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Electrowetting dynamics of sessile droplets in a viscous medium
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Electrowetting is a technique that reversibly or irreversibly alters the wetting properties
of a droplet on a hydrophobic substrate by applying an electrical field. In this paper, we
studied electrowetting dynamics of sessile droplets on a hydrophobic substrate surrounded
by viscous liquids. Through this study, we answered the following unanswered questions:
the drop’s transient response immediately after the actuation, the drop’s retraction and
resultant dynamics, and the effect of multiple wave actuation on the droplet transition. An
overall energy balance approach is extended for analyzing the transient wetting dynamics
of droplets from the initial position to the new equilibrium position in viscous media
with appropriate governing parameters. The governing nondimensional parameters are the
electrowetting number (η), the Roshko number (Ro), the Ohnesorge number (Oh), and
the viscosity ratio (μr) between the droplet and the surrounding medium. This theoretical
study, in corroboration with the experimental study, describes the transient evolution of the
drop motion from the initial position to the new equilibrium position and predicts the shift
from in-phase to out-of-phase drop response for the applied waves.

DOI: 10.1103/PhysRevFluids.9.024001

I. INTRODUCTION

Electrowetting is the induced spreading of an electrolyte aqueous liquid droplet on a hydrophobic
surface by applying an electrical potential [1]. It has a wide range of applications such as microflu-
idic mixing [2–4], liquid lenses [5,6], droplet transport [7,8], and clinical diagnostics on human
physiological fluids [9]. In 1875, this phenomenon was discovered by Lippmann [10], who observed
that by applying a voltage difference between an aqueous solution and mercury, the liquid-liquid
interface on a capillary could be controlled. In the case of electrowetting, an electrical double layer
is spontaneously formed at the solid-liquid interface upon voltage application, which is made up
of ions and counterions. The magnitude of the applied potential difference is tuned to control the
charge distribution that reflects the slip at the contact line [11]. Thus, electrowetting is commonly
characterized by quantifying the change in equilibrium contact angle (θ ). The new equilibrium
contact angle (θ ), due to the applied voltage, can be deduced by energy minimization, commonly
known as the Young-Lippmann (Y-L) equation [1], cosθ = cosθ0 + ε0εdU 2

2dσ
= cosθ0 + η. The Y-L

equation predicts the change of the contact angle for the applied voltage at the equilibrium. However,
it fails to comment on the dynamic evolution and transience involved in the droplet configuration
before equilibrium, particularly for ac scenarios. Thus, the drop’s transience response immediately
after the voltage is unknown, meaning the droplet dynamics are unknown during the initial time
period. A few studies [12–20] have focused on the role of applied frequency and its implication on
the equilibrium contact angle, but the transience involved in this process is always missing. Hence,
it is not fully understood how the drop attains the steady state and how the system parameters
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play a role in it. Therefore, we proposed an energy conservation approach rather than a simplistic
scaling analysis that fails to comment on transient variations of different energy terms associated
with this phenomenon. Here, the drop’s transient response is analyzed for electrowetting parameters,
applied frequency, and the medium viscosity by governing appropriate nondimensional parameters
like the electrowetting number (η), the Roshko number (Ro), the Ohnesorge numbers (Oh), and the
viscosity ratio (μr). Finally, the dynamic response of a drop for a sequence of electrowetting waves
was studied in detail.

The dynamic response of the liquid lenses by electrowetting is similar to the present sessile
droplet actuation dynamics [21]. Understanding the temporal dynamics of electrowetting-on-
dielectric (EWOD) devices, especially the response time, is important for many applications [21,22].
Recently, microscopes incorporating EWOD lenses have been demonstrated, enabling nonmechan-
ical depth scanning [22]. EWOD prisms have also been used for nonmechanical beam steering and
show promise for light detection and ranging and remote sensing applications. However, achieving
fast response times from these devices is one of the main challenges. For instance, a typical
confocal microscope uses a pair of galvanometer mirrors for two-dimensional lateral scans at kHz
frequencies. Using a liquid lens in such a microscope would allow for a large depth scan; however,
the response time of such an element needs to be comparable to the lateral scanning speed. The
complete understanding of the drop’s response can increase the efficiency of EWOD-based devices
by reducing operation times and having the entire description of the drop’s evolution for a given
actuation. It is desirable to generate relatively simple models that can describe and predict the
transient evolution of the drop spreading [23–25]. Thus, the objective of the present paper is to
investigate and develop a theoretical approach that considers the effect of electrowetting and the
fluids’ properties, which can give a better understanding starting from the drop’s initial response
to the transient dynamics until the new equilibrium position. The overall energy balance (OEB)
approach is extended to study the sessile drop configuration in a varied viscous medium, unlike the
force balance concept in the Y-L equation. This model describes the transient evolution of the drop
motion, and predicts the shift from in-phase to out-of-phase drop response from the applied waves.

The experiments were conducted by depositing 3-µL drops of aqueous solution [deionized (DI)
water and 0.1M sodium chloride] in viscous oil media. A disposable syringe was used to generate
the drops inside a distortion-free cuvette, which was prefilled with silicone oil (Paragon Scientific,
Ltd.) with different viscosities (see Table I in the Supplemental Material [26]). The drops were
deposited on a copper substrate, which was coated with a thin layer (20 µm) of polydimethylsiloxane
(PDMS), acting as electrode and dielectric (εd = 2.8), respectively. The actuation by means of
electrical signal was triggered by a waveform generator (294 100MS/s, FLUKE), which was further
augmented by an amplifier (BOP 500, KEPCO) to obtained the desired output. Finally, a copper
wire, with a diameter of 60 µm, was used as positive electrode, and it was situated at the center
of the droplet but with a separation distance equal to the initial radius of the drop from the bottom
electrode. The drop’s perturbation and the associated changes in the shape of the drop were recorded
with a high-speed camera (Phantom V711, Vision Research Inc.) with a frame rate of 3000 frames
per second. The captured videos were calibrated and postprocessed with an image analysis software
(ImagePro Premier 9.2, Media Cybernetics, Inc.) for the quantification of instantaneous drop height
and contact angle. The drops attained an equilibrium, or initial height of h0 = 1.70 ± 0.03 mm
with an associated contact angle θ0 = 154 ± 5.7◦ in different mediums. However, the initial height
and initial contact angle for the numerical study were selected as h0 = 1.70 mm and θ0 = 153.5◦,
respectively.

II. MATHEMATICAL MODEL

Here, the sessile drop is sufficiently small, and the gravity has negligible effect compared to the
capillarity. Therefore, it is safe to assume that the sessile drop shape resembles a spherical cap as
shown in Fig. 1(b). By simple geometric exercise, the volume of the spherical cap can be deduced
as presented in Eq. (1), which is a function of the radius of the sphere, r, or the height of the sessile
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FIG. 1. (a), (b) Schematic illustrations of (a) electrowetting of the aqueous droplet in a liquid medium
when it is subjected to the ac electric field and (b) truncated spheroid shape of the droplet. (c) Initial transient
response (immediately after the voltage is applied) of the aqueous droplet of (V = 3 µL, μd = 0.91 mPa s) in
a silicone oil (μm = 100.60 mPa s) medium subjected to a sine wave of Uac = 350 V at a frequency f = 10 Hz
from experiment. Theoretical results for the corresponding droplet are illustrated as (d) height and the rate
of change of height with respect to time and (e) comparison of all the different energies considered in the
theoretical model.

drop, h, and the contact angle, θ , as

V = πh3

3

2 + cosθ

1 − cosθ
. (1)

For a constant drop volume, after ignoring the evaporation, the relationship between the transient
variation in the contact angle and the height can be established as follows:

dθ

dt
=

(
(2 + cosθ )(1 − cosθ )

hsinθ

)
dh

dt
. (2)

For a higher voltage of actuation (�350 V) in liquid media, the shape of the droplet changes from
a truncated spheroid to a truncated oblate shape. Then, we have to consider the truncated oblate
shape and corresponding correlation, which is discussed in detail in Sec. I in the Supplemental
Material [26].

To theoretically determine the implication of induced drop deformation, due to applied electric
actuation by means of electrowetting, the OEB approach is considered. The variation of the drop’s
height can be predicted with different energies involved in this process, namely, kinetic, surface,
and viscous dissipation due to drop and surrounding medium. Considering the sessile drop as the
control volume, the applied electric energy (Ein ) is utilized to move the contact line, i.e., the creation
or destruction of the interfaces at a certain velocity (Ud ). For this system, the energy balance can be
written as

dEin

dt
= d

dt
(Ek + Es) + d

dt
(Wd + Wm). (3)

Here, Ein is the energy added to the system, and Ek and Es are the kinetic and the surface
energies of the drop. An additional work must be done to overcome the inherent resistance caused
by the viscosity of the drop (Wd ) and medium viscosity (Wm). In the Supplemental Material [26],
the expressions for all necessary energies that govern the energy balance are studied individually.
The variation in the drop’s height due to oscillatory actuation of the drop in another liquid medium
is

m

(2 + cosθ )2

d2h

dt2
+ m(1 − cosθ )

h(2 + cosθ )2

(
dh

dt

)2

+
(

8π (μd + μm)h

sin3θ

)(
dh

dt

)

+ 2πhσ

1 − cosθ
[cosθ0 − cosθ ] = 0. (4)
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Here, the time dependent instantaneous equilibrium contact angle, θ , is calculated from the
modified Y-L equation, cosθ = cosθ0 + η sin2(2π f t ). Furthermore, the mass of the drop is con-
templated as m = �ρV , where V is the volume of the spherical cap, and �ρ = ρd − ρm is the
density difference between drop and medium. To extract the key parameters from the governing
equation, the governing equation was nondimensionalized as presented in Eq. (4). It is to be
noted that the instantaneous contact angle and drop height are two dependent parameters in this
nonlinear second-order ordinary differential equation. With this approach, we have obtained a set
of nondimensional numbers for which the characteristic length and timescale were chosen as the
drop’s initial height (h0), the inertia-capillary timescale [τc = (�ρh3

0/σ )1/2], and the viscoinertial
(momentum) relaxation time (τm = �ρh2

0/μ), respectively [36]:

h∗2

3(1 − cosθ )(2 + cosθ )

d2h∗

dt∗2
+ h∗

3(2 + cosθ )

(
dh∗

dt∗

)2

+Oh

(
8

sin3θ
(1 + μr )

)(
dh∗

dt∗

)
+ 2(cosθ0 − cosθ )

1 − cosθ
= 0. (5)

Here μr is the ratio of the medium to the drop’s viscosity, and Ohnesorge number Oh =
μd/(�ρσh0)1/2 = τc/τm is the ratio between these two timescales (and t is in units of τc). Writing
time in units of τc leads to f t = f

1/τc

t
τc

= f ∗t∗ with the frequency measured in units of the capillary
frequency of the oscillator. For frequency in units of the momentum relaxation τm, we write
f ∗
τm

t∗ = f
τm

τm
τc

t∗ = Ro Oht∗. In this nondimensionalization process, the equilibrium contact angle

gets appropriately changed to cosθ = cosθ0 + η sin2(2πRo Oh t∗), where Ro = f h2
0�ρ/μd is the

Roshko number. In the present analysis, the solution of this second-order differential equation was
obtained with a fourth-order Runge-Kutta method with h∗ = 1 and dh∗/dt∗ ≈ 0 as initial condi-
tions. The proposed theoretical model is validated with the experimental results for a range of μr

(10–1000), η (0.29–0.89), and Ro (0.44–44.49). Table II in the Supplemental Material [26] rendered
different experimental data sets where the same value of the nondimensional parameters is achieved
by various combinations of physical variables with constant drop volume (d = 2 mm, h0 = 1.6 mm)
and drop viscosity (μd = 0.91 mPa s). The variation in the Oh for the considered parameters is
marginal from ≈8.9×10−3 to 9.7×10−3, hence we have not considered this in our parametric
analysis. In the upcoming section, experimental details are reviewed before the discussion of the
comparison between the theoretical model and the experimental evidence.

III. RESULTS AND DISCUSSIONS

Interestingly, when an aqueous droplet (DI water and 0.1M sodium chloride of 3-μL volume
surrounded by a silicone oil medium on a copper substrate embedded with a dielectric PDMS layer)
is subjected to an ac electric field (250 V, f = 10 Hz) [see Fig. 1(a) for schematic illustrations],
the aqueous droplet reversibly wets and dewets the surface (see video 1). The electrical analogy
shown in Fig. 1(a) is discussed in detail in Sec. II in the Supplemental Material [26]. However, if
we focus on the initial transient response, the droplet behaves differently (partial spreading) over
the dielectric (see video 2). Figure 1(c) shows the initial transient response (immediately after the
voltage is applied) of the aqueous droplet in a silicone oil medium subjected to a sine wave of
Uac = 350 V at a frequency f = 10 Hz from experiment. So, first, we discuss the initial transient
response of the aqueous droplet.

For initial transient dynamics, the governing Eq. (5) is solved for the drop’s height or the
drop-medium interface velocity as shown in Fig. 1(d). Moreover, this equation is a combination
of different energy sources that can easily be quantified separately. An analysis of the relative
magnitude of the different energies considered with respect to time, as depicted in Fig. 1(e), provides
an understating of the drop’s oscillations associated with the applied force. Figure 1(d) presents
the height and the change in the height of the drop with the time for the case of nondimensional
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parameters of Ro = 0.22, Oh = 0.0093, η = 0.89, and μr = 110. The height’s velocity has a zero
magnitude at the initial position, and when the voltage turns to a zero value. Also, the velocity
asymptotically attains a zero velocity as the drop returns to the initial position. At this point, all
the energies return to a zero value as shown in Fig. 1(e). Also, it can be seen that the surface
energy is transmitting the energy to the drop in the form of velocity (kinetic energy) and the
surroundings as viscous dissipation (work due to drop and medium dissipation). The kinetic energy
for almost the entire process was three times bigger than the work due to dissipation, and so the
kinetic energy represented approximately 75% of the dielectric energy. It is worthwhile to mention
that the negligible work due to the drop’s viscous dissipation remained approximately 0.2% of the
dielectric energy, which is consistent with the viscosity ratio for this particular case. The maximum
energy delivered to the system is nearly at t = 0.15 s, which corresponds to the 75% of the period
of the wave. At this point, the kinetic energy and the work due to medium dissipation reach their
maximum value, while the surface potential energy reaches its minimum. This behavior aligns with
the application of the external force perturbation, where there are two moments when the voltage
acquires the maximum amplitude, i.e., at 25% (t = 0.05 s) and at 75% (t = 0.15 s) of the applied
period. At these two points, the instantaneous equilibrium contact angle is equal to the apparent
contact angle from the Young-Lippman equation, and so the difference between the equilibrium
contact angle and the actual contact angle is the highest. However, when the electrical wave is at
25% of its period, the drop is still in an intermediate spreading point where the height velocity is
not maximum, the minimum height has not been reached yet, and the substrate-droplet area (ASD)
has not reached its maximum value. Therefore, the energies attain their peak when the voltage is
maximum for the second time. The asymmetric spreading of the drop between the first half and
second half of the electrical wave is detailed in the upcoming sections. Following this order of
ideas, a better understanding of the different nondimensional parameters is required to completely
understand the drop’s response and the oscillations linked with the application of a single or a
sequence of electrical sinusoidal waves.

A. Effect of the electrowetting number

The electrowetting number (η = ε0εdU 2

2dσ
) represents the ratio of the electrostatic energy to the

surface energy, and it is the main governing parameter for a sessile droplet perturbed by an electric
field. The literature already reported that by increasing the electrowetting number, the apparent
contact angle reduces [1], which leads to a lower instantaneous equilibrium contact angle (see
Sec. III and the classical electrowetting curve as shown in Fig. S3 in the Supplemental Material [26])
that dictates the solution of Eq. (5). Figure 2(a) illustrates the variation of the nondimensional
height of the droplet under ac electrowetting for different values of electrowetting number. The
multiplication of the nondimensional time by the Ohnesorge and the Roshko numbers in the x axis
facilitates the analysis and comparison of the drop’s dynamic response, which translates the time
into the number of electrical cycles applied. For fixed values of Oh, Ro, and μr , the traditional
outcome is observed, i.e., a higher height diminution with the electrowetting number η. The
voltage range, and therefore the electrowetting number’s range, was selected based on the dielectric
breakdown of the insulator layer (the PDMS layer) that is a function of the dielectric thickness
depicted as Ebreakdown = 19 V µm−1. Thus, the maximum possible potential is approximately 400 V
before the occurrence of the electrolytic process. Yet, the maximum applied voltage was selected
as 350 V (η = 0.89) to avoid electrolysis and the saturation of the contact angle [37,38]. The lower
limit, 200 V (η = 0.29), was chosen to observe a change in the drop’s shape due to electrowetting.
The height reduction for waves below this threshold voltage was observed to be less than 5%,
inconvenient for capturing the drop’s response with the high-speed camera and impractical to
compare with the mathematical model. For waves that generate a significant change in the drop’s
height, it can be seen that the drop does not symmetrically stretch following the applied sine
wave. The drop deviates from attaining the forced equilibrium contact angle due to the additional
resistance from the surrounding medium, which leads to the dissipation of energy and to the delay
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FIG. 2. (a) Transient variation of the droplet height for different electrowetting numbers. The additional
terms are fixed to Oh = 0.009, Ro = 4.45, and μr = 110.55. (b) Transient variation of the droplet height
for different Roshko numbers. The additional terms are fixed to Oh = 0.009, μr = 110.55, and η = 0.89.
The experimental results are represented by symbols and the results obtained from the proposed model are
represented by the solid lines. (c) Effect of Roshko number on drop spreading dynamics. Minimum height
achieved by a drop (Oh = 0.009 and μr = 110.55) by a single electrowetting wave as a function of Roshko
number, for different electrowetting numbers. The experimental results are represented by open symbols, and
the lines represent the theoretical results. (d) Three different regimes proposed to study the transient response
of drop spreading, which can be categorized into in-phase, out-of-phase, and nonresponsive behavior.

in the spreading. This can be further seen as the drop in the first quarter of the cycle spreads to an
intermediate position, which does not correspond to the height calculated from the Young-Lippmann
equation. After the first quarter of the cycle, when the voltage is starting to decrease, the drop
momentarily continues to spread due to inertia, until it reaches a local minimum. As the voltage
significantly reduces in magnitude, and the inertia vanishes in the second quarter of the cycle, the
drop recoils to regain its original shape, but at a slower rate compared to the spreading in the first
half. This phenomenon is directly attributed to the governing forces acting on the drop; i.e., during
the first quarter of the cycle, the electrowetting is forcing the motion, while in the second quarter of
the cycle the electrowetting weakens, and the drop follows only the forces imposed by the interfacial
tension. Before the drop can arrive at its original height, the second half of the electrical cycle starts,
and the voltage restarts, increasing in magnitude, leading to an additional spreading stage of the
drop. However, in this second half of the actuation cycle, the drop further spreads due to the partial
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spreading occurred in the first half of the cycle. Then, a similar episode occurs as the voltage reaches
again its maximum value at Oh Ro t∗ = 0.75, where it can be seen that the drop retraction is delayed
due to inertia. Once the electrical cycle has been completed, the drop monotonically retracts to its
original shape regardless of the applied voltage. Nevertheless, it is worthwhile to observe how the
drop reattains the initial position in a similar manner after the electrical wave vanishes.

B. Effect of the Roshko number

The nonsymmetric response of the electrowetting is directly related to the relaxation time of the
drop and how fast the external force is applied [17]. As a consequence, there is an interplay between
the properties of the liquids and the actuation by means of electrowetting. Hence, there are two key
aspects one has to compare, the applied actuation frequency and the response in the drop oscillations
(τm = h2

0�ρ/μd ), which is mostly due to the viscosity of the droplets. The first natural choice, in
the case of considering nondimensional number, can be the Strouhal number St, but we opted for the
Roshko number (Ro = f h2

0�ρ/μd = f /τm) instead. Roshko [39] introduced this nondimensional
group as a dimensionless frequency to study vortex shedding in turbulent flows. Although Ro is
commonly used to describe repetitiveness of vortex-street structures, in this paper we propose to
use it to represent the repetitiveness in the drop’s oscillations. This also allows us to circumvent
the use of contact line velocity for the analysis. For this research, Ro describes the oscillating flow
mechanisms and directly relates the applied frequency ( f ) and the drop’s viscosity as the governing
factors. We consider the viscocapillary timescale (t∗ ∼ μd/σ ), which considers viscous and surface
tension force, but fails to account for the actuation frequency. With the definition of t∗ for considered
parameters, it is 0.02 ms, whereas our observation timescale is from 0.1 to 500 ms. The applied
frequency is from 1 to 100 Hz; hence actuation frequency timescale is an appropriate representation
of the characteristic timescale. Thus, we have considered the Roshko number for our analysis, which
is applied frequency in units of the momentum relaxation time (τc).

Figure 2(b) represents the response of the drop’s height to the varied range of the Ro number,
where Ro is varied from 0.44 to 44.49. In any damped harmonic oscillator system, the existence
of the resonance frequency can significantly alter the oscillations. The first resonance frequency
for a drop of 3 µL in an oil medium is approximately f2 ≈ 35–40 Hz [40]. Therefore, we avoided
frequencies close to this, to avoid any implication from the resonance. Based on the experimental
observations it was noticed that beyond 100 Hz the drop’s response was minimal; therefore, the
highest frequency selected was 100 Hz (Ro = 44.49). With this frequency a noticeable response
in the drop’s shape was observed. Below a certain frequency, the drop has a tendency to slip
away from its center, also reported as “waggling” [18]. Therefore, to avoid any asymmetric linear
translation in the drop along the spreading direction, the lowest frequency of 1 Hz (Ro = 0.44)
was chosen. For this lowest frequency, i.e., for Ro = 0.44, it is clearly seen that the drop closely
follows a symmetric spreading and both valleys, representing the minimum height in the drop, have
a similar magnitude. The symmetric or uniform spreading of the drops is defined to be fulfilled
if the difference between the magnitude of droplet’s height at the maximum spreading position in
both halves has a difference below 5%. The discrepancy between the experimental and theoretical
predictions is off twofold: first, the predicted magnitude in the drop’s height, and second, the
location of the minima. Interestingly, the time achieved to attain minima matches quite well with
the experimental observations. The underprediction of height depression is significant for lower Ro,
but for higher Ro (4.45 and above) it matches well. The proposed model is developed for ac voltage,
whereas the lower frequency behaves similarly to dc voltage scenario; hence, the discrepancies can
be justified.

For a relatively low frequency (Ro = 0.44), the drop’s response is in phase with the actuation,
as we observed in the case of η. As Ro is increased, the actuation timescale is much faster than
the response of the drop. Hence, the deviation from the actuation cycle is observed in the case of
Ro = 2.22 and above. As a result, the drop’s response shifts from the sine form to an out-of-phase
asymmetrical spreading. As noticed for all η, the drop attempts to regain its original height as the
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voltage is reversed during the first half cycle, but the timescale is too short for the drop to regain
the original height. In this middle height regaining process, the second increment in the voltage
magnitude is triggered, i.e., the initiation of the second half of the cycle interrupts the recoiling and
causes the drop to further spread. This causes the out-of-phase response, which intensifies along
with the difference between the two valleys as Ro increases. As mentioned earlier, for higher Ro
the drop spreading is minimal and is reversible in nature. The time to regain the original drop shape
is strongly dependent on the viscosities of the drop and the medium. It would be interesting to
see whether one can get similar reversibility in the air medium with the practical limitation of the
contact angle hysteresis. One very critical aspect of the Young-Lippmann equation is scrutinized
here: this classical equation never commented on the role of frequency. Here, we demonstrate that
for Ro = 22.25 and above, the drop’s response completely deviates from the expected prediction
proposed by the Y-L equation. One can argue that only one cycle of actuation is applied, which
motivated us to study the role of number of cycles, and the outcome was similar. The details of the
role of number of cycles are presented in the upcoming sections, and prior to that, we have presented
a quantified way to identify different regimes where the role of frequencies can be considered or
ignored. In Fig. 2(c) an attempt is made to present a phase plot that can clearly identify the range in
which one has to study the electrospreading.

Interestingly, if the minimum height attained by the drop is studied as a function of the Roshko
number, the response resembling the S-shaped curve can be observed, as depicted in Fig. 2(c). This
phase plot can be categorized into three different regimes, namely, regime I (1 � Ro), regime II
(20 � Ro � 1), and regime III (Ro � 20). For regime I, where the applied frequency is smaller and
can be approximated as dc electrowetting, the drop’s response is approximately in phase with the
applied actuation; hence, the minimum height is independent of Ro. Regime I is the process where
the maximum drop deformation can be witnessed, which is in phase with the actuation, whereas
regime II is out of phase of the drop’s response. As identified in regime III, for very high actuation
frequencies, the drop is irresponsive to the actuation; hence, it can be approximate as independent
of the actuation. To further clarify the significance of the regimes, the theoretical response of the
drop’s height in three different regimes is presented in Fig. 2(d). In the first regime (regime I),
when Ro � 1, the drop can closely follow the applied electrical field [18], but the minimum height
deviates from the height calculated following the Y-L equation using the root-mean-square value
of the voltage. However, it is desirable to reiterate that, for low frequencies, the drop response
more closely resembles the dc voltage than the ac voltage, where the drop can spread to a greater
extent. This justifies the deviation in the theoretical model from the experiments, in regime I, which
underestimates the height reduction. In contrast, by increasing the actuation frequency at which
electrowetting is triggered (higher Ro), the model perfectly predicts the response of the drop. For
the transitional regime (regime II), when 20 � Ro � 1, the drop can partially follow the actuation,
which leads to the out-of-phase behavior as explained in the case of variation of the η scenario. In
this regime, the drop fails to attain the equilibrium maxima or minima in phase with the actuation.
This has further consequences in terms of maximum spreading, which is a strong function of the
number of actuation cycles that is studied in the upcoming section. For the last regime (regime III),
when Ro > 20, the drop is completely irresponsive to the actuation cycle. In this particular case,
the spreading becomes independent of η and Ro. The fact that a transitional regime exists can raise
two questions: what would happen if more than a single sine wave is applied to the drop? And how
many waves would be necessary to achieve the maximum reduction in height? Aiming to resolve the
previous questions, the drop was subjected to a series of waves, and the minimum height achieved
with respect to each cycle is studied and presented in Fig. 3(a). We believe the transition zone,
i.e., regime II, is in between Ro = 2 and 22. Due to additional continuous actuation for a certain
period, by means of a higher number of actuation cycles, the drop further spreads and attains the
maximum possible spreading. This maximum spreading, after a certain number of actuation cycles,
does not alter the maximum spreading or change the the contact angle. It is worthwhile to notice
that the number of actuation cycles is strongly dependent on Ro: as Ro increases, one has to apply
a larger number of cycles. Another interesting aspect was noticed regarding the drop’s response
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FIG. 3. (a) Minimum height achieved by a drop (Oh = 0.009 and μr = 110.55) by a sequence of sine
waves (η = 0.65) for different Roshko numbers. The initial height, when the number of waves is zero, is
represented at 0.1 instead, because of the logarithmic nature of the plot. The maximum error obtained was
Eh∗

min
= ±0.013. The experimental results are represented by symbols and the results obtained from the

proposed model are represented by solid lines. (b) Effect of viscosity ratio on drop spreading dynamics.
Transient variation of the droplet height with additional terms fixed to Oh = 0.009, Ro = 4.45, and η = 0.89.
(c) Minimum height achieved by a drop (Oh = 0.009 and Ro = 4.45) by a sequence of sine waves (η = 0.65)
for different viscosity ratios. The maximum error obtained was Eh∗

min
= ±0.037.

after this equilibration. As the inset of Fig. 3(a) shows, once this critical number of actuation cycles
is performed, the drop deforms in phase with the actuation cycle. During the in-phase oscillatory
behavior, the maximum and minimum drop height corresponds neither to the initial drop’s height
nor to the equivalent height predicted by the Y-L equation, respectively, due to the depletion of the
lubricating layer sacrificing the reversibility of the system. In fact, as Ro is increased, more cycles
are required to approach the in-phase cyclic response, as shown in Fig. 3(a). As a consequence of
the higher number of cycles, the ultimate drop equilibrium height decreases with the increase in
Ro. The higher Ro implies a faster spreading and a limited time for the drop to pursue the imposed
actuation, which inevitably leads to a higher viscous dissipation and thus a longer time to achieve
the equilibration. To the best of the authors’ knowledge, based on all previous studies related to ac
electrowetting, the researchers always comment that “sufficient time” was granted to the drop for
this equilibration, but quantification of this sufficient time was missing, which we have presented
here. For the completeness of the analysis, it is important to study the role of medium viscosity, as
we present in the next section.

C. Effect of the viscosity ratio

For this paper, only the liquid medium viscosity was varied, and the viscosity ratio μr (ratio
of the medium to the drop’s viscosity) was always greater than 1, which implies that the effect of
the work due to the medium dissipation was significantly higher than the drop viscous dissipation.
However, both the drop and medium viscosity directly influence the relaxation time of the drop, by
causing additional energy losses associated with energy dissipation. The study of viscosity ratios
below unity can be easily performed in an air medium, but the existence of additional factors, such
as evaporation and contact line friction, was restricting us to perform that spectrum. However, the
proposed theoretical model can be used for the air medium. Figure 3(b) exhibits the experimental
and theoretical response of a drop to a single wave for different viscosity ratios. A similar effect
occurs for increasing the viscosity ratio, as in the case of increasing η and Ro, i.e., the drop
cannot pursue the external actuation cycle. It requires more time to respond as the viscosity of
the medium increases. The aforementioned delay is greatly reflected on the drop at the end of the
first half of the cycle, where the drop cannot retract to its original height, and during the second
half, the drop spreads in a completely different magnitude than the previous half. Thus, an irregular
spreading is observed and more than one wave is required to attain the global minimum height. The
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irregular response can be avoided by reducing the medium dissipation, accomplished by reducing
the viscosity ratio, which guarantees insignificant losses due to the medium. For the least viscous
medium in Fig. 3(b) (μr = 11.34), the drop can retract to its original height by the end of the first
half of the cycle, and the first and second valley are equal in magnitude. As μr increases, the drop’s
reaction diverges from the in-phase response and begins to lag. It can be observed in Fig. 3(b) that
the lagging phenomenon and the intensified out-of-phase response can be seen with the increase in
the viscosity ratio. For a more viscous medium, the difference between the first and second valley is
more palpable and the reduction in the maximum height depression can be also witnessed. A clear
similitude between Figs. 2(b) and 3(b) corroborates the statement that the transition of the drop’s
response from in phase to out of phase is linked to the relationship between the drop’s response and
the actuation timescale.

As we studied the role of number of cycles with the variations in Ro, a similar analysis is
presented with respect to medium viscosity in Fig. 3(c). Also, it is observed that a plateau is
reached after the actuation of a certain number of cycles beyond, in which the drop’s response
was in phase with the actuation independent of the number of waves. For higher viscosity ratios, the
drop reduces the maximum spreading and requires more waves to reach the oscillatory steady state
response. Thus, the resemblance between the Ro and the viscosity ratio is evident. Here again, the
same observation was made that suggests a minimum number of cycles must be considered before
commenting on the equilibration or even for the comparisons with the Y-L equation.

IV. CONCLUSION

This paper has developed a theoretical model to qualitatively predict the transient wetting
dynamics of an electrolyte drop in viscous media to the actuation of an electric field. An overall
energy balance approach was chosen to study the combined effects of the external driving, the
surface tension, and the dissipation forces on the drop’s oscillations. The model balances the energy
delivered by the electrical actuation, which was simplified by defining an instantaneous contact
angle as a function of a modified Young-Lippmann equation. The effect of three key parameters, i.e.,
η, Ro, and μr , is investigated to understand the importance of the magnitude of the actuation force,
the dynamics involved in this force, and the viscosity of the system, respectively. This theoretical
model, in corroboration with the experimental study, described the transient evolution of the drop
motion from the initial position to the new equilibrium position and predicted the shift from in-phase
to out-of-phase drop response from the applied waves. Moreover, three different regimes for the
dynamic response of a sessile drop to electrowetting were identified. Finally, the effect of multiple
waves on the dynamic response of an electrowetting drop is investigated. Therefore, we believe the
proposed approach can provide a better understanding of the drop’s dynamic wetting response under
external actuations, like electric, magnetic, acoustic, and light.
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