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A liquid film coating a cylindrical substrate is unstable to interfacial disturbances gov-
erned by Rayleigh-plateau instability. These initial disturbances grow in time and, beyond
saturation, develop into a train of droplets of equal amplitude that move downstream at the
same velocity. The traveling wave profiles, formed by a thermoviscous fluid as it flows
down the exterior of a nonisothermal vertical cylinder, are computed as a function of
various parameters. Further, this study investigates the stability behavior of these traveling
waves. An unstable film leads to the formation of an axially asymmetric pattern. The
influence of the thermoviscous nature of the fluid, along with the Biot number, Marangoni
number, and Bond number, has been investigated. Linear stability analysis is performed
by perturbing the axisymmetric traveling wave solution in the azimuthal direction. It is
shown that while a gravity mode exists at small wave numbers, a thermocapillary mode
exists at large wave numbers. The streamline patterns are shown to be consistent with
the presence of the thermocapillary mode. The nonlinear analysis shows that the chosen
pattern of instability does not correspond to the largest growth rate but is governed by
the wavelength conforming to the periodic confinement in the azimuthal direction. An
interesting pattern evolves in the presence of more than one such conforming wavelength.

DOI: 10.1103/PhysRevFluids.9.024002

I. INTRODUCTION

A gravity driven viscous liquid film over a fiber or cylinder is unstable to infinitesimal interfacial
disturbances. The surface tension driven instability is the Rayleigh-Plateau instability (RPI) that
leads to the formation of liquid beads on the cylinder. The problems show rich nonlinear dynamics
and lead to interesting features such as traveling wave solutions [1,2], symmetric [3,4] and asym-
metric [5] bead formation, etc. Thin viscous films flowing outside of a cylinder are utilized in a
variety of applications, such as coating or patterning of a wire [6], cooling optical fibers [7], and as
a fluid layer present on the surface of heat transfer devices [8]. Thus the fluid pattern formed on the
surface of the substrate can have a considerable impact on its effectiveness, and hence it is desirable
to understand the stability behavior of the film and subsequent pattern evolution.

Flow of a noninertial thin film over a cylindrical substrate has been investigated recently by
several researchers [9–13]. Quéré [3] was the first to study and propose a saturation limit at which
the drop formation due to the Rayleigh-Plateau instability was suppressed for asymptotically thin
films. Subsequent studies have analyzed the stability of the film flow over a cylinder [1,4,11,12,14].
In the work of Kliakhandler et al. [4], a theoretical and experimental investigation was carried out.
The film was considered noninertial; however, the full curvature term was included in the normal
stress balance, which allowed them to compare the results for a thin film with those for a thick
film. Craster and Matar [1] obtained a similar evolution equation using an approximated curvature
similar to the formulation for viscous threads and jets. A traveling wave solution was found using an
eigenvalue problem for wave velocity. Using this approach, they were able to predict several solution
regimes for this problem. A spatiotemporal stability analysis for this system was first conducted by
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Duprat et al. [11]. They used the evolution equation for sufficiently thin films from the work of
Frenkel [14] to obtain a dispersion relation. Subsequently, they applied Briggs criteria and reported
the critical condition of the instability transition from absolute to convective instability. A similar
transition condition was found for a thick film using the approach of Kliakhandler et al. [4]. In their
study, regular wave train patterns were formed for the absolutely unstable system, while an irregular
wave train was observed for the convective instability.

Most of the applications mentioned above require nonisothermal conditions. The substrate is
usually at a higher or lower temperature than the film coating it. Any nonuniformity in the film
thickness along the substrate leads to nonuniformity in the temperature and thus to the generation
of thermocapillary stress at the liquid-gas interface [15,16]. Ding et al. [17] extended the thin film
model of Duprat et al. [11] and accounted for the effect of the thermocapillary stress on the spa-
tiotemporal stability. They modeled the nonlinear film dynamics and concluded the supportive role
of absolute instability in film rupture. For a thermoviscous liquid, there have been studies to account
for the effect of temperature on viscosity by assuming an exponential dependence of temperature on
the viscosity [18–20]. Khanum and Tiwari [21] implemented this temperature-dependent viscosity
in the thin-film model and demonstrated that the spatiotemporal stability of the film is strongly
influenced by the thermocapillary nature of the liquid. Kishal and Tiwari [22] followed the method
of Kliakhandler et al. [4] and accounted for full curvature in the normal stress balance and extended
the work of Khanum and Tiwari [21] for thicker films. They concluded that the instability evolves
into traveling waves beyond nonlinear saturation.

This work explores the traveling wave profiles over a vertical cylinder and their stability behav-
ior. The axisymmetric profiles are computed using a shooting method, and the effect of various
parameters is studied on the film profile and the wave speed. An unstable traveling wave leads to an
asymmetric pattern on the vertical cylinder. The stability is analyzed over a range of parameters, and
the nonlinear evolution of the pattern is investigated. The paper is organized as follows. Problem
formulation and the analytical model derived within the lubrication approximation are detailed in
Sec. II, followed by the steady-state solution of the evolution equation in Sec. III. Linear stability
analysis has been detailed in Sec. IV. Lastly, the nonlinear computations are illustrated in Sec. V,
followed by the discussion in Sec. VI and conclusions in Sec. VII.

II. PROBLEM FORMULATION

A thin film of thermoviscous fluid is considered flowing down the outside surface of a vertical
cylinder of radius R under the effect of gravity as shown in Fig. 1. The cylinder surface is at a tem-
perature T = Ts, and the ambient air temperature is T = T∞. The fluid is assumed incompressible
with density ρ, and the dynamic viscosity has been considered to be an exponential function of
temperature [19,23]:

μ = μ0 exp

[−λ(T − Ts)

μ0

]
. (1)

In this relation, μ0 is the viscosity of the fluid at the surface temperature (T = Ts) of the solid
cylinder, and λ is a positive constant that represents the change in dynamic viscosity with a change
in temperature, i.e., λ = −dμ/dT at T = Ts. The surface tension ϒ has been considered to be
linearly dependent on temperature,

ϒ (T ) = ϒ0 + ϒT (T − T∞), (2)

where ϒ0 is the surface tension at the ambient temperature T∞ and the constant
ϒT = dϒ/dT (< 0).

The bulk fluid flows axially downward along the z axis. The radial coordinate is given by r,
while θ represents the azimuthal direction. The thickness of the film, in general, varies with time
(t ), axial (z), and azimuthal (θ ) coordinates. The film thickness is assumed to be much smaller than
the cylinder radius.
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FIG. 1. Schematic of the flow geometry: (a) a series of traveling waves and (b) a qualitative pattern of one
traveling wave on the outside surface of a vertical solid cylinder.

The equations governing the flow are the continuity equation, Navier-Stokes equation, and energy
equation given in Eqs. (3), (4), and (5), respectively:

∇ · u = 0, (3)

ρ
∂u
∂t

+ ρu · ∇u = −∇p + ∇ · (μ∇u) + ρg, (4)

∂T

∂t
+ u · ∇T = (kth/ρCp)∇2T . (5)

In the equations above, u = (ur, uθ , uz ) is the velocity vector, where ur is the radial, uθ is the
azimuthal, and uz represents the axial components of the velocity vector, and p is the pressure.
The temperature across the film, T (r, θ, z, t ), has been assumed to vary with space and time. Cp and
kth in the energy equation are specific heat capacity and thermal conductivity of the fluid, which are
assumed to be constant.

The usual no-slip and no-penetration boundary conditions at the liquid-solid interface (r = R)
are used to solve for the velocity field,

u = 0, (6)

and the liquid-gas interface [r = R + h(θ, z, t )] is subjected to stress balance in the normal direction
and in two tangential directions as shown below in Eqs. (7), (8), and (9), respectively:

−p + n · τ · n = −ϒ∇s · n, (7)

tθ · τ · n = tθ · ∇sϒ, (8)

tz · τ · n = tz · ∇sϒ. (9)

Here, τ is the viscous stress tensor and can be defined as τ = μ(∇u + ∇uT ). n is the unit vector
normal to the liquid air interface, pointing in an outward direction at the free surface of the liquid.
tθ and tz are the tangential stress vectors in azimuthal and axial directions, respectively, at the free
surface. The surface gradient operator used in the stress balances can be defined as ∇s = (I − nn) ·
∇, where I is the identity matrix.
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The energy balance equation, Eq. (5), is associated with temperature conditions at the solid-liquid
interface and convective boundary conditions at the liquid-air interface:

(1) At the solid-liquid interface (r = R)

T = Ts, (10)

(2) At the liquid-air interface [r = R + h(θ, z, t )]

−kth∇T i · n = h f (T i − T∞), (11)

where h f represents the heat transfer coefficient at the liquid-gas interface and kth is the film’s
thermal conductivity. T i is the temperature at the liquid-air interface, i.e., T i = T (r = R + h).

The evolution equation for the free surface of the film can be obtained by making use of kinematic
boundary conditions at the liquid-air interface,

∂h

∂t
+ uθ

r

∂h

∂θ
+ uz

∂h

∂z
= ur . (12)

The average film thickness far from the capillary ridge is denoted by H0. A new dimensionless
radial coordinate, y = r − R (as shown in Fig. 1), is introduced such that y = 0 is at the outside
surface of the cylinder and y = h is the liquid-gas interface. The radius of the cylinder, R, is
considered as the characteristic length, and Uz = (ρgH2

0 /μ0) is taken as the velocity scale. Here
H0 is taken as the length scale along the y-direction. The nondimensional variables in this work are
as follows:

ŷ = (r̂ − 1)

ε
, r̂ = r

R
, ẑ = z

R
, ε = H0

R
, T̂ = (T − T∞)

(Ts − T∞)
, (13)

ĥ = h

H0
, ûz = uz

Uz
, ûθ = uθ

Uz
, ûr = ur

εUz
, (14)

where r̂ and ẑ are the dimensionless radial and axial coordinates. The pressure scale used here is
ρgR and the time scale is Rμ0/ρgH2

0 . Lubrication or thin-film approximation (ε � 1 and εRe � 1)
has been employed in order to simplify the equations. Here the Reynolds’ number Re = ρUzH0/μ0.
Within the lubrication assumption, the continuity equation reduces to Eq. (15) and the Navier-Stokes
equation reduces to Eqs. (16), (17), and (18):

∂ur

∂y
+ ∂uθ

∂θ
+ ∂uz

∂z
= 0, (15)

∂ p

∂y
= 0, (16)

∂ p

∂θ
= ∂ (μ∂uθ /∂y)

∂y
, (17)

∂ p

∂z
= 1 + ∂ (μ∂uz/∂y)

∂y
. (18)

The decoration sign ·̂ has been eliminated from the dimensionless variables for clarity. No-slip and
no-penetration boundary conditions are modified into their dimensionless form,

ur = 0, (19)

uθ = 0, (20)

uz = 0. (21)

Within the lubrication approximation, the normal stress balance given in Eq. (7) simplifies into
Eq. (22), and the two tangential stress balances will reduce into Eqs. (23) and (24). The kinematic
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boundary condition in its dimensionless form within the lubrication approximation is given in
Eq. (25):

p = −Bo−1

(
−ε−1 + h + ∂2h

∂θ2
+ ∂2h

∂z2

)
, (22)

μ
∂uθ

∂y
= −ε

	T ϒT

μ0Uz

∂Ti

∂θ
, (23)

μ
∂uz

∂y
= −ε

	T ϒT

μ0Uz

∂Ti

∂z
, (24)

ur = ∂h

∂t
+ uθ

∂h

∂θ
+ uz

∂h

∂z
. (25)

In the above equations, Bond number, Bo = ρgR2/(ϒ0ε), quantifies the relative strength of gravity
to surface tension. Within the assumption that εPe � 1, the energy equation is simplified to

∂2T

∂y2
= 0, (26)

where Pe = ρCpUzH0/kth is the Péclet number. The boundary conditions associated with the energy
equation are modified to their dimensionless forms, at the cylinder surface y = 0,

T = 1, (27)

and at the liquid-air interface y = h,

∂T

∂y
= −BiT, (28)

where Bi = h f H0/kth is the Biot number, which signifies the ratio of conductive resistance inside
the film to the convective resistance at the liquid-gas interface. Temperature distribution inside the
liquid film is obtained by integrating Eq. (26) with the boundary conditions given in Eq. (27) at
y = 0 and Eq. (28) at y = h:

T = 1 + Bi(h − y)

1 + Bih
. (29)

Thus the temperature varies linearly along y-direction inside the film. This temperature profile is
utilized to model the viscosity variation inside the film using Eq. (1) as

μ = exp[−V (T − 1)] = exp(ηy), (30)

where μ is dimensionless viscosity which is obtained by scaling the dynamic viscosity by μ0. The
thermoviscosity number is V = λ	T/μ0, quantifying viscosity’s dependence on temperature. It
must be noted that V < 0 for a cooled substrate, while V > 0 for a heated substrate. Thermoviscous
effects appear in the model through η where

η = V Bi

1 + Bih
. (31)

The temperature at the liquid-gas interface is obtained using Eq. (29), and substituting y = h,

T (y = h) = T i = 1

1 + Bih
. (32)
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Axial and azimuthal components of velocity have been obtained by integrating their respective
components of the Navier-Stokes equation, i.e., Eqs. (17) and (18), with the simplified stress balance
boundary conditions given in Eqs. (22)–(24):

uθ = −
(

Bo−1 ∂h

∂θ
+ Bo−1 ∂3h

∂θ∂z2
+ Bo−1 ∂3h

∂θ3

)[
(h − y) exp (−ηy)

η
− exp (−ηy)

η2
− h

η
+ 1

η2

]

+ Ma
∂T i

∂θ

(
exp (−ηy)

η
− 1

η

)
, (33)

uz = −
(

1 + Bo−1 ∂h

∂z
+ Bo−1 ∂3h

∂z∂θ2
+ Bo−1 ∂3h

∂z3

)[
(h − y) exp (−ηy)

η
− exp (−ηy)

η2
− h

η
+ 1

η2

]

+ Ma
∂T i

∂z

(
exp (−ηy)

η
− 1

η

)
, (34)

where Ma = −ε	T ϒT /(μ0Uz ) is the Marangoni number, which quantifies the contribution of the
thermocapillary effect. Now using the above velocity components, fluid flux can be calculated in
both directions. The azimuthal flux, Qθ (z, θ, t ) = ∫ h

0 uθdy, is

Qθ (z, θ, t ) = −
(

Bo−1 ∂h

∂θ
+ Bo−1 ∂3h

∂θ∂z2
+ Bo−1 ∂3h

∂θ3

)(
2h

η2
− h2

η
− 2

η3
+ 2

η3
exp(−ηh)

)

− Ma
∂T i

∂θ

(
h

η
− 1

η2
+ exp(−ηh)

η2

)
, (35)

and the axial flux, Qz(z, θ, t ) = ∫ h
0 uzdy, is

Qz(z, θ, t ) =−
(

1 + Bo−1 ∂h

∂z
+ Bo−1 ∂3h

∂z∂θ2
+ Bo−1 ∂3h

∂z3

)(
2h

η2
− h2

η
− 2

η3
+ 2

η3
exp(−ηh)

)

− Ma
∂T i

∂z

(
h

η
− 1

η2
+ exp(−ηh)

η2

)
. (36)

Using the continuity equation, Eq. (15), the kinematic boundary condition, Eq. (25), can be written
as a thin-film evolution equation as

∂h

∂t
+ ∂Qθ

∂θ
+ ∂Qz

∂z
= 0. (37)

III. STEADY-STATE SOLUTION

A. Film evolution equation

In order to find the two-dimensional solution, the film is assumed to be uniform in the azimuthal
direction, and the solution is obtained by substituting h(θ, z, t ) = h0(z, t ) in the evolution equa-
tion Eq. (37):

∂h

∂t
= − ∂

∂z

∫ h

0
uzdy = −∂Qz

∂z
. (38)

The traveling wave moves with a uniform velocity along the axial direction. The wave speed is
denoted by cw, and the steady-state solution is obtained in a copropagating traveling wave frame of
speed cw by introducing a new coordinate ξ = z − cwt . Integration of Eq. (38) in the copropagating
traveling wave frame with the condition that h → 1 far from the disturbance (ξ → ∞) results in

d3h0

dξ 3
= −

(
Bo + dh0

dξ

)
+ Bo(h0 − 1)cw

g(h0)
+ Bo f (η)

g(h0)
+ MaBiBo

(1 + Bih0)2

dh0

dξ

H (h0)

g(h0)
, (39)
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FIG. 2. Traveling wave profile obtained in the absence of thermoviscous effects for V = 0, Bi = 0.1, and
Bo = 2. The wave speeds are cw = 1.3 for Ma = 0 and cw = 1.67 for Ma = 2.

where f (η) = Qz(h = 1):

f (η) = −
[

2

η2
− 1

η
− 2

η3
+ 2

η3
exp(−η)

]
,

g(h0) = −
[

2h0

η2
− h2

0

η
− 2

η3
+ 2

η3
exp(−ηh0)

]
,

H (h0) = −
[

h0

η
− 1

η2
+ exp(−ηh0)

η2

]
.

For weak thermoviscous effects (V → 0), the above equation can be simplified to

d3h0

dξ 3
= −

(
Bo + dh0

dξ

)
+ 3Bo(h0 − 1)cw

h3
0

+ Bo

h3
0

− 3MaBiBo

2h0(1 + Bih0)2

dh0

dξ
. (40)

The third-order nonlinear evolution equation, Eq. (39) for V �= 0 and Eq. (40) for V = 0, is solved
in MATLAB R2022a with the shooting method and using the ode15s solver with the following initial
conditions at ξ → 0:

h0 → 1,
dh0

dξ
→ 0,

d2h0

dξ 2
→ 0. (41)

The dynamics of the thin film of a thermoviscous fluid is governed by convective heat transfer
(Bi), thermocapillary stresses (Ma), Bond number, and thermoviscous effects. Shown in Fig. 2 are
the traveling wave profiles obtained by solving Eq. (40) for different values of the Marangoni
numbers, and as expected, a larger value of Ma leads to a thicker capillary ridge. Plotted in
Fig. 3 is the variation in fluid viscosity radially across the film thickness. The dimensionless
viscosity at the surface of a solid cylinder is unity due to how it has been scaled. However, for
positive thermoviscosity numbers, the dimensionless viscosity increases and decreases for negative
thermoviscosity numbers as we move from the solid surface to the liquid-air interface. Notably, a
viscosity gradient exists across the film thickness for a nonzero value of V . The steepness of the
gradient is controlled by the Biot number, and it strongly affects the traveling wave profile.
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(a) (b)

FIG. 3. Variation in dimensionless viscosity (μ) with the radial direction (y). (a) For different film heights
and Biot numbers with V = −5 (cooler substrate), and (b) for different thermoviscosity numbers (V > 0) and
Biot numbers.

B. Thermal effects on the traveling wave solution

The effect of the Marangoni number on the maximum amplitude of the wave profile (hmax)
and the wave speed (cw) is shown in Fig. 4(a). The thermocapillary stress drives the fluid from
high-temperature areas to low-temperature areas. Therefore, increased thermocapillary stress due
to larger values of the Marangoni number leads to a thicker ridge. Increased wave amplitude
enhances the gravitational force acting on the ridge, thereby increasing wave speed monotonically
as a function of Ma. The effect of Bond number (Bo) is shown in Fig. 4(b). In the case of smaller
Bond numbers, the beads grow to a large size due to strong capillary pressure and travel faster down
the cylinder with a high velocity due to gravity. The figure shows that the steady-state solution does
not exist for Bo < 0.6, while for larger values, the wave speed decreases as the capillary pressure
decreases. This critical value of Bo is consistent with the earlier studies by Kalliadasis and Chang
[12] and Yu and Hinch [2] which suggested that a steady-state solution is not possible for Bond
number Bo < 0.59. In the work of Kalliadasis and Chang [12], a mathematical model based on
the lubrication approximation was developed, and it was observed that small disturbances became
very large size droplets within finite time for Bo < 0.59. On the other hand, for values of Bond

(a) (b)

FIG. 4. Traveling wave amplitude (hmax) and wave speed (cw), (a) vs Ma for Bi = 0.1 and Bo = 2, and
(b) vs Bo for Ma = 2 and Bi = 1.0.
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(a) (b)

FIG. 5. Effect of Biot number for V = −5 and V = 20 on (a) wave amplitude (hmax) and (b) speed (cw ).
Other parameters are Ma = 0 and Bo = 2.

number greater than this value, the initial disturbances transformed into solitary waves. The critical
value of Bo seems weakly dependent on the thermoviscous effect. For much larger values of Bo, the
amplitude and wave speed again start to increase due to an increase in the effect of gravity. While
the overall qualitative effects are similar, a quantitative variation is observed for different values of
the thermoviscous number.

Thermoviscous effects with a varying Biot number on the maximum film thickness (hmax) and
wave speed (cw ) are shown in Figs. 5(a) and 5(b). This dimensionless parameter plays a vital role in
governing the thermal behavior of the film by regulating the heat flux through the film. For Bi → 0,
convection heat flux from the film into the air becomes negligible, resulting in a uniform temperature
(equal to the solid surface temperature) throughout the fluid. In the absence of temperature gradients
across the thickness of the film, thermoviscous effects do not affect the dynamics. This situation
can be observed in Figs. 5(a) and 5(b) at zero Biot number, where all the lines corresponding to
different values of V coincide. Further, a nonzero value of the Biot number introduces temperature
gradients in the system. However, these temperature gradients will not affect the flow characteristics
for weakly thermoviscous fluid without Marangoni stresses. Hence, no variation is observed with the
value of Biot number for V = 0 in Figs. 5(a) and 5(b). It is observed that for V > 0 the ridge height
increases up to some value of the Biot number and then starts to decrease. This is due to an increased
viscosity gradient at the liquid-gas interface with increase in the Biot number (enhanced convective
cooling) up to a moderate value, leading to a larger capillary ridge. With a further increase in the Biot
number, the ridge height decreases due to an overall increase in the average viscosity across the film,
as can be seen in Fig. 3. This overall increase in the viscosity is the reason for a monotonic decrease
in the wave speed, as indicated in Fig. 5(b) for V > 0. The trend of maximum film thickness and
wave speed with increasing value of V is shown in Fig. 6. For a cooled cylinder with V � 0, the
liquid-air interface is at the ambient temperature T∞, causing a sharp decrease in viscosity near the
interface. As V becomes more negative, the height decreases while the wave speed increases. A
semilog graph is used in Fig. 6(b) because the variations in wave speed are very large for V < 0 and
small for V > 0.

IV. LINEAR STABILITY ANALYSIS

Linear stability analysis of the steady-state film profile h0(ξ ) is performed for a fast-moving
solitary drop by introducing a small perturbation in the film evolution equation and by putting
h(ξ, θ, t ) = h0(ξ ) + δh1(ξ, θ, t ), where h1(ξ, θ, t ) = ĥ1(ξ ) exp(βt + iqθ ). The viscosity and in-
terfacial temperature will also vary as the perturbation is introduced in the film thickness. In the
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(a) (b)

FIG. 6. Effect of thermoviscous parameter on (c) traveling wave amplitude and (d) wave speed for varying
Bi. Other parameters are Ma = 0 and Bo = 2.

disturbance term, q represents the azimuthal wave number and β is the growth rate of perturbation:

T i(ξ, θ, t ) = T i
0 (ξ ) + δT i

1 (ξ )h1(ξ, θ, t ),

η(ξ, θ, t ) = η0(ξ ) + δη1(ξ )h1(ξ, θ, t ),

where

T i
0 = 1

1 + Bih0
, T i

1 = − Bi

(1 + Bih0)2
,

η0 = V Bi

1 + Bih0
, η1 = − V Bi2

(1 + Bih0)2
.

(42)

The linear stability equation is obtained by collecting O(δ) terms after linearization of Eq. (37), and
the definition h1 is used to obtain

L0ĥ1 + L1ĥ1ξ + L2ĥ1ξξ + L3ĥ1ξξξ + L4ĥ1ξξξξ = βĥ1. (43)

Here, the subscript ξ denotes partial derivative with regard to ξ , and Li is a linear operator for the
ith-order derivative of ĥ1. The stability equation can be solved by using the boundary conditions
ĥ1ξ = 0 and ĥ1ξξξ = 0 at ξ = 0, and ξ = ∞ [21,24–26]:

L0 = −Dξ − Ma
[
BT i

0ξξ + AT i
1ξξ + Aξ T i

1ξ + T i
0ξ Bξ

] − Bo−1[D(h0ξξ + h0ξξξξ ) + Dξ (h0ξ + h0ξξξ )]

+q2

(
C

Bo
+ MaAT i

1 − q2C

Bo

)
,

L1 = cw − (
D + MaAξ T i

1 + MaT i
0ξ B

) − Bo−1[D(h0ξ + h0ξξξ ) + Cξ ] + q2Cξ

Bo
− 2AMaT i

1ξ ,

L2 = −MaAT i
1 − C

Bo
+ 2Cq2

Bo
,

L3 = −Cξ

Bo
, L4 = − C

Bo
,
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(a) (b)

FIG. 7. Leading growth rate βR is plotted vs wave number, q. (a) The parameter values [Ma,V, Bo] are I =
[2, 20, 2], II = [0, −5, 2], III = [0, 20, 2], and IV = [0, 20, 10], while Bi = 0.2; (b) the effect of Marangoni
number. The parameter values are Bo = 2, V = 20, Bi = 0.2.

where

A = −
[

h0

η0
− 1

η2
0

+ exp(−η0h0)

η2
0

]
,

B = −
[
−η1h0

η2
0

+ 1

η0
+ 2η1

η3
0

− exp(−η0h0)

(
1

η0
+ η1h0

η2
0

+ 2η1

η3
0

)]
,

C =
[

h2
0

η0
+ 2A

η0

]
,

D =
[
−h2

0η1

η2
0

+ 2h0

η0
+ 2B

η0
− 2Aη1

η2
0

]
.

For a system with weak thermoviscous effects (V → 0), coefficients used in Eq. (43) reduce to
much simpler forms as

A = −h2
0

2
, B = −h0,

C = h3
0

3
, D = h2

0.

The stability equation (43) for V = 0 is identical to the one obtained by Ding and Wong [15].
Discretization of Eq. (43) along with the boundary conditions using a fourth-order central difference
scheme results in an eigenvalue problem of the form Lĥ1 = βĥ1, which is solved numerically. Here
L represents an autonomous linear operator which depends on the base solution. Eigenvalues are
obtained for each wave number q in MATLAB R2022a using the eig function. The leading eigenvalue
of the linear operator β = βR + iβI is reported here as a function of the wave number q, where βR

is the real part and hence quantifies the growth rate of the disturbance and βI is the imaginary part.
The system is linearly unstable if βR > 0 for any wave number.

Dispersion curves are plotted in Fig. 7. The parameter values are chosen as Bo = 2, V = 20,
Bi = 0.2, and Ma = 0 and then varied individually, keeping other parameters fixed, to quantify the
effect of the varied parameter on the dispersion curves. As indicated in Fig. 7(a), increasing the value
of the Bond number to Bo = 10 decreases the growth rate of the disturbance, caused by a reduction
in the capillary pressure due to reduced surface tension compared to gravity. A cooled substrate
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(a) (b)

FIG. 8. (a) Dispersion curves corresponding to two leading modes in the absence (Ma = 0) and presence
(Ma = 2) of thermocapillary stress. Here the solid lines correspond to the first mode and the dashed lines
represent the second mode. (b) Cut-off wave number qcut as a function of Ma. The other parameter values are
fixed as Bo = 2, V = 20, Bi = 0.2 unless stated otherwise in the legends.

is shown to destabilize the film further, as quantified by changing the thermoviscous parameter to
V = −5. The thermocapillary effect with Ma = 2 leads to a significant increase in the growth-rate
values. For a nonzero Marangoni number, the thermocapillary stress acts on the perturbed surface,
inducing the fluid flow into the crests, leading to further perturbation growth. As a result, we observe
a monotonic increase in the maximum growth rate with increasing Marangoni number, as illustrated
in Fig. 7(b). These effects are qualitatively similar to those reported in Khanum and Tiwari [21] for
Rayleigh-plateau-type instability.

An interesting observation from Fig. 7 is that the wave number beyond which the film is unstable,
termed the cut-off wave number, remains about qcut � 1 when the thermocapillary effect is absent,
i.e., Ma = 0. With a nonzero value of Ma, the dispersion curve shows a sudden change in slope,
indicating a change in the instability mode, and qcut > 1 is obtained. Shown in Fig. 8(a) are the
growth rates of two leading modes (first two largest eigenvalues of the linear operator) as a function
of wave number q for Ma = 0 (no thermocapillary stress) and Ma = 2. Even in the absence of
the thermocapillary stress, both modes exist; however, the first mode always dominates the second
mode except for q � 1, where the second mode dominates but the growth rate has gone negative
for those wave numbers. On the other hand, for Ma = 2, the second mode starts dominating for
q � 1 and remains unstable, while the first mode becomes stable for these wave numbers. Shown
in Fig. 8(b) are the cut-off wave-number values as a function of Ma for various values of V and Bo
keeping Bi = 0.2 fixed. Clearly, qcut is a monotonically increasing function of Ma. Also, increasing
the values of V and Bo further enhances the cut-off wave number.

To understand these two modes appearing in the dispersion curves, the eigenvectors are plotted
in Fig. 9, corresponding to the leading eigenvalues at q = 0.65 and q = 1.1, shown in Fig. 7(a).
Shown in Fig. 9(a) are the eigenvectors for Ma = 0, while in Fig. 9(b), eigenvectors are shown for
Ma = 2. The corresponding base film-thickness profile is also superimposed. It is clear that for the
first mode, which is dominant at q = 0.65, the disturbance is located very close to the capillary
ridge, while it decays to zero far away from the ridge. This implies that once the disturbance creates
asymmetry in the azimuthal direction at the ridge, the thicker region will flow down due to gravity,
causing the growth of the instability. Thus this first mode will be termed as the gravity mode. For
the second mode, which is dominant for q > 1, while the disturbance is located at the ridge, it does
not decay downstream and attains a constant value. While this dominant second mode is stable for
Ma = 0, it is unstable for Ma = 2. This implies that such a disturbance present far away from the
ridge can grow only in the presence of the thermocapillary effect. This mode will be termed the
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(a) (b)

FIG. 9. Eigenvectors corresponding to the leading eigenvalues in Fig. 7(a) for q = 0.65 and q = 1.1 for
(a) Ma = 0 and (b) Ma = 2. The corresponding base film-thickness profile h0(ξ ) is superimposed as a dotted
curve and is plotted on the secondary y axis.

thermocapillary mode. Therefore, the cut-off wave numbers and the shape of the eigenvectors for
different modes will have important implications for the disturbance pattern that finally grows on
the film, as illustrated in the next section with the help of nonlinear computations.

V. NONLINEAR SIMULATIONS

This section presents results for the nonlinear numerical calculation performed by solving the
complete time-dependent evolution equation, Eq. (37). The finite element method–based software
COMSOL 6.0 is utilized to perform the computations. The computational domain in the azimuthal
direction extends from θ = 0 to θ = 2π and uses periodic boundary conditions at the two ends.
A two-dimensional computational domain of 60 units of axial length with about 104 mesh points
is utilized. The absolute tolerance of 10−9 is imposed during the time-dependent computations. A
sinusoidal perturbation with a small amplitude of 10−3 and a prescribed wave number is introduced
into the base state h0(ξ ) as the initial condition. In the upstream axial direction, a Dirichlet
boundary condition h(θ, ξ = 0, t ) = 1, hξ (θ, ξ = 0, t ) = 0 is imposed, while the soft condition
[21] hξ (θ, ξ → ∞, t ) = 0, hξξξ (θ, ξ → ∞, t ) = 0 is imposed at the downstream boundary. The
nonlinear growth of the perturbation is quantified by the amplification ratio ϕ, where

ϕ = ln

[ ‖h(θ, ξ , t ) − h0(ξ )‖
‖h(θ, ξ , t = 0) − h0(ξ )‖

]
, (44)

and ‖ · ‖ represents the L2 norm.
The disturbance growth obtained from the nonlinear model is plotted in Fig. 10 for Ma = 2,

Bi = 0.2, Bo = 2, and V = 20. The eigenvalue curve obtained from linear stability for this set
of parameter values is shown in Fig. 8(a). It was seen earlier that the maximum eigenvalue was
obtained at q = 0.65, and the gravity mode dominated at this wave number. The thermocapillary
mode became unstable for q � 1. The nonlinear growth curve for q = 0.65 shows that initially, the
disturbance grows with a slope decreasing with time; however, after a certain time, the growth rate,
given by βNL = dϕ/dt , increases and becomes constant. The constant value was surprisingly not
equal to the eigenvalue at q = 0.65 (the maximum eigenvalue of the dispersion curve) but to that
found at q = 1. The curve for q = 1 expectedly quickly attained the growth rate βNL = 0.06, equal
to the eigenvalue at q = 1. Similarly, the growth curve for q = 1.1 followed a similar trend and
attained the growth rate prescribed by the eigenvalue at q = 1. All three curves attained saturation
after the exponential growth phase of the disturbance; however, the saturation was attained later for
q = 0.65 as compared to the other two wave numbers shown in the plot.
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FIG. 10. Nonlinear growth of disturbance ϕ(t ) for q = 0.65, q = 1, and q = 1.1. The parameter values are
fixed as Ma = 2, Bi = 0.2, Bo = 2, and V = 20.

To understand the growth patterns of the disturbance on the substrate with time, the nonlinear
growth curves are shown in Fig. 11 along with the contours of film thickness h(ξ, θ, t ). In the
initial period there is no visible growth of the disturbance, and the film profile with a capillary
ridge and no azimuthal dependence is seen in the figure, although the amplification ratio starts to
increase, indicating the growth of disturbance from its initial value. For 250 � t � 320, where the
exponential growth rate (or linear growth rate in ϕ versus t plot) is observed, an asymmetric drop
starts to appear, which grows in time. Such a drop is shown at t = 300 in the plot. During this
exponential growth phase, the thermocapillary mode also comes into play, and rivulets also start to
appear below the drop. These rivulets extend far downstream of the substrate. As time progresses,
Marangoni stress pulls more fluid into the drop, making the drop and the rivulet thicker while the
trough becomes thinner, as indicated at t = 350 in the plot. At the nonlinear saturation, t = 400,
multiple drops appear while sliding down the substrate but remain confined to the rivulet. It is
interesting to note that the axially asymmetric pattern thus obtained has a periodicity equal to the
perimeter of the substrate. Thus, the growth rate in the exponential phase is equal to the eigenvalue
at q = 1. Further, the growth of the disturbance seems to have been assisted by the thermocapillary

FIG. 11. Nonlinear growth of disturbance, ϕ(t ), corresponding to the parameters in Fig. 10 and q = 0.65.
Also shown are the contours at t = 200, t = 250, t = 300, t = 350, and t = 400, illustrating the evolution of
the disturbance with time.
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FIG. 12. Traveling waves obtained by performing nonlinear simulations of the time-dependent evolution
equation following the methods of an earlier study [22]. The dimensionless parameters used for the study are
Bi = 0.1, Ma = 0, Bo = 2, and V = 20.

mode, which leads to the formation of an asymmetric rivulet. For Ma = 0, the eigenvalue at q = 1
is close to zero. Therefore no asymmetric disturbance was observed in the nonlinear computations
until t = 1000, although the dispersion curve predicts a maximum asymmetric disturbance growth
of 0.21 at q = 0.65.

VI. DISCUSSION

A. Traveling wave solution

In the work of Kishal and Tiwari [22], a spatiotemporal study was carried out for the flow over a
nonisothermal cylinder. It was shown that when a Gaussian disturbance is applied to a uniform film
over a cylinder in a nonlinear stability analysis, the disturbance is saturated into a traveling wave
after a sufficiently long time. In this section the traveling wave solution obtained using the shooting
method is compared with the saturated disturbance obtained by the method of Kishal and Tiwari
[22]. Using the same method outlined in their work, the wave obtained is shown in Fig. 12. Absolute
tolerance of 10−7 is used. It can be observed that while the spacing between the neighboring peaks
is not uniform, their structure is identical, as illustrated in regions a and b in the given figure.
The traveling wave obtained through nonlinear time-dependent simulations is compared with the
film profile obtained using the shooting method and is shown in Fig. 13. Notably, the film profiles
showed an excellent agreement. The multiple peaks profile was also used to study its linear stability
in the azimuthal direction. Although not shown here, the dispersion curves obtained for this profile
also matched those for the single-peak traveling wave solution.

B. Streamlines

Streamlines are demonstrated in this section to visualize the flow. The stream function ψ (y, ξ ) is
obtained by integrating the velocity field derived in Eq. (34) and utilizing the base solution obtained
for the film profile. The value of the stream function ψ has been assigned the value zero at the solid
wall, i.e., at y = 0:

ψ (y, ξ ) =
(

1 + Bo−1 dh0

dξ
+ Bo−1 d3h0

dξ 3

)

×
[

(y − h0)

η2
exp(−ηy) + 2

exp(−ηy)

η3
+ (h0 + y)

η2
− 2

η3
− h0y

η

]

− Ma
dT i

dξ

(
− y

η
+ 1

η2
− exp(−ηy)

η2

)
+cwy. (45)
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FIG. 13. Comparison of the film profile obtained through time-dependent simulations (indicated as NL
simulation in the plot) and that obtained using a shooting method for Bi = 0.1, Ma = 0, and Bo = 2. Wave
speeds obtained from both the methods are identical, i.e., cw = 1.49 for V = −5 and cw = 0.85 for V = 20.

Shown in Fig. 14 are the streamlines obtained for parameter values as used in Fig. 8(a). It was
shown in Fig. 8(a) that for Ma = 0, only the gravity mode was unstable, for which the cut-off wave
number was less than 1, and the disturbance was concentrated near the capillary ridge and decayed
to zero away from it. On the other hand, the thermocapillary mode was stable. For Ma = 2, the
thermocapillary mode was unstable and existed for q > 1, leading to interesting pattern formation.
The pattern formed was similar to those shown in the case of the flow of a thin film over a
nonuniformly heated flat substrate [24]. In that flow configuration, it has been shown that an unstable
capillary ridge, caused by heterogeneous heating, is usually accompanied by closed streamlines, i.e.,
recirculations existed [27]. The similarity of the thermocapillary mode here with that in the case of
the flat plate is also marked out due to the presence of closed streamlines for Ma = 2 as well as
the absence of it for Ma = 0, as shown in Fig. 14. The presence of the closed streamlines near the
capillary ridge in the base profile is, therefore, an indication of the presence of the thermocapillary
mode.

(a) (b)

FIG. 14. Streamline plots for (a) Ma = 0, and (b) Ma = 2. The other parameters are Bo = 2, Bi = 0.2, and
V = 20. The solid line is the corresponding base film profile with arrows representing the velocity direction.
Velocity magnitude is shown using colored contours. The inset shows the zoomed view of the velocity profiles
near the thinner region. Recirculation is seen in (b).
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FIG. 15. Comparison of growth rate (βR) vs wave number (q) for soft and periodic boundary conditions.
Inset shows the eigenvectors for q = 1.1 corresponding to the two boundary conditions.

C. Soft versus periodic condition

In the linear and nonlinear stability results, the soft boundary conditions have been used in this
study at the downstream boundary of the domain, consistent with the earlier works [21,24–26]. In
this section the comparison of these results is shown with those obtained from the usual periodic
boundary condition [17] along the streamwise direction. Shown in Fig. 15 is the comparison of the
dispersion curves for the two boundary conditions. It is clear that the two curves overlap for q � 1,
and the periodic condition yields stable modes for q > 1 while the unstable modes are obtained for
the soft condition. The inset shows the eigenfunctions for the two boundary conditions at q = 1.1. It
is evident that while the disturbance is sustained far downstream for the soft condition, the periodic
condition forces the disturbance to decrease to match the upstream condition. It was shown in Fig. 9
that while for q < 1, the eigenfunction corresponding to the leading mode decayed to zero at both
boundaries, for q > 1, the disturbance attained a constant nonzero value far downstream with the
soft condition. Since the periodic boundary condition cannot capture the disturbance due to the
thermocapillary mode, the dispersion curves differ for larger values of the wave numbers.

The comparison in the nonlinear growth computed using the two boundary conditions is shown in
Fig. 16 for q = 1.1. While the linear stability yields the growth rate of βR = −0.0122 and βR = 0.05
for the periodic and soft boundary conditions, respectively, the nonlinear growth rate obtained here
corresponds to the linear growth rate for q = 1. Thus, while the disturbance grows with βNL =
0.06 for the soft condition, it is βNL = 0.036 for the periodic condition. The film contours are also
shown for the periodic condition at times t = 200 and t = 250. At t = 200, the asymmetric droplet
has started to appear, and at the same time, undulations are present in the streamwise direction
downstream from this droplet. While this droplet becomes more prominent at t = 250, other droplet-
type structures start appearing downstream and the two structures are not aligned. It is also clear that
due to the imposed periodicity, the downstream structure is feeding into the upstream droplet. The
corresponding structures for the soft condition look similar to those shown in Fig. 11, wherein a
single droplet appears and an asymmetric pattern evolves in the entire domain.

D. More nonlinear patterns

In this section the nonlinear computations are presented for a case where more than one droplet
in the azimuthal direction is expected to form, i.e., the cut-off wave number qcut > 2. Such a
case is obtained with the parameter values Ma = 3, Bi = 0.2, V = 20, and Bo = 10. The cut-off
wave number qcut � 2.5 for these values. The growth rates are found to be βR � 0.177 at q = 1,
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FIG. 16. Comparison of the nonlinear growth (ϕ) of disturbance (q = 1.1) for soft and periodic boundary
conditions. Contours are shown for periodic conditions at t = 200 and t = 250.

βR � 0.148 at q = 2, and βR � −0.43 at q = 3. Clearly, the dominant growth is found at q = 1,
while the disturbance with q = 3 is linearly stable. Interestingly, for q = 1 the leading eigenvector
corresponded to the gravity mode (as discussed in Sec. IV), i.e., it decayed to zero far away from
the capillary ridge, while the eigenvectors for q = 2 and q = 3 corresponded to the thermocapillary
mode with a constant value downstream of the capillary ridge.

The nonlinear growth versus time is shown in Fig. 17 for the three different wave numbers.
The growth curves in this plot, except that for q = 3, end at the time of rupture of the respective
profiles. The wave numbers q = 1 and q = 2 recover their respective linear growth rates in the
exponential growth region. The corresponding contour in Fig. 18 shows that for q = 1, a single
localized drop forms as expected from the eigenvector and then slides downstream. For q = 2,
the disturbance affects the flow downstream, forming two rivulets emanating from the capillary
ridge. The pattern is consistent with the eigenvector shape and corresponds to the thermocapillary
mode. The nonlinear growth curve for q = 3 shows a negative growth (or decaying growth) in the
early times (t < 7), which is consistent with the linear stability prediction. Subsequently, it starts to

FIG. 17. Comparison of the nonlinear growth (ϕ) of disturbances with wave number q = 1, q = 2, and
q = 3. The parameter values used for this result are Ma = 3, Bi = 0.2, V = 20, and Bo = 10. The growth
rates obtained for these wave numbers are βR � 0.177 (q = 1), βR � 0.148 (q = 2), and βR � −0.43 (q = 3).
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FIG. 18. Comparison of the nonlinear patterns corresponding to the growth (ϕ) shown in Fig. 17.

show positive growth. At t ∼ 100 the growth reaches a brief saturation period with oscillations. An
exponential growth appears between t ∼ 150 and t ∼ 170, whose rate is surprisingly equal to the
leading eigenvalue at q = 2. The patterns for q = 3 are shown at two time instants in Fig. 18. Up to
t ∼ 150, a single droplet starts to form, similar to that observed for the case of q = 1. Subsequently,
the droplet increases in width while moving downstream, forming two rivulets similar to the pattern
obtained for the case of q = 2. In addition, interesting features appear upstream at the time that
coincides with the oscillating saturation in the nonlinear growth curve. Thus the pattern obtained
for q = 3 deviates significantly from what the linear stability analysis predicted. The geometrically
imposed confinement forces the film to choose a suitable wavelength that grows over time and gets
affected by other unstable modes.

VII. CONCLUSION

This study analyzed the stability of a traveling wave on the outside surface of a heated solid
vertical cylinder. The coating thickness was considered much thinner than the radius of the cylinder,
leading to employing the thin-film assumption to simplify the flow and energy equations. The effect
of the thermal condition of the cylinder on the viscosity and surface tension was considered. The film
viscosity was considered to vary exponentially with temperature. The traveling wave solutions in
the axial direction were found in a moving reference frame using the shooting method. An increase
in the thermocapillary effect led to an increase in the capillary ridge height and the wave speed of
the traveling wave. The height of the capillary ridge increased with an increase in the thermoviscous
effect while the wave speed decreased. The traveling wave solution could not be found for the value
of the Bond number below a certain critical number. This critical number was found to depend
weakly upon the thermoviscous parameter.

The stability of the traveling wave solution was performed by imposing a small perturbation in
the azimuthal direction. Linear stability analysis showed the presence of two modes of instability.
It was shown that at smaller wave numbers, the gravity mode exists, while in the presence of
the thermocapillary effect, a thermocapillary mode also exists but at larger wave numbers. The
eigenvector indicated that gravity affects the capillary ridge, while the thermocapillary mode leads
to perturbation growth far downstream from the capillary ridge. While other parameters like the
Bond number and thermoviscous parameters increased the growth rate of the gravity mode, only the
Marangoni number increased the growth rate of the thermocapillary mode. The cutoff or the critical
wave number also increased with an increase in the Marangoni number and the thermoviscous
parameter at a constant Marangoni number.

The nonlinear stability analysis showed that the mode chosen to generate the disturbance pattern
does not correspond to the largest eigenvalue of the dispersion curve, but it is governed by the
geometric confinement. Insignificant growth in the disturbance was observed for the cases where
cut-off wave number was less than unity. For the cases where cut-off wave number was slightly more
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than unity, the growth-rate and saturated disturbance pattern corresponded to wavelengths equal
to the cylinder’s circumference. For the imposed disturbance corresponding to the integer wave
numbers as the initial condition, the positive growth rate obtained from the nonlinear simulations
matched those predicted from the linear stability analysis. For the case when the cut-off wave
number was greater than 2, an interesting nonlinear pattern was obtained when an initial disturbance
corresponding to the wave number beyond cut-off value was imposed. These nonlinear patterns are
caused by an interesting interplay between the gravity mode and thermocapillary mode that could
not be captured by the usual periodic boundary condition in the nonlinear simulations and requires
the soft conditions.
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