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Understanding the behavior of the kinetic energy spectrum and flux in two-dimensional
(2D) turbulent thermal convection remains a challenge. In this paper, using high-
resolution direct numerical simulation of Rayleigh-Bénard convection for Rayleigh
numbers 1011–1014 and unit Prandtl number, we show that 2D turbulent convection exhibits
Bolgiano-Obukhov scaling. At small wave numbers, where buoyancy feeds energy to the
velocity field, kinetic energy exhibits inverse cascade. Consequently, the kinetic energy
spectrum scales as k−11/5 and the kinetic energy flux shows k−4/5 scaling at small wave
numbers. Buoyancy is weakened at large wave numbers, and this leads to a constant en-
strophy cascade and k−3 kinetic energy spectrum, similar to 2D hydrodynamic turbulence.
However, the entropy spectrum exhibits a bispectrum with the upper branch varying as
k−2. We also observe constant entropy flux in the inertial range. Finally, we also draw a
connection between the entropy flux in the dissipation range and the entropy dissipation
rate in the bulk.

DOI: 10.1103/PhysRevFluids.9.023502

I. INTRODUCTION

Thermal convection is a widely encountered phenomenon in nature. The physics of convective
flows is studied using the Rayleigh-Bénard setup, where a fluid is confined between a pair of parallel
horizontal plates. The bottom plate is heated and the top plate is cooled. So the lighter hot fluid rises
due to buoyancy while the heavier cold fluid falls [1–3]. Our understanding of the physics of thermal
convection has grown steadily over the years [4–7]. However, the behavior of convective flows at
very high Rayleigh numbers remains a subject of active research.

The strength of the convective flow is proportional to buoyancy forcing and inversely propor-
tional to the dissipation in the fluid. The nondimensional parameter Rayleigh number (Ra) is used
to denote the ratio between these counteracting forces. Consequently, high Ra convection is more
turbulent and complex. The Prandtl number (Pr) is another parameter which represents the ratio of
kinematic and thermal diffusivities. In the present study, we focus mainly on the effects of buoyancy
at large Ra ranging from 1011 to 1014, and we keep the value of Pr fixed at 1.

Understanding the nature of turbulent thermal convection and its energy transfers has been
a challenge. Some researchers claim that thermal convection exhibits Bolgiano-Obukhov [8,9]
(BO) phenomenology. Procaccia and Zeitak [10], L’vov [11] made early theoretical arguments
for BO scaling in thermal convection. Subsequently, Yakhot [12] employed third-order ve-
locity structure functions to predict BO scaling in Rayleigh-Bénard convection (RBC). Many
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numerical and experimental works also reported the presence of BO scaling in thermal con-
vection [13–18]. However, more recent works argue in favor of Kolmogorov-Obukhov [19]
(KO) scaling in RBC [7,20–23]. Mishra and Verma [20] performed pseudospectral simulations
of RBC and reported KO scaling for low and intermediate Prandtl numbers. Moreover, Bhat-
tacharya et al. [22] demonstrated the similarities in structure functions of thermal convection
and hydrodynamic turbulence to further bolster the arguments in support of KO scaling in
RBC.

Numerous works have confirmed the predictions of BO phenomenology in stably stratified
turbulence [21,24–26]. Kumar and Verma [25] and Alam et al. [26] used shell-model analysis to
show that BO scaling holds for stable stratification. Moreover, Bhattacharjee [27] used a global
energy balance analysis to further bolster the arguments of BO theory. Rosenberg et al. [28]
performed high-resolution DNS of rotating turbulence with stratification and obtained spectra that
agree with BO scaling. More recently, Basu and Bhattacharjee [29] showed that the BO regime is
most prominent for moderate stratification as compared to weak or strong stratification. It was also
shown by Bhattacharjee et al. [30] that the BO scaling observed in stably stratified fluids arises from
the scale invariance of thermal flux.

Kumar et al. [21] and Verma et al. [7] showed that in 3D RBC, thermal plumes drive the velocity
field, and as a result, the kinetic energy flux cannot decrease with increasing wave number. They also
showed that for Pr � 1, plumes primarily force the large-scale structures. Based on these arguments
and detailed numerical simulations, they arrived at the conclusion that 3D RBC exhibits a k−5/3

kinetic energy spectrum and constant kinetic energy flux.
Note, however, that in two dimensions, hydrodynamic turbulence displays an altogether different

behavior. At small wave numbers, 2D hydrodynamics exhibit inverse cascade of kinetic energy.
Two-dimensional hydrodynamic turbulence forced at intermediate scale exhibits constant energy
flux and a k−5/3 energy spectrum. However, 2D turbulent convection is forced at all scales by
buoyancy. This forcing creates variations in the energy flux with wave number and deviation of
the energy spectrum from k−5/3 to k−11/5. This is the basic theme of our paper. Building upon the
presence of inverse energy cascade, Verma [3] argued that the magnitude of kinetic energy flux will
increase as we move towards smaller wave numbers. Hence we may expect |�u(k)| ∼ k−4/5, as was
predicted by Bolgiano [8] and Obukhov [9]. Consequently, one may expect Bolgiano-Obukhov
scaling in 2D RBC, so that the kinetic energy spectrum scales as Eu(k) ∼ k−11/5. Note that
Brandenburg [31] made a similar argument using shell models in the case of magnetoconvection.
Mazzino [32] showed that the velocity and temperature structure functions of 2D convection follow
Bolgiano-Obukhov (BO) scaling. More recently, Xie and Huang [33] derived structure function
relations from the Kármán-Howarth-Monin equations for 2D isotropic convection. Their findings,
backed by direct numerical simulations in a doubly periodic domain, also justified the existence
of BO scaling in 2D convection. Stepanov et al. [34] also used shell models to demonstrate the
feasibility of observing BO-scaling. The authors argue that a precise combination of factors is
necessary to observe BO-scaling.

We expect turbulent convection to be inhomogeneous and anisotropic. However, Nath et al. [35]
studied anisotropy in RBC using numerical simulations, and they showed that turbulent convection
for a Prandtl number near unity is approximately isotropic. They computed the scale-by-scale
anisotropy parameter, A(k) = |u⊥(k)|2/[2|u‖(k)|2], where u⊥(k) and u‖(k) are velocity components
perpendicular and parallel to the buoyancy direction. They showed that A ≈ 0.72, and also that the
ring spectrum for Pr ≈ 1 is nearly isotropic. Xie and Huang [33] also arrived at similar conclusions
based on their structure function calculations. These observations justify the usage of shell spectra
for turbulent convection.

Additionally, we also note that although the bulk flow in turbulent convection is reasonably
homogeneous, the boundary layers are thin and inhomogeneous. However, the boundary layers
contribute to the large wave numbers in the energy spectrum (exponential range), whereas the
bulk flow contributes to the energy spectrum in the inertial range. We focus only on the inertial
range spectrum in our present work. This further reinforces the applicability of the homogeneity
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approximation for Fourier transform and energy spectrum calculations [7]. Finally, we note that
recent works have applied this approximation successfully to derive useful insights into thermal
convection at a wide range of Prandtl numbers [36].

Note also that BO phenomenology argues for a dual spectrum for kinetic energy. Accordingly,
Eu(k) scales as k−11/5 at small wave numbers due to buoyancy effects, whereas at larger wave
numbers, Eu(k) ∼ k−5/3 since buoyancy is weakened at small scales. However, observing a dual
spectrum requires very high-resolution simulations [26], which has been a challenge. Rosenberg
et al. [28], however, observed a dual spectrum in their simulations of rotating stratified flows. Note
that Zhu et al. [37] performed high-resolution simulations of 2D RBC and analyzed the heat transfer
and boundary layers in detail, however a spectral analysis of energy and flux transfers remains to be
performed. The simulations we present are based on a subset of the parameters used by Zhu et al.
[37].

The conjecture that 2D RBC may exhibit BO scaling provides us with a unique opportunity
to observe a dual-spectrum because extreme resolution DNS is easier to perform for 2D flows as
compared to 3D flows. In this paper, we simulate 2D RBC on high-resolution grids with up to
12 288 × 12 288 grid points, and we observe the dual spectrum of k−11/5 and k−3, in line with the
predictions of BO phenomenology.

The outline of the paper is as follows. In Sec. II, we briefly outline the governing equations and
review the Bolgiano-Obukhov phenomenology in the context of 2D RBC. We then describe our
numerical method, computational setup, and flow profiles in Sec. III. Subsequently in Sec. IV, we
present our results demonstrating the presence of BO scaling in 2D RBC. In Sec. V, we focus on
the transfer and dissipation of entropy in 2D high Ra convection. Specifically, we study how the
dissipation of entropy in the boundary layer is related to the global entropy flux. We summarize our
findings and conclude the paper in Sec. VI.

II. SPECTRAL PHENOMENOLOGY OF 2D RBC

We solve the following nondimensionalized equations of Rayleigh-Bénard convection (RBC)
[3]:

∂u
∂t

+ u · ∇u = −∇p + T ẑ +
√

Pr

Ra
∇2u, (1)

∂T

∂t
+ u · ∇T =

√
1

RaPr
∇2T . (2)

∇ · u = 0. (3)

Here u, p, and T are the velocity, pressure, and temperature fields, respectively. The above
equations have been nondimensionalized by the free-fall velocity u f = √

αg�H , the imposed
temperature difference �, and the domain height H . The nondimensional parameters are Rayleigh
number Ra = αg�H3/(νκ ) and Prandtl number Pr = ν/κ . Additionally, α is the bulk thermal
expansion coefficient, g is the acceleration due to gravity, and ν and κ are the kinematic viscosity
and thermal diffusivity, respectively.

We use periodic boundary conditions in the horizontal direction, and no-slip, conducting plates
at the top and bottom in the present study. Furthermore, we apply the Boussinesq approximation
to neglect density variations everywhere except for the buoyancy forcing term on the right side
of the momentum equation. The validity of the Boussinesq approximation at the high Rayleigh
numbers considered in this study is contingent on the properties of the working fluid used in the
Rayleigh-Bénard cell. By choosing the physical dimensions of the domain and material properties of
the fluid appropriately, it is possible to attain high Rayleigh numbers without having compressibility
effects interfere with the physics of the flow.

We now briefly review the turbulence phenomenology by Bolgiano [8] and Obukhov [9],
which was originally applied to stably stratified flows. We start with the kinetic energy
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equation in one-dimensional wave-number space [3,38],

∂

∂t
Eu(k, t ) = Tu(k, t ) + FB(k, t ) − Du(k, t ) = − ∂

∂k
�u(k, t ) + FB(k, t ) − Du(k, t ). (4)

Here, Eu(k, t ) is the total kinetic energy of the Fourier modes lying within the wave-number shell
of radius k, defined as

Eu(k) = 1

2

∑
k�|k′|<k+1

|u(k′)|2. (5)

�u(k, t ) is the kinetic energy flux, which is the energy leaving via nonlinear triad interactions from a
sphere of radius k, the energy injection rate by buoyancy is represented by FB(k, t ) (defined below),
and Du(k, t ) = 2νk2Eu(k, t ) is the energy dissipation rate. The nonlinear energy transfer Tu(k) =
̂u · ∇u(k), where f̂ represents Fourier transform of f .

Following similar lines, we define the entropy spectrum Eθ (k) for the temperature fluctuations
from the mean, θ (r) = T (r) − Tm(z), where Tm(z) is the linear temperature drop. Similar to Eq. (4),
the evolution equation for the entropy spectrum is [3]

∂

∂t
Eθ (k, t ) = − ∂

∂k
�θ (k, t ) + Fθ (k, t ) − Dθ (k, t ). (6)

The entropy spectrum and flux terms in the above equation are written as

Eθ (k) = 1

2

∑
k�|k′|<k+1

|θ (k′)|2, �θ (k) = −
∫ k

0
Tθ (k′)dk′, (7)

where Tθ (k) = ̂u · ∇θ (k) is the nonlinear transfer term for θ . Finally, Fθ (k, t ) represents the entropy
injection rate, and Dθ (k, t ) is the entropy dissipation spectrum, defined as

Dθ (k) = −2κk2Eθ (k). (8)

We do not focus on entropy injection and dissipation spectra in this paper. Returning to Eq. (4), the
kinetic energy input by buoyancy is denoted by FB(k, t ),

FB(k) =
∑

k�|k′ |<k+1

R[u(k, t ) · f∗
B(k, t )] =

∑
k�|k′|<k+1

R[uz(k, t )θ∗(k, t )]. (9)

Here R represents the real part of the complex term, and f∗
B(k, t ) is the complex conjugate of

fB(k, t ), which denotes the buoyancy force.
In the inertial range, dissipation is negligible, hence Du(k, t ) = 0. Therefore, under steady state,

over the inertial range, we have

d

dk
�u(k) = FB(k). (10)

For stably stratified turbulence, Bolgiano [8] and Obukhov [9] argued that FB(k) < 0 since kinetic
energy gets converted to potential energy. Hence,

d

dk
�u(k) < 0. (11)

Using dimensional analysis, Bolgiano [8] and Obukhov [9] showed that at small wave numbers
(inertial range), the kinetic energy spectrum varies as k−11/5, while the kinetic energy flux varies
as k−4/5. This can be obtained from a force balance between the nonlinear and buoyancy terms of
Eq. (1) in Fourier space,

ku2
k = ρkg, (12)
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FIG. 1. For 2D RBC, (a) a schematic diagram of energy injection rate by buoyancy [FB(k)]. (b) Because
of inverse cascade of kinetic energy, |�u(k)| is larger than |�u(k + dk)|. That is, |�u(k)| decreases with k
(adapted from Verma [3]).

where uk and ρk are the Fourier transforms of the velocity field and density fluctuation field,
respectively. Note that the buoyancy force denoted by T ẑ in Eq. (1) can also be written as −ρgẑ,
which is the form used to write Eq. (12). It is also assumed that the potential energy flux �ρ is
constant in the inertial range, so that

�ρ (k) = kρ2
k uk = ερ. (13)

From Eqs. (12) and (13), with a bit of algebra, it can be shown that

Eu(k) = u2
k

k
= c1ε

2/5
ρ g4/5k−11/5, (14)

�u(k) = ku3
k = c2ε

3/5
ρ g6/5k−4/5. (15)

This phenomenology is referred to as Bolgiano-Obukhov scaling. Note that the above phenomenol-
ogy is for three-dimensional flow. In the case of thermal convection, however, the temperature field
feeds the kinetic energy. Hence, FB(k) > 0, and [3,7,21]

d

dk
�u(k) > 0. (16)

But numerical simulations of Kumar et al. [21] and Verma et al. [7] have shown that �u(k) is still
nearly constant across the inertial range, due to two major factors—the kinetic energy input by
buoyancy is restricted to low wave numbers, and the remaining effect of buoyancy gets canceled
out by viscous drag [3,7]. However, in the case of 2D RBC, we have an inverse cascade of kinetic
energy [39], so that �u(k) < 0 at low wave numbers [see Fig. 1(a)]. Based on this observation,
Verma [3] conjectured that 2D RBC may obey BO scaling. The argument is as follows. In RBC,
buoyancy feeds the kinetic energy, hence FB(k) > 0. Therefore, inverse cascade of kinetic energy
leads to

|�u(k)| > |�u(k + dk)|. (17)

That is, |�u(k)| decreases with wave number, as shown in Fig. 1(a). Now, following similar
arguments as in Bolgiano [8] and Obukhov [9], we can argue that

Eu(k) = ε
3/5
θ k−11/5, (18)

�u(k) = ε
3/5
θ k−4/5, (19)

�θ (k) = εθ , (20)

where εθ is the entropy dissipation rate, which is defined as

εθ =
∫

κ|∇θ |2dV. (21)
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We remark that the entropy spectrum for RBC exhibits a bispectrum, wherein we observe two
branches—with the upper branch scaling as k−2 and the lower branch following neither k−5/3 nor
k−7/5 [7]. Thus, it does not follow the original BO scaling (see Sec. V).

For stably stratified turbulence, Bolgiano [8] and Obukhov [9] argued that buoyancy effects
become negligible at large wave numbers, and Eu(k) ∼ k−5/3 (Kolmogorov’s spectrum). Note,
however, that at large wave numbers, 2D hydrodynamic turbulence exhibits

Eu(k) = K ′
2Dε2/3

ω k−3, (22)

�ω(k) = εω, (23)

where �ω(k) and εω are enstrophy flux and dissipation rates, respectively. Here, K ′
2D is a constant

whose value is approximately 1.1–1.7 [40]. Note that enstrophy, which is defined as

Eω =
∫

(∇ × u)2dr, (24)

is conserved in 2D inviscid hydrodynamic flows. Motivated by the above observation, we expect
that 2D RBC should exhibit Eu(k) ∼ k−3 and constant enstrophy flux at large wave numbers, as in
Eqs. (22) and (23). Combining the above, we argue that 2D RBC should exhibit BO scaling, and its
energy and entropy should follow Eqs. (18)–(20) for small wave numbers, and Eqs. (22) and (23)
for large wave numbers.

Bolgiano [8] and Obukhov [9] showed that the transition between k−11/5 and k−5/3 occurs at
Bolgiano wave number kB. The corresponding lengthscale, lB = 1/kB, is given by [2]

lB = ε5/4
u ε

−3/4
θ . (25)

The above formula assumes a transition of kinetic energy flux from k−4/5 to constant. Note, however,
that in 2D RBC, enstrophy flux is expected to be constant at large wave numbers. Therefore, we
employ an alternative formula for kB based on the energy injection rate, which is

kB =
∫

kFB(k)dk∫
FB(k)dk

. (26)

With this formula, kB represents a wave number beyond which buoyancy is weak. We find that the
above formula provides a reasonable fit to our numerical data (see Sec. IV A).

Structure functions too play an important role in quantifying turbulence phenomenologies
[19,41]. The nth-order velocity structure function is evaluated using the longitudinal velocity
difference

δu(r) = [u(x + r) − u(r)] · r/r, (27)

where r = |r|. Ching [42] and others have derived structure functions for the velocity field in
BO turbulence phenomenology. Based on dimensional analysis, it can be derived that for large
lengthscales (or small wave numbers) where k−11/5 scaling holds,

Su
3 (r) = 〈(δu)3〉 ∼ ε

3/5
θ r9/5, (28)

Su
2 (r) = 〈(δu)2〉 ∼ ε

2/5
θ r6/5. (29)

The positive sign of Su
3 (r) indicates inverse cascade of kinetic energy for the inertial range where

k−11/5 scaling is applicable. We will verify the above scaling numerically.
In Sec. IV, we verify BO scaling for 2D RBC. We remark that observing the BO dual spectra

requires simulations at extreme resolutions, and such studies have been rare so far [26]. Earlier,
Rosenberg et al. [28] had reported dual scaling for rotating stratified turbulence, but their range of
the power law was rather limited. In this paper, we report dual spectra of BO phenomenology using
two-dimensional simulations on very fine grids (up to 150 million grid-points).
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TABLE I. Details of Rayleigh number Ra, aspect ratio , grid sizes, total simulation times in free-fall units,
tmax, and Reynolds number, Re.

Ra  Grid tmax Re

1011 2 4096 × 2048 500 188440 ± 3140
1012 2 8192 × 4096 120 446770 ± 3100
1013 2 16384 × 8192 90 1164400 ± 24300
1014 1 12288 × 12288 25 3440900 ± 6500

III. COMPUTATIONAL DETAILS AND FLOW STRUCTURES

We use a finite-difference solver derived from SARAS [43,44] for our simulations. The MPI-
parallel solver uses a collocated configuration wherein the velocity, temperature, and pressure fields
are all positioned at the cell-centers. All spatial derivatives are computed with fourth-order accuracy,
except in the pressure correction step, which uses second-order accurate operators. To resolve the
very thin boundary layers near the top and bottom plates, we use a nonuniform grid generated by a
tangent-hyperbolic function along the z-direction. This ensures that we retain at least 10 points in
the boundary layer even at the highest Rayleigh numbers (see Table III). The grid is uniform in the
horizontal periodic direction.

Structure of convective flow

We performed four simulations of RBC at Ra ranging from 1011 to 1014, and a fixed Pr = 1.
The computational domain is a 2D box of height H and length L, and the aspect ratio of the box is
defined as  = L/H . The first three cases have  = 2, whereas the last case has  = 1 in order to
reduce the computational cost. At the bottom and top plates, we impose no-slip boundary condition
on velocity, and fixed-temperature (conducting) boundary condition on temperature. The domain is
periodic in the horizontal direction. The parameters we use are similar to those studied by Zhu et al.
[37]. The details of the cases are listed in Table I.

In Fig. 2, we show the structure of flow fields at times selected from statistical steady-state regime
of the convective flow. Figures 2(a)–2(d) correspond to Rayleigh numbers 1011, 1012, 1013, and 1014,
respectively. The instantaneous temperature fields are shown with red (blue) regions corresponding
to hot (cold) fluid packets. We have limited the range of nondimensionalized temperature to a narrow
band of (0.45, 0.55) to show the bulk flow structure clearly. In each plot, we observe that there is
one distinct upwelling of hot fluid and a corresponding downflow of cold fluid from the bottom and
top plates, respectively.

The presence of large-scale circulation (LSC) in the form of coherent convecting roll(s) is
noticeable in all four cases. Moreover, the thickness of the plumes decreases as the Ra increases,
resulting in an increasingly fine-grained structure, characteristic of highly turbulent flows. Also, the
thermal boundary layers become vanishingly thin at very high Ra, and it is barely visible in frames
(c) and (d). This aspect is important for the spectral analysis, which will be discussed in Sec. IV A.

We will now investigate the spectra, fluxes, and structure functions of 2D RBC in the forthcoming
sections. In all the plots that we show and discuss henceforth, we use a common color scheme for
consistency. All lines and markers corresponding to the Rayleigh numbers 1011, 1012, 1013, and 1014

use the colors blue, green, red, and cyan, respectively.

IV. BOLGIANO-OBUKHOV SCALING IN 2D RBC

We now verify BO scaling in 2D RBC using numerical simulations. We compute the kinetic
energy spectrum and flux, the second- and third-order velocity structure functions, as well as the
Bolgiano wave number.
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FIG. 2. Contour plots of the temperature field for the four cases from Table I. In the top row, we show the
filled contours for Ra = 1011 (a) and 1012 (b). In the bottom row, we show the fields at Ra = 1013 (c) and 1014

(d). In each case, we observe one distinct upwelling of hot fluid from the bottom plate and a corresponding
downflow of cold fluid from the top plate.

A. Kinetic energy spectrum and flux

We compute the kinetic energy spectra Eu(k) for the four cases listed in Table I using the formula
of Eq. (5). Note that we use the free-slip basis functions for computing the spectra and fluxes.
A possible concern regarding Fourier analysis of RBC is the inhomogeneity of the system in the
vertical direction. As noted in Sec. III A where the flow structures were presented, the boundary
layers near the top and bottom walls tend to be quite thin at high Rayleigh numbers like the ones
considered here. Hence, the structures within the boundary layers are very small compared to the
box height, and they would contribute only to the large wave-number regime of the spectra. So, it
is safe to conclude that the boundary layer will not affect the inertial range properties significantly.
Therefore, the inertial-range energy and entropy spectra computed using free-slip basis functions are
quite close to those of realistic flows [3]. Finally, we also perform time-averaging of the computed
spectra over the period of time in statistical steady-state. We plot Eu(k) in Fig. 3 and show that it
clearly exhibits dual spectra, k−11/5 and k−3, which is consistent with the model described in Sec. II.
The spectra in Fig. 3 exhibit approximately a decade each of k−11/5 and k−3 regimes. Such a clear
separation of the dual scaling regimes is, to the best of our knowledge, a novel result in numerical
simulations of RBC. We attribute this to the very high resolution grids used in the present study.

We also evaluate the scale-by-scale anisotropy parameter, A(k) = E⊥(k)/E‖(k), for 2D turbulent
convection at high Ra, and we plot them in Fig. 4. Here, E⊥(k) and E‖(k) are the contributions to
the total kinetic energy from the velocity components perpendicular and parallel to the buoyancy
direction, respectively. We adopt the same procedure as the one outlined in Nath et al. [35] for
computing A(k). Within the inertial range, A(k) ≈ 1, indicating that the flow is fairly isotropic at
large scales. The increasing anisotropy at small scales (k � 1) can be attributed to the dissipation
occurring close to the walls. However, the uniformity of the large-scale flow structures justifies the
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FIG. 3. Time-averaged spectra of kinetic energy for 1011 � Ra � 1014. The spectra scale as k−11/5 at low
wave numbers and as k−3 at higher wave numbers. We plot Eu(k) in (a), and the compensated spectrum
Eu(k)/k−11/5 in (b). The vertical dashed (a) and dotted (b) lines represent kB computed from Eqs. (26) and
(25), respectively. The kB computed for each Ra are matched by their respective colors.

applicability of shell-spectra for analyzing energy transfers in 2D thermal convection at large Ra
and Pr = 1.

Next, we compute the Bolgiano wave number kB using the kinetic energy injection rate FB as
described in Eq. (26). To understand the dynamics in detail, we plot FB(k) versus k in Fig. 5(a). The
range over which FB(k) shows a constant slope matches approximately with that of Eu(k) ∼ k−11/5

in Fig. 3. In Table II, we tabulate the values of kB computed using the formulas given by Eqs. (25)
and (26). To compare the two approaches for computing kB, we turn to the plots shown in Figs. 3(a)
and 3(b). The vertical dashed lines plotted in Fig. 3(a) correspond to the values of kB obtained
from Eq. (26), whereas the dotted lines in Fig. 3(b) are computed from Eq. (25). We observe that for
Ra = 1012 and 1013, the two approaches agree rather satisfactorily. However, Eq. (25) underpredicts
kB for Ra = 109, and Eq. (26) overpredicts kB for Ra = 1014. We believe that the difference in the

FIG. 4. Scale-by-scale anisotropy parameter A(k) = E⊥(k)/E‖(k) for 1011 � Ra � 1014 as computed by
Nath et al. [35]. We note that A(k) ≈ 1 within the inertial range, indicating that the flow is isotropic. This
further justifies the applicability of shell spectra for analyzing 2D turbulent thermal convection for the range of
parameters considered here.
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FIG. 5. Energy injection spectrum (a), Fb(k), for Ra = 1011, 1012, 1013, and 1014. The spectra display a
nearly constant slope approximately until the Bolgiano wave number. Moreover, the slopes decrease with
increasing Ra, indicating a wider range of scales affected by buoyancy. This also points to a corresponding
increase in kB. The variation of local Bolgiano lengthscale (b) indicates that lB is maximum towards the center
of the convection cell.

two lB is due to the assumption of constant �u made in the formula given by Eq. (25). Additionally,
the computation of εu is susceptible to numerical errors as noted by Pandey et al. [45]. Specifically,
it was noted that the calculation of the strain-rate tensor Si j on finite-difference grids magnifies the
effect of grid discretization errors [46].

Another relevant observation is that the value of lB is not constant throughout the domain. Benzi
et al. [47], for instance, introduced a local Bolgiano lengthscale by taking the planar average of
Eq. (25). They noted that lB grows within the bulk of the convection cell, attaining a maximum
close to the center of the cell. Here we compute the local lB using the same procedure, and we plot
its profile along the z-axis in Fig. 5(b). Note that for the moderate Ra = 107 considered in [47], the
maximum lB at the cell center was nearly the size of the cell. For the very high Ra we take in the
present work, however, the maximum lB is significantly smaller than the cell-size. Moreover, this
maximum value decreases with increasing Ra, which is consistent with the increasing value of kB

seen in Fig. 3. The minimum value of lB is encountered at the outer edge of the boundary layer,
consistent with the observation by Benzi et al. [47].

We now compute the kinetic energy flux by first computing the nonlinear energy transfer function
Tu(k) as described in Sec. II. For the computation of Tu(k) from numerical data, we employ
second-order finite-difference schemes to compute the nonlinear term. The numerical errors in-
curred in this operation somewhat contaminate the computed Tu(k). Moreover, the solution data
sets are stored over a nonuniform grid, which is finer near the walls and coarser in the bulk. When
computing the Fourier transform, the data are first interpolated onto a uniform grid, because the FFT

TABLE II. Estimations of the Bolgiano lengthscale and wave number for Ra = 1011, 1012, 1013, and 1014.
We compare the two methods of calculating lB described in Sec. IV here.

Ra kB [FB(k)] lB [FB(k)] lB (ε)

1011 108.1 9.2 × 10−3 2.0 × 10−2

1012 160.9 6.2 × 10−3 8.2 × 10−3

1013 234.7 4.2 × 10−3 5.6 × 10−3

1014 1446.2 6.9 × 10−4 2.7 × 10−3
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FIG. 6. (a) Time-averaged fluxes of kinetic energy for Ra = 1011, 1012, 1013, and 1014. Although the
spectrum varies smoothly with k, the flux shows a wide scatter due to the numerical errors in computing Tu(k).
In the range where Eu ∼ k−11/5, we note that �u ∼ k−4/5. This is visible more clearly in (b), which shows the
absolute value of the kinetic energy flux, |�u(k)|. In the inset, we also plot the compensated |�u(k)|/k−4/5 flux
to show the constant slope of the flux barring the fluctuations from numerical errors in computing the transfer
function and flux.

algorithm requires its input to be uniformly spaced. This interpolation step also contributes to the
errors in Tu(k). In spite of these errors, the computed values of Tu(k) are reasonable.

We plot the �u(k) computed thus in Fig. 6. As shown in the figure, �u(k) fluctuates significantly
taking positive and negative values, similar to those observed for 2D hydrodynamic turbulence
[48]. Note, however, that |�u(k)| appears to follow the k−4/5 curve. Also, the negative values
�u(k) dominate the positive counterparts, thus yielding net negative kinetic energy flux. Also, note
that �u(k) → 0 for k > 103, similar to 2D hydrodynamic turbulence [40,48]. We also remark that
structure functions provide much smoother plots to highlight the negative kinetic energy flux (see
Sec. III A).

In this subsection, we have demonstrated the existence of dual kinetic energy spectra (k−5/3

and k−3) and �u(k) k−4/5 at small wave numbers in 2D RBC. We will now analyze the enstrophy
spectrum and flux in Sec. IV B.

B. Enstrophy spectrum and flux

In Sec. II, we argued that in 2D RBC, at large wave numbers, Eu(k) ∼ k−3 and enstrophy flux is
constant. To verify the above argument, we compute the time-averaged enstrophy spectra and fluxes
for the four runs, and we plot them in Figs. 7(a) and 7(b), respectively.

We show the normalized enstrophy spectrum kEω(k) in Fig. 7(a). We observe a flat regime over
a range around k ≈ 103, which is consistent with the range over which Eu(k) ∼ k−3 in Fig. 3. This
indicates that Eω ∼ k−1. This is consistent with the k−3 scaling observed for Eu(k), since Eu(k) ∼
Eω/k2.

The corresponding enstrophy flux plots are exhibited in Fig. 7(b). These plots show an ap-
proximately constant �ω(k) for k > 103. Interestingly, �ω(k) ∼ k6/5 for 102 < k < 103, which
corresponds to

�u(k) ∼ �ω/k2 ∼ k−4/5. (30)

This scaling governs the kinetic energy flux at smaller wave numbers. These two observations are
consistent with the BO scaling for 2D RBC discussed in Sec. II.
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FIG. 7. For 2D RBC with Ra = 1011, 1012, 1013, and 1014, (a) time-averaged normalized enstrophy
spectrum, kEω(k), and (b) enstrophy flux, �ω(k). In (b), the regions with constant �ω are marked with dashed
horizontal lines. The k6/5 line represents the region where Eu(k) ∼ k−11/5.

C. Structure functions

Continuing our justification for BO scaling in 2D thermal convection, we now analyze the
structure functions computed using our simulation data sets. Computing structure functions is a
computationally expensive task, and we use a GPU accelerated Python code for the calculations
presented in this subsection. This code is derived from the fastSF C++ script developed at our
laboratory [49].

We compute Su
2 and Su

3 [see Eqs. (27)–(29)] using the data sets and perform time-averaging.
Even with an optimized GPU-parallelized code, we found that computing the two-point statistical
quantities over grids with as many as 150 million points takes an exorbitant amount of time. As a
result, we interpolate our solutions to coarser grids to compute the structure functions. A similar
strategy to improve computation times of the structure function was also used by Verdini et al.
[50]. The data sets from Ra = 1011, 1012, and 1013 simulations were interpolated to a 1024 × 512
grid, and the Ra = 1014 data set was similarly reduced to a 768 × 768 grid. Thus, we focus on the
behavior of structure functions only at moderate and large r values that correspond to Eu(k) ∼ k−11/5

scaling.
In Fig. 8(a), we plot the third-order velocity structure function S3(r) normalized by −ε

3/5
θ r9/5.

We compute εθ using Eq. (21). As shown in the figure, we observe that S3(r) ∝ r9/5 for r > 0.1. In
addition, S3(r) > 0 indicating inverse cascade of kinetic energy at large r or small k. Moreover, the
normalized S3(r) is of the order 1, as clarified by the dashed horizontal lines at y = ±1 in the figure.
Furthermore, in Fig. 8(b), we plot S2(r) normalized by −ε

2/5
θ r6/5 against r to show the lengthscales

with r6/5 scaling. Thus, the scaling of S2(r) and S3(r) is consistent with the predictions of BO
scaling for the kinetic energy.

In the next section, we compute the entropy spectrum and flux using the temperature data.
We will show that entropy flux is constant for 2D RBC, consistent with the predictions of BO
phenomenology.

V. ENTROPY SPECTRUM AND FLUX

We compute the entropy spectrum Eθ (k) and the entropy flux �θ (k) using Eq. (7) introduced
earlier in Sec. II. The entropy spectra are plotted in Fig. 9. The spectrum Eθ (k) exhibits a bispectrum,
as observed previously for thermal convection in 3D domains [3,7,20]. Here, the upper branch
varies as k−2, whereas the lower branch does not follow a fixed scaling law. It has been shown
analytically that the k−2 scaling of the upper branch arises from the mean temperature profile, which

023502-12



BOLGIANO-OBUKHOV SCALING IN TWO-DIMENSIONAL …

FIG. 8. (a) Third-order structure functions of velocity for Ra = 1011, 1012, 1013, and 1014. The plots are
compensated by ε

3/5
θ r9/5 to highlight the region where the BO scaling of Su

3 ∼ r9/5 is obeyed. For each case,
there is a distinct inversion of energy cascade as expected from the dual scaling seen earlier in the kinetic
energy spectra of Fig. 3. The dashed horizontal lines at y = ±1 indicate that the normalized S3(r) is of order 1.
(b) The corresponding second-order structure functions for the four cases. Again we have marked with dashed
black lines the approximate regions with BO scaling of Su

2 ∼ r6/5.

is represented by the θ (0, k) modes that vary as k−1 [3,51]. We also draw attention to the fact that the
lower branch tends to become steeper with increasing Rayleigh number. At the lowest Ra of 1011,
the lower branch approximately scales as k−0.32, whereas at the highest Ra of 1014, the lower branch
is steeper and scales as k−0.67. This could be a consequence of the increased thermal fluctuations
dominating the bulk flow at higher Rayleigh numbers.

The entropy flux, �θ (k), is plotted in Fig. 10. We note that for all Rayleigh numbers, there is a
range of wave numbers over which the flux is constant. This is in agreement with the predictions
of BO theory. Moreover, the length of this inertial range increases with Ra due to the increasing
intensity of turbulence and corresponding Reynolds number. Interestingly, we note that at the point
where the inertial range ends and the flux begins to drop, all the curves have a common tangent.

FIG. 9. Time-averaged entropy spectrum, Eθ (k), for Ra = 1011, 1012, 1013, and 1014. The spectra show dual
scaling as due to the differing effects of the mean temperature profile and temperature fluctuations [3].
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FIG. 10. Time-averaged entropy flux for 1011 � Ra � 1014. The entropy flux shows a universal slope of
k−0.71 close to the dissipation range that spans the three decades of Ra considered here.

We have plotted this tangent with a dashed black line in the figure. Moreover, this tangent scales as
k−0.71 approximately.

Note that we have marked filled circles at the approximate points where the tangent line touches
the curves. Each filled circle is colored to correspond with the curve on which it lies. We have also
marked the points on the k-axis corresponding to each tangent point. The significance of these points
will be explained next.

Interestingly, the tangent of the entropy flux plots in Fig. 10 is linked to the entropy dissipation
rate in the boundary layer. To justify this argument, we analyze the thermal boundary layer profiles

FIG. 11. (a) Thermal boundary layer profiles in terms of Trms plotted near the bottom walls for the six cases
listed in Table I. Each profile is obtained by taking the time-average of the individual Trms computed for each
solution data set after attaining steady-state. The exact values of the thermal boundary layer heights (taken as
maxima of the Trms profiles) are written on the right side of the plot. (b) Scaling of entropy dissipation in the
bulk εθ,bulk against the inverse of thermal boundary layer thickness, 1/δT . The slope of the fit-line is such that
it scales as 0.704 ± 0.011, which is very close to the slope of the tangent obtained earlier in Fig. 10.
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TABLE III. Details of Rayleigh number Ra, thermal boundary layer resolution in terms of number of points
NδT , height of the thermal boundary layer δT , wave number corresponding to thermal boundary layer thickness
kδT , entropy dissipation in the bulk εθ,bulk, and in the boundary layer εθ,BL. Selected quantities from this table
are plotted in Fig. 11.

Ra NδT δT kδT εθ,bulk εθ,BL

1011 13 2.21 × 10−3 452.8 1.59 × 10−4 4.58 × 10−4

1012 14 1.19 × 10−3 838.0 9.39 × 10−5 2.67 × 10−4

1013 14 5.95 × 10−4 1681.7 6.43 × 10−5 1.57 × 10−4

1014 11 3.01 × 10−4 3324.8 3.76 × 10−5 9.86 × 10−5

plotted in Fig. 11(a). We compute the time-averaged Trms, defined as

Trms(z) = 〈
√

〈[T (x, z, t ) − 〈T (x, z, t )〉x]2〉x〉t . (31)

In the figure, the above function has been plotted close to the bottom wall for different Rayleigh
numbers.

The markers on each of the lines indicate the grid points, and they provide an estimate of the
number of points at different distances from the bottom plate. We relate the maxima of these curves
to the upper limit of the thermal boundary layers. As expected, the thickness of the thermal boundary
layer, δT , decreases with increasing Ra. We have listed the values of δT both in Fig. 11(a) as well as
in Table III.

We observe that δT is linked to the scaling of the tangent line observed in the entropy flux
plots of Fig. 10. The points on the k-axis corresponding to the tangent points (marked with dashed
vertical lines) are in fact kδT = 1/δT . We have also listed the numerical values of kδT in Table III
for reference. This indicates that the tangent points represent the thermal boundary layer cutoff in
the entropy flux. Consequently, the value of �θ which corresponds to each tangent point should
indicate the entropy dissipation rate in the bulk, εθ,bulk. Note that the entropy dissipation rates in the
bulk and boundary layer are

εθ,bulk = κ

V

∫
Vbulk

|∇θ |2dV, εθ,BL = κ

V

∫
VBL

|∇θ |2dV. (32)

Here κ is the thermal diffusivity, and Vbulk, VBL, and V are the volumes (areas in the case of our 2D
simulations) of the bulk, boundary layer, and entire domain, respectively. Consequently, εθ,bulk +
εθ,BL = εθ . This division of dissipation rates into bulk and boundary layer regions is consistent with
earlier theoretical analyses performed by Grossmann and Lohse [52] and Bhattacharya et al. [53].
Note also that all the quantities are time-averaged as well. Indeed, we find that when we plot εθ,bulk

against 1/δT , as shown in Fig. 11(b), we observe a scaling of k−0.704±0.011, which is satisfactorily
close to the k−0.71 scaling seen in Fig. 10.

In Table III, we have listed the entropy dissipation rates in the boundary layer, εθ,BL, as well. We
also note that in the range of Ra considered in this study, εθ,BL is 2.3–2.9 times greater than εθ,bulk.
A similar ratio was also observed by Bhattacharya et al. [53] for 105 � Ra � 109 and 0.02 � Pr �
100. However, theoretical studies on the scaling of global quantities in RBC [52] have predicted
that at very high Rayleigh numbers, the dissipation rate in the bulk will be greater than that in
the boundary layer. This prediction is based on the fact that as Ra increases, the thermal boundary
layer becomes thinner, resulting in a diminished contribution to the overall thermal dissipation.
However, we observe that although the boundary layer does indeed get significantly thinner at high
Ra (Fig. 11), the temperature gradient also increases concomitantly, such that εθ,BL remains higher
than εθ,bulk throughout the range of Ra considered in the present work. Whether this trend reverses
at a still higher Ra remains to be investigated, at least in the case of Pr = 1 flows.
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VI. DISCUSSION AND CONCLUSIONS

It has been shown previously that 3D turbulent convection exhibits Kolmogorov-like scaling.
However, turbulence phenomenology of 2D thermal convection remains speculative. We perform
DNS of 2D RBC at very high grid resolutions of up to 12 288 × 12 288, with unit Prandtl number
and Ra ranging from 1011 to 1014. The numerically computed kinetic energy exhibits a k−11/5

spectrum at small wave numbers and a k−3 spectrum at large wave numbers. The absolute kinetic
energy flux scales as |�u(k)| ∼ k−4/5 at small wave numbers, while enstrophy flux is constant at
large wave numbers. Note that buoyancy is active at small wave numbers, but is negligible at large
wave numbers. These observations indicate Bolgiano-Obukhov scaling for 2D RBC.

Consistent with the Bolgiano-Obukhov scaling, the entropy flux is constant in the inertial range.
However, the entropy spectrum exhibits a bispectrum. The upper branch scales as k−2 due to the
linear temperature profile along the vertical [3]. The entropy spectrum in lower branch varies from
k−0.32 to k−0.67 with the increase of Ra.

Interestingly, in the entropy flux, the transition wave number from the inertial range to the
dissipation range follows a curve that scales as ≈k−0.71. We show that this scaling law arises due
to the division of entropy dissipation between the bulk and boundary layer. We also observe that
the thermal dissipation is consistently high in the boundary layer as compared to the bulk. More
importantly, this characteristic persists even with increasing Ra.
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APPENDIX: NUMERICAL METHOD

We solve the governing equations [Eqs. (1)–(3)] using a third-order semi-implicit Runge-Kutta
method [54]. In this method, the equations are split into their linear and nonlinear components, L
and N , respectively. The nonlinear, pressure, and forcing terms are time-advanced explicitly, while
the diffusion terms are treated semi-implicitly [54]. In this framework, we perform three substeps
to compute un+1 from un:

u′ = un + �t[L(α1un + β1u′) + γ1N (un)], (A1)

u′′ = u′ + �t[L(α2u′ + β2u′′) + γ2N (u′) + ζ1N (un)], (A2)

un+1 = u′′ + �t[L(α3u′′ + β3un+1) + γ3N (u′′) + ζ2N (u′)]. (A3)

Here, αi, βi, γi, and ζ j for i = 1, 2, 3 and j = 1, 2 are parameters obtained from Spalart et al. [55]
and Orlandi [56]. The nonlinear term is written in a semiconservative form by taking a weighted
sum of its divergence and advective forms,

u · ∇u = 1

2

(
u j

∂ui

∂x j

)
+ 1

2

∂

∂x j
(uiu j ). (A4)

This form is called the skew symmetric form [57] and it stabilizes the solver greatly. We use a
predictor-corrector method at each substep of RK3. Each step is thus composed of two substeps,
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wherein we first calculate a predicted value of the velocity field, u∗. We use a vectorized Jacobi
iterative solver to calculate u∗. Using the predicted velocity field, we solve the pressure Poisson
equation to compute the pressure correction,

∇2 pc = ∇ · u∗

(α1 + β1)�t
. (A5)

The above elliptic equation is solved iteratively, and this step takes a major fraction of our
computing time. There are a variety of iterative solvers available for this task, and we find that
the multigrid method yields fast convergence and accurate results [58,59]. We use a V-cycle based
geometric multigrid solver [59]. This solver was developed in-house for tight integration with
the SARAS solver. The solver relies on Red-Black Gauss-Seidel (RBGS) iterator for both the
smoothing steps at individual V-cycle subgrids as well as for solving the equation at the coarsest
level. The RBGS method adds to the fast convergence with multithreaded vectorized calculations.
We then update pressure with the correction term, and correct the predicted velocity field to satisfy
divergence:

p′ = pn + pc, u′ = u∗ − �t (α1 + β1)∇pc. (A6)

Note here that only the velocity and pressure fields are changed in the corrector step. The temper-
ature field at the next substep, T ′, is obtained directly from the predictor step without any need for
correction. Finally, we impose boundary conditions on u′, p′, and T ′. The above steps are repeated
for each substep of RK3, Eqs. (A2) and (A3), to finally obtain un+1, pn+1, and Tn+1.
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