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The coupling between ion transport, fluid flow, and electrostatics may give rise to
electroconvection, a physical phenomenon in which the buildup of charge near selec-
tive surfaces leads to hydrodynamic instability, eventually transitioning to an unsteady
and chaotic flow. Though electroconvection contains a wide range of spatiotemporal
scales, averaging of the ion concentration, velocity, and electric potential fields may pro-
duce a lower-dimensional and smoother representation while still capturing the essential
performance metrics: ion current density and mean applied voltage, for example. The
Poisson–Nernst–Planck–Stokes equations are known to capture the chaotic dynamics of
electroconvection accurately. However, there is as of yet no way to directly compute the
mean fields, since the application of the well-known Reynolds-averaging procedure leads
to a closure problem. In this work, we combine the macroscopic forcing method, a numer-
ical technique for measurement of closure operators in Reynolds-averaged equations, with
high-fidelity experimental data to close the equations for the mean fields in chaotic elec-
troconvection. We show that the unclosed fluxes in the Reynolds-averaged equations may
be represented to the leading order as a gradient-diffusion term, with a spatially varying
eddy diffusivity that we directly measure from experimental velocity fields. As a result,
we are able to directly solve for the mean ion concentration and electric potential fields
by supplementing the 1D Poisson–Nernst–Planck equations with an eddy diffusivity that
captures the averaged effects of mixing due to chaotic, 3D electroconvection. The resulting
current-voltage curve exhibits strong agreement with experiments. Our method allows for
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the study of electroconvection with orders-of-magnitude cost savings by obviating the need
for expensive direct numerical simulations. Additionally, our measured eddy diffusivity
profiles provide a benchmark for the development of stand-alone reduced-order models of
electroconvection.

DOI: 10.1103/PhysRevFluids.9.023701

I. INTRODUCTION

The problem of coupled ion transport and fluid flow appears in practical systems across a wide
variety of applications. Electrodialysis [1], a process in which applied electric fields are used in
conjunction with ion-selective membranes to remove ions from an electrolyte, is relevant in water
desalination [2], industrial and municipal wastewater treatment [3], industrial chemical separations
[4], and food processing [5]. Similarly rich physics are found in electrodeposition, where the cou-
pling between electrolyte flow and surface morphology has long been known [6,7]. A contemporary
application of crucial significance is batteries, where dendrite formation is substantially influenced
by electroconvective flows [8–11].

The focus of this work is electroconvection. In contrast to the branch of electrohydrodynamics
(EHD) concerning coupled ion and electrolyte transport in weakly conducting fluids [12,13], this
work is squarely centered in the realm of electrokinetics, where electrolytes are taken to contain
a large number of charged ions of both signs [14,15]. In EHD, charge is distributed along fluid
interfaces, but current is allowed to pass through the fluid by means of a small and constant Ohmic
conductivity. In electrokinetics, however, relatively large ion concentrations are present throughout
the fluid, allowing for a finite net charge density and enabling bulk electric forcing of the electrolyte
in the presence of electric fields and salinity gradients.

Consider a simple electrodialysis cell in which current is driven through a cation–exchange–
membrane by an applied electric field. The current-voltage curve (or j-V curve) of such a system
typically exhibits three regions: (i) an Ohmic region, in which the current–voltage relation is linear,
(ii) a limiting region, in which concentration polarization leads to saturation of the current at a value
known as the limiting current, and (iii) an overlimiting region, in which the current again increases
with voltage and begins to exhibit unsteady, chaotic fluctuations [16]. The overlimiting phenomenon
was shown to result from chaotic, electrically driven convection, which mixes the electrolyte and
helps mitigate the ion depletion caused by concentration polarization [17–19].

Various methods have since been employed to investigate electroconvection [20–23], including
early theoretical works focused on the instability at the root of the phenomenon. Notably, Rubinstein
and Zaltzman published a series of studies in which they applied the method of matched asymptotic
expansions and stability analyses to develop a mathematical description of the electroconvective
instability [24–26]. In the underlimiting regime, the system may be described by “outer” and “inner”
zones. Most of the bulk falls into the former category, which is largely electroneutral. The inner
zone, located adjacent to the ion–selective membrane, is a highly charged region governed by
Boltzmann equilibrium. This inner zone, the electric double layer (EDL), has a thickness given
by the Debye length,

λD =
√

ε0εRkBT

2z2e2c0
, (1)

which, for aqueous systems with electrolyte concentrations on the order c0 ≈ 1 mmolL−1, produces
a length scale of λD ≈ O(10 nm). Here, ε0 is the vacuum permittivity, εR is the relative permittivity
of the electrolyte, kB is Boltzmann’s constant, T is the solution temperature, z is the valence of
a binary electrolyte, and e is the fundamental charge. Beginning in the limiting regime, a new
zone appears in between the two mentioned previously. Referred to as the extended space charge
(ESC) layer [27], this zone is neither electroneutral nor in Boltzmann equilibrium. In the presence of
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tangential electric fields (e.g., near curved surfaces), the electrolyte may exhibit an asymptotically
zero-thickness slip velocity with respect to the membrane surface. Dukhin categorized the slipping
phenomenon as either “of the first kind” or “of the second kind” depending on whether it resulted
from slip of the EDL or the ESC, respectively [28,29]. Rubinstein and Zaltzman’s work, however,
addressed the problem of inherent stability of the quiescent electrolyte in the absence of applied
tangential electric fields or curvature. Whereas instability was unlikely for realistic electrolytes
(ionic species with realistic values of mass diffusivity) when considering only slip of the first kind
[30], inclusion of the ESC layer (slip of the second kind) leads to instability behavior that compares
well with experiments [31].

Experimental and computational works have since explored the full nonlinear evolution of elec-
troconvection. A number of authors performed current/voltage measurements and 2D visualization
of electrodialysis cells using tracer particles and fluorescent dyes, with or without the presence
of crossflow [31–34]. There has also been recent interest in the 3D structure of electroconvective
vortices, particularly concerning their interaction with crossflow [35,36] and spacers [37,38]. We
particularly emphasize recent papers in which particle tracking velocimetry (PTV) has been used to
measure the 3D velocity fields in electroconvection, allowing for detailed analysis of the instability
in its incipient stage, the statistics of stationary electroconvection, and the associated energy
spectra [39–41]—a depth of analysis that was previously limited to computational work based
on direct numerical simulation (DNS) of the Poisson–Nernst–Planck–Stokes equations [42–47].
Several very recent works have focused on the effects of membrane heterogeneity, including
variation in selectivity and geometric undulations [48–53]. Such factors strongly affect the nature of
electroconvection, potentially increasing the current density compared to that of fully homogeneous
membranes. Furthermore, various authors have investigated the coupling between electroconvection
and other phenomena, including Rayleigh–Benard convection [54,55], viscoelasticity [9], imperfect
membrane selectivity [56], and electrodeposition [8–11,57,58].

DNS of the Poisson–Nernst–Planck–Stokes system in the overlimiting regime is considerably
expensive. Consider the nondimensional Debye length εD = λD/L, where L corresponds to the
width of the electrolyte reservoir (which is commonly taken to be the size of the computational
domain). The cost of simulations scales inversely with this ratio of length scales, since it determines
the number of mesh points required to span the largest length scale while also resolving the
smallest feature. Realistic values may be as small as εD = O(10−7) for 1 molL−1 electrolytes in
a 1 mm cell. Prior EDL–resolving computational works have utilized choices of εD ranging from
εD = 1 × 10−2 to εD = 1 × 10−5 [35,42,43,45–47,54,59–67]. Of the works that performed 3D
simulations, the smallest value considered was εD = 5 × 10−4. Furthermore, it has been shown that
the number of dimensions [47] and the nondimensional Debye length [60] can affect the dynamics
of electroconvection quantitatively.

The motivation for this work comes from two observations. First, despite the chaotic fluctuation
of the current density (or voltage, in the case of galvanostatic measurements) in strongly overlim-
iting cases, the mean current density and mean voltage are sufficient to predict the power usage
and ion exchange rate for the design of practical systems. The natural symmetry of planar electro-
chemical cells implies that averaging in the electrode/membrane-parallel directions is appropriate,
yielding a smooth, 1D representation of the concentration and electric potential fields [45,47].
Averaging in time may also be performed for practical systems operating in a stationary state.
This smooth and lower-dimensional representation alone—not the detailed fluctuations contained
in the unsteady, chaotic 3D solution—is sufficient to compute the desired mean quantities. Second,
a demonstrably accurate model for chaotic electroconvection exists in the form of the Poisson–
Nernst–Planck–Stokes equations, but determination of mean quantities through this route requires
expensive DNS.

Prior work has not yet yielded a method for direct computation of the mean fields without
the need for DNS. Cai and coauthors utilized deep learning to demonstrate a data-assimilation
framework for nonchaotic electroconvection, but their primary goal was prediction of the full elec-
troconvection fields based on partial measurements of one of the fields [68]. In a recent work, Guan
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and coauthors developed a sparse nonlinear model for chaotic electroconvection during unipolar
charge injection in EHD, wherein a regression–based method is used to predict the nonlinear
evolution of the coherent structures associated with the first few proper-orthogonal-decomposition
(POD) modes of the charge density fields [69]. By enforcing phase-space symmetries of the POD
coefficients as part of the regression, the authors find agreement between the sparse nonlinear
model and POD analysis of the DNS results. Though it is conceivable to apply the same method to
electrokinetic flows, it is unclear how many modes are required to accurately represent quantities
like the current density. Additionally, whereas Guan and coauthors seek to reproduce the chaotic
dynamics accurately, we are chiefly motivated to determine the time- and space-averaged averaged
effects of the underlying chaotic dynamics. Thus, we now introduce the methodology used in this
work to enable direct computation of the mean fields.

Since the techniques used in this work are drawn from a different field of study, we briefly
introduce an analogous problem in which a similar dilemma appears—scalar mixing in turbulent
flows [70]. At high Reynolds numbers, the Navier–Stokes equations admit chaotic solutions in
which velocity fields exhibit spatiotemporal fluctuations with broadband spectra. Fine-scale eddies
are responsible for mixing solute dissolved in the fluid, but the mean velocity and concentration
fields are of considerable interest in practical applications. This gave rise to the Reynolds-averaging
procedure, whereby one may derive equations that directly govern the evolution of mean fields.
Some form of modeling is required to close the nonlinear terms in these equations, whether algebraic
in form or comprising additional transport equations. Two prior works have recognized this analogy
in the context of EHD [71] and electrokinetics [45]. In the latter, Druzgalski and co–authors
derive Reynolds-averaged analogs of the Poisson–Nernst–Planck–Stokes equations in the course of
analyzing their DNS of the system, demonstrating the presence of two unclosed terms: one resulting
from advection and the other from electromigration. In that work and in a followup [47], the authors
demonstrated that the advection-related term is dominant in the bulk—as may be intuited since
the bulk is largely electroneutral. Thus, closure of this advection term in particular appears to be a
priority.

Mani and Park introduced the macroscopic forcing method (MFM) within the context of
Reynolds-averaged Navier Stokes (RANS) modeling of turbulent transport, as a tool for the evalu-
ation of differential operators to close the averaged equations [72]. Mirroring their terminology,
we refer to the chaotically fluctuating fields as “microscopic” fields and the averaged fields as
“macroscopic” fields. A similar distinction is drawn between the microscopic and macroscopic
equations. Using MFM, it is possible to determine a macroscopic representation of transport due
to microscopic fluctuations by examining how solutions to the microscopic equations respond to
various imposed forcing terms. In the original work, Mani and Park are able to compute general
(i.e., spatiotemporally nonlocal and anisotropic) operators to close the macroscopic equations in a
number of example scalar- and momentum-transport problems. Given space-time-resolved velocity
fields, the MFM procedure may be used to determine a corresponding closure operator in the form of
an eddy diffusivity (which, in its most general form, is a tensorial kernel that captures spatiotemporal
nonlocality and anisotropy).

However, the conventional MFM procedure entails significant computational cost, since 3D DNS
results are required as inputs to the procedure. Considering that each simulation would need to be
performed with a realistic Debye length, the prospect of performing MFM on an electroconvection
system quickly becomes intractable. Therefore, as opposed to using DNS fields as inputs to the
procedure, we incorporate 3D, time-resolved velocity field measurements from particle tracking
velocimetry (PTV) experiments. The experimentally measured velocity fields are fed into a variant
of the MFM procedure referred to as the inverse macroscopic forcing method (IMFM), which is
designed to efficiently compute spatial moments of the eddy diffusivity kernel using a single forced
simulation per moment.

Thus, by combining novel computational and experimental techniques, we circumvent the
tractability problem associated with MFM and measure a closure operator for the dominant unclosed
term in the Reynolds-averaged Poisson-Nernst-Planck–Stokes equations. As we will show, transport
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due to microscopic electroconvection may be represented to leading order as a gradient-diffusion
term in the macroscopic space. Furthermore, we use our combined numerical and experimental
technique to directly measure the corresponding eddy diffusivity. Finally, we show that a posteriori
analysis of our closure operator exhibits excellent agreement with experiments.

The rest of this paper is organized as follows: In Sec. II, we introduce the general framework for
our reduced-order model. The application of Reynolds averaging to the Poisson–Nernst–Planck–
Stokes equations leads to a closure problem, but we demonstrate how one may measure the leading
order macroscopic representation of the unclosed terms: namely, as a gradient diffusion term with a
spatially varying eddy diffusivity. In Sec. III, we describe the experimental measurement of 3D,
time–resolved velocity fields using PTV. In Sec. IV, we display the measured eddy diffusivity
profiles and we demonstrate their a posteriori accuracy by performing simulations of the closed
macroscopic equations. Two approaches are shown: First, we use the exact measurements of
diffusivity profiles for the cases corresponding to experiments. Second, we propose a voltage–
dependent form that allows interpolation between the applied voltage values for which experimental
measurements are available. Finally, in Sec. V, we offer a discussion of the results and concluding
remarks.

II. MODEL FRAMEWORK

The objective of this section is developing the framework for a model to represent mean transport
due to chaotic electroconvection. Although Reynolds’s averaging is a promising approach, the
associated closure problem must be addressed. We show rigorously that the unclosed flux can be
represented to leading order as a gradient-diffusion term with a spatially varying diffusivity coeffi-
cient, and we outline a method by which this eddy diffusivity can be measured from experimental
data. This section is subdivided into two parts: The first part rigorously defines the microscopic
and macroscopic equations for electroconvection, revealing the unclosed terms in the macroscopic
equations. The second part introduces the MFM procedure and explains how velocity fields from
experiments are incorporated therein, bypassing computationally intractable steps and yielding a
measurement of the eddy diffusivity.

A. Overview of microscopic and macroscopic equations

We begin with the microscopic equations, which capture the full, space–time–resolved physics
of electroconvection at continuum scales. It is well known that the combined Poisson–Nernst–
Planck–Stokes equations can accurately model electrolyte flow and ion transport in systems with
electroconvection [20,25,26,45,47]:

∂ci

∂t
+ �∇ · �Fi = 0, (2)

�Fi = �uci − Di �∇ci − Di
zie

kBT
ci �∇φ, (3)

−ε0εr∇2φ =
∑

i

ezici, (4)

∂ �ui

∂t
= − 1

ρ
�∇p + ν∇2�u − 1

ρ

∑
i

ezici �∇φ, (5)

and

�∇ · �u = 0. (6)

Together, Eqs. (2) and (3) describe ion transport due to advection, diffusion, and electromigration
of some species i whose concentration is given by ci. Equation 3 is the Nernst–Planck flux
supplemented with an advection term. Note that Einstein’s relation has been used to write the electric
mobility μi in terms of mass diffusivity Di: μi = Dizie/kBT . Equation 4 is Poisson’s equation for the
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(a) (b)

(c)

FIG. 1. Note: Figure not drawn to scale. (a) An exploded schematic of the experimental apparatus,
showing two electrolyte reservoirs and the cation-selective membrane sandwiched between copper electrodes.
(b) An inset of the anolyte chamber, showing the volume over which PTV is performed and velocity fields
are measured in experiments. This optical measurement volume is also the domain for the computational
component of this study. (c) A representative sketch of electric potential along the red reference line shown
in panel (a), indicating potential drops that occur at various locations in the electrochemical cell. Additional
details regarding the apparatus may be found in Ref. [41].

electric potential, φ. Given the low Reynolds numbers at which electroconvection typically occurs,
Eqs. (5) and (6) are the Stokes equations for the electrolyte velocity, �u, and the hydrodynamic
pressure, p. Note the presence of an electric body force, the last term in Eq. (5). The constants Di,
zi, e, kB, T , ε0, εR, ρ, and ν, are ion mass diffusivity, ion valence, elementary charge, Boltzmann’s
constant, system temperature, vacuum permittivity, electrolyte relative permittivity, electrolyte mass
density, and electrolyte kinematic viscosity, respectively.

The conventional DNS approach would entail discretizing and solving the microsopic [Eqs. (2)
to (6)] with the appropriate boundary conditions, yielding the microscopic fields ci, φ, �u, and p.
Instead, we seek to directly predict the macroscopic fields, which are smoother and occupy a lower-
dimensional space.

Averaging is proposed as the means of analytically bridging the microscopic and macroscopic
spaces, but the specific type of averaging to be employed—spatial, temporal, or ensemble—depends
on the specific problem geometry. Therefore, we now introduce in Fig. 1 the geometry that will be
used in both the computational and experimental components of this study. The full electrochemical
cell is shown in panel (a); both the anolyte and catholyte chambers are initially filled with a
1 mmolL−1 solution of copper sulfate. Since electroconvection is only expected in the anolyte
chamber, we restrict our analysis to this region alone. Note in panel (b) the rectilinear 3D domain
with dimensions Lx, Ly, and Lz, located within the anolyte chamber and bounded below and above
by a copper electrode and cation-exchange-membrane, respectively.

The aspect ratio of the anolyte chamber shown in Fig. 1(b) ensures that assuming statistical
homogeneity in the y and z dimensions is appropriate everywhere except for a thin zone near
the edges of the chamber. This suggests that a 1D representation varying only in x is appropriate
after averaging in the other spatial dimensions. Additionally, for a fixed applied electric potential
or current, the system is expected to reach a statistically stationary state once electroconvec-
tion is established. Consequently, for some microscopic field f , we introduce the macroscopic
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field f as

f (x) = 1

T

∫ T

0

1

Lz

∫ Lz

0

1

Ly

∫ Ly

0
f (x, y, z, t )dydzdt . (7)

The averaging operation performed in Eq. (7) can be viewed as a projection from the microscopic
space inhabited by f (x, y, z, t ) to the macroscopic space inhabited by f (x). The duration of mea-
surement T must be much longer than the time scale of fluctuations in electroconvection. Similarly,
Ly and Lz must be larger than the size of vortices in the flow.

We now seek to derive a set of macroscopic analogs of Eqs. (2) to (6) that will govern the
evolution of macroscopic fields. We begin with the velocity field, immediately realizing a key
feature of working in the macroscopic space: �u = 0, which follows from continuity [Eq. (6)]
in addition to the no-penetration boundary conditions at the electrode/membrane and statistical
homogeneity/symmetry in the y and z directions. Therefore, we do not need to develop macroscopic
analogs for Eqs. (5) and (6). Treatment of the remaining equations requires the introduction of
Reynolds’ decomposition of fields into mean and fluctuating components: f ′ ≡ f − f , such that
f = f + f ′ [70]. Applying Reynolds’ decomposition and averaging to Eqs. (2) to (4), we arrive at

∂ci

∂t
+ ∂

∂x

(
−Di

∂ci

∂x
− Di

zie

kBT i
ci

∂φ

∂x

)
= − ∂

∂x

(
u′

xc′
i − Di

zie

kBT
c′

i

∂φ′

∂x

)
(8)

and

−ε0εr
∂2φ

∂x2
=

∑
i

ezici. (9)

We have used the facts that differentiation in x commutes with the averaging operation defined in
Equation 7 and that gradients in homogeneous dimensions are analytically zero for macroscopic
quantities. The unsteady term has been retained despite temporal averaging because artificial time
stepping will be used to compute the steady-state ci in Sec. IV B.

Note that Eq. (9) is expressed entirely in terms of the macroscopic variables φ and ci. Meanwhile,
two unclosed terms—the first involving (u′

xc′
i) and the second involving (c′

i∂φ′/∂x)—are present on
the right side of Eq. (8). Prior a priori analysis of the unclosed terms in Eq. (8) for a similar system
found that the first term (u′

xc′
i) is dominant except in a thin region near the membrane [45,47]. To

capture the leading-order physics, we focus our modeling efforts on the first term alone.
Physically, the first unclosed term in Eq. (8) represents the mean effect of mixing due to velocity

field fluctuations. We will continue with our analysis in the limit of vanishing Debye length,
assuming electroneutrality in regions with appreciable advective mixing. This simplification allows
analysis of species transport via a single equation governing the behavior of an electroneutral salt,
in which the only remaining terms are due to ambipolar diffusion and advection. In the next part, we
determine the advective closure operator based on this transport equation for an electroneutral salt,
and we assume that the same operator governs advective mixing for individual species in Eq. (8).

B. MFM procedure with experimentally measured velocity fields

We now outline the MFM procedure. Whereas the conventional MFM technique would require
velocity fields from 3D DNS simulations as inputs, we instead use the 3D, time–resolved velocity
fields from experiments. Such a workaround is crucial, since full microscopic simulations using an
accurate Debye length are prohibitively expensive [61].

As a first step, we reconsider Eqs. (2)–(4) in the limit of electroneutrality for a binary electrolyte,
where we may take 	izici = z+c+ + z−c− = 0. The positive and negative subscript refer to the
cation and anion, respectively. We aim to write a transport equation for c ≡ (z+c+ − z−c−)/(z+ −
z−), which is the electroneutral salt concentration. For a binary and symmetric electrolyte, the
electroneutral salt concentration is simply the arithmetic mean of the individual cation and
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anion concentrations. Furthermore, considering the electroneutrality constraint, we may write that
c = c+ = c− for a binary and symmetric electrolyte.

Utilizing the definition of c introduced above and the electroneutrality constraint, the individual
ionic transport equations may be combined to eliminate the electric potential, yielding

∂c

∂t
+ �∇ · (�uc − DA �∇c) = 0, (10)

where the ambipolar diffusivity is given generally (i.e., for binary symmetric or binary asymmetric
electrolytes) by DA ≡ (z+ − z−)D+D−/(z+D+ − z−D−). Finally, Reynolds averaging is performed
to determine the macroscopic equation

∂c

∂t
− ∂

∂x

(
DA

∂c

∂x

)
= − ∂

∂x
(u′

xc′). (11)

Under the assumption of electroneutrality, the unclosed term in Eq. (11) is identical to the unclosed
advection term appearing in Eq. (8). Therefore, we may use Eqs. (10) and (11) as the microscopic
and macroscopic equations for the MFM procedure, and the resulting closure operator is expected
to be valid for use in Eq. (8) as well.

Following Refs. [72,73], we introduce a general representation of the unclosed term in Eq. (11)
by writing

−u′
xc′(x) =

∫ Lx

0
D(x, x̃)

∂c

∂x

∣∣∣∣
x̃

dx̃. (12)

The diffusivity kernel D(x, x̃) quantifies the influence of ∂c/∂x|x̃, the macroscopic scalar gradient at
location x̃, on the closure flux at location x. We emphasize that this representation does not impose
physical constraints on the closure flux, since we have not yet specified the diffusivity kernel D.
In fact, the primary goal of the MFM method is measurement of the kernel based on the inherent
details of the microsopic fields.

Following Ref. [72], Eq. (12) can be represented using the Kramers–Moyal expansions by writing
∂c/∂x|x̃ in terms of its Taylor series expansion around x. This results in

−u′
xc′(x) = D0(x)

∂c

∂x
+ D1(x)

∂2c

∂x2
+ D2(x)

∂3c

∂x3
+ . . . , (13)

where D j (x) is the jth spatial moment of D(x, x̃) in the x̃ space, weighted by the inverse factorial
of j:

D j (x) =
∫ Lx

0

(x̃ − x) j

j!
D(x, x̃) dx̃. (14)

Within this context, characterization of the advective closure operator is reduced to quantification
of each D j . Mani and Park demonstrated that each D j may be determined through a procedure
they refer to as the Inverse Macroscopic Forcing Method (IMFM). As explained in the original
work, IMFM differs from the general MFM method insofar as its objective is to utilize a specific
forcing function to determine an individual moment of the diffusivity kernel per forced simulation,
as opposed to using a large sample of forcing functions to determine the entire kernel element by
element.

While IMFM may be used to determine an arbitrary number of the D j fields, we utilize this
technique to only compute D0(x), approximating the closure operator by only retaining the leading
order term in Eq. (13). This type of truncation yields the Boussinesq–limit eddy diffusivity, in which
D(x, x̃) is implied to be a Dirac delta function centered around x̃ = x, limiting the sensitivity of
the closure flux to local mean gradients [72]. This approximation is formally valid when there is
separation in magnitude between the macroscopic and microscopic length scales. However, our
analyses of closures in other problems suggests that even without a clear separation of scales, the
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leading order term in Eq. (13) represents the dominant portion of the total closure flux [72,74–76].
As shown in Sec. IV, the same approximation for the problem considered here leads to reasonable
predictions of system-level behavior compared to experiments.

Following the IMFM procedure [72], D0 may be determined by performing a forced simulation
of Eq. (10) using

∂c

∂t
+ �∇ · (�uc − DA �∇c) = s, (15)

where s is a forcing term that belongs to the macroscopic space: s = s. Here, s is purely a function
of x and steady in time. We take the microscopic velocity field �u to be known in advance from
experiments, as opposed to determining them through an expensive two-way coupled simulation
with the momentum equations.

The goal of IMFM is to select a forcing function s(x) such that the resulting concentration field
c will yield an average c that matches a prespecified target profile cT (x), thereby allowing for
determination of individual moments of the diffusivity kernel. For example, say one chooses cT = x
and simulates Eq. (15) using an s(x) that guarantees c = cT (x) = x. Applying Eq. (13), D0(x) is
determined by computing −u′

xc′(x) from the resulting fields. In other words, D0 = −u′
xc′(x) for

this specific forced simulation. Similarly, higher order D j may be successively computed by setting
cT (x) equal to higher order polynomials and running additional simulations.

The s required to yield a target cT (x) is given by

s = cT − c


t
+ �∇ · (�uc − DA �∇c), (16)

which is presented in the context of a temporal discretization with time step 
t . As previously
described [72], this choice of s constrains the macroscopic concentration profile while permitting
microscopic fluctuations.

Once D0(x) is determined through forced simulation of Eqs. (15) and (16) using cT = x, we are
left with a simple gradient–diffusion model for the mixing due to electroconvection, given by the
leading order term in Eq. (13). The eddy diffusivity, given by D0(x), captures the leading–order
mean effects of mixing due to chaotic velocity fields, and is a function of space that we directly
measure from a combined numerical and experimental technique. Thus, we have provided a closure
for the unclosed term in Eq. (11), and, as discussed, the same closure flux is expected to capture the
leading order effect of the unclosed advection term in Eq. (8). Recall that of the two unclosed terms
in Eq. (8), the advection term is dominant for a vast majority of the domain. Neglecting the other
unclosed term, Eq. (8) may now be written in closed form as

∂ci

∂t
+ ∂

∂x

(
−Di

∂ci

∂x
− Di

zie

kBT i
ci

∂φ

∂x

)
= − ∂

∂x

[
−D0(x)

∂ci

∂x

]
(17)

and solved in conjunction with Eq. (9).

III. EXPERIMENTAL MEASUREMENT OF VELOCITY FIELDS

The primary objective of this section is describing the experiments in which 3D, time-resolved
velocity fields are directly measured using PTV. As noted previously, these measured velocity fields
allow us to eschew a DNS of the Poisson–Nernst–Planck–Stokes equations as a precursor to the
MFM procedure, saving significantly on cost and circumventing the need to introduce artificially
thickened electric double layers or other numerical tricks. Since the experimental procedure used
here is the same as that described by Stockmeier and coauthors [40,41], we only offer a brief sketch
of the relevant details here and refer readers to the original publications for a more exhaustive
description.

An exploded view of the full eletrochemical cell is shown in Fig. 1.
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FIG. 2. Schematic of the experimental setup for stereo PTV. A laser illuminates the fluorescent tracer
particles in the measurement volume, which are recorded by a stereo camera pair. The stereo images of the
volume acquired over time are preprocessed to reduce noise and improve the visibility of particles. The spatial
boundaries of the volume are then determined in the membrane-normal direction using tomographic PIV. In
the last step, volume self–calibration is used to increase the accuracy of the calibration and to correct image
distortion due to light refraction at the surface. Additional details may be found in the work by Stockmeier
and coauthors [40,41]. Partially reprinted from Stockmeier et al., “Direct 3D observation and unraveling
of electroconvection phenomena during concentration polarization at ion-exchange membranes [40], with
permission from Elsevier.

The center cation-exchange membrane (Nafion N117, Chemours, Wilmington, Delaware, USA),
electrodes (copper, 25 mm × 75 mm × 0.5 mm), and 3D-printed housing parts form a pair of
electrochemical half-cells. Both chambers are filled with a 1 mmolL−1 solution of copper sulfate,
CuSO4, but the anolyte is seeded with inert, fluorescent polystyrene tracer particles (0.001 wt%,
3.2 µm diameter, Thermo Scientific, Waltham, MA). The Zeta potential of the tracer particles was
measured to be −14.9 µV using a Malvern Zetasizer Nano ZS (Malvern Panalytical Ltd). Due to
their charge, the particles are influenced by the electric field. However, similar to prior experimental
works [34,39], the velocity induced by electric fields is at least an order of magnitude smaller than
that due to advection.

Details about the optical measurement setup are shown in Fig. 2. A stereo microscope (SteREO
Discovery.V20, Carl Zeiss Microscopy Deutschland GmbH, Germany) with a 1× objective (Plan-
Aprochromat 1×, Carl Zeiss Microscopy Deutschland GmbH, Germany) is focused within the
optical measurement volume. A high-frequency Nd:YAG laser (532 nm, DM150, Photonics Indus-
tries International Inc.) illuminates the tracer particles, and their emitted fluorescent light is recorded
by two high-speed cameras (Phantom VEO 710L, Vision Research Inc.). At a magnification of
5.12× with a halfway-closed aperture, it is possible to record the complete membrane-to-electrode
distance. The particle tracks are processed in DaVis (version: 10.0.5.47779, LaVision GmbH,
Göttingen, Germany), resulting in a velocity field with a size of 4.9 mm×3.1 mm×0.8 mm and
128 px×80 px×21 px resolution in space, and 20 Hz in time. Examples of the tracer particle paths
and reconstructed Eulerian velocity fields are shown in Fig. 3.
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FIG. 3. Construction of 3D velocity fields from 3D particle tracks using the fine-scale reconstruction
method. The colors indicate the velocity component in membrane-normal direction. Example cases are shown
at applied DC current values of 148 µA and 400 µA, as indicated. Additional details may be found in the work
by Stockmeier and coauthors [40,41].

During each experiment, a DC current is applied to the cell and the difference in electric
potential between the electrodes is measured. Though the experiment is performed galvanostati-
cally, measurements are taken when the applied electric potential reaches a statistically stationary
state (details may be found in the original experimental work [40,41] and in other recent works
that investigate the stationary portion of chronopotentiometric measurements [77,78]). We take
the potential difference between electrodes, 
φtot, to be a time-averaged value in the stationary
state, allowing us to use a potentiostatic simulation approach in Sec. IV B. 
φtot comprises all
the contributions shown in Fig. 1(c). Meanwhile, the computational procedure will only include
the anolyte region, since electroconvection only occurs in this half of the electrochemical cell.
The potential difference across the anolyte—which we refer to simply as 
φ—may be written
as 
φ = 
φtot − ηa − ηc − 
φEDL,c1 − 
φEDL,c2 − 
φbulk, where each of these components is
shown in Fig. 1.

The overpotential η due to copper dissolution and deposition at the electrodes may be modeled
using the Butler–Volmer equation as

i = i0

[
exp

(
βe

kBT
η

)
− exp

(
(2 − β )e

kBT
η

)]
, (18)

where i is the current density, i0 is the exchange current density, and β = 0.5 is the symmetry
factor [79,80]. The mechanism shown in Eq. (18) may be adapted to both the anode and cathode,
allowing for computation of ηa and ηc based on the measured mean current density. We adopt a
value of i0 = 3.7 × 10−3 mAcm−2, based on the value measured for a copper electrode adjacent to
0.5 molL−1 copper sulfate solution [81], along with an analytical correction for the discrepancy in
electrolyte concentration [79,80].

An Ohmic model is employed for the catholyte bulk using resistivity ρbulk and length Lbulk as


φbulk = iρbulkLbulk. (19)
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Additionally, the total potential difference across both EDLs in the catholyte region is taken to
be a constant. The values of ρbulkLbulk = 8.11 × 10−2 m2 and (
φEDL,c1 + 
φEDL,c2) = 8.93 mV
are determined based on comparison to 1D simulations of the Poisson–Nernst–Planck equations in
the ohmic regime, where electroconvection is not expected and a 1D approach is justified. Thus,
these two fitting parameters allow for matching of the conductivity and open-circuit-potential in the
Ohmic regime (see the black and red curves in Fig. 11).

IV. MEASUREMENT AND EVALUATION OF EDDY DIFFUSIVITY

We remind readers that we concluded Sec. II with Eq. (17), which, in tandem with Eq. (9),
constitutes a closed system of partial differential equations for the macroscopic ci and φ fields.
We also described the procedure whereby the eddy diffusivity D0(x) may be computed using the
experimentally measured velocity fields. Consequently, this section is divided into two parts. In
the first part, we describe our implementation of the MFM procedure and display the resulting
eddy diffusivity profiles. Two approaches are shown: (i) We measure a separate eddy diffusivity
profile for each value of 
φ used in experiments. (ii) We propose a voltage-dependent profile that
allows interpolation between the cases for which experimental measurements are available. In the
second part, we evaluate a posteriori performance of the eddy diffusivity by directly solving the
macroscopic equations for the mean fields and current density and comparing the results against
experiments.

A. Measurement of eddy diffusivity

As described previously, measurement of D0 requires numerical solution of Eqs. (15) and (16)
with the target mean concentration profile given by cT = x. The computational domain corresponds
to the optical measurement volume shown in Fig. 1, which is a 3D, rectangular subregion of the
anolyte chamber.

Generally, boundary conditions for c in the forced microscopic simulation should be consistent
with the target profile cT. Therefore, Dirichlet conditions are used in x, corresponding to the linear
profile given by cT = x. We exploit homogeneity in y and in z by choosing periodic boundary
conditions in those dimensions. Strictly speaking, the experimentally measured velocity fields are
not instantaneously periodic in the y and z dimensions, thereby inducing errors when periodic
boundary conditions are used for the microscopic salt concentration field. However, we expect
these errors to be confined to the near-boundary regions. Thus, the y and z averaging performed
to compute D0(x) = −(u′

xc′) will mitigate the influence thereof.
Note that the cell thickness Lx varies slightly from case to case due to changes in the experimental

setup. Though we target Lx = 800 µm for each experiment, the cell assembly procedure does not
guarantee enough precision to use the nominal value of Lx in the MFM procedure. Since the
optical measurement and reconstruction procedure allows for measurement of the actual Lx for each
experiment, we use the measured Lx value for each applied electric potential, as detailed in Table I.

TABLE I. Value of domain length, Lx , for each experimental case. Variation occurs due to imprecision in
the cell construction process.


φ Lx

0.5347 V 729 µm
0.5572 V 614 µm
0.6343 V 614 µm
1.3341 V 614 µm
2.1051 V 729 µm
2.6134 V 729 µm
3.6780 V 803 µm
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TABLE II. Values of physical constants used in the MFM procedure and in the subsequent simulation of
the closed macroscopic equations.

Constant Species Value Source

Di Cu2+ 0.714 × 10−9 m2s−1 [82]
SO2−

4 1.065×10−9 m2s−1 [82]
zi Cu2+ +2 —

SO2−
4 −2 —

DA — 0.855×10−9 m2s−1 —
e — 1.602 × 10−19 C [82]
kB — 1.380 × 10−23 J K−1 [82]
T — 300 K —
ε0 — 8.85 × 10−12 Fm−1 [82]
εr — 80 [82]

Additionally, since the cation-selective membrane is not rigid, local pressure fluctuations may
induce deformations in its shape. As a result, some points in space may be intermittently occupied
by the membrane itself, leading to intermittency in the velocity measurements at those points. We
neglect data at points for which velocity measurements are intermittent. Instead, we use linear
interpolation between the adjacent boundary (where velocity is zero due to the no-slip condition)
and the closest point in the domain that has velocity data available for every point in time.

The MFM procedure must be performed with sufficient spatial resolution to capture thin features
that develop in the salt concentration field. Thus, each measured velocity field is linearly interpolated
onto a staggered mesh with size 84 × 128 × 128. Furthermore, the mesh is nonuniform with
exponential refinement near the electrode and membrane interfaces. A standard projection method
is used to ensure that the spatially interpolated velocity fields are divergence–free, such that they
obey hydrodynamic mass conservation. Finally, since the time step 
t = 2 × 10−3 s is smaller than
the interval between velocity field measurements, inter–measurement velocity fields are computed
using linear interpolation.

Second–order central differences are used in space and a forward-Euler scheme is used to
advance in time. The resulting concentration field is used to compute D0(x) = −(u′

xc′). Since
the initial condition for c is a uniform concentration, early time results are subject to transient
phenomena that may contaminate the eddy diffusivity. We found that 5 s is sufficient for transients to
dissipate; only data from after this time are used to compute D0(x). The values of physical constants
used in all simulations are shown in Table II.

The measured eddy diffusivity profiles are shown in Fig. 4, where each curve corresponds
to a single experiment conducted at a fixed mean applied electric potential. The profiles have
been normalized by the ambipolar diffusivity, demonstrating that electroconvection may effectively
enhance transport by over an order of magnitude in comparison to the diffusion of an electroneutral
salt. Larger 
φ values are associated with further enhancements in effective transport. Additionally,
the profiles are asymmetric, exhibiting a global maximum that is closer to the cation-selective
membrane than the anode. The eddy diffusivity’s dependence on 
φ and its spatial asymmetry
corroborate the findings of several prior studies demonstrating that stronger advection is present at
larger applied electric potentials, and that vortical structures in the flow tend to be concentrated near
the ion-selective membrane.

The intuitive connection between scalar mixing and the eddy diffusivity is seen through exami-
nation of the instantaneous salt concentration fields in Fig. 5. These are not the c fields computed
via Eq. (15) as part of the MFM procedure. Rather, we show the unforced fields from simulation of
a passive scalar [Eq. (10)] in order to exemplify the correspondence between the eddy diffusivity
and the unaltered system for which the eddy diffusivity is measured.
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FIG. 4. Eddy diffusivity profiles for different applied potentials, normalized by the ambipolar diffusivity
for copper sulfate. The subscript 
φ in D0


φ (x) signifies that each profile is only valid for the specific 
φ value
corresponding to the experiment in which velocity fields were measured for that case.

Without electroconvection, the instantaneous salt concentration profiles are expected to be purely
1D, varying only in x. All cases shown in Fig. 5 contain variations in y (and in z, though not
displayed here), which develop when the electrolyte is mixed by advection. Electroconvection first

x

y

(b)( )c()a (d)

Low High

FIG. 5. Instantaneous salt concentration fields computed via Eq. (10) for (a) 
φ = 0.5347, (b) 
φ =
0.6343, (c) 
φ = 2.1051, and (d) 
φ = 3.6780. These are not the c fields computed via Eq. (15) as part of
the MFM procedure. Rather, we show the unforced fields in order to develop an intuitive connection between
the eddy diffusivity and the unaltered system for which the eddy diffusivity is measured.
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(b)(a)

FIG. 6. Analysis of the shape and the magnitude of the eddy diffusivity profiles measured at different
applied electric potentials. (a) xmax, the location of the maximum value of D0


φ (x). The mean is shown with and
without the last point, since the diffusivity profile corresponding to that case is qualitatively different from the
other cases due to the effects of confinement. (b) The maximum value of D0


φ (x) for different 
φ. Also shown
is a linear fit based on least–squares regression.

develops at the electrolyte-membrane interface, which occurs at the right side of each panel in
Fig. 5. As 
φ is increased, the perturbations in the concentration fields become stronger, extending
further from the membrane. Figure 5(c) in particular exhibits mushroom-like structures, which are
indicative of vortical flow penetrating deep into the electrolyte. Additionally, the higher 
φ cases
are associated with thinner features in the concentration fields, which are more prone to mixing
via molecular diffusion. Thus, the enhancement in mixing captured by the eddy diffusivity may be
attributed to both (i) the direct stirring of the electrolyte by velocity fields and (ii) the subsequent
molecular diffusion of thin features that form when the electrolyte is stirred.

As structures in the velocity and concentration fields grow in size, they may be increasingly
influenced by confinement due to the anode and its no–slip condition at the left side of the
domain. This effect is seen in Fig. 5(d), the highest 
φ case. The fine-scale structures in Fig. 5(d)
signify a flow field that contains multiple vortices with varying sizes. However, the x extent of the
domain is no longer large enough to contain the largest vortices that would be present were the
equations solved in a semi-infinite domain. This offers an explanation for the qualitative difference
between the eddy diffusivity for the largest 
φ case and for the other profiles in Fig. 4.

We refer to the set of profiles shown in Fig. 4 as D0

φ (x), where the subscript signifies that each

profile is only valid at a specific 
φ value corresponding to the experiment in which velocity fields
were measured for that case. We now consider one approach to construct an eddy diffusivity profile
that will be valid for intermediate values of applied electric potential. We refer to this second notion
of eddy diffusivity as D0(x,
φ), signifying that it should be a continuous function of the applied
electric potential. First, note that all the profiles shown in Fig. 4 contain a global maximum. We
define xmax as the location of this maximum value for each case. As shown in Fig. 6, xmax does not
vary significantly from case to case, with the exception of the largest 
φ. We display the mean value
of xmax with and without the largest 
φ case, since the largest case exhibits a significant qualitative
difference from the other cases due to the effects of confinement. The maximum value of D0


φ (x) is
shown in Fig. 6(b). In this work, we compute a linear fit using the least squares method, resulting in
max(D0


φ/DA) = α
φ + γ with α = 17.82 V−1 and γ = −9.87.
Note that the critical 
φcr for onset of electroconvection occurs when α
φcr + γ = 0, yielding


φcr = 0.55 V. This prediction agrees well with prior experimental, theoretical, and computational
predictions of the critical applied potential for the onset of eletroconvection [26,40,45]. Further-
more, the linear form chosen here naturally guarantees that max(D0


φ/DA) is precisely zero for

φ = 
φcr and positive for 
φ > 
φcr.
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FIG. 7. Each of the D0

φ profiles has been scaled by α
φ + γ , where α and γ are found from a linear fit of

the maximum of D0

φ as a function of 
φ. We may construct a voltage–dependent form of the eddy diffusivity

by selecting one of these profiles as the reference profile D0
ref, indicated here as black dashed curve.

Based on the observations in Fig. 6, we construct a simple voltage–dependent form for the eddy
diffusivity. We begin by attempting to collapse the diffusivity profiles for different applied electric
potentials. In Fig. 7, we display the results of scaling each diffusivity profile by α
φ + γ . The
qualitative similarity of the different profiles and tight variation in xmax (for all cases except the
largest applied potential) suggest that we may model the scaled diffusivity profiles using a common
reference profile. In this work, we simply select D0


φ/(α
φ + γ ) for the case of 
φ = 2.6134 V
as the reference profile (shown as a dashed black line in Fig. 7, denoted D0

ref). Note that in Fig. 6(a),
the shape of the profile for this case is such that the location of the maximum (xmax) falls closest to
the average for all cases excluding the largest 
φ.

Thus, we can write an eddy diffusivity with analytically prescribed dependence on 
φ that is
valid for all overlimiting applied potential values. We write

D0(x,
φ) = (α
φ + γ )D0
ref(x), (20)

which is valid for 
φ � 
φcr. No supplementary eddy diffusivity is required for underlimiting and
limiting applied electric potentials (i.e., 
φ < 
φcr).

B. One-dimensional simulations with eddy diffusivity

Finally, we present a realistic, “a posteriori” evaluation of how well the measured 1D eddy
diffusivity profiles capture the macroscopic transport effects of chaotic, 3D electroconvection and
thereby enable accurate prediction of system performance without expensive 3D DNS. We begin by
recapitulating the macroscopic ion transport equations, which we present here in their fully closed
form:

∂ci

∂t
= ∂

∂x

{
[Di + D0(x)]

∂ci

∂x
+ Di

zie

kBT
ci

∂φ

∂x

}
(21)

and

−ε0εr
∂2φ

∂x2
=

∑
i

ezici. (22)
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Equations (21) and (22) are simply the Reynolds-averaged Poisson-Nernst-Planck equations, in
which the advective closure flux is modeled using D0. We concluded the previous section with two
versions of the eddy diffusivity: D0


φ (x) is measured exactly at each corresponding 
φ value that
was applied in the experiment, while D0(x,
φ) is a fitted profile. We asses the performance of each
option in turn. Regardless of which form of the eddy diffusivity is used in place of D0(x) in Eq. (21),
the additional cost of including D0(x) in Eqs. (21) and (22) is negligible, allowing time–to–solution
of seconds or minutes on desktop computers.

We now describe the boundary conditions and initial condition for Eqs. (21) and (22). An
electrode is present at x = 0, where the no-flux condition is applied for SO2−

4 and a Dirichlet
condition is applied for Cu2+. Meanwhile, the electric potential at the electrode is assigned a
reference value of zero:{

−[Di + D0(x)]
∂ci

∂x
− Di

zie

kBT
ci

∂φ

∂x

}∣∣∣∣∣
x=0

= 0 for i = SO2−
4 , (23a)

ci(x = 0) = cE for i = Cu2+, (23b)

φ(x = 0) = 0. (23c)

We use a value of cE = 1 mmolL−1 in Eq. (23). An electric double layer is expected to form at
the electrode, in which SO2−

4 ions accumulate and Cu2+ ions are depleted. Though the choice of
cE affects the concentration profiles inside this EDL, we have confirmed that concentration and
electric potential profiles outside of the EDL are not affected by the specific choice of cE , as long
as cE is smaller than the Cu2+ concentration just outside the EDL. Examination of Fig. 8(a) permits
after-the-fact confirmation that our choice of cE = 1 mmolL−1 satisfies this condition. Additionally,
we have confirmed that the influence of variation in cE on the current-voltage curve is negligible:
changing cE by an order of magnitude leads to 0.2% variation in the simulated current density).

The cation–selective membrane is present at x = Lx. A no-flux condition is applied to SO2−
4 ions,

representing perfect co-ion exclusion. Meanwhile, a Dirichlet condition is applied for Cu2+ ions and
for the electric potential:{

−[Di + D0(x)]
∂ci

∂x
− Di

zie

kBT
ci

∂φ

∂x

}∣∣∣∣∣
x=Lx

= 0 for i = SO2−
4 , (24a)

ci(x = Lx ) = cM for i = Cu2+, (24b)

φ(x = Lx ) = −
φ. (24c)

The boundary conditions in Eq. (24) are asymptotically valid for a cation–selective membrane,
provided cM is larger than the bulk electrolyte concentration [26]. Dependence on cM has been
shown to be practically nonexistent in prior high–fidelity simulations [44]. In this work, we select a
value of cM = 2 mmolL−1.

At t = 0 in all simulations, the ion concentration throughout the domain is fixed at

ci(t = 0) = 1 mmolL−3, (25)

and the electric potential is taken to have a linear profile between the boundary condition values.
The simulation is time-advanced until steady state, and the values of all physical constants used in
these simulations can be found in Table II. We use second-order central differences in space and a
second-order implicit scheme in time [45].

We begin by examining results obtained using the measured D0

φ profiles. The resulting mean

concentration and electric potential profiles are shown in Fig. 8. Mean Cu2+ concentration is shown
as a solid line, while mean SO2−

4 concentration is shown as a dashed line. In Fig. 8(a), a linear
profile is seen for lower applied potentials, and an inflection point develops as applied potential is
increased and electroconvection becomes stronger. On average, electroconvection helps transport
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(b)(a)

(d)(c)

FIG. 8. Mean concentration and electric potential profiles computed directly from the closed macroscopic
equations using D0


φ . Mean Cu2+ concentration is shown as a solid line, while mean SO2−
4 concentration is

shown as a dashed line. Electric potential is shown as a solid line. (a) A view of the entire domain. Due to
electroneutrality throughout most of the domain, the two species’ concentration curves are indistinguishable.
(b) A zoomed-in view of the near-membrane region, highlighting the double layer and extended space charge
regions. (c) Electric potential, over the entire domain. (d) Electric potential in the near-membrane region.

ions from the electrode toward the membrane, as evidenced by the enhanced ion concentration on
the right side of the domain and reduced concentrations on the left for larger values of 
φ. The
cation and anion curves are visibly indistinguishable in panel (a), since the electrolyte is largely
electroneutral outside of the thin double layers. We do, indeed, resolve the EDLs, as shown in
Fig. 8(b). Furthermore, an ESC region is clearly visible here for all cases. The mean electric potential
profiles are shown in Figs. 8(c) and 8(d), demonstrating that a significant portion of the potential
drop occurs in the near–membrane region—in the ESC and EDL layers specifically, which suffer
from lower conductivity due to relative ion depletion.

We now wish to determine the extent to which the features described above are a direct
consequence of the measured eddy diffusivity profiles. In Fig. 9(a), we solve the macroscopic
equations [Eqs. (21) and (22)] without including any kind of eddy diffusivity (i.e., by setting
D0 = 0), to demonstrate the consequences of neglecting the unclosed fluxes entirely. In the absence
of any representation of mixing due to electroconvection, the concentration profiles remain linear
in the electroneutral bulk. This behavior is expected based on analysis of Eqs. (21) and (22) in the
limit of quasielectroneutrality, where the method of matched asymptotic expansions may be used
to determine an “outer solution” that is valid outside of the EDL and ESC zones [24]. The contrast
between Figs. 9(a) and 8(a) demonstrates that inclusion of the eddy diffusivity plays a dominant
role in the system’s dynamics.

023701-18



MEASUREMENT OF AN EDDY DIFFUSIVITY FOR …

(b)(a)

FIG. 9. (a) Mean electroneutral salt concentration computed using the standard 1D Poisson–Nernst–Planck
equations in the absence of D0. Without the representation of mixing due to microscopic vortices, the profiles
remain linear. (b) Mean electroneutral salt concentration computed via two different methods. The direct 1D
simulations of Eqs. (21) and (22) using D0


φ are shown as solid curves. The dashed curves are computed via y,
z, and t averaging applied to the fields resulting from 3D simulation of Eq. (10), in which the measured velocity
fields mix the electroneutral salt. Quantitative agreement demonstrates that the leading order eddy diffusivity
is capable of capturing the macroscopic transport effects of electroconvection.

To assess how accurately the eddy diffusivity serves as a macroscopic representation of mi-
croscopic mixing, we may directly compare the mean profiles generated via the macroscopic and
microscopic routes. In Fig. 9(b), the mean profiles computed directly by solving the macroscopic
equations using D0


φ are shown as solid curves. Alternatively, we may compute the mean profiles
by first solving an equation for instantaneous 3D (microscopic) transport of an electroneutral salt
via Eq. (10) (as was performed to show the concentration profiles in Fig. 5) and then performing
averages in y, z, and t . The results of the latter approach are shown as dashed curves in Fig. 9(b),
exhibiting good agreement with the directly computed 1D results. Discrepancies between the two
approaches can be attributed to the fact that we have only retained the leading order term in Eq. (13)
for our eddy diffusivity model. As seen, however, the leading order term alone is sufficient to
provide accurate mean concentration profiles across a wide range of applied electric potential in
the overlimiting regime.

Starting from the macroscopic ionic concentration and electric potential profiles shown in Fig. 8,
we may build a more detailed understanding of transport by examining the influence of the flux
terms in Eq. (21), the macroscopic species transport equation. Each term is plotted in a panel of
Fig. 10, where a positive flux corresponds to transport in the positive x direction (i.e., aligned with
the electric field). We have verified that a summation of the individual flux terms yields a constant
total flux across the entire domain for the cation and zero total flux across the entire domain for
the anion, as expected at equilibrium for every case given the boundary conditions in Eqs. (23) and
(24).

At low applied electric potentials, the advective closure flux is negligible while the diffusion and
electromigration fluxes are dominant and of similar order to each other. The two dominant fluxes
sum together to produce a finite flux for cations, while they cancel out to produce zero–flux for the
anions (due to a sign difference in the electromigration term between the cation and the anion). At
high applied electric potentials, the diffusion flux is negligible compared to the advective closure and
electromigration fluxes, providing additional evidence that the advective closure plays a dominant
role in the macroscopic physics. The interaction of the dominant fluxes is similar to the previously
described case: the dominant fluxes sum to a finite flux for cations and zero-flux for anions.

Next, we compute the mean current density for each D0

φ and compare the resulting j-V curve

against that measured in experiments. Since Fig. 10 indicates that all current is carried by cations,
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(a) (b) (c)

(d) (e) (f)

FIG. 10. Contributions of individual terms to the overall ionic flux in the electroneutral bulk region.
Panels (a–c) are the diffusion flux, electromigration flux, and advective closure flux, respectively, for Cu2+.
Panels (d–f) are the diffusion flux, electromigration flux, and advective closure flux, respectively, for SO2−

4 .
Electromigration and diffusion are the dominant terms throughout most of the electroneutral bulk region at
lower applied electric potentials, while electromigration and the advective closure flux are the dominant terms
at higher applied electric potentials.

we may write the current density as

j = z+eF

{
−[D+ + D0(x)]

∂c+
∂x

− Di
z+e

kBT
c+

∂φ

∂x

}
, (26)

which may be evaluated at any point in space since the total flux is constant. F is Faraday’s constant.
The result is shown in Fig. 11(a). The standard 1D Poisson–Nernst–Planck equations (dash-dot red

FIG. 11. Mean current-voltage curves produced using the eddy diffusivity. In both panels, results of the
standard 1D Poisson–Nernst–Planck equations are shown as dash-dot red curves, and the experiment points are
shown using black squares. (a) The current density computed using each of the directly measured diffusivity
profiles D0


φ is shown as a blue circle. The dashed curves correspond to j-V sweeps in which the same eddy
diffusivity profile was used for the entire range of applied electric potentials. (b) The j-V curves computed
using the 
φ-dependent diffusivity profiles, D0(x,
φ), for a range of Lx values.
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curve) compare well to experiments (solid black curve) in the under-limiting and limiting regimes.
As soon as electroconvection begins, however, utilization of the eddy diffusivity is necessary and
produces remarkable quantitative agreement with the experiments (solid blue curve versus solid
black curve).

The dashed curves in Fig. 11(a) are j-V sweeps that were performed with a fixed D0

φ profile

throughout each sweep, corresponding to the 
φ shown in the colorbar. The dashed curves reveal a
broad limiting region for each eddy diffusivity profile, over which variation in applied voltage leads
to small changes in the measured current. Therefore, errors in the potential-correction procedure
described in Sec. III are not expected to significantly alter the results. Modification of parameters
like β, i0, or ρbulkLbulk will in turn modify the 
φ that must be used in a posteriori simulations, but
changes in 
φ ultimately lead to minimal changes in the measured current density.

Finally, we demonstrate usage of the semianalytically fitted 
φ-dependent diffusivity profile
given by D0(x,
φ) in Eq. (20). Since the mean concentration and electric potential profiles
computed using D0(x,
φ) are qualitatively very similar to those shown in Fig. 8, we reserve
discussion of the mean profiles for the Appendix. Instead, we will proceed directly to discussion
of j-V curves that are produced using this form of the eddy diffusivity.

The main benefit of using D0(x,
φ) in place of D0

φ is the ability to produce j-V curves that

are smooth functions of the applied electric potential. However, comparison with the experiments
(which were conducted at discrete values of the applied electric potential) is complicated by the
presence of experimental errors: since the parameter Lx varies from case to case due to imprecision
in the experimental setup, the value of Lx for intermediate applied potentials is not well defined.
To allow a reasonable comparison, we consider a range of Lx values between 600 µm and 800 µm.
One j-V curve is produced for each choice of Lx, as shown in Fig. 11(b), exhibiting good agreement
between the model and experiments. The j-V curves produced using D0(x,
φ) exhibit a noticeable
downward–concavity for all choices of Lx, particularly for low-overlimiting applied potentials. The
curves gradually approach linear behavior at larger 
φ values. This result is qualitatively similar to
Druzgalski and coauthors’ DNS of chaotic electroconvection [45], though quantitative agreement
is prohibited by differences in the values of nondimensional parameters between the two works
(particularly since the ions in this work are divalent).

V. DISCUSSION AND CONCLUSION

The motivation for this work lay in the observation that mean concentration and electric potential
fields are sufficient to determine the power usage and ion exchange rate for the practical design of
systems that exhibit electroconvection, despite the presence of chaotic spatiotemporal fluctuations
at much smaller scales. We utilized this observation as the guiding principle for our model reduction
approach, but the application of Reynolds-averaging to the microscopic equations leads to a closure
problem that must be addressed before the macroscopic system can be solved. The MFM procedure
allowed us to develop a leading order representation of the dominant unclosed flux, revealing a
simple gradient–diffusion operator. Furthermore, we measured the corresponding eddy diffusivity
from experiments by inserting experimental velocity fields into the MFM procedure, circumventing
the need for prohibitively expensive DNS–derived velocity fields. We found that 1D simulations
using the measured eddy diffusivity produce current–voltage curves that agree quantitatively with
experiments.

There are three limitations of this work that are worth briefly discussing. First, the utilization
of averaging as an avenue for model-reduction leads to strong dependence on the geometry of
the cell in which electroconvection occurs. For example, in a simple planar geometry operating
in a stationary state, a 1D and steady representation is wholly appropriate. However, membrane
heterogeneity in the y and z directions (an area of recent interest [49–52,62]) would complicate the
reduction of those dimensions. Consider the worst–case scenario, in which some electrochemical
system lacks homogeneity in all three spatial dimensions and is operating in an unsteady (i.e.,
pulsed, for example) fashion. In this case, only ensemble averaging may be performed. Though
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the number of dimensions has not been reduced, the solution may be represented more coarsely
in time and space since ensemble averaging will still eliminate fine-scale structures. Ultimately,
however, the eddy diffusivity computed using our method is still geometrically contingent on the
original problem setup. Future researchers who seek to develop a stand-alone reduced-order model
for electroconvection may use our diffusivity profiles as a benchmark for their work.

Second, though there were two unclosed terms in Eq. (8), we only developed a closure model for
the dominant term while neglecting the other. Our results indicate that this approach is sufficient to
achieve quantitative agreement with the experiments. Nonetheless, the determination of a closure
model for the lesser of the unclosed terms in Eq. (8) may be worthy of additional consideration
in some circumstances. As was the case for the error induced by working with the electroneutral
salt transport equation instead of individual ionic transport equations, we expect the error due
to neglecting the second unclosed term to be dependent on the Debye length. As such, these
effects may become important in situations where the double layers are relatively thick and regions
featuring strong advection also exhibit appreciable nonelectroneutrality.

Third, recall that the utilization of experimental velocity fields is central to this work. Though
the incorporation of experimental data into a largely computational technique allowed us to bypass
expensive DNS of the full Poisson–Nernst–Planck–Stokes equations, the purely computational
approach would be free of the sources of error in experiments—e.g., variation of the domain
size from case to case and deformation of the membrane during each experiment. Thus, a purely
computational approach may allow for a more precise determination of the correct reference
diffusivity profile D0

ref for use in D0(x,
φ). Additionally, while we have used a simple linear fit
to describe how the magnitude of the eddy diffusivity varies with the applied electric potential,
performing the purely computational MFM procedure for a large number of 
φ values may reveal
a more complicated relationship.

The physical insight demonstrated in this work—namely, a quantitative demonstration that the
macroscopic effects of microscopic mixing may be represented as an effective diffusion process—
brings new insight to the study of electroconvection, since such an approach has not been used
before to develop a reduced-order model in this field. We’ve also demonstrated a methodological
innovation, wherein components of a chiefly computational procedure were replaced with data from
experiments, allowing us to directly measure the closure operator associated with experimental
velocity fields. Such a technique may be applied to other geometries in which electroconvection
occurs, and to problems other than electroconvection, in which a macroscopic representation of
mixing due to chaotic, fine-scale velocity fields is desired.
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APPENDIX: MACROSCOPIC CONCENTRATION AND ELECTRIC POTENTIAL PROFILES
COMPUTED USING D0(x, �φ)

In this Appendix, we briefly discuss the macroscopic concentration and electric potential profiles
shown in Fig. 12, which are computed using D0(x,
φ). Profiles are displayed for each applied
electric potential value that was probed in the experiments. The value of Lx used for each simulation
matches the value measured in experiments, as shown in Table I. Generally, we observe qualitative
similarity to the results shown in Fig. 8, which were computed using D0


φ . Closer examination
reveals quantitative differences, particularly for the largest value of applied electric potential.
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(b)(a)

(d)(c)

FIG. 12. Mean concentration and electric potential profiles computed directly from the closed macroscopic
equations using D0(x,
φ). Mean Cu2+ concentration is shown as a solid line, while mean SO2−

4 concentration
is shown as a dashed line. Electric potential is shown as a solid line. (a) A view of the entire domain. Due to
electroneutrality throughout most of the domain, the two species’ concentration curves are indistinguishable.
(b) A zoomed-in view of the near-membrane region, highlighting the double layer and extended space charge
regions. (c) Electric potential, over the entire domain. (d) Electric potential in the near-membrane region.

Recall that the diffusivity profile measured for the case of 
φ = 3.6780 V bears significant
qualitative differences compared to the other cases, as is evident from Figs. 4, 6, and 7. Though the
maximum value generally follows the linear trend with respect to 
φ, the location of the maximum
value is much closer to the center of the domain than in all the other cases. Examination of Fig. 5
revealed that this case is affected by confinement, since vortical structures in the flow have grown
large enough to interact with the no-slip electrode at x = 0.

Because of the way D0(x,
φ) is computed [linear extrapolation in 
φ starting at an interme-
diate value, as shown in Eq. (20)], the profile given by D0(x,
φ = 3.6780 V) is not affected by
confinement—its shape remains similar to that of the other profiles, with a maximum value that is
located closer to the membrane than to the electrode. Furthermore, as a result of the 
φ–dependent
eddy diffusivity’s smooth and monotonic variation in 
φ, the macroscopic concentration profiles
computed using D0(x,
φ) also exhibit smooth, monotonic variation with respect to 
φ. This can
be seen by comparing Figs. 8(a) and 8(b) to Figs. 12(a) and 12(b), specifically examining the
concentration profile for the largest applied electric potential.

We note, however, that results generated using D0(x,
φ) may not be accurate for the largest
value of 
φ, precisely because they do not account for confinement. Confinement is expected to
occur and must be accounted for once coherent structures associated with the velocity field are
large enough to interact with the no-slip boundary condition at the electrode. The large qualitative
difference in the measured diffusivity profile for the largest applied electric potential is the measured
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effect of confinement at the electrode, which leads to a differently shaped diffusivity profile and
invalidates usage of D0(x,
φ). For intermediate 
φ values, however, D0(x,
φ) is still expected
to produce accurate results.
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