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Numerical solutions of the Enskog equation obtained employing a finite-difference lat-
tice Boltzmann (FDLB) and a direct simulation Monte Carlo–like particle method (PM) are
systematically compared to determine the range of applicability of the simplified Enskog
collision operator implemented in the lattice Boltzmann framework using the half-range
Gauss-Hermite quadratures. Three types of bounded flows of dense gases, namely the
Fourier, the Couette, and the Poiseuille flows, are investigated for a wide range of input
parameters. For low to moderate reduced density, the proposed FDLB model exhibits
commendable accuracy for all bounded flows tested in this study, with substantially lower
computational cost than the PM method.
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I. INTRODUCTION

In recent decades, the study of rarefied gas flows characterized by non-negligible values of the
Knudsen number (Kn), which represents the ratio between the mean free path of fluid particles in a
gas and the characteristic length of the flow domain, has yielded significant progress. These flows
have been numerically studied using the Boltzmann equation, considering the fluid constituents
as point particles. However, when the mean free path of the fluid particles becomes comparable
to their size, the influence of the finite molecular size becomes crucial [1]. This scenario arises
in various practical applications, such as gas extraction in unconventional reservoirs [2,3], high-
pressure shock tubes [4], flows through microfabricated nanomembranes [5], and single-bubble
sonoluminescence [6].

The Enskog equation offers a means to extend the kinetic theory description of fluids beyond
the dilute-gas Boltzmann limit [1,7–10]. Unlike the Boltzmann approach, the Enskog equation con-
siders the finite size of gas molecules and incorporates the space correlations between colliding
molecules, the molecular mutual shielding, as well as the reduction of the available volume. This
equation can be solved numerically using probabilistic or deterministic methods, similarly to the
Boltzmann equation. Deterministic approaches, such as the Monte Carlo quadrature method [11],
the fast spectral method [2,12], and the Fokker-Planck approximation [13,14], have been employed
to solve the Enskog equation in recent years. Furthermore, probabilistic methods have emerged
following the success of the direct simulation Monte Carlo method (DSMC) [15] developed by
Alexander et al. [16], Montanero et al. [17], and Frezzotti [18].

Over time, the Enskog equation has been utilized to investigate the properties of dense gases
composed of hard spheres near solid walls in micro- and nanochannels [18–24]. Its extension to
weakly attracting hard-sphere systems has proven successful in describing liquid-vapor flows of
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monoatomic [25–28] and polyatomic fluids [29,30] or mixtures [31], the formation and the rupture
of liquid menisci in nanochannels [32], as well as the growth or collapse of spherical nanodroplets
or bubbles [33].

Although the aforementioned methods are known for their reliability and accuracy, their high
computational costs often make them impractical for various applications. To address this limitation,
a convenient approach is to simplify the nonlocal Enskog collision integral by expanding it into a
Taylor series around a specific point x in the coordinate space. The first term of this expansion
corresponds to the conventional Boltzmann collision operator. Additionally, the second term can
be further simplified by replacing the distribution function with the local equilibrium distribution
function, a procedure that holds when the fluid is close to equilibrium [8,9]. This simplification
has been employed in lattice Boltzmann (LB) models to investigate nonideal gases [34–36] and
multiphase flows by incorporating long-range attractive forces [37].

More recently, the simplified Enskog collision operator has been successfully implemented in
various solvers, including the discrete velocity method [38], the discrete unified gas kinetic scheme
[39], the double-distribution lattice Boltzmann model [40], and the discrete Boltzmann method
[41–43]. By employing the simplified Enskog collision operator, these solvers offer computationally
efficient alternatives for investigating microscale flow phenomena while maintaining reasonable
accuracy.

In this paper, the recently introduced finite-difference lattice Boltzmann (FDLB) model for dense
gas flows [43], based on the full-range Gauss-Hermite quadrature, is further developed to account
for the bounded flow of the Enskog gas between parallel walls. In order to tackle the wall-induced
discontinuity, which becomes effective at non-negligible values of the Knudsen number, the half-
range Gauss-Hermite quadrature method [44–47] is used to reduce the numerical errors, as well as
the computational costs. The main motivation of the present study is to evidence the suitability of
the half-range quadrature methods to capture the fluid-wall interaction with a very small velocity
set, as well as their capability of tackling low Mach flows with much less computational costs with
respect to the particle method, which is plagued by noise.

Throughout the paper, we use the nondimensionalization procedure based on the reference
quantities described in Ref. [46]: Lref (length), nref(particle number density), and Tref (temperature).
Accordingly, the reference momentum is defined as pref = √

mrefkBTref and the reference time is
given by tref = mrefLref/pref, where mref represents the mass of a fluid particle.

This paper is organized as follows. In Sec. II, the simplified Enskog equation is presented
along with the Shakhov collision term. The FDLB model used to numerically solve the simplified
Enskog equation when the flow domain is bounded by parallel walls is introduced in Sec. III. This
model relies on half-range Gauss-Hermite quadratures in order to account for the boundary-induced
discontinuities. The computer simulation results are reported in Sec. IV, which has three subsections
dedicated to the Fourier, the Couette, and the Poiseuille flows, respectively. We conclude the paper
in Sec. V.

For the convenience of the reader, further information about the full-range Gauss-Hermite
quadrature and a comparison to the half-range quadrature results is presented in Appendix A. The
heat flux components evaluation in the particle method (PM) and the local maxima in the total heat
flux are discussed in Appendix B. In Appendix C we briefly present the PM of solving the Enskog
equation [18], which is systematically used to validate the FDLB results for the bounded flows
listed above. In Appendix D we present the numerical schemes employed in the FDLB model, as
well as the implementation of the diffuse boundary conditions. Finally, in Appendix E we discuss
the L2 error observed in the context of the Couette flow with various values of the wall velocity
when the FDLB simulations were conducted using various orders of the half-range Gauss-Hermite
quadrature.
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II. THE ENSKOG EQUATION

The Enskog equation, proposed in 1922 [7], describes the evolution of a system consisting of
rigid spherical molecules. Unlike Boltzmann’s equation, which assumes molecules as point-like
particles subjected to local collisions, Enskog’s equation considers the volume of fluid particles
(i.e., molecules). This volume restricts the free movement space available to each particle, leading
to an increased number of collisions. Additionally, the collisions between particles are nonlocal,
occurring when the centers of the two colliding molecules are separated by one molecular diameter.
The Enskog equation can be written as follows [8–10]:

∂ f

∂t
+ p

m
· ∇x f + F · ∇p f = JE , (1)

where m denotes the particle mass, F = ma represents the external body force, and f (x, p, t )
is the single-particle distribution function. At time t , the distribution function f provides
the number of particles located within the phase-space volume dxd p centered at the point
(x, p). The right-hand side of the equation is given by the Enskog collision operator JE ,
expressed as:

JE =
∫ {

χ
(

x + σ

2
k
)

f (x, p∗) f (x + σk, p∗
1) − χ

(
x − σ

2
k
)

f (x, p) f (x−σk, p1)
}
σ 2(pr · k)dkd p1.

(2)

In the above equation, σ represents the molecular diameter, pr = p1 − p is the relative momentum,
and k is the unit vector specifying the relative position of the two colliding particles. The time
dependence of the distribution function is omitted for brevity.

The contact value of the pair correlation function χ incorporates the effect of the molecular
diameter σ on the collision frequency. In the standard Enskog theory (SET), χ ≡ χSET is evaluated
at the contact point of two colliding particles in a fluid assumed to be in uniform equilibrium [9].
An approximate but accurate expression for χSET, namely:

χSET[n] = 1

nb

(
Phs

nkBT
− 1

)
= 1

2

2 − η

(1 − η)3
, (3)

is derived from the equation of state (EOS) for the hard-sphere fluid,

Phs = nkBT
1 + η + η2 − η3

(1 − η)3
, (4)

proposed by Carnahan and Starling [48]. Here n represents the particle number density, η = bρ/4
is the reduced particle density (b = 2πσ 3/3m), Phs is the pressure of the hard-sphere fluid, kB is the
Boltzmann constant, and T is the temperature. The square brackets in Eq. (3) indicate a functional
dependence.

In the revised Enskog theory (RET), the fluid is considered to be in a nonuniform equilibrium
state [9,10,49], hence the particle number density is position dependent. In this case, an effective
approximation for the radial distribution function is obtained using the Fischer-Methfessel (FM)
prescription [50]. This approach involves the replacement in Eq. (3) of the actual value of the particle
number density n with the average particle density n computed over a spherical volume of radius σ ,
centered at x − σ

2 k:

χRET−FM

[
n
(

x − σ

2
k
)]

= χSET

[
n
(

x − σ

2
k
)]

. (5)

The average particle density n is given by:

n(x) = 3

4πσ 3

∫
R3

n(x′)w(x, x′) dx′, w(x, x′) =
{

1, ‖x′ − x‖ < σ,

0, ‖x′ − x‖ � σ.
(6)
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In the rest of the paper the subscript RET-FM and the functional dependence of χRET−FM[n(x − σ
2 k)]

will be omitted for brevity.
The Enskog collision operator JE in Eq. (2) can be seen as a generalization of the Boltzmann

collision operator to account for particles with spatial extent. When the molecular diameter σ

approaches zero, the contact value of the pair correlation function approaches unity (χ → 1), which
recovers the Boltzmann collision operator [8,9].

A. Simplified Enskog collision operator

Assuming that the contact value of the pair correlation function χ and the distribution func-
tions { f ∗ ≡ f (x, p∗), f ∗

1 ≡ f (x + σk, p∗
1), f ≡ f (x, p), f1 ≡ f (x − σk, p1)}, which appear in the

Enskog collision integral JE given in Eq. (2), are smooth around the contact point x, we can approx-
imate these functions using a Taylor series expansion around x. The simplified Enskog collision op-
erator is obtained after retaining the resulting expansion of JE ≈ J0 + J1 up to first-order gradients,
namely [8,9]:

J0 ≡ J0[ f ] = χ

∫
( f ∗ f ∗

1 − f f1)σ 2(pr · k)dkd p1, (7)

J1 ≡ J1[ f ] = χσ

∫
k( f ∗∇ f ∗

1 + f ∇ f1)σ 2(pr · k)dkd p1

+ σ

2

∫
k∇χ ( f ∗ f ∗

1 + f f1)σ 2(pr · k)dkd p1. (8)

The functions f ∗, f ∗
1 , f , f1, and χ in the two equations above are evaluated at the point x.

The term J0[ f ] corresponds to the conventional collision term of the Boltzmann equation multi-
plied by χ and is treated as such by applying the relaxation time approximation. In this study, we
employ the Shakhov collision term [51,52]:

J0[ f ] = − 1

τ
( f − f S ), (9)

where τ represents the relaxation time and f S is the equilibrium Maxwell-Boltzmann distribution
multiplied by a correction factor [51–54]:

f S = f MB

[
1 + 1 − Pr

Pid kBT

(
ξ2

5mkBT
− 1

)
ξ · q

]
. (10)

The Maxwell-Boltzmann distribution f MB is defined as

f MB = n

(2mπkBT )3/2
exp

(
− ξ2

2mkBT

)
, (11)

and the heat flux q is obtained using:

q =
∫

d3 p f
ξ2

2m

ξ

m
, (12)

where ξ = p − mu represents the peculiar momentum, Pr = cPμ/λ denotes the Prandtl number,
cP = 5kB/2m is the specific heat at constant pressure, μ is the shear viscosity, λ is the thermal
conductivity, and Pid = ρRT = nkBT is the ideal gas equation of state, with R being the specific
gas constant. The local fluid velocity u and the local temperature are derived according to Eq. (15)
below. It is important to note that although the Shakhov model does not guarantee non-negativity
of the correction factor and the H-theorem has not been proven, the model has been successfully
implemented and its accuracy has been tested through comparisons with experimental [53,55,56] or
DSMC [46,54,57,58] results.
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The second term of JE , denoted as J1[ f ], can be approximated by replacing the distribution
functions ( f ∗, f ∗

1 , f , f1) with their corresponding equilibrium distribution functions. By using
f ∗,MB f ∗,MB

1 = f MB f MB
1 and integrating over k and p1, we obtain [8,9]:

J1[ f ] ≈ J1[ f MB] = − bρχ f MB

{
ξ ·
[
∇ ln(ρ2χT ) + 3

5

(
ζ 2 − 5

2

)
∇ ln T

]
+ 2

5

[
2ζζ : ∇u +

(
ζ 2 − 5

2

)
∇ · u

]}
, (13)

where ζ = ξ/
√

2RT . By incorporating these approximations, the Enskog equation Eq. (1) can be
expressed as:

∂ f

∂t
+ p

m
∇x f + F · ∇p f = − 1

τ
( f − f S ) + J1[ f MB]. (14)

The macroscopic quantities can be determined by evaluating the corresponding moments of the
distribution function: ⎛⎜⎜⎜⎜⎜⎜⎜⎝

n

ρu
3
2 nkBT

�kin
i j

qkin
i

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=
∫

d3 p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

p

ξ2

2m

ξiξ j

m

ξ2

2m
ξi
m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
f , (15)

where ρ = mn, while �kin
i j and qkin

i denote the kinetic stress tensor and the kinetic heat flux,
respectively. Multiplying the Enskog equation Eq. (1) by the collision invariants 1, p, and p2/2m,
and integrating over the momentum space, we obtain the following conservation equations for mass,
momentum, and energy [9]:

Dρ

Dt
+ ρ∇ · u = 0, (16a)

ρ
Du
Dt

+ ∇P = −∇ · �, (16b)

ρ
De

Dt
+ P∇ · u = −∇ · q + � : ∇u. (16c)

Here D/Dt = ∂t + u · ∇ represents the material derivative, and P = Pid (1 + bρχ ) denotes the
equation of state for a nonideal gas. The heat flux q and the viscous part of the stress tensor �

are given by:

q = −λ∇T, (17a)

� = −μ
[∇u + (∇u)T − 2

3I∇ · u
]
, (17b)

where I represents the identity matrix. The shear viscosity μ and the thermal conductivity λ, which
appear in Eqs. (17), are given by [9]:

μ = τPid = μ0

[
1

χ
+ 4

5
(bρ) + 4

25

(
1 + 12

π

)
(bρ)2χ

]
, (18)

λ = 5kB

2m

τPid

Pr
= λ0

[
1

χ
+ 6

5
(bρ) + 9

25

(
1 + 32

9π

)
(bρ)2χ

]
. (19)

023401-5



SERGIU BUSUIOC AND VICTOR SOFONEA

In these equations, μ0 and λ0 represent the viscosity coefficient and the thermal conductivity for
hard-sphere molecules at temperature T , namely [9]:

μ0 = 5

16σ 2

√
mkBT

π
, λ0 = 75kB

64mσ 2

√
mkBT

π
. (20)

For a dense gas, the Prandtl number Pr is expressed as [9]:

Pr = 2

3

1 + 4
5 bρχ + 4

25

(
1 + 12

π

)
(bρχ )2

1 + 6
5 bρχ + 9

25

(
1 + 32

9π

)
(bρχ )2

. (21)

The dilute limit corresponds to Pr = 2/3. The Chapman-Enskog expansion of Eq. (14) provides
relationships between the relaxation time τ and the transport coefficients. In this context, the
relaxation time τ is expressed as:

τ = μ

Pid
. (22)

The quantity μ encompasses both kinetic and potential contributions, which account for the flow
of molecules and the collisional effects on the transfer of momentum and energy in the gas [8,9]. The
relaxation time approximation effectively captures the collisional transfer resulting from nonlocal
molecular collisions. It is worth noting that the viscosity of a dense gas with a fixed reduced density
η can be adjusted by varying the molecular diameter σ and the number density n.

The Knudsen number is defined as the ratio of the mean free path l and a characteristic length
(in our case the channel width L):

Kn = l

L
= 1√

2πσ 2n0χ (n0)L
= 1

6
√

2η0χ (η0)R
, (23)

where R = L/σ is the confinement ratio [12,23,24].
This paper primarily concentrates on benchmarking the Fourier, Couette, and Poiseuille flow

cases. In these scenarios, the steady flow either lacks bulk motion or exhibits motion perpendicular
to the direction in which gas density varies. Consequently, the bulk viscosity does not have an impact
in these cases.

The model equations involving the simplified Enskog collision operator J1 Eq. (13) are formu-
lated using only a limited number of low-order derivatives, resulting in the omission of information
contained in higher-order terms. As a consequence, the high-order information excluded in J1,
which is not present in the collisional momentum and energy transfer, is reintroduced in the
kinetic transfer of momentum and energy through the relaxation time (22) and the Prandtl num-
ber (21) in the collision term J0[ f ] (9). This ensures that the total stress tensor and heat flux
derived from the current kinetic model align with those obtained from the Enskog equation,
at least up to the first-order approximation [9,24], albeit without the term concerning the bulk
viscosity, which can be recovered by introducing a second-order term in the Taylor expansion
of the Enskog collision integral, as described in Ref. [24]. Therefore, we limit the present study
to flows in which the bulk viscosity has no effect. As such, when we compare the heat fluxes
in the Fourier, Couette, and Poiseuille setups, the simulation results obtained using the PM
will contain the total heat flux qx, the kinetic as well as the potential contributions defined in
Appendix B.

B. Reduced distributions

In the channel flows examined in this paper, the dynamics along the z direction is straightforward.
Furthermore, in the heat transfer (i.e., Fourier) problem, also the dynamics along the y axis is
straightforward. In this context, it is advantageous to integrate out the trivial degrees of freedom
in the momentum space at the level of the model equation.
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1. One-dimensional flows

In the Fourier flow, the dynamics along the y and z directions is trivial. After in-
tegrating along these Cartesian axes, two reduced distribution functions are introduced
[46,47,53,59–61]:

φ1D ≡ φ1D(x, px, t ) =
∫

d pyd pz f (x, p, t ), (24)

θ1D ≡ θ1D(x, px, t ) =
∫

d pyd pz

p2
y + p2

z

m
f (x, p, t ). (25)

In this case, the macroscopic quantities are given by:⎛⎜⎝ n

ρux

xx

⎞⎟⎠ =
∫

d px

⎛⎜⎜⎝
1

px

ξ 2
x

m

⎞⎟⎟⎠φ1D, (26a)

(
3
2 nkBT

qx

)
=
∫

d px

(
1
ξx

m

)(
ξ 2

x

2m
φ1D + 1

2
θ1D

)
, (26b)

and the evolution equations for the reduced distribution functions become

∂

∂t

(
φ1D

θ1D

)
+ px

m

∂

∂x

(
φ1D

θ1D

)
= − 1

τ

(
φ1D − φS

1D

θ1D − θS
1D

)
+
(

Jφ1D
1

Jθ1D
1

)
. (27)

In the above equations, φS
1D and θS

1D are given by:

φS
1D = f MB

x

[
1 + 1 − Pr

5Pid mkBT

(
ξ 2

x

mkBT
− 3

)
ξxqx

]
, (28)

θS
1D = 2kBT f MB

x

[
1 + 1 − Pr

5Pid mkBT

(
ξ 2

x

mkBT
− 1

)
ξxqx

]
, (29)

where

f MB
x = n

(2mπkBT )1/2
exp

(
− ξ 2

x

2mkBT

)
, (30)

while the first-order corrections Jφ1D
1 and Jθ1D

1 are

Jφ1D
1 = −

[
ξx∂x ln χ + 2ξx∂x ln ρ + 3

5

(
ξ 2

x

mkBT
− 1

)
∂xux

+ 3

10

(
ξ 3

x

m2kBT
+ ξx

3m

)
∂x ln T

]
f MB
x bρχ, (31a)

Jθ1D
1 = −

[
ξx∂x ln χ + 2ξx∂x ln ρ + 3

5

(
ξ 2

x

mKBT
− 1

3

)
∂xux

+ 3

10

(
ξ 3

x

m2kBT
+ 7ξx

3m

)
∂x ln T

]
2mkBT f MB

x bρχ. (31b)
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2. Two-dimensional flows

To reduce the computational costs when simulating the Couette and the Poiseuille flows, where
only the dynamics along the z direction is trivial, we integrate along this direction in the momentum
space and get the reduced distribution functions [46,47,53,59–61]:

φ2D ≡ φ2D(x, px, py, t ) =
∫

d pz f (x, p, t ), (32)

θ2D ≡ θ2D(x, px, py, t ) =
∫

d pz
p2

z

m
f (x, p, t ). (33)

This way, the macroscopic quantities are given by:⎛⎜⎝ n
ρui

i j

⎞⎟⎠ =
∫

d pxd py

⎛⎜⎝ 1
pi

ξiξ j/m

⎞⎟⎠φ2D, (34a)

( 3
2 nkBT

qi

)
=
∫

d pxd py

(
1

ξi/m

)(
ξ jξ j

2m
φ2D + 1

2
θ2D

)
, (34b)

where the sum over repeated Cartesian indices i, j ∈ {x, y} is implicitly understood. In this case,
the evolution equations for the reduced distribution functions are

∂

∂t

(
φ2D

θ2D

)
+ px

m

∂

∂x

(
φ2D

θ2D

)
+ Fy

∂

∂ py

(
φ2D

θ2D

)
= − 1

τ

(
φ2D − φS

2D

θ2D − θS
2D

)
+
(

Jφ2D
1

Jθ2D
1

)
, (35)

where, for brevity, we included only the body-force term necessary for the Poiseuille flow. Homo-
geneity along the y axis was assumed.

In the evolution equations above, φS
2D and θS

2D are given by:

φS
2D = f MB

2D

[
1 + 1 − Pr

5Pid mkBT

(
ξ 2

x + ξ 2
y

mkBT
− 4

)
(ξxqx + ξyqy)

]
, (36a)

θS
2D = kBT f MB

2D

[
1 + 1 − Pr

5Pid mkBT

(
ξ 2

x + ξ 2
y

mkBT
− 2

)
(ξxqx + ξyqy)

]
, (36b)

where

f MB
2D = n

(2mπkBT )
exp

(
−ξ 2

x + ξ 2
y

2mkBT

)
. (37)

The first-order corrections Jφ2D
1 and Jθ2D

1 in Eqs. (35) are

Jφ2D
1 = −

[
ξx∂x ln χ + 2ξx∂x ln ρ + 2

5

(
ξ 2

x

mkBT
+ ξ 2

x + ξ 2
y

2mkBT
− 2

)
∂xux

+ 3ξx

10m

(
ξ 2

x + ξ 2
y

mkBT
− 2

3

)
∂x ln T

]
f MB
2D bρχ, (38a)

Jθ2D
1 = −

[
ξx∂x ln χ + 2ξx∂x ln ρ + 2

5

(
ξ 2

x

mkBT
+ ξ 2

x + ξ 2
y

2mkBT
− 1

)
∂xux

+ 3ξx

10m

(
ξ 2

x + ξ 2
y

mkBT
+ 4

3

)
∂x ln T

]
2mkBT f MB

2D bρχ. (38b)
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III. FINITE-DIFFERENCE ENSKOG LATTICE BOLTZMANN MODEL

In this section, we outline the FDLB algorithm used to solve Eqs. (27) and (35) numeri-
cally. The algorithm is based on the Hermite expansion of the Boltzmann equation. A purely
kinetic representation of fluid systems is established that mirrors the outcome of Grad’s expansion
technique. Rather than the integrals of moments, we track the evolution of a set of distribution
functions, corresponding to a finite set of momentum vectors. The equations governing the evolution
of each function in this set are derived from the Boltzmann equation without losing its kinetic
nature.

The Hermite expansion can be interpreted as an expansion in terms of the characteristic Mach
number (Ma = U/

√
γ RT , where γ = 5/3 is the specific heat ratio for monatomic gases). Conse-

quently, higher-level approximations to the Boltzmann equation beyond the Navier-Stokes level can
be readily crafted within this framework by expanding the equilibrium distribution to higher orders
and employing quadratures with an adequate degree of precision.

This algorithm involves two main stages. The first one is the discretization of the momentum
space and the second one is the choice of the numerical scheme used to handle the advection term
in the evolution equations. Herein we will discuss the momentum space discretization, while the
details concerning the numerical schemes can be found in Appendix D.

A. Discretization of the momentum space

In our work, we use Gauss-Hermite quadrature methods of various orders for the discretization
of the momentum space [44–47,62,63]. Unlike Ref. [43], where the full-range Gauss-Hermite
quadrature was adequate for the use in the Enskog FDLB model for the investigation of problems
involving only periodic boundary conditions, namely the propagation of the sound and the shock
waves in a one-dimensional domain, in this paper we investigate fluid flow problems bounded by
two parallel walls perpendicular to the x axis of the Cartesian system. As known in the kinetic
theory of gases, the presence of the walls induces a discontinuity of the distribution function, which
becomes more effective at higher values of the Knudsen number. In such cases, the half-range
Gauss-Hermite quadrature method in confined fluid flow was already proved to be more accurate
and more efficient in capturing the effects of the wall-induced discontinuity, when compared to the
corresponding full-range quadrature method [44–47].

After discretization of the momentum space, the integrals in Eqs. (26) and (34) are replaced with
sums over the K elements of the discrete momentum set, i.e., the momentum vectors pκ or the
corresponding peculiar momenta ξκ , 1 � κ � K:

⎛⎜⎝ n

ρui

i, j

⎞⎟⎠ =
K∑

κ=1

⎛⎜⎜⎝
1

pκ;i

ξκ; jξκ; j

m

⎞⎟⎟⎠φϒ (pκ ), (39a)

(
3
2 nkBT

qi

)
=

K∑
κ=1

d pκ;i

(
1
ξκ;i

m

)[
ξκ; jξκ; j

2m
φϒ (pκ ) + 1

2
θϒ (pκ )

]
. (39b)

The indices i, j ∈ {x, y} denote the Cartesian components of the vectors pκ and ξκ, while ϒ ∈
{1D, 2D}.

In order to take advantage of the geometry of the channel flows considered in this paper,
when investigating the Couette and the Poiseuille flow we solve the evolution equations of the
reduced distribution functions by employing the mixed quadratures concept, according to which the
quadrature is controlled separately on each axis [44,54,61]. The details regarding the 2D LB model
with mixed quadratures are found in Sec. III B below.
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B. Mixed quadrature LB models with reduced distribution functions

In mixed quadrature LB models, the momentum space is constructed using a direct product rule.
This allows for independent construction of quadratures on each axis by taking into account the flow
characteristics [45].

In the Couette and the Poiseuille flows considered in this paper, the presence of diffuse-reflective
walls introduces a significant discontinuity in the distribution functions φ2D and θ2D when the
Knudsen number (Kn) becomes sufficiently large. For such values of Kn, the efficiency of the
full-range Gauss-Hermite quadrature on the Cartesian axis perpendicular to the wall diminishes
compared to the half-range Gauss-Hermite quadrature [44,45,54,61]. On the other hand, for axes
not bounded by walls, a relatively low-order quadrature (usually a full-range Gauss-Hermite
quadrature) is adequate. Detailed information about the full-range Hermite polynomials is provided
in Appendix A, which also includes a comparison of simulation results obtained using both full-
and half-range approaches.

When using reduced distribution functions to address 3D flow problems that are homogeneous
along the y axis and bounded by walls perpendicular to the x axis, as encountered in the subsequent
sections, appropriate LB models employ a half-range Gauss-Hermite quadrature of order Qh

x along
the x axis and a full-range Gauss-Hermite quadrature of order QH

y along the y axis. The number
of momentum vectors used in the FDLB model is K = Qx × Qy, where Qx = 2Qh

x and Qy = QH
y .

This technique allows one to reduce the computational costs [45,46,54]. Note that, when simulating
the Fourier flow, there is no variation of the reduced distribution functions along the y axis. In this
case, the sole use of the half-range Gauss-Hermite quadrature on the x axis is sufficient and the
mixed quadratures are no longer needed.

C. Half-range Gauss-Hermite quadrature

To ensure the recovery of the half-range moments M±
s and M (eq),±

s of finite order s for the
distribution functions f , half-range quadratures are employed on the x axis. The moments are
defined as follows:[

M+
s

M (eq),+
s

]
=
∫ ∞

0
d p

[
f (p)

f eq(p)

]
ps,

[
M−

s

M (eq),−
s

]
=
∫ 0

−∞
d p

[
f (p)

f eq(p)

]
ps. (40)

The half-range Gauss-Hermite quadrature on the x axis is defined with respect to the weight
function ω(p):

ω(p) = 1√
2π

ep̄2/2, p̄ ≡ p/p0, (41a)

∫ ∞

0
d pω( p̄)Ps( p̄) �

Qh
x∑

k=1

w(pk )Ps(pk ), (41b)

where Ps represents a polynomial of order s, p0 is a characteristic momentum scale, and the
equality (41b) is exact if the number of quadrature points Qh satisfies 2Qh > s [62,64]. In this
paper we set p0 = √

mrefkBTref . The quadrature points pk (k = 1, 2, . . . , Qh) are the positive roots
of the half-range Hermite polynomial hQ(p) of order Qh. The quadrature weights wh

k are given by
[44,45,62,64]:

wh
k = pka2

Q

h2
Q+1

(
pk
)[

pk + h2
Q(0)/

√
2π
] , (42)
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where aQ = hQ+1,Q+1/hQ,Q and h�,s represents the coefficient of ps in h�(p):

h�(p) =
�∑

s=0

h�,s ps. (43)

The half-range Hermite polynomials are normalized according to:∫ ∞

0
d pω(p)h�(p)h�′ (p) = δ�,�′ . (44)

To apply the half-range Gauss-Hermite quadrature, the distribution function f and the equilib-
rium distribution function f eq must be expanded using the half-range Hermite polynomials. Since
these polynomials are defined only on half of the momentum axis, f is split using the Heaviside
step function θ (p):

f (p) = θ (p) f +(p) + θ (−p) f −(p), θ (p) =
{

1, p > 0,

0, p < 0.
(45)

The functions f +(p) and f −(p) are defined on the positive and negative momentum semiaxis,
respectively, and can be expanded as:

f + = ω(p)

p0

∞∑
�=0

F+h�(p), f − = ω(−p)

p0

∞∑
�=0

F−h�(−p). (46)

The coefficients F± can be obtained using the orthogonality of the half-range Hermite polynomials:

F+
� =

∫ ∞

0
d p f (p)h�(p), F−

� =
∫ 0

−∞
d p f (p)h�(−p). (47)

Expanding f eq in a similar manner, with expansion coefficients G±
� , the half-range moments can

be recovered: (
M+

s

M−
s

)
=

∞∑
�=0

1

�!

(
F+

�

F−
�

)∫ ∞

0
d pω(p) h�(p)(±p)s. (48)

Truncating the expansion at � = N = Q − 1 ensures that a quadrature of order Q can recover the
moments for 0 � s � N . The discrete momentum set of the one-dimensional half-range Gauss-
Hermite lattice Boltzmann model consists of Q = 2Qh elements, defined as:

p̄k = p0 pk, p̄k+Q = −pk
(
1 � k � Qh

)
. (49)

Thus, the half-range moments are recovered as:

M+
s =

Qh∑
k=1

fk ps
k, M−

s =
2Qh∑

k=Qh+1

fk ps
k, (50)

where

fk = wh
k p0

ω(pk )
f (pk ), fk+Q = wh

k p0

ω(pk )
f (−pk )

(
1 � k � Qh

x

)
. (51)

Now let us consider the expansion of f eq in terms of the half-range Hermite polynomials. We
can write f MB = θ (p)g+(p) + θ (−p)g−(p), where

g± = ω(|p|)
p0

∞∑
�=0

G±
� h�(|p|). (52)
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TABLE I. Quadrature order Qh
x for the parameters used in this study.

Fourier Couette Poiseuille

η0\R 4 10 4 10 4 10

0.01 11 8 8 8 29 15
0.1 8 8 8 8 8 8
0.2 8 8 8 8 8 8

The expansion coefficients G±
� can be obtained in a similar way to Eq. (47).

For more information on one-dimensional lattice Boltzmann models based on half-range Gauss-
Hermite quadratures, we refer the reader to Refs. [44,54,61].

IV. NUMERICAL RESULTS

Our attention is directed towards the study of dense gas flows confined between two infinite
parallel plates which are perpendicular to the x direction. The plates are located at x = −L/2 and
L/2, respectively, while the diffuse reflection boundary conditions are applied at x = ±(L − σ )/2.
The confinement ratio is defined as R = L/σ , where L is the physical domain width and Lc = L − σ

is the width of the computational domain. The molecular diameter is set to σ = 1. The FDLB results
are compared to the simulation results obtained with the PM method which is briefly presented in
Appendix C. If not stated otherwise, then the time step was set to �t = 10−3 and the lattice spacing
(cell length for particle method) at �x = σ/100. A number of 1000 particles per cell was used in
the particle method in order to obtain smooth profiles of macroscopic quantities.

For our simulations, we have chosen the following value sets of the confinement ratio R and the
mean (initial) reduced density η0, namely R ∈ {4, 10} and η0 ∈ {0.01, 0.10, 0.20}. We have chosen
these values to encompass a wide range of Knudsen numbers, spanning from the slip to the early
transition regime. The objective is to specifically emphasize the unique characteristics of fluid flow
when dense gas effects and confinement are involved.

In the following subsections, we examine various scenarios to assess the effectiveness of
the proposed model in recovering the flow of a dense gas bounded by parallel plates. When
not stated otherwise, the orders Qh

x of the half-range quadratures used in this study for the
three flow problems (Fourier, Couette, and Poiseuille) are listed in Table I. These values
were obtained by performing a convergence test, for which the following error evaluation was
used [44]:

εM =
max

[√
[M(xi ) − Mref (xi )]2

]
max[Mref ] − min[Mref ]

, (53)

where M ∈ {T, uy, uy} for the Fourier, Couette, and Poiseuille flows, respectively, and i denotes
the node index. The reference profile Mref is obtained using Qh

x = 200 quadrature points. The
convergence test is satisfied when εM < 0.01, which represents a 1% error with respect to the
maximum variation of the macroscopic quantity M across the channel. In the case of the 2D flows a
full-range Gauss-Hermite quadrature of fixed order QH

y = 5 was used in the longitudinal direction
for both reduced distributions φ2D and θ2D [54]. One can observe that a quadrature order of Qh

x = 8
gives an acceptable result for flows at smaller Knudsen number Kn (larger reduced density η and/or
larger confinement ratio R), while one has to increase the quadrature order for tight confinement
and small reduced density. Overall, a relatively small velocity set is necessary to achieve reasonable
results.

The typical runtime for a PM simulation is about 3.5 × 103 s for η0 = 0.01 and 1.85 × 104 s for
η0 = 0.2, irrespective of the flow studied, while the FDLB, using a quadrature order of Qh

x = 8,
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FIG. 1. Dense gas at rest near a reflective wall: Normalized density profiles η/η0 for three values of the
mean reduced density η0 ∈ {0.01, 0.10, 0.20} and two values of the confinement ratios R = 10 (a) and R = 4
(b), corresponding to Kn ∈ {1.1493, 0.0904, 0.0335} and Kn ∈ {2.8731, 0.226, 0.0838}, respectively.

takes around 17 s for the 1D case of Fourier flow and 100 s for the 2D case of Couette and
Poisseuille flow. The running time for FDLB is independent of the reduced density employed but
it is directly proportional to the quadrature order, resulting in a minimum runtime ratio (runtime
for PM over the runtime for FDLB) of ≈150 in the Fourier flow case (Qh

x = 11 for η0 = 0.01)
and a minimum runtime ratio ≈10 in the Poisseuille case with Qh

x = 29 at η0 = 0.01. These
times were recorded using R = 4 and a single core of an Intel Xeon Gold 6330 CPU running
at 2.0 GHz.

A. Dense gas at rest near a reflective wall

To begin, we consider a hard-sphere gas confined between two stationary parallel walls kept
at the temperature Tw = 1. We first assess the accuracy of the proposed model in reproducing
the reduced density profile near a wall. Due to the symmetry of the simulated problem, only the
half-channel plot is presented (x ∈ [0 : Lc/2]), as it will be also the case in the Couette and the
Poiseuille flows to be discussed further. In Fig. 1 one may observe that the stationary profile of
the reduced density η is nonmonotonic near the wall, unlike in the case of a dilute gas. Indeed,
it is important to consider that when a fluid particle is located at a distance less than σ from
the wall, a portion of its surface remains protected from collisions. This occurs because there is
insufficient space available for a second molecule to occupy that region. As a result, the particle is
pushed toward the wall. It is important to note that an oscillating density profile near the wall is a
characteristic feature of dense gases. These density variations emerge within a region approximately
equivalent to the molecular diameter, and their intensity diminishes as η0 → 0. Consequently, in
the Boltzmann limit, the density becomes spatially uniform. To assess the accuracy of the FDLB
model, we compare the density profiles to the profiles obtained using the PM. As expected, the
difference between the FDLB and the PM profiles becomes significantly larger when the mean
reduced density η0 increases. As seen in Fig. 1, a fairly good agreement between the PM and
the FDLB results is obtained up to the mean value η0 = 0.1. For larger values of η0, substantial
differences can be observed regardless of the value of the confinement ratio R. Hence, the value
η0 = 0.1 can be assumed to be the limit of the simplified Enskog collision model, for a reasonable
accuracy.
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FDLB

FDLB

FIG. 2. Fourier flow: Heat transfer at wall temperature difference �T = 0.1 and three values of the
mean reduced density η0: Transversal profiles of the normalized reduced density η/η0 (first row) and of the
normalized temperature T/T0 (second row) for R = 10 in the left column (Kn ∈ {1.1493, 0.0904, 0.0335}) and
R = 4 in the right column (Kn ∈ {2.8731, 0.226, 0.0838}).

B. Fourier flow

In this subsection, we will analyze the heat transfer in a dense gas confined between two
infinite parallel plates. The left and the right plate temperatures are fixed at TL = T0 − �T and
TR = T0 + �T , respectively, with T0 = 1. We will explore two values of the temperature dif-
ference �T ∈ {0.1, 0.5}, corresponding to TR/TL ∈ {11/9, 3}. For each value of the temperature
difference �T , the simulations were conducted using three values of the mean reduced density
η0 ∈ {0.01, 0.1, 0.2} and two values of the confinement ratio R ∈ {4, 10}, which correspond to Lc ∈
{3, 9}. This gives Kn ∈ {1.1493, 0.0904, 0.0335} for R = 10 and Kn ∈ {2.8731, 0.226, 0.0838}
for R = 4.

Figure 2 presents the results for the smaller temperature difference �T = 0.1. The profiles of the
normalized reduced density η/η0 and of the normalized temperature T/T0 are shown in the first and
the second rows, respectively. Excellent agreement is obtained for both confinement ratios at small
values of density η0, while at higher values of η0 the density and temperature exhibit discrepancies
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FDLB

FDLB FDLB

FDLB

FIG. 3. Fourier flow: Heat transfer at wall temperature difference �T = 0.5 and three values of the
mean reduced density η0: Transversal profiles of the normalized reduced density η/η0 (first row) and of the
normalized temperature T/T0 (second row) for R = 10 in the left column (Kn ∈ {1.1493, 0.0904, 0.0335}) and
R = 4 in the right column (Kn ∈ {2.8731, 0.226, 0.0838}).

between the two simulation methods, especially near the walls. Nevertheless, these results are in
good relative agreement.

Figure 3 depicts the outcomes for a significantly larger temperature difference �T = 0.5,
corresponding to the wall temperature ratio TR/TL = 3. The density profiles resemble those observed
for smaller temperature differences. However, in the case of temperature profiles for high values
of the mean reduced density η0, noticeable discrepancies are observed also in the bulk of the
fluid (the relative error with respect to the PM results is approximatively 5%). According to
the conservation laws, the transversal heat flux qx is constant through the channel. The value of
the transversal heat flux qx, obtained with both the FDLB and the PM models are presented in
Fig. 4. The transversal heat flux is plotted in the left panel for R ∈ {4, 10} and �T ∈ {0.1, 0.5}. As
the dilute gas limit is approached, the two methods agree perfectly, while significant differences
between the FDLB results and the PM results are observed for increased values of η0. On the other
hand, in the right panel, we plot the ratio qx/η0 with respect to various values of the Knudsen
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FIG. 4. Fourier flow: (a) Transversal heat flux values qx at temperature differences �T ∈ {0.1, 0.5} and
confinement ratios of R = {4, 10}. (b) Dependence of the ratio qx/n0 with respect to the Knudsen number Kn
for three values of the reduced density η ∈ {0.01, 0.1, 0.2}.

number Kn obtained by varying the width of the computational domain at a constant value of
the reduced density η0. The monotonic increase of the heat flux with respect to the Knudsen
number encountered for the dilute gas [65,66] is no longer present for dense gases at relatively
high values of the reduced density η0. Indeed, one may observe a local maximum of the heat
flux which emerges in both the FDLB and the PM models. This maximum is further investigated
using the PM in Appendix B, where the two components of the heat flux (kinetic and potential) are
evaluated.

C. Couette flow

In this subsection, we will analyze the Couette flow of a gas confined between two infi-
nite parallel plates. The plates move in opposite directions along the y axis with fixed velocity
Uw = √

kBTw/m, i.e., UL = −Uw and UR = Uw. The wall temperature of both plates is equal and
constant (Tw = T0 = 1). The simulations were conducted for three values of the mean reduced
density, η0 ∈ {0.01, 0.1, 0.2} and two values of the confinement ratio R ∈ {4, 10}, corresponding
to Lc ∈ {3, 9}. The Knudsen numbers associated are Kn ∈ {1.1493, 0.0904, 0.0335} for R = 10 and
Kn ∈ {2.8731, 0.226, 0.0838} for R = 4.

In Fig. 5 we plot the transversal density profile on the right half [0, Lc/2] of the computational
domain. One can easily recognize the same feature as in the case of stationary dense gas, namely
the formation of a layer in the proximity of each wall. The layer width is of the order of σ (the
molecular diameter). Excellent agreement between the FDLB and the PM profiles is observed up
to η0 = 0.1. The corresponding velocity and temperature profiles are presented in Fig. 6, for the
two values of the confinement ratio considered in this paper. Very good agreement between the
FDLB and the PM profiles is obtained throughout the considered range of the reduced density η0,
with small discrepancies observed near the wall when the value of the confinement ratio is large
enough (R = 10). For the smaller value of the confinement ratio (R = 4), the discrepancies are
larger, but this is expected behavior due to the severe approximations involved in the derivation of
the simplified Enskog collision operator.

In addition to the transverse component qx of the heat flux, the Couette flow exhibits a nonzero
longitudinal heat flux qy, which is a distinct microfluidics phenomenon. The corresponding results
are presented in Fig. 7, where the left and the right panels represent the simulation results conducted
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FIG. 5. Couette flow: Normalized reduced density profile η/η0 at a wall velocity of Uw = 1; three values of
the mean reduced density η0 = {0.01, 0.1, 0.2} and (a) R = 10 (Kn ∈ {1.1493, 0.0904, 0.0335}) and (b) R = 4
(Kn ∈ {2.8731, 0.226, 0.0838}).

with the values R = 10 and R = 4 of the confinement ratio, respectively. Excellent agreement
between the FDLB and the PM results is observed when the reduced density is small enough
(η0 = 0.01). For larger values of the reduced density, the discrepancies become noticeable. The
plot specifically showcases the right half of the channel, where the transverse heat flux values are
positive, and the longitudinal component consistently exhibits negative values across the parameter
range. Because the longitudinal heat flux, qy, does not arise from a temperature gradient, its
behavior is expected to depend on the higher-order transport coefficients. Hence, it is not a surprise
to see that these cross phenomena are not accurately captured by the model when η0 is large
enough.

D. Poiseuille flow

In this section, we examine the Poiseuille flow, which is generated by an external acceleration ay

acting parallel to the plates. The results are grouped into linear and nonlinear flows, based on the
external acceleration magnitude. Nonlinearity arises when the heat generated by viscous dissipation
cannot be adequately dissipated through the diffusive boundary conditions. The wall temperature
was fixed at Tw = T0 = 1. To ensure that the response to the external acceleration remains within
the linear regime, a specific external acceleration ay = 0.001 has been chosen, as detailed below.

1. Linear regime

At first, we will look at a flow with a small acceleration ay = 0.001. In this case, the flow
deviates slightly from the equilibrium, and hence only the velocity field has a statistically significant
variation. In Fig. 8 we take advantage of the symmetry of the Poiseuille flow between parallel
walls and restrict the plot of both the normalized reduced density η/η0 and the normalized velocity
uy/

√
kBT0/m on the right half [0, Lc/2] of the computational domain. In this figure, we can observe

again the very good agreement between the FDLB and the PM results for η0 = 0.01. For the larger
value of η0, the density profile has a similar behavior as in the case of dense gas at rest between two
parallel walls in Sec. IV A, while the FDLB velocity profile is within a few percent from the PM
one. The results are similar for both values of the confinement ratio used R ∈ {4, 10}.
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FIG. 6. Couette flow: Normalized velocity and temperature profiles at a wall velocity of Uw = 1;
three values of the mean reduced density η0 = {0.01, 0.1, 0.2} and R = 10 in the left column (Kn ∈
{1.1493, 0.0904, 0.0335}) and R = 4 in the right column (Kn ∈ {2.8731, 0.226, 0.0838}).

2. Nonlinear regime

Moving to high acceleration of ay = 0.1, we also encounter transversal variations in both the
temperature and the heat fluxes. As in Couette flow, in addition to the transverse component qx of
the heat flux, the Poiseuille flow displays a nonzero longitudinal heat flux qy, which arises as a
distinct microfluidics phenomenon.

Figure 9 plots the velocity and the temperature profiles for the acceleration ay = 0.1. The
density profile has insignificant variations with respect to the small acceleration case (see
Fig. 8). Concerning the velocity profiles, the FDLB results are in good agreement with the
PM curves, with larger deviations observed in the center of the channel as the reduced density
η0 is increased. Instead, a surprisingly good match between the FDLB and the PM profiles
is obtained near the walls. Also, the temperature profiles are again in good agreement: The
FDLB profiles exhibit a deviation less than 5% with respect to the PM profiles throughout the
channel.
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FIG. 7. Couette flow: Profiles of both the transversal (qx > 0) and the longitudinal (qy < 0) heat fluxes for
the wall velocity Uw = 1; three values of the mean reduced density η0 = {0.01, 0.1, 0.2} and two values of the
confinement ratio (a) R = 10 (Kn ∈ {1.1493, 0.0904, 0.0335}) and (b) R = 4 (Kn ∈ {2.8731, 0.226, 0.0838}).

In Fig. 10 we present the profiles of both the transversal and the longitudinal heat fluxes. An
excellent agreement between FDLB and PM profiles is seen for the transversal heat flux at low
values of the reduced density η0. As seen also in the previous plots, at larger values of η0 the
deviations are huge, but this is an expected outcome due to the crude approximations used in the
simplified Enskog collision operator. In the case of the longitudinal heat flux, the discrepancies are
even more pronounced. Nevertheless, the model still provides a reasonably accurate description of
the flow at low fluid densities.

3. Mass flow rate

The mass flow rate (MFR) is defined as:

ṁ =
∫ Lc

2

− Lc
2

n(x)uy(x)

a
dx, (54)

and it was normalized by ṁ0 = n0maL2
c /vm, where vm = √

kBT0/m. The results are plotted in
Fig. 11(a), where we plot the normalized mass flow rate with respect to the Knudsen number for four
values of the confinement ratio R ∈ {2, 5, 10, 20}. The tightness of wall confinement significantly
affects the mass flow rate in the Enskog equation. When the channel width is large (R > 20), the
MFR at Knudsen numbers (Kn) larger than 1 mostly matches that of the Boltzmann equation.
However, for Kn < 1, the MFR in the Enskog equation is smaller than predicted by the Boltzmann
equation, and this difference becomes more pronounced as Kn decreases. As the channel width
decreases, the MFR becomes smaller, and the deviation from the Boltzmann equation extends to
larger Knudsen numbers. For R > 5, the MFR does not monotonically decrease with Kn in the
slip flow regime (Kn < 0.1). Instead, there exists a specific value of Kn at which the MFR locally
reaches a maximum. When R is less than or equal to 5, the Knudsen minimum disappears, and
the MFR only increases with the Knudsen number. Following the study in Ref. [67], the Knudsen
minimum disappearance can be explained as follows. Under tight geometries, the combined contri-
bution of viscosity and density weakens, while the slip term remains constant as the confinement
ratio R decreases. As a result, the relative importance of the slip term increases in this context.
Consequently, the disappearance of the Knudsen minimum under tight confinement can be attributed
to the more pronounced significance of fluid slippage at the wall.
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FDLB FDLB

FDLBFDLB

FIG. 8. Poiseuille flow (linear regime): Normalized density and velocity profiles generated using the
external acceleration ay = 0.001 for three values of the mean reduced density η0 = {0.01, 0.1, 0.2} and
two values of the confinement, namely R = 10 (left column) and R = 4 (right column), corresponding to
Kn ∈ {1.1493, 0.0904, 0.0335} and Kn ∈ {2.8731, 0.226, 0.0838}, respectively.

In Fig. 11(b), the normalized mass flow rate ṁ/ṁ0 is evaluated for different quadrature orders Qh
x

in the FDLB model with respect to the Knudsen number. Specifically, four values of the quadrature
order Qh

x ∈ {8, 16, 32, 64} were considered. This plot illustrates that, as the Knudsen number Kn
increases, one has to employ a larger quadrature order to approach the PM results. This entails
that one has to actively tune the quadrature order as the Knudsen number is varied, the accuracy
of the model being given by the quadrature order employed. The results presented in Fig. 11(a)
are obtained using a varying quadrature order over the interval of the Knudsen number. More
specifically, a quadrature order of order Qh

x = 8 is sufficient for Kn < 1 and then we switched to a
quadrature of Qh

x = 100 to ensure the accuracy.

V. CONCLUSIONS

In this work, a series of dense gas flows bounded by parallel plates were simulated in order to
validate the proposed finite-difference lattice Boltzmann model employing the simplified Enskog
collision integral. In this model, the Enskog collision integral is approximated using a Taylor
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FDLB FDLB

FDLB

FDLB

FIG. 9. Poiseuille flow (nonlinear regime): Normalized velocity and temperature profiles for the external
acceleration ay = 0.1, three values of the mean reduced density η0 = {0.01, 0.1, 0.2}, R = 10 in the left column
(Kn ∈ {1.1493, 0.0904, 0.0335}) and R = 4 in the right column (Kn ∈ {2.8731, 0.226, 0.0838}).

expansion and retaining the first-order gradients. To account for the wall-induced discontinuity of
the distribution function, as well as to reduce the computational costs, half-range Gauss-Hermite
quadratures were used on the Cartesian axis perpendicular to the plates. We benchmarked the model
in the following setups: Fourier flow, Couette flow, and Poiseuille flow. The simulation parameters
range from a low reduced density value (η0 = 0.01) to a relatively high value (η0 = 0.2) and include
the confinement ratios R ∈ {4, 10}.

The FDLB results obtained for the Couette flow, the Fourier flow, and the Poiseuille flow were
validated against the corresponding PM results. Reasonable agreement was observed throughout the
parameter range. More specifically, our kinetic model adequately captures the effects of denseness,
density inhomogeneity, as well as nonequilibrium phenomena within the range of flow parameters
investigated.

In the case of the Fourier flow, we further examined the transversal heat flux with respect
to the Knudsen number Kn where we observed a significant deviation from the dilute gases
results. Specifically, the heat flux is no longer monotonic and moreover exhibits a local maximum,
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FDLBFDLB

FDLB

FDLB

FIG. 10. Poiseuille flow (nonlinear regime): Transversal and longitudinal heat flux, qx and qy, at an external
acceleration of ay = 0.1; three values of the mean reduced density η0 = {0.01, 0.1, 0.2} and R = 10 in the left
column (Kn ∈ {1.1493, 0.0904, 0.0335}) and R = 4 in the right column (Kn ∈ {2.8731, 0.226, 0.0838}).

whose value for η0 = 0.2 is even larger than the ballistic limit. This is attributed to the potential
contributions to the heat flux, as detailed in Appendix B.

The Couette flow results are well captured by the FDLB model, even if the deviations with respect
to the PM results become larger as the fluid is more confined (i.e., smaller R). Besides the density,
velocity, and temperature profiles, we have also presented the transversal and longitudinal heat flux
profiles. Since the simplified Enskog collision operator approximation discards the higher-order
contributions to the collisional momentum and energy transfer, the FDLB results for the transversal
and the longitudinal heat fluxes agree with the PM results only at very low reduced density
(η0 = 0.01).

As in the case of the Fourier and Couette flows, the Poiseuille flow results are in good agreement
with the PM results up to a mean reduced density of η0 = 0.1. As shown before [2,23,67], the
Knudsen minimum in the Poiseuille setup disappears for ultratight confinement (R < 5). This effect
is well captured by the FDLB model.

In conclusion, the presented model demonstrates its capability to handle moderately dense gases.
Additionally, we examined the model’s performance in dealing with flows characterized by sharp
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FIG. 11. Poiseuille flow (mass flow rate): (a) Normalized mass flow rate ṁ/ṁ0 at an external acceleration
of ay = 0.001 with respect to Knudsen number Kn; four values of the confinement ratio R = {2, 5, 10, 20}.
(b) Normalized mass flow rate ṁ/ṁ0 with respect to the Knudsen number for four values of the quadrature order
Qx ∈ {8, 16, 32, 64}. One can observe that as the Knudsen number increases one has to employ a higher-order
quadrature in order to recover the mean flow rate, as is the case for dilute gases.

gradients in macroscopic quantities arising in the gas-surface interaction. This was achieved with a
much lower computational cost compared to the particle method simulations. Moving forward, our
future plans include incorporating attractive forces between molecules to address multiphase flows.
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APPENDIX A: FULL-RANGE GAUSS HERMITE QUADRATURES: CONSTRUCTION
AND COMPARISON TO HALF-RANGE GH QUADRATURE RESULTS

Let us examine integrals of f and f eq along the entire axis of the 1D momentum space:[
Ms

M (eq)
s

]
=
∫ ∞

−∞
d p

(
f

f eq

)
ps, (A1)

where f eq = ng and

g ≡ g(x, p, t ) = 1√
2πmT

exp

[
− (p − mu)2

2T

]
. (A2)

The function g can be expanded with respect to the full-range Hermite polynomials
H�(p), � = 0, 1, . . . as follows [44,45]:

g = ω( p̄)

p0

∞∑
�=0

1

�!
G�H�( p̄), G� =

��/2∑
s=0

�!

2ss!(� − 2s)!

(
mT

p2
0

− 1

)s(mu

p0

)�−2s

, (A3)
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where p̄ ≡ p/p0 represents the particle momentum with respect to an arbitrary momentum scale p0,
and �· denotes the floor function.

The full-range Hermite polynomials [44,62,63] satisfy the following orthogonality relation with
respect to the weight function ω(p):∫ ∞

−∞
d pω(p)H�( p̄)H�′ ( p̄) = �! δ�,�′ , ω(p) = 1√

2π
e−p̄2/2. (A4)

The expansion coefficients G� given in Eq. (A3) are obtained as follows:

G� =
∫ ∞

−∞
d p gH�(p). (A5)

By substituting Eq. (A3) into Eq. (A1), we obtain:

M (eq)
s = ps

0

∞∑
�=0

1

�!
G�

∫ ∞

−∞
d pω(p) H�(p) ps. (A6)

For finite values of s and �, the Gauss-Hermite quadrature can be applied to compute the integral
over p across the entire momentum axis using the following approach:∫ ∞

−∞
d pω(p)Ps(p) �

QH∑
k=1

wH
k Ps(pk ), (A7)

where Ps(p) is a polynomial of order s in p and the QH quadrature points pk (k = 1, 2, . . . , QH ) are
the roots of the Hermite polynomial of order QH , i.e., HQH (pk ) = 0. The quadrature weights wH

k are
given by:

wH
k = QH !

[HQH +1(pk )]2
. (A8)

The equality in Eq. (A7) is exact if 2QH > s. In an LB simulation, QH is fixed at runtime. Thus, in
order to ensure the exact recovery of M (eq)

s (A6), the sum over � in Eq. (A3) must be truncated at
a finite value � = N . Setting QH > N ensures the exact recovery of the first N + 1 moments (i.e.,
s = 0, 1, . . . , N) of f eq, since the terms of higher order in the expansion of g are orthogonal to all
polynomials Ps(p) of orders 0 � s � N , due to the orthogonality relation (A4). This allows us to
obtain Meq

s as follows:

M (eq)
s =

QH∑
k=1

f eq
k p̄s

k, f eq
k = ngH

k , gH
k = wH

k p0

ω( p̄k )
gH,(N )( p̄k ), (A9)

where p̄k = p0 pk represents the discrete momenta and the notation gH,(N )(p) indicates that the
polynomial expansion (A3) of g(p) is truncated at order � = N using the full-range Hermite
polynomials. For clarity, we provide the expression for gH

k [44,45] as follows:

gH,(N )
k = wH

k

N∑
�=0

H�( p̄k )
��/2∑
s=0

1

2ss!(� − 2s)!

(
mT

p2
0

− 1

)s(mu

p0

)�−2s

. (A10)

In the case of the Poiseuille flow, the momentum derivative ∂py f can be written as:

(∂py f )k =
∑
k,k′

Kk,k′ fk′ , (A11)
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FIG. 12. Comparison between simulation results performed with FDLB models using full- and half-range
Gauss-Hermite quadratures: (a) Fourier flow, (b) Couette flow, and (c) Poiseuille flow at R = 10, η0 = 0.01
(resulting in Kn = 1.1493), and �T = 0.5, Uw = 1, and ay = 0.001, respectively. The full- and the half-range
quadrature orders are denoted by QH and Qh, respectively. These plots indicate a convergence of the results
obtained using full-range quadrature towards those obtained using half-range quadrature.

where the kernel Kk,k′ has the following components [61,68]:

Kk,k′ = −wH
k

p0

QH −2∑
�=0

1

�!
H�+1( p̄k )H�( p̄k′ ). (A12)

In Fig. 12 we plot the results obtained for Fourier, Couette, and Poiseuille flows using the full-
range Hermite polynomials, as well as the corresponding half-range results, for R = 10 and �T =
0.5, Uw = 1, and ay = 0.001. The reduced density was set to η0 = 0.01. We can easily see that
a significantly larger velocity set needs to be employed in the case of full-range Gauss-Hermite
quadrature in order to obtain similar results to those obtained using the half-range quadrature of
order Qh

x = 8, which has 16 velocities. In most cases, the full-range quadrature of order QH
x = 200

is needed to ensure relative errors less than 1%.

APPENDIX B: LOCAL MAXIMUM IN HEAT FLUX FOR THE FOURIER FLOW

Further looking at the heat flux in the context of the Fourier flow, one can evaluate the kinetic
and potential contributions to the total heat flux. While the kinetic component is evaluated as usual,
the potential part is given by [21]:

qpot
x = − m

σ 2

4

∫
dξ1dξ2d2k

∫ σ

0
dα
(
ξ ∗

1
2 − ξ 2

1

)
kχ
(

x + αk − σ

2
k
)

× f (x + αk − σk, ξ1) f (x + αk, ξ2)(pr · k), (B1)

where α is a dummy variable.
Using the particle method described below one may assess the individual contributions to the

total heat flux. In Fig. 13 we plot the components of the kinetic q̃kin
x = ∫ Lc

2

− Lc
2

qkin
x dx and potential

q̃pot
x = ∫ Lc

2

− Lc
2

qpot
x dx heat flux contributions integrated over the channel length with respect to the

Knudsen number. The total heat flux qx = qkin
x + qpot

x is also plotted in this figure, being the same
curve corresponding to η0 = 0.2 as in Fig. 4(b). One can easily observe the monotonic increase

023401-25



SERGIU BUSUIOC AND VICTOR SOFONEA

FIG. 13. Heat flux: The dependence of the kinetic qkin
x and the potential qpot

x contributions to the heat flux
on the Knudsen number. The kinetic component increases monotonically, while the potential part has two local
maxima between Kn = 1 and 10, leading to a total heat flux that exceeds the free molecular limit.

in the kinetic component while the potential contribution has two local maxima in the interval
Kn ∈ {1 : 10}. The total heat flux has a value larger than the free molecular limit due to the potential
contribution to the heat flux.

APPENDIX C: PARTICLE METHOD FOR THE ENSKOG EQUATION

The Enskog equation [Eq. (1)] is numerically solved using a particle method that extends
the original DSMC method to handle the nonlocal nature of the Enskog collision integral
[18]. For a comprehensive explanation of the numerical scheme and an analysis of its com-
putational complexity, please refer to Ref. [27]. Here we provide a brief overview of the
scheme.

The DSMC framework used to solve the Boltzmann equation is maintained, with modifications
made to the collision algorithm to accommodate the nonlocal structure of the Enskog collision
operator. The distribution function is represented by N computational particles:

f (r, v, t ) =
N∑

i=1

δ[r − ri(t )]δ[v − vi(t )], (C1)

where ri and vi are the positions and momenta of the ith particle at time t , respectively. The
distribution function f (r, v, t ) is updated using a fractional-step method that splits the evolu-
tion operator into two substeps: free streaming and collision. In the first stage, the distribution
function is advanced from t to t + �t by neglecting particle collisions, i.e., by solving the
equation:

∂ f

∂t
+ v · ∇r f + F[n]

m
· ∇v f = 0, (C2)
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which leads to updating the positions of the computational particles as follows:

ri(t + �t ) = ri(t ) + vi�t + F

m

(�t )2

2
, (C3a)

vi(t + �t ) = vi(t ) + F

m
�t, (C3b)

resulting in the updated distribution function denoted f̃ (r, v, t + �t ).
In the second stage, the short-range hard-sphere interactions are evaluated, and the distribution

function is updated according to:

f (r, v, t + �t ) = f̃ (r, v, t + �t ) + JE [ f̃ ]�t . (C4)

During this stage, the N particle positions ri remain unchanged, while their momenta vi are modified
based on stochastic rules that essentially involve the Monte Carlo evaluation of the collision integral
given by Eq. (2) by selecting collision pairs accordingly.

The macroscopic quantities are obtained by averaging the microscopic states of the particles over
time and performing phase averaging by running statistically independent simulations with identical
macroscopic initial conditions but different random seeds.

APPENDIX D: NUMERICAL SCHEMES

For reader’s convenience, in this subsection we detail the numerical schemes employed to
solve the evolution equations (27) and (35), namely the third-order total variation diminishing
(TVD) Runge-Kutta method for time-stepping, the fifth-order weighted essentially non-oscillatory
(WENO-5) advection scheme, and the sixth-order central difference scheme used for gradient
evaluation.

Diffuse reflection boundary conditions are applied on both walls and boundaries. This implies
that the molecules striking the walls are re-emitted according to the Maxwellian distribution with
parameters Tw and Uw, where Tw and Uw represent the predetermined wall temperature and velocity,
respectively. The value of nw is determined by satisfying the impenetrable condition [44,69].

1. Third-order TVD Runge-Kutta method

After the momentum space discretization, it is convenient to cast the Enskog equation (14) in the
following form:

∂t fκ = L[ fκ ], L[ fκ ] = − pκ; x

m
· ∇x fκ + (∂py f )κ − 1

τ

[
fκ − f S

κ

]+ J1,κ , (D1)

in order to implement the time-stepping algorithm. In the above the subscript κ refers to the
discretized functions corresponding to ξκ .

The third-order Runge-Kutta integrator gives the following three-step algorithm for computing
the values of fκ at time t + δt [70–72]:

f (1)
κ (t ) = fκ (t ) + δt L[ fκ (t )],

f (2)
κ (t ) = 3

4 fκ (t ) + 1
4 f (1)

κ (t ) + 1
4δt L

[
f (1)
κ (t )

]
,

fκ (t + δt ) = 1
3 fκ (t ) + 2

3 f (2)
κ (t ) + 2

3δt L
[

f (2)
κ (t )

]
. (D2)

2. WENO-5 advection scheme

The advection term which appears in Eq. (D1) above, namely pκ;x · ∇x fκ/m is computed using
the WENO-5) along each coordinate [73,74]. We will describe in the following the one-dimensional
case. Assuming that the flow domain is discretized using 1 � i � N nodes on the x axis, the
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advection term becomes ( pκ

m
∂x fκ

)
κ;i

= Fκ;i+1/2 − Fk;i−1/2

δs
, (D3)

where Fk;i+1/2 represents the flux of f advected with velocity pκ/m through the interface between
the cells centered on xi and xi+1. The construction of these fluxes is summarized below, under
the assumption of a positive advection velocity pκ/m > 0. In this case, the flux Fk;i+1/2 can be
computed using the following expression [73]:

Fκ,i+1/2 = ω1F1
κ,i+1/2 + ω2F2

κ,i+1/2 + ω3F3
κ,i+1/2. (D4)

The interpolating functions Fq
κ,i+1/2 (q = 1, 2, 3) are given by:

F1
κ,i+1/2 = pκ

m

(
1

3
fκ,i−2 − 7

6
fκ,i−1 + 11

6
fκ,i

)
,

F2
κ,i+1/2 = pκ

m

(
−1

6
fκ,i−1 + 5

6
fκ,i + 1

3
fκ,i+1

)
,

F3
κ,i+1/2 = pκ

m

(
1

3
fκ,i + 5

6
fκ,i+1 − 1

6
fκ,i+2

)
. (D5)

The weighting factors ωq appearing in Eq. (D4) are given by:

ωq = ω̃q

ω̃1 + ω̃2 + ω̃3
, ω̃q = δq

ϕ2
q

. (D6)

The ideal weights δq are δ1 = 1
10 , δ2 = 6

10 , δ3 = 3
10 , while the smoothness indicators ϕq can be

computed as follows:

ϕ1 = 13
12 ( fi−2 − 2 fi−1 + fi )

2 + 1
4 ( fi−2 − 4 fi−1 + 3 fi )

2,

ϕ2 = 13
12 ( fi−1 − 2 fi + fi+1)2 + 1

4 ( fi−1 − fi+1)2,

ϕ3 = 13
12 ( fi − 2 fi+1 + fi+2)2 + 1

4 (3 fi − 4 fi+1 + fi+2)2, (D7)

where the index κ was omitted for brevity. The computation of the weighting factors ωq (D6) implies
the division between the ideal weights δq and the smoothness indicators ϕq (D7). To avoid division
by 0 when one, two, or all three of the indicators of smoothness vanish, we follow Refs. [61,75]
and compute the weighting factors ωq directly in the limiting cases when any of the smoothness
indicators vanishes.

3. The sixth-order central difference scheme for the gradient operator

For evaluating the gradients we employ the sixth-order central difference scheme [76]:

∂xQ(x) = 1

�x

[
− 1

60
Q(x − 3�x) + 3

20
Q(x − 2�x) − 3

4
Q(x − �x)

+ 3

4
Q(x + �x) − 3

20
Q(x + 2�x) + 1

60
Q(x + 3�x)

]
, (D8)

where Q ∈ {ln ρ, ln χ, u, ln T }.

4. Diffuse reflection boundary conditions

To simplify, we will refer to the right wall of the domain located at i = Nx + 1
2 , corresponding

to xi = δsNx. Following the concept of diffuse reflection, the distribution function of fluid particles
returning from a planar wall can be described by the Maxwell-Boltzmann equilibrium distribution
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FIG. 14. Dependence of the LM
2 error, Eq. (E1), with respect to the wall velocity Uw for (a) M = uy and

(b) M = T . The Knudsen number is Kn = 2.8731.

function associated with the wall velocity Uw and the temperature Tw [44,69,77]. This implies that
the incoming numerical flux Fk;Nx+ 1

2
through the interface between the fluid and the wall can be set

to the following value:

Fk;Nx+ 1
2

= pk

m
f eq
w;k, (pk < 0), (D9)

Here f eq
w;k represents the equilibrium distribution function with ux = Uw, T = Tw, and n = nw, where

Uw is the wall velocity and the wall particle number density nw is defined in Eq. (D13) below.
To achieve the flux specified in Eq. (D9), the distribution functions in the ghost nodes need to

be determined. For the WENO-5 scheme, three ghost nodes are employed. The ghost nodes are
populated as follows [61]:

fk;Nx+1 = fk;Nx+2(= fk;Nx+3) = f eq
w;k, (pk < 0). (D10)

To compute the outgoing numerical fluxes Fk;Nx+ 1
2

corresponding to particles traveling towards
the wall, two ghost nodes inside the wall are required. The values in these ghost nodes are computed
using quadratic extrapolation from the fluid domain:(

fk;Nx+1

fk;Nx+2

)
=
(

3

6

)
fk;Nx −

(
3

8

)
fk;Nx−1 +

(
1

3

)
fk;Nx−2. (D11)

The value of nw in the expression of f eq
k;w is determined by ensuring that the total particle flux

vanishes at the wall: ∑
k

Fk;Nx+1/2 = 0, (D12)

allowing nw to be computed using:

nw = −
∑

pk>0 Fk;Nx+1/2∑
pk<0

f eq
w;k

nw

pk

m

. (D13)

Since the above sums are computed on the positive and negative semiaxis, it is preferable to use
half-range quadratures on the axis perpendicular to the wall, especially for high Knudsen numbers.
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APPENDIX E: THE L2 ERROR FOR COUETTE FLOW WITH RESPECT TO WALL VELOCITY

In this Appendix, we presented the L2 error of the present model with respect to the wall velocity
Uw. The confinement ratio is R = 4 and the reduced density was fixed to η0 = 0.01, corresponding
to a Knudsen number of Kn = 2.8731. The error is evaluated as:

LM
2 =

∑
xi

√
[M(xi ) − Mref (xi )]2, (E1)

where M ∈ uy, T . The results are presented in Fig. 14 for velocity and temperature. The reference
profiles are obtained using a quadrature order of Qx = 200. One can observe that the error grows
linearly with the initial wall velocity Uw (Ma = Uw/

√
γ RTw is the characteristic Mach number).

An almost linear dependence of the error with respect to the wall velocity can be observed for fixed
quadrature orders. At the same time, the error drops significantly when employing a slightly larger
velocity set.
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