occurs only
at the downstream side of the channel, preventing the channel from attaining a uniform final shape.
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FIG. 7. Channel radius evolution a(x, t ) vs x, for several different erosion coefficients βe. For all simu-
lations, the following parameters are considered: Pe = 2, αe = αd = 0.75, λe = 0.0375, λd = 0, τe = 0.05,
τd = 0, βd = 0, cin = 0, and ain = 0.65

0.55 ( 6.5+cos(20πx)
10 )e−x .

Mathematically, this is due to the presence of the Heaviside function in (36), leading to erosion
occurring at the locations with higher shear stress τ than the erosion threshold τe.

As mentioned earlier, Figs. 6(d)–6(f) show the particle concentration evolution vs x for several
values of τe at various times. Particles are eroded at the wall of the channel and transported by the
flow; therefore, the particle concentration increases along the channel depth. This process is depicted
in Figs. 6(d)–6(f), where there is a higher concentration of particles, compared to the inlet region, at
the channel downstream. Our results show that the particle concentration in the channel is higher for
lower shear stress threshold τe. Since less erosion occurs when τe = 0.8, we observe fewer particles
are accumulated at the channel outlet as shown in Fig. 6(d). Conversely, the particle concentration
profile increases throughout the channel for smaller values of τe because more particles get torn
from the channel wall and are carried away by the flow, resulting in a high concentration at the
channel downstream. Depending on the transport regime desired or depicted, the shear threshold
is related to the channel wall properties, and the initial channel geometry is a metric to control the
erodibility and, thus, the final configuration of the channel.

3. Effects of erosion coefficient βe

Figures 7(a)–7(f) illustrate the channel radius a(x, t ) vs x, for several values of the erosion
coefficient βe. As shown in these figures, the variation of βe affects the final time t f , which is
here representing the time that the channel radius at any cross section becomes 1, or equivalently the
channel expands up to the lattice border. The final channel configuration is similar in all simulations;
however, the only difference is the final time to reach such configurations. For a relatively small
erosion coefficient βe = 0.1, it takes a dimensionless time of t f = 6.7 for the channel to be
completely eroded. Alternatively, increasing the erosion coefficient to βe = 0.55 shows that it takes
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a dimensionless time of t f = 1.23 to reach a similar final configuration. The variation of the erosion
coefficient βe attests to the fact that, for the same threshold shear stress threshold τe = 0.05 (used in
this simulation), the final time to reach the stabilized state is not practically equal. Incrementing βe in
Figs. 6(a)–6(f) results in shorter times to attain a complete erosion; therefore, the erosion coefficient
governs the rate at which erosion occurs. As noted in Sec. IV A 2, the final erosion configuration
depends on the shear stress threshold τe, and according to Figs. 7(a)–7(f) the rate at which such
configurations are attained is specified by the erosion coefficient βe.

B. Validation of depositon

In this section we first compare our deposition model with the results developed by Jäger et al.
[13] in Sec. IV B 1. Then we investigate the effects of the dimensionless deposition threshold τd on
the channel evolution in Sec. IV B 2.

1. Channel evolution, comparison to experiments

As reported by Jäger et al. [13], the dimensional porous medium channel radius A(T ) evolves
with time T due to particle deposition and can be obtained by

A(T )

Ain
= 1 +

(
1 − 2D�d

Ain(Pin − Pout )

)[
exp

(
T

Tdep

)
− 1

]
, (48)

where Tdep = 2ρD/(CκdepPin ) is the characteristic deposition time scale, and C the concentration
of particles along the pore. Note that κdep = ρsBd , which is the dimensional deposition coefficient
used by Jäger et al. [13] and is related to the dimensional deposition coefficient Bd [see (12)]. To
validate our deposition model, we set the dimensionless deposition shear stress threshold τd , larger
than WWS τ , to allow complete deposition; i.e., the Heaviside function in (36) is continuously equal
to one. Since the deposition law (48) does not account for the concentration of particles variation
along the channel axis, we consider a constant dimensionless concentration of particles c = 1 in
(36); hence we neglect the changes of the particles concentration along the channel captured by
the effect of the advection-diffusion equation (33). Figure 8 shows a good agreement between
the dimensionless version of deposition law (48) and our dimensionless deposition model (36)
for different values of deposition coefficient βd = κdepμCtyp

2ρW (see also Table II), which confirms the
validity of our model. Next, we validate our model against the work proposed by Jäger et al. [13] for
the dimensional deposition threshold, �d . We recall that �d is directly related to the dimensionless
deposition threshold, denoted as τd = 2D�d

W Pin
. While keeping the deposition coefficient κdep fixed

at 10, we conduct simulations with varying parameters, specifically for �d = 10, 20, 40. The
comparison between our model and that of Jäger et al. is presented in Fig. 9, illustrating a good
agreement between the two approaches.

2. Variation of deposition shear threshold τd

To understand the effect of the deposition shear threshold τd , we consider a setup consisting of
fixed values of Péclet number Pe = 2; erosion coefficient βe = 0 and erosion threshold τe = 0; and
stickiness coefficient λd = 2. We simulate the channel radius evolution for three different deposition
thresholds: τd = 0.4, τd = 0.6, τd = 0.9, as shown in Figs. 10(a), 10(b), and 10(c), respectively. For
a relatively low deposition threshold in Fig. 10(a), we observe a slight deposition of particles at the
channel inlet. As τd increases in Figs. 10(b) and 10(c), we observe more deposition occurring along
the channel. These can also be confirmed in Figs. 10(d)–10(f) as the particle concentration at the
channel outlet is lower compared to the rest of the channel. In addition, the particle concentration
decreases as τd increases in Figs. 10(d)–10(f).
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FIG. 8. Channel deposition: comparison of the channel radius a(t ) vs time t , based on our model and the
dimensionless version of model proposed by Jäger et al. [13] given in (36) and (48), respectively, for three
dimensionless deposition coefficients κdep. The following parameters are used: W = 0.5 µm, ρ = 1000 kg
m−3, ρs = 1600 kg m−3, �e = 0 kg m−1 s−2, �d = 0.4 kg m−1 s−2, Pin − Pout = 10 kg m−1 s−2, and Be = 0
kg−1 m2 s. For all simulations, the corresponding dimensionless parameters are τe = 0, τd = 24, βe = 0, βd =
1, 1.5, 2 [βd = κdepμCtyp/(2ρW )], and ain = 0.5. The deposition coefficient in Jäger et al. [13], κdep, is related
to deposition coefficient in our model, Bd , via κdep = ρsBd .
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FIG. 9. Channel deposition: comparison of the channel radius a(t ) vs time t , based on our model and the
dimensionless version of model proposed by Jäger et al. [13] given in (36) and (48), respectively, for three
deposition threshold coefficients �d . The following parameters are used: W = 0.5 µm, ρ = 1000 kg m−3,
ρs = 1600 kg m−3, �e = 0 kg m−1 s−2, κdep = 10 m−1 s, Pin − Pout = 10 kg m−1 s−2, and Be = 0 kg−1 m2 s. For
all simulations, the corresponding dimensionless parameters are τe = 0, τd = 0.1667, 0.3333, 0.6667, βe = 0,
βd = 2, and ain = 0.5. The deposition coefficient in Jäger et al. [13], κdep, is related to deposition coefficient in
our model, Bd , via κdep = ρsBd .
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FIG. 10. Illustration of the pore radius evolution a(x, t ) (black curves) and its respective particles con-
centration profile c(x, t ) (red curves), at several different times, and for three different deposition shear stress
thresholds τd and their corresponding stickiness coefficients λd : (a) and (d) τd = 0.4 and λd = 0.4, (b) and (e)
τd = 0.6 and λd = 0.45, (c) and (f) τd = 0.9 and λd = 0.675. For all simulations, the following parameters and
initial channel profile are considered: τe = 2 (high enough to cancel erosion), Pe = 2, αe = 0.75, αd = 0.75,
λe = 1.5, βe = 0, βd = 0.5, cin = 0.5, ain = 0.65

0.55 ( 6.5+cos(20πx)
10 )e−x .

C. Channel with active erosion and deposition

In the previous sections, we simulated each erosion and deposition solely and investigated the
influence of the governing parameters, notably τe and βe for erosion and τd and βd for deposition.
We now simulate our model in a channel setting with both active erosion and deposition occurring
simultaneously. As before, our interpretation is based on the erosion law (36), which considers the
rate of erosion and deposition as a function of the shear stress exerted on the channel wall. Two
main components of erosion and deposition characterize this law, notably τe and τd . When the
shear stress exerted by the fluid flow at the channel wall is large or low enough to generate the
erosion or deposition processes, respectively, the channel cross section responds either by losing
or absorbing particles, which are then transported to the channel downstream or deposited on the
channel wall, respectively. The alternation of both processes within the scope of the threshold
law results in channel reconfiguration. In this section, our modeling efforts aim to characterize
the occurrence of erosion and deposition simultaneously and, therefore, classify them within their
respective parameters regimes.

1. Sensitivity to the erosion and deposition thresholds

For the following simulations, we impose a variation of the threshold coefficients τe and τd , which
affect the channel’s overall performance in response to the fluid flow forces. Here we consider the
change of the channel volume defined by �V = ∫ 1

0 [a2(x, t f ) − a2(x, 0)] dx, as a metric to classify
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FIG. 11. Illustration of the channel volume change, �V = ∫ 1
0 (a2(x, t f ) − a2(x, 0))dx, in terms of a para-

metric study of the shear stress thresholds τe and τd . The following parameters and initial channel profile are
considered: Pe = 2, αe = αd = 0.75, λe = 0.4, λd = 0.4, βe = 0.3, βd = 0.3, cin = 1, and ain = 0.3.

the flow and solid transport regime, which is simply the difference between the final and initial
channel volumes. Note that positive �V denotes the presence of erosion; hence the channel expands
over time. Alternatively, negative �V depicts the presence of particle deposition, where the channel
is subject to clogging eventually. Here we use a set of parameters τe and τd ranging from 0–0.5,
as well as an initial concentration of cin = 1. To examine the combined impact of the imposed
shear stress thresholds, we first consider a simple channel geometry, where a(x, 0) = ain = 0.3.
This initial geometry leads to an initial shear stress distribution of τ (x, 0) = 0.3, according to (26).
Theoretically, our shear stress law (36) describes three potential scenarios: (1) solely erosion regime,
if τ (x, 0) = 0.3 � τe > τd , (2) deposition-only scenario, if τe > τd � τ (x, 0) = 0.3, and (3) static
model in which no change occurs within the pore, if τe > τ (x, 0) = 0.3 > τd . To demonstrate these,
in Fig. 11, we plot the change in pore volume �V for τe and τd values ranging from 0 to 0.5. The
red region represents complete erosion and occurs when τ (x, 0) = 0.3 � τe > τd . The blue region,
representing negative �V , is observed for τe > τd � τ (x, 0) = 0.3. Finally, the yellow region shows
�V = 0, when τe > τ (x, 0) = 0.3 > τd .

As discussed earlier, it is important to study channels with more complex initial geometries
in real-world scenarios. Figure 12(a) represents a contour plot that depicts the change in channel
volume as a function of the erosion and deposition thresholds for a complex initial geometry ain =
0.65
0.55 ( 6.5+cos(20πx)

10 )e−x and an initial particle concentration of cin = 1. The initial shear stress profile
is not constant across the depth of the channel and varies with the depth x according to (26). As a
result, the shear stress is lower near the channel inlet, where the channel radius is relatively wider.
Conversely, the shear stress is higher near the channel outlet, where the channel radius is relatively
narrower. Despite this complex structure of the initial shear stress, the three different regions can
still be observed, as indicated by the colored regions red, blue, and yellow, similar to Fig. 11. As
previously noted, the red region denotes areas of high erosion, where channels characterized by
material properties of τe and τd undergo substantial erosion, resulting in a positive volume change,
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FIG. 12. (a): Illustration of the volume change, �V = ∫ 1
0 [a2(x, t f ) − a2(x, 0)]dx, of the channel in terms

of a parametric study of the shear threshold values τe and τd , with an initial concentration at the channel
inlet cin = 0.3. The channel pore radius evolution a(x, t ) [black curves in (b)–(d)] and its respective shear
stress profile evolution τ (x, t ) [red curves in (e)–(g)] are simulated for three pairs of shear threshold values: in
(b) and (e) τe = 0.27, τd = 0.11, in (c) and (f) τe = 0.59, τd = 0.21, in (d) and (g) τe = 1.23, τd = 0.84. For all
simulations, the following parameters are considered: Pe = 2, αe = αd = 0.75, λe = 0.4, λd = 0.4, βe = 0.3,
βd = 0.3, and ain = 0.65

0.55 ( 6.5+cos(20πx)
10 )e−x .

�V > 0. Conversely, channels falling within the yellow region, with τe and τd values, exhibit �V =
0, indicating that they are either resistant to shear stress forces and experience neither erosion nor
clogging or undergo both erosion and deposition equally. Finally, channels characterized by τd and
τe within the blue region experience significant deposition, resulting in a negative volume change
(�V < 0), ultimately leading to clogging.
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To further validate our understanding of the three distinct regions and to gain a deeper insight
into the processes occurring in each, we select three different pairs of threshold values τe and τd ,
and plot the evolution of the pore radius profile at various time instances, as shown in Figs. 12(b),
12(c), and 12(d). For the pair of values τe = 0.27 and τd = 0.11, which lies within the red region of
the contour plot, we observed significant erosion of particles, which leads to a substantial widening
of the pore. We should note that particle deposition also occurs at the start of the simulation, but its
effect is comparatively minimal; for a detailed analysis; see the discussion below. Conversely, the
channel is subject to complete deposition for the pair of values τe = 1.23 and τd = 0.84 in the blue
region. For the pair of values τe = 0.59 and τd = 0.21, within the yellow region of the contour plot,
we observe deposition at the inlet of the pore and erosion at the channel downstream. The amount
of material deposited near the channel inlet is nearly equal to the amount of material eroded near
the outlet, leading to an insignificant change in the pore volume.

Figures 12(e), 12(f), and 12(g), which are corresponding to Figs. 12(b), 12(c), and 12(d),
respectively, help to delve deeper into the impact of the initial channel profile and the corresponding
shear stress profile, as described by (26). Here the evolution of the pore radius and shear stress
profiles are analyzed at different time instances. According to Figs. 12(b) and 12(e), the shear stress
profile thresholds are shown by the blue and green lines, τe = 0.27 and τd = 0.11, and they are
chosen from the red region of Fig. 12(a). As a result, most parts of the channel undergo complete
erosion initially at t = 0. However, for the parts of the channel where the initial shear stress lies
between the blue and green threshold lines, no erosion and deposition are observed during the early
stages of the simulation. A slight deposition of particles can be seen near the inlet for the parts of the
channel where the initial shear stress is below the deposition threshold, given by the green line. As
the simulation progresses, the pore radius widens, and the corresponding shear stress profile evolves.
The shear stress profile smoothens over time, with peak values becoming smaller, especially near
the outlet region. On the other hand, near the inlet region, the shear stress increases monotonically
over time. Ultimately, the smoothed shear stress profile exceeds the erosion threshold, τe, resulting
in the complete erosion of the channel.

In Figs. 12(c) and 12(f), we used the threshold values selected from the yellow region of
Fig. 12(a). The initial shear stress profile lies within all three regions of the contour plot. From
the inlet to halfway through the channel, the shear stress is below the green threshold line, given by
a value of τd = 0.21, leading to the deposition of particles. In contrast, for a region approximately
between x = 0.5 and x = 0.75, the shear stress is lower than the erosion threshold and greater than
the deposition threshold (represented by the blue and green lines, respectively); hence no immediate
erosion or deposition is observed until later stages of the simulation with minimal effect. The shear
stress is higher than the erosion threshold at the channel outlet, resulting in considerable erosion.
Over time, the shear stress converges to a profile between the blue and green lines, indicating a
stable state where the pore does not undergo any further erosion or deposition.

In Figs. 12(d) and 12(g), we used the threshold values that are selected from the blue region of
Fig. 12(a). As shown, for most of the channel, the initial shear stress profile lies below the deposition
threshold τd , which leads to a complete deposition of the particles in the channel. However, near the
outlet region, the shear stress is partially above the erosion threshold τe, causing a slight erosion,
though so minimal that it is not visible in the plot. Additionally, there are regions near the outlet
where the shear stress is greater than τd and less than τe, leading to a lack of occurrence of
either deposition or erosion at the initial stage of the simulation, i.e., at t = 0 and t = 0.2t f . As
time evolves, the shear stress profile smoothes, leading to a profile that lies below the deposition
threshold, resulting in a sharp deposition and eventually clogging of the channel.

V. CONCLUSION

This paper aims to study and model the erosion and deposition processes within a parametric
framework using an asymptotically reduced one-dimensional model. We present a model combining
the Stokes equations for the flow and an advection-diffusion equation for the solid transport in an
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idealized porous medium consisting of an array of axisymmetric channels. We specifically focus on
a channel as the results can be replicated in the same manner for the rest of the channels. Due to the
erosion and deposition of particles, the channel interface evolves, which is captured by applying a
threshold law. We have shown that the flow regime within a given channel depends on the game of
parameters utilized in the simulation, which we obtain from the properties of the channel material as
well as suspended particles in the flow. After evaluating the assumptions for simplification purposes
and using asymptotic analysis, we note some parameters among which the flow regime responds by
erosion or deposition. These parameters affect the channel final shape and configuration; when the
pore bed cannot withstand the shear forces exerted by the flow, either erosion or deposition occurs at
the channel cross section. We confirm and validate that our model can capture the interface evolution
by comparing it with the scaling law extrapolated from the hole erosion test [31]. While we couldn’t
directly compare our erosion model with experiments due to the lack of available data, we did
compare it with the analytical expression developed by Bonnelli et al. [17], which has been proven
against experimental results. This limitation encourages us to collaborate with experimentalists in
the future to bridge the gap between theory and experimental validation.

A parametric simulation is presented to classify erosion and deposition according to the imposed
parameters. We investigated the effects of the shear stress thresholds, τe and τd , which affect the
depth and final configuration of the temporal and spatial evolution, which are crucial in our erosion
law. We also present the effects of the erosion coefficientβe, which affects the rate/speed at which
erosion occurs within the channel. Specifically, in Fig. 7, It is recorded that the final shape is visibly
similar for all simulations with different erosion coefficients; however, the necessary time to attain
such configuration varies. To understand the regime within the channel and its dependence on
the unique game of parameters utilized, we present that three main regimes can be noted when
evaluating the pore volume’s overall change, as shown in Fig. 12(a):

(1) Erosion: τe and βe affect the rate at which particles get torn away from the channel wall by
the flow. The overall change in the channel volume �V is positive because the final configuration
attains a wider shape within every cross section along the channel.

(2) Deposition: The deposition shear stress τd , highly affects the final configuration and rate at
which particles deposit on the channel wall. In this case, �V is negative.

(3) Alternation of both erosion and deposition: As shown in the contour plot in Fig. 12(a), when
the erosion and deposition parameters fall within the stagnation region (�V = 0), two subregimes
can occur:

(1) Erosion and deposition can happen simultaneously along the pore, compensating for the
change in the volume; hence, the amount of the eroded particles is close to that of deposited,
which results in a trivial change in the channel volume.

(2) The flow within the pore exerts shear stress less than the erosion and more than the
deposition shear stress thresholds τe and τd , respectively. Therefore the channel interface does
not undergo any reconfiguration and remains intact.
In developing our model, we made deliberate choices and simplifying assumptions to balance

practical applicability with computational efficiency. By assuming a fluid in a dilute limit, we aim
to develop a framework for practitioners and experimentalists. Although the inclusion of four-way
couplings could provide a more comprehensive depiction of the particle-particle collisions and
fluid-particle interactions, our focus on simplicity and accessibility allowed for a fast computa-
tional process. Notably, the model’s ability to yield rapid results, even under the assumption of
dilute suspensions, proved advantageous for obtaining analytical insights into pore behavior during
erosion and deposition studies. However, we devise that for more intricate analyses demanding
higher precision, the integration of four-way couplings, and advanced numerical schemes, although
with increased computational demands. We encourage users to carefully consider the scale and
requirements of their specific research when choosing an appropriate model. Overall, our approach
aims to strike a balance between practicality and precision, contributing to the accessibility of our
model for a wide range of applications in fluid dynamics.
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