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Deterministic lateral displacement (DLD) is a microfluidic method for accurately sep-
arating particles by size or deformability. Recent efforts to operate DLD devices in the
inertial, rather than in the Stokes flow regime, have been hindered by a loss of separation
efficiency and difficulty predicting the separation behavior. One factor contributing to
these problems is the onset of inertia-induced flow anisotropy where the average flow
direction does not align with the direction of the pressure gradient in the device. We use
the lattice-Boltzmann method to simulate two-dimensional flow through a rotated-square
DLD geometry with circular pillars at a Reynolds number up to 100 for different gap sizes
and rotation angles. We find that anisotropy in this geometry is a nonmonotonous function
of Reynolds number and can be positive or negative. This finding is in contradiction to
the naive expectation that inertia would always drive flow along the principal direction
of the pillar array. Anisotropy tends to increase in magnitude with gap size and rotation
angle. By analyzing the traction distribution along the pillar surface, we explain how the
change of the flow field upon increasing inertia leads to the observed trends of anisotropy.
Our work contributes to a better understanding of the inertial flow behavior in ordered
cylindrical porous media, and it might contribute to improved DLD designs for operation
in the inertial regime.
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I. INTRODUCTION

Particle separation based on physical properties is an essential process in medical diagnostics and
drug development. Microfluidic techniques, including deterministic lateral displacement (DLD),
have gained prominence due to their high size resolution and throughput compared to traditional
methods like filtration and centrifugation [1]. DLD was originally proposed by Huang et al. [2], and
it has been successfully applied to the separation of various biological particles by their mechanical
phenotype [3,4], with a size resolution down to 10 nm [2].

DLD operates by dividing a laminar fluid flow into flow lanes that are bounded by stagnation
streamlines, which originate and terminate at the surface of pillars arranged in a periodic array
of obstacles [5]; see Fig. 1. To leading order, particles follow streamlines and, therefore, remain
in the same flow lane, unless forced out by contact with an obstacle. If a particle is larger than
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FIG. 1. Illustration of the rotated-square array. The circular pillars of radius r lie on the nodes of a square
lattice with center-to-center distance λ. The gap size between pillars is G = λ − 2r. The array is rotated at an
angle α relative to the coordinate axes. By varying the direction of the body force density driving the flow,
which is denoted Fb, the average velocity of the fluid ū is imposed to be parallel to the basis vector x̂, which
indicates the axis of the DLD device. For the validation test presented in Sec. III A, α is set to zero and the body
force Fb is maintained at an angle β. Simulations are carried out over one unit cell of the array with periodic
boundary conditions, highlighted by the gray box.

a critical radius rc, determined by the width of the flow lane adjacent to a pillar, contact with a
pillar surface forces the hydrodynamic center of the particle into a neighboring flow lane. This
process occurs at each subsequent pillar, leading to lateral migration across streamlines. Particles
smaller than rc remain in their flow lane and travel in the same direction as the bulk fluid flow.
The different modes of transport through the DLD device have different angles of displace-
ment relative to the flow field, and different particles can be collected at separate downstream
outlets.

DLD has been shown to be highly effective in the Stokes regime, with separation efficiencies
approaching 100% in some cases [6,7]. The behavior of the devices in this regime has been well
characterized, with predictive empirical relations [8] and design heuristics [9] developed. However,
operating devices in the Stokes regime limits the sample throughput due to the necessarily low flow
rates.

Operating DLD devices with higher flow rates requires larger flow speed, which leads to the onset
of inertial effects. DLD devices operating in the inertial regime show a reduction of the critical size
[10–12], which is useful to prevent clogging. However, inertia also leads to additional effects, such
as a breakdown of the separation efficiency [13], loss of symmetry in the flow field [12,14], and
increased influence of the particle-fluid density difference [15].

In some examples of DLD operating at high flow rates, there is evidence that the average flow
direction tilts to align with the array inclination as the flow rate is increased [16,17]. A likely cause of
this problem is anisotropic fluid conduction in the array [16]. Anisotropy is the tendency of the fluid
flow to deviate from the direction of the applied pressure gradient. Anisotropy can cause changes to
the average flow direction, which changes the critical size in the array in complex ways and causes
a breakdown of separation performance [18,19]. DLD devices with circular pillars arranged in a
rotated-square layout (Fig. 1) have zero anisotropy in the Stokes regime [20], and they are therefore
recommended as best practice [21]. Under the influence of inertia, however, rotated-square layouts
have been shown to exhibit anisotropy [22]. The mechanisms leading to the increase in anisotropy
with fluid inertia in DLD geometries should be better understood to enable improved designs of
inertial DLD devices.
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Flows though DLD-like cylindrical pillar arrays have been historically investigated in the field
of ordered porous media studies [23,24], which have numerous industrial [25,26], biological [27],
and geological [28] applications. Most of these studies choose pillar array alignment of either 0◦ or
45◦ to the driving pressure gradient, ensuring flow symmetry in steady state, with a strong interest
in measuring the flow resistance (or permeability) of the arrays [29–34]. As far as we are aware,
only Koch and Ladd [22] have examined the effect of fluid inertia on flow permeability of inclined
cylindrical pillar arrays. Using two-dimensional lattice-Boltzmann simulations, Koch and Ladd
found that rotated-square arrays show anisotropic permeability due to fluid inertia. Remarkably,
they observed that the anisotropy can become negative for certain configurations, meaning that the
flow chooses to tilt against the inclination of the pillar array, due to fluid inertia. Koch and Ladd
[22] did not explain the physical reasons for this counterintuitive behavior.

In this work, we use a two-dimensional (2D) lattice-Boltzmann method to simulate inertial
flow in rotated-square DLD devices. We investigate the emergence of anisotropy as a function of
Reynolds number, gap size, and array inclination angle. Our results confirm that anisotropy is a
nonmonotonous function of Reynolds number and can be positive or negative. The magnitude of
anisotropy generally increases with gap size and array inclination. By analyzing the distribution of
the traction vector along the pillar surface, we explain the observed behavior of the anisotropy.

II. MODEL AND METHODS

A. Physical and mathematical model

We investigate the flow of a Newtonian, incompressible fluid through a rotated-square DLD
device in two dimensions (Fig. 1). We consider a portion of the device far from the walls that confine
the DLD device. Circular pillars of radius r are arranged in a periodically repeating square array with
center-to-center distance λ. The minimum gap size between pillar surfaces is G = λ − 2r. The array
is tilted at an angle α counterclockwise with respect to the device axis. The no-slip condition holds
at the surface of the pillars, and periodic boundary conditions are applied to the simulation domain.

We define the unit basis vectors x̂ and ŷ to point tangentially and orthogonally to the axis of the
DLD device. The average flow direction ū is aligned with the x-axis,

ū = ū · x̂, (1)

as would be expected in a real-world device. The flow is driven by a body force density (force per
unit area in two dimensions) Fb whose direction is set such that Eq. (1) holds [20]. We only consider
cases for which the flow field becomes steady after some time, which, for given values of G and α,
happens at sufficiently low Reynolds number.

B. Drag and lift forces and flow anisotropy

The fluid stress tensor σ, including inertial, pressure, and viscous contributions, can be expressed
using index notation as

σi j = −ρuiu j − pδi j + ρν(∂iu j + ∂ jui ), (2)

where ρ is the density, ν is the kinematic viscosity, ui is the i-component of the fluid velocity, p
is the pressure, and δi j is the Kronecker symbol. On the pillar surface S, the inertial contribution,
ρuiu j , vanishes due to the no-slip condition:

σi j |S = −pδi j + ρν(∂iu j + ∂ jui ). (3)

The traction vector t at any point on S can be calculated by projecting the stress tensor onto the
surface normal vector n̂ which, by definition, points into the fluid:

t = σ|S · n̂. (4)

024203-3



CALUM MALLORIE et al.

Note that t is defined in such a way that the traction vector is the force exerted by the fluid on the
pillar surface, rather than the other way around.

At steady state, the momentum balance dictates that the integral of the traction vector over the
surface S of one pillar is equal to the integral of the body force driving the fluid flow over the area
A of one unit cell of the array:

F :=
∫

A
FbdA =

∮
S

t dS. (5)

The local drag and lift force densities acting on a pillar surface element dS are the components
of the traction vector pointing in the direction of, and orthogonally to, the average flow direction,
respectively:

fd = t · x̂, fl = t · ŷ. (6)

The total force acting on the pillar can be decomposed into net drag and lift forces, F = Fdx̂ + Flŷ,
where

Fd =
∮

S
fddS, Fl =

∮
S

fldS. (7)

Note that Fd is always positive, and Fl can be positive, negative, or zero.
A flow configuration for which Fl = 0 holds for any angle α is called isotropic: the average

flow ū and the total force vector Fb are always parallel, and no lateral flow deflection occurs.
The prime example for an isotropic flow is the Stokes flow (zero Reynolds number) over a square
array of circular obstacles [20]. Isotropy can be broken by choosing different pillar shapes, pillar
arrangements, or by having a finite Reynolds number [20,22,35]. We define flow anisotropy as the
dimensionless ratio of lift over drag:

A = − Fl

Fd
. (8)

The negative sign is to match the convention established in previous work [20]. Positive anisotropy,
A > 0, indicates that the flow would be deflected in a counterclockwise fashion (along the positive
y-axis). However, in a real device, fluid would not be able to accumulate at the side walls due
to incompressibility of the fluid, and instead a lateral pressure gradient would build up that
maintains the average flow along the x-axis. In our model, this pressure gradient is captured by
the y-component of the body force density Fb, which is obtained in such a way that Eq. (1) holds at
any time. The resulting force components Fd and Fl then determine A.

For further analysis, we also define the contributions to flow anisotropy coming from the normal
and shear components of the traction vector, respectively:

A = An + As, An = −F n
l

Fd
, As = −F s

l

Fd
, (9)

where

F n
l =

∮
S

tn · ŷ dS, F s
l =

∮
S

t s · ŷ dS, (10)

where

tn = (t · n̂)n̂, t s = t − tn (11)

are the normal and shear components of the traction vector. While As is determined by the viscous
shear stress at the pillar surface, An follows from the viscous normal stress and the pressure at the
pillar surface.
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C. Dimensionless numbers

Apart from the nondimensionalized gap size G
 = G/λ and the array tilt angle α, the problem is
fully characterized by the Reynolds number Re. We define Re by the average flow velocity ū in the
fluid domain excluding the pillars, the pillar diameter 2r, and the kinematic viscosity ν, similarly to
Koch and Ladd [22]:

Re = 2ūr

ν
. (12)

It is also useful to define the packing fraction of the pillars as φ = 1 − π r2

λ2 . On a macroscopic
level, the converged flow is fully described by the resulting anisotropy A (and its contributions An

and As).

D. Numerical model and simulation parameters

The 2D fluid flow is solved using the lattice-Boltzmann (LB) method on a D2Q9 lattice [36,37].
We use the BGK collision operator [38] and the Guo forcing scheme [39]. The simple bounce-back
method [40] recovers the no-slip boundary condition at the surface of the pillar; this leads to a
staircase approximation for all curved boundary surfaces. The kinematic viscosity is set by the
lattice-Boltzmann relaxation time, τ [36]:

ν = c2
s

(
τ − �t

2

)
, (13)

where cs = (1/
√

3)�x/�t is the speed of sound, �x is the lattice spacing, and �t is the time step.
To ensure that the assumption of flow incompressibility is met and that the incompressibility error
is small, the maximum velocity in our simulations is limited to 0.03�x/�t across all simulations
(umax/cs < 0.05) [36].

The simulation domain is one periodic unit cell of the DLD array, shown by the gray box in
Fig. 1. The simulation frame is converted to the physical frame by a clockwise rotation of α.

To impose the average direction of the velocity field ū = ūx̂ and its desired magnitude ū, the body
force density Fb is determined iteratively. Only steady cases are considered here, and simulations
are stopped when the flow has converged with a tolerance of 10−8 calculated from the L2 norm of
the difference of the flow fields at times t and t − 1000�t .

To ensure that the fluid flow and obstacle surface shape are approximated with sufficient
accuracy, we carried out convergence studies [Fig. 2(a)]. We found that a domain size of 200 × 200
grid points is sufficient. In the following, all reported results have been obtained on a lattice with
200 × 200 grid points, corresponding to λ = 200�x.

E. Obtaining the fluid stress on the pillar surface

Calculation of the traction vector acting on the pillar surface by Eq. (4) requires knowledge of
the fluid stress tensor on the surface. We use an interpolation-extrapolation scheme to obtain the
fluid stress tensor on the pillar surface.

We discretize the cylinder surface as a series of N evenly spaced points with separation ≈�x
such that 2πr ≈ N�x. For each of the N surface points, we define two points along the surface
normal vector at a distance of �r and 2�r, where we use �r = 2�x. Bilinear interpolation is used
to find the fluid stress tensor at these two points using the four fluid nodes delineating the fluid
voxel in which the interpolation point resides. Linear extrapolation from the two points is used to
determine the fluid stress tensor at each of the N surface points. Figure 10, in the Appendix,
illustrates this graphically. The fluid stress tensor is then smoothed by computing a five-point
moving average along the cylinder surface to reduce noise from the interpolation.
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(a) Convergence study (b) Numerical validation

FIG. 2. (a) Study of convergence tolerance and grid independence with G
 = 0.5, Re = 50. Doubling the
resolution to 400 × 400 grid points increases the anisotropy by 0.65% at a convergence tolerance of 10−8

between times t and t − 1000�t . (b) Average flow direction relative to the array orientation at G
 = 0.51
against Re, for simulations with the flow allowed to freely develop (body force at an angle β with respect to
x̂). In black are the simulation results obtained by Koch and Ladd [22].

III. RESULTS AND DISCUSSION

A. Validation: comparison with earlier work

To validate our simulations, we compare with the results obtained by Koch and Ladd [22], who
investigated the behavior of fluid flow over periodic square arrays of cylinders with G
 = 0.51, at
moderate inertia, using a similar numerical procedure to that presented in this work. Koch and Ladd
did not impose a specific flow direction (as we do in the present study), but rather imposed a body
force with fixed direction β on an unrotated lattice (α = 0) and then measured the resulting average
flow direction. Using the same setup, we obtain similar results, as shown in Fig. 2(b). Note that
for the forcing angle β = 38.7◦, Koch and Ladd found unsteady flows at Re > 50, which we also
confirm. However, we focus on steady flows in the remainder of the present study.

The parameters for all remaining simulations are summarized in Table I.

B. Flow field and velocity profiles

Figure 3 shows streamlines and velocity magnitudes for simulations with G
 = 0.2, 0.4, and 0.6,
α = 5◦, and Re = 0.1 and 100. While the flow field is point symmetric about the center of the pillar
for small Re, a recirculating wake is visible downstream from the pillar at higher Re, becoming
more pronounced with increasing G
. The fluid speed is much lower in the recirculation zones, with
the majority of fluid flow concentrated in the horizontal gap between pillars, and in a high velocity
stream flowing downwards (negative y-direction) between the recirculation zone and the adjacent
downstream pillar.

Figure 4 depicts the velocity profiles for α = 5◦ and different values of Re and G
 in the gap
between pillars as indicated by the red lines in Fig. 3. While the velocity profile is symmetric and

TABLE I. Simulation parameters and associated dimensionless numbers. All quantities are expressed in
simulation units (�x = 1 and �t = 1).

Re (−) G
 (−) α (deg) τ ν ū

[0.1, 100] 0.2, 0.4, 0.6 1, 3, 5 0.55 1/60 [10−5, 0.02]
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(a) G = 0.2, Re = 0.1 (b) G = 0.4, Re = 0.1 (c) G = 0.6, Re = 0.1

(d) G = 0.2, Re = 100 (e) G = 0.4, Re = 100 (f) G = 0.6, Re = 100

FIG. 3. Streamlines colored by the normalized velocity magnitude (see the right color bar) for different
G
 at α = 5◦. At low Re (a)–(c), the flow field is symmetrical and attached to pillar surfaces. At higher Re
(d)–(f), a recirculating wake is visible downstream from the pillar. The red line illustrates the path over which
the velocity profiles in Fig. 4 are sampled. Note that four periodic unit cells (and therefore four pillars) are
shown for visual clarity.

nearly parabolic for Re = 0.1 (near Stokes regime) for all studied values of G
, increasing Re leads
to the velocity profile being skewed and pushed against the bottom of the confining gap (in the
negative y-direction), thus the flow speed above the pillar is higher than below. This skewing effect
becomes stronger with increasing G
 and α (data for other angles not shown) and is caused by the
inertia of the fluid, which is forced to flow, on average, along the x-axis.

(a) G = 0.2 (b) G = 0.4 (c) G = 0.6

FIG. 4. Velocity profiles along the vertical center-to-center line (shown as a red line in Fig. 3) for α = 5◦

and different values of G
 and Re. The x-axis is normalized such that the top side of the pillar corresponds to
−1 and the bottom side of the neighboring pillar to +1. The y-axis is normalized by the value of the maximum
velocity magnitude.
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(a) α = 1◦ (b) α = 3◦ (c) α = 5◦

FIG. 5. Anisotropy A for different values of G
, α, and Re. Results are grouped by the value of α to
highlight the similarity of the results for different values of α. Note that the scale of the y-axis changes between
panels. Points for which the anisotropy is negative are marked with filled shapes.

C. Flow anisotropy

Figure 5 illustrates the anisotropy A as a function of Re for various values of reduced gap size
G
 and array inclination angle α. As expected, anisotropy tends towards zero for Re → 0 across
all configurations. For Re > 5, anisotropy becomes significant as inertial effects start to play an
important role.

The behavior of anisotropy also depends on gap size. For the largest gap size, G
 = 0.6,
anisotropy grows strongly with Re, indicating that the fluid prefers to flow along the principal axis of
the array. The magnitude of anisotropy also tends to grow with increasing gap size. This is consistent
with expectations, as the drag force at a given Reynolds number will be smaller for larger gaps. If
the lift were constant, the magnitude of the anisotropy would increase with decreasing gap size
according to Eq. (8).

For smaller gaps (G
 = 0.4 and 0.2), anisotropy exhibits complex behavior. As noted by Koch
and Ladd [22], anisotropy first becomes negative before increasing again at larger Re. Particularly
for the smallest gap size, G
 = 0.2, and the largest array inclination angle, α = 5◦, the anisotropy is
negative for all Reynolds numbers studied.

Our results further reveal that the reversal of the direction of the lift force at intermediate Re
occurs even at much smaller angles than those investigated by Koch and Ladd.

The contributions to the anisotropy from the normal and shear components of the traction
vector are shown in Figs. 6(a)–6(c) and 6(d)–6(f), respectively. It is evident from these data that
both contributions are of similar magnitude, hence neither can be neglected when analyzing the
mechanisms that lead to the overall behavior. The data further demonstrates that shear forces always
contribute positively to the total anisotropy and increase monotonically with gap size. Thus, as seen
in Figs. 6(a)–6(c), normal contributions are the sole source of the negative anisotropy observed
for smaller gap sizes. There appear to be at least two competing Re-dependent mechanisms that
determine the contribution of normal forces to the anisotropy, with the negative contributions
dominating at intermediate values of Re, thus leading to the minimum, and negative values, of
A. To understand these observations better, we need to look into the distribution of traction and lift
along the pillar surface.

D. Link between local lift profiles and anisotropy

To understand the mechanisms leading to the onset of anisotropy and its dependency on Re for a
given geometry (G
 and α), we investigate the local forces acting on the pillar surface. Apart from
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(a) α = 1◦ (b) α = 3◦ (c) α = 5◦

(d) α = 1◦ (e) α = 3◦ (f) α = 5◦

FIG. 6. (a)–(c) Normal and (d)–(f) shear contributions to anisotropy for the simulations shown in Fig. 5.
Points for which the anisotropy is below zero are marked with filled shapes.

the upstream (x < 0), downstream (x > 0), bottom (y < 0), and top (y > 0) sides of the pillar, we
define four quadrants for convenience [see the annotation of Fig. 7(a)]:

Bottom left (BL): x < 0, y < 0.
Top left (TL): x < 0, y > 0.
Top right (TR): x > 0, y > 0.
Bottom right (BR): x > 0, y < 0
Figures 7 and 8 show the normal and shear contributions, respectively, to the local traction and

lift force along the pillar surface for different values of G
 and Re at α = 5◦. Note that the normal
contribution to the local traction and lift is dominated by the pressure forces; the normal component
of the viscous stress is negligible (data not shown).

It can be seen from both figures that, at low Re, the traction and lift distributions are highly
symmetric, which signifies the flow reversibility in the Stokes limit. Due to this symmetry, the
surface integral over the lift distribution nearly vanishes and, thus, A ≈ 0. Upon an increase of Re,
the symmetry is broken in a nontrivial way, leading to a nonzero anisotropy. By definition, there
is no lift generated by normal forces (Fig. 7) at the upstream and downstream points of the pillar
where the surface normal is parallel to the flow direction (x-axis). Likewise, the lift generated by the
shear forces (Fig. 8) identically vanishes at the top and bottom points of the pillar where the surface
normal is parallel to the lift direction (y-axis).

Inspecting Fig. 7, we observe that, as Re increases, the normal component of the traction vector
on the upstream side of the pillar becomes skewed toward the top side (from the BL to the TL
quadrant). Two mechanisms contribute to this effect. First, as fluid decelerates significantly at the
upstream stagnation point, pressure increases, leading to an increased normal component of the
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(a) G = 0.2, Re = 0.1 (b) G = 0.2, Re = 20 (c) G = 0.2, Re = 100

(d) G = 0.4, Re = 0.1 (e) G = 0.4, Re = 20 (f) G = 0.4, Re = 100

(g) G = 0.6, Re = 0.1 (h) G = 0.6, Re = 20 (i) G = 0.6, Re = 100

FIG. 7. Polar representation of the normal contribution to the traction (black) and lift (blue) along the pillar
surface for (a)–(c) G
 = 0.2, (d)–(f) G
 = 0.4, and (g)–(i) G
 = 0.6 at α = 5◦ for different values of Re. The
average flow direction is along the x-axis. The traction and lift distributions are normalized by their maximum
values. Positive values are shown as a solid line, negative values as a dashed line. The value of the normal
contribution to the anisotropy is reported in each panel. Panel (a) also contains labels of the quadrants, and
the labels for mechanisms associated with each region of the lift distribution, as referred to in Sec. III D. The
normalized pressure field is shown as a color gradient.

traction vector on the pillar in the vicinity of the stagnation point (TL quadrant). Second, the pressure
in the fluid near the BL part of the pillar decreases relative to the pressure magnitude in the other
three quadrants. Thus, the normal component of the traction vector in the BL quadrant decreases.
Both mechanisms contribute negatively to lift, leading to an increase in anisotropy, according to
Eq. (8).

Further inspection of Fig. 7 reveals that, with increasing Re, the normal component of the traction
vector in the BR quadrant becomes less negative than in the TR quadrant. This change in traction
distribution is caused by the skewing of the velocity profile in the vertical gap (Fig. 4), which results
in a higher velocity (and therefore lower pressure) near the top side of the pillar than near the bottom
side. As a consequence, the net lift force increases, contributing to a decrease in anisotropy. The two
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(a) G = 0.2, Re = 0.1 (b) G = 0.2, Re = 20 (c) G = 0.2, Re = 100

(d) G = 0.4, Re = 0.1 (e) G = 0.4, Re = 20 (f) G = 0.4, Re = 100

(g) G = 0.6, Re = 0.1 (h) G = 0.6, Re = 20 (i) G = 0.6, Re = 100

FIG. 8. Polar representation of the shear contribution to the traction (black) and lift (blue) along the pillar
surface for (a)–(c) G
 = 0.2, (d)–(f) G
 = 0.4, and (g)–(i) G
 = 0.6 at α = 5◦ for different values of Re. The
average flow direction is along the x-axis. The traction and lift distributions are normalized by their maximum
values. Positive values are shown as a solid line, negative values as a dashed line. The value of the shear
contribution to the anisotropy is reported in each panel. The fluid flow is shown as streamlines using the same
coloring as in Fig. 3.

identified effects—the role of the TL stagnation point and the skewed velocity profile in the vertical
gap—oppose each other but do not cancel exactly. For Re > 5, outside the Stokes regime, there
is a net change in anisotropy that can be positive or negative, and is particularly significant for
larger G
.

The picture is different for the contribution of the shear component of the traction vector to the
lift (Fig. 8). For small Re, the shear component of the traction is largest around the top and bottom
sides of the pillar but negligible at the upstream and downstream sides of the pillar. This observation
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can be explained by the main flow through the vertical gap (in the positive x-direction) being fast
(therefore creating a higher shear stress at the top and bottom sides of the pillar), while the lateral
flow through the horizontal gap (in the negative y-direction) is relatively slow (therefore creating
little shear stress).

Upon increasing Re, the lift associated with the shear stress is primarily determined by the fluid
flowing around the pillar near the stagnation point in the TL quadrant, as can be seen clearly in the
right column of Fig. 8. It is helpful to consider two primary contributions to the lift in the vicinity
of the stagnation point: the shear stress caused by the clockwise flow along the top side of the pillar,
and the shear stress caused by the counterclockwise flow around the upstream side of the pillar. The
former tends to lift the pillar upward (contributing to negative anisotropy), while the latter tends to
push the pillar downward (negative lift, contributing to positive anisotropy). Importantly, the shear
stress of the clockwise flow is largest in a region where the tangential vector to the pillar surface
is nearly parallel to the main flow direction (x-axis), hence shear forces generate hardly any lift.
However, the shear stress of the counterclockwise flow is concentrated in a region where the surface
tangent vector is essentially parallel to the lateral direction (y-axis), hence shear forces in this region
contribute strongly to the lift.

For larger G
, we can see that the traction caused by counterclockwise flow increases since the
flow in this region is faster, and the high-speed flow region is pushed closer to the pillar surface than
for smaller G
 (Fig. 3). Finally, since the flow in the vortex at the downstream side of the pillar is
slow, there is hardly any lift generated by shear stresses in the vortex region.

In summary, we have identified several mechanisms that either increase or decrease lift and,
therefore, decrease or increase anisotropy, all as a function of Re and G
 (and to a lesser degree of
α):

(i) Normal component of traction vector due to upstream stagnation point (TL quadrant): F n
l ↓,

An ↑.
(ii) Normal component of traction vector due to low pressure magnitude (BL quadrant): F n

l ↓,
An ↑.

(iii) Normal component of traction vector due to tilted horizontal velocity profile (TR and BR
quadrants): F n

l ↑, An ↓.
(iv) Shear component of traction vector due to clockwise flow along top side: F s

l ↑, As ↓.
(v) Shear component of traction vector due to counterclockwise flow along upstream/bottom

sides: F s
l ↓, As ↑.

Only mechanisms (iii) and (iv) contribute to a decrease in anisotropy. However, mechanism (iv)
has been shown never to be stronger than mechanism (v), as the shear contribution to anisotropy is
always positive [Figs. 6(d)–6(f)]. Therefore, the net effect of mechanisms (iv) and (v) always leads
to an increase in anisotropy. Thus, we can conclude that the cause of the negative anisotropy for
intermediate Re is mechanism (iii), the positive lift due to pressure forces caused by the skewed
velocity profile.

To further quantify the influence of the tilted horizontal velocity profile [mechanism (iii)] on the
sign of the anisotropy, we split the contribution of the normal component of the traction vector to
the lift force distribution along the pillar into regions bounded by sign changes. From Fig. 7 we
see that there are generally four distinct regions: two with a negative contribution to the total lift,
primarily existing in the TL and BR quadrants, and two with a positive contribution in the TR and
BL quadrants. We assume that the region occupying the TL quadrant is associated with mechanism
(i), and that the region occupying the BL quadrant is associated with mechanism (ii). We further
assume that the regions occupying the TR and BR quadrants are associated with mechanism (iii).
Annotations of the regions of the lift distribution with the mechanism associated with them can be
seen in Fig. 7(a) for reference.

We integrate the lift distribution associated with mechanisms (i) and (ii) to estimate their
combined effect, and we do the same for the two regions associated with mechanism (iii). The
results, nondimensionalized by ρū2, are shown in Fig. 9. Values for Re = 100 are not shown for
G
 = 0.6, as the regions occupying the BL and BR quadrants merge together.
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(a) G = 0.2 (b) G = 0.4 (c) G = 0.6

FIG. 9. Magnitude of normal lift force associated with the different mechanisms identified in Sec. III D.
The sum of mechanisms (i) and (ii) (m1 and m2), associated with the upstream stagnation point and vertical
flow and contributing to positive anisotropy, is compared with mechanism (iii) (m3), associated with the skewed
horizontal velocity profile and contributing to negative anisotropy. When the solid line is above the broken line,
we expect to see an overall negative value of the normal anisotropy, An. For G
 = 0.6, values are only plotted
up to Re = 80, as the lift profile has only three zeros at Re = 100.

Figure 9 shows that, for G
 = 0.2, the mechanism associated with negative anisotropy dominates
over the entire range of Re while both curves are close to each other, thus leading to a small negative
anisotropy as found in Fig. 6(c). For G
 = 0.4, the mechanism associated with negative anisotropy
dominates at low Re but begins to level off as Re increases, whereas the mechanisms associated
with positive anisotropy increase more steadily, leading to the dominating mechanism swapping
around Re = 60, which leads to the contribution of normal traction to the anisotropy becoming
positive around Re = 60 as seen in Fig. 6(c). Finally, for G
 = 0.6, the mechanism associated with
positive anisotropy dominates for all values of Re and increases with Re, which can be seen as a
steep increase of the contribution of normal traction to the anisotropy in Fig. 6(c).

Although the precise mechanisms underlying the observed dependencies on Re and G
 are
currently unclear, it is evident that the relative effects of mechanisms (i)–(iii) differ based on these
parameters, resulting in the observed shifts in anisotropy under varying conditions.

E. Implication for real-world DLD devices

In an ideal DLD device with zero flow anisotropy, the background flow, on average, is exactly
aligned with the direction of the applied pressure gradient, usually the device axis. Particles below
the critical size follow the streamlines to leading order, resulting in zero lateral displacement along
the device. Particles above the critical size are displaced laterally across the streamlines and pass
through the device at a predictable angle relative to the flow. However, as has been shown previously
in the work by Vernekar et al. [20], if anisotropy in a DLD device is nonzero, the background
flow can become tilted relative to the applied pressure gradient. The effect of this tilting of the
background flow is twofold. First, small particles that follow the streamlines have a nonzero lateral
displacement relative to the applied pressure gradient. Second, the angle of displacement of larger
particles is different from that which was expected assuming idealized flow. These effects can lead
to the breakdown of the separation performance for a given device since particles may not end up
in their expected downstream locations.

Our results demonstrate that flow anisotropy can arise in rotated-square pillar arrangements
(which have previously been recommended due to their isotropic permeability in Stokes flow [20])
when fluid inertia is finite. Furthermore, we have shown that the degree of anisotropy is a nonlinear
function of Reynolds number. This effect can cause problems for any experimentalist who attempts
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to operate a rotated-square DLD device at throughputs high enough to trigger inertia-induced
anisotropy.

To solve the problem caused by inertia-induced anisotropy in DLD, either by changes to the
device design or by adapting the operating conditions, the mechanisms by which the anisotropy
arises must be well understood. Thus, our new understanding of the mechanisms leading to inertia-
induced anisotropy provides an essential step towards the goal of reliably running DLD devices at
high throughput.

IV. CONCLUSIONS

Deterministic lateral displacement (DLD) is a relatively recent method for microfluidic particle
separation. Although well understood in the Stokes regime, the performance of DLD devices oper-
ated with higher throughput, where inertia is not small, has not been sufficiently well characterized
and analyzed. Earlier work has shown that, under some conditions, the flow in DLD devices can
become anisotropic, i.e., the direction of flow can deviate from that of the applied driving force.
Anisotropic flow in DLD devices leads to less predictable particle behavior and, thus, problems
with particle separation.

We have investigated, via lattice-Boltzmann simulations, the onset and behavior of flow
anisotropy of two-dimensional rotated-square DLD arrays in the inertial regime. We show that this
geometry, which exhibits no anisotropy in the Stokes regime, can have either positive or negative
anisotropy, depending on the Reynolds number (Re), the reduced gap size (G
), and the array
inclination angle (α). We find that anisotropy becomes significant for Re > 5, where inertial effects
start to play an important role. The anisotropy increases strongly with Re for the largest gap size,
G
 = 0.6, indicating that the fluid prefers to flow along the principal axis of the array. For smaller
gaps, G
 = 0.4 and 0.2, anisotropy first becomes negative and only increases again at larger Re. We
find that increasing α increases the magnitude of the anisotropy, but does not significantly affect the
overall behavior.

By analyzing the contributions of the normal and shear components of the traction vector to
the local forces acting on the pillar surface, we identify several mechanisms that either increase or
decrease anisotropy, as a function of Re and G
. We show that the negative contributions to the
anisotropy can be attributed purely to traction forces normal to the pillar surface. We suggest that
this negative contribution to the anisotropy arises from an asymmetric tilting of the velocity profile
between the pillars, which leads to a pressure differential along the axis orthogonal to the flow axis.

Our findings provide valuable insights into the anisotropic behavior of fluid flow over periodic
square arrays of cylinders. Our work could be useful for the design of microfluidic devices and other
applications where the control of fluid flow over periodic arrays of obstacles is important.

Since real DLD devices are 3D, and are influenced by of the top and bottom walls as well as by
the interaction of suspended particles with the flow field, we propose that future work should focus
on 3D geometries including the effects of suspended particles via fluid-structure-interaction models,
and we propose investigating how anisotropy can be controlled with different post shapes at finite
inertia.

ACKNOWLEDGMENTS

This work was supported in part by the Carnegie Trust Vacation Scholarship scheme. T.K.
received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation program (No. 803553).

APPENDIX: INTERPOLATION-EXTRAPOLATION SCHEME

Figure 10 presents an illustration of the employed interpolation-extrapolation scheme.
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FIG. 10. Illustration of the employed interpolation-extrapolation scheme. Lattice points are shown in red
(solid nodes) and blue (fluid nodes). Flow information at points 1 and 2 is bilinearly interpolated from the four
nodes defining the surrounding voxels, respectively. The interpolated values are then linearly extrapolated to
point 0 on the cylinder surface.
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