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Electrophoresis in complex (non-Newtonian) fluidic media is becoming increasingly
prominent owing to its applications in a wide variety of separation processes. Although
most particles that undergo electrophoresis carry nonuniform surface charge, their motion
in complex fluidic media has been addressed only recently, while many other separation
processes also use externally imposed flows. Despite this, the impact of external flows
on the electrophoretic motion of such particles in non-Newtonian fluids still remains
largely unexplored. To address this, here we develop a semianalytical framework using
a combination of matched asymptotic expansion and regular perturbation to examine the
trajectories of nonuniformly charged particles suspended in a viscoelastic medium, subject
to imposed shear flow and electric field. We assume the particle’s surface charge to be
weak but otherwise arbitrary, the electrical double layer to be thin, the suspending medium
to obey the Oldroyd-B constitutive relation, and the overall flow to be weakly viscoelastic.
Our results reveal that in the presence of imposed flows, any particle carrying a nonuniform
surface charge will likely undergo cross-stream migration when the suspending medium
is viscoelastic. It is shown that the very nature of a particle’s trajectory and the extent
of its migration will strongly depend on whether the imposed flow or the electrophoretic
propulsion dominates particle motion. This is further supported by a reduced order model
derived for Newtonian fluids, using which particles’ velocities and their trajectories may
be deduced without a detailed knowledge of the flow field. We demonstrate that in the limit
of weak viscoelasticity, the general conclusions from this reduced order model may indeed
be extended beyond the realm of Newtonian fluids. Our framework may be useful towards
improving particle separation relevant to many biochemical applications.
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I. INTRODUCTION

Electrophoresis, defined as the movement of charged particles through a fluid under the applica-
tion of external electric fields [1–12], has long been a prominent area of research owing to its diverse
applications starting from particle separation and sorting [13,14] to medical diagnostics [15–18]. For
instance, capillary electrophoresis is widely used in commercial devices [17–19] to separate cells,
DNA fragments, and the like for the purposes of sample detection. A somewhat related (albeit lesser
known) technique, known as free flow electrophoresis (FFE) [14,20], employs a pressure-driven
background flow in conjunction with an external electric field to continuously separate particles
depending on their size and electric charge. FFE has been shown [21] to be particularly useful in
sample purification and online monitoring when integrated with microfluidic platforms. Although
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there exists a rich body of literature on electrophoretic motion of charged colloidal particles, starting
from the historical works of Smoluchowski [22] and Debye and Hückel [23] and later complemented
by several others [1–6,24–28], the impact of externally imposed flows, like the ones encountered
in FFE, on electrophoresis is rarely addressed in these studies. One possible reason for this stems
from the fact that most previous studies with a few notable exceptions [2,8,29] exclusively focus
on electrophoretic motion of uniformly charged particles in Newtonian fluids (such as electrolyte
water solutions), wherein the impact of any background flow may be linearly superimposed with
phoretic movement simply because the equations governing the flow are linear [30] on account of
low Reynolds number. However, this linear superposition loses validity (as we shall show here)
if the particle’s surface charge becomes nonuniform or the suspending medium exhibits nonlinear
constitutive behavior.

Colloidal particles bearing nonuniform surface charge density are commonplace in many appli-
cations. Indeed, variations in the surface charge either may occur naturally as found in proteins and
DNA fragments as well as cells [2,31], or may also be intentionally engineered for specific appli-
cations, as done in the case of “Janus particles” [32,33]. Electrophoretic motion of nonuniformly
charged particles in a Newtonian medium was first addressed by Anderson and co-workers [2,29],
who established that the resulting particle velocities may be very elegantly expressed by adding the
contributions from the multipole moments of the particle’s surface charge. For instance, Anderson
showed that the monopole moment results in translation, and the dipole moment causes rotation,
while the quadrupole moment leads to cross-stream migration of the particle.

However, in many applications that involve electrophoresis, the suspending medium is non-
Newtonian [34–38]. As an example, one may note that cross-linked polymer gels (such as
polyacrylamide gels) are routinely used as the suspending medium for electrophoretic manoeuvring
of colloidal particles [16]. At the same time, electrokinetic motion (so-called electroosmosis) of bi-
ologically relevant complex fluids such as plasma and blood in small-scale devices is also becoming
increasingly prominent [39–42] for its relevance to medical diagnostic applications. As such, elec-
trophoresis in non-Newtonian fluids has gained traction in the recent literature [7,34,36,43], wherein
a handful of authors [34,44,45] have computed particle velocities using Carreau-type constitutive
models, while during the last few years electrophoretic motion in viscoelastic medium has also
been probed [7,36]. Li and Koch [36] estimated the electrophoretic velocity of a uniformly charged
colloidal particle in a viscoelastic medium and showed that unlike Newtonian fluids, the particle
velocity depends on its size even in the limit of a thin electrical double layer (EDL). Khair and
Kabarowski [46] showed that a combination of an imposed shear flow and electrophoretic actuation
may lead to cross-stream particle migration in a viscoelastic (second-order fluid) medium, although
their results were later corrected by Choudhary et al. [47]. In another similar work Choudhary et al.
[37] also reached a similar conclusion when they investigated the motion of uniformly charged
particles driven by an electric field, suspended in a Poiseuille flow. More recently, Borthakur and
Ghosh [8] have developed a generalized model for computing the electrophoretic velocity of a
nonuniformly charged particle in an Oldroyd-B medium and showed that the variability in the
surface charge, coupled with the nonlinear constitution of the suspending medium, also increases
the particles’ propensity for cross-stream migration, while the direction of their motion depends on
their size as well as the multipole moments of the surface charge.

Despite the efforts outlined as above, electrophoretic motion of nonuniformly charged particles
subject to externally imposed flows in a viscoelastic medium still remains an open question, with
clear relevance to applications such as the free flow electrophoresis. In the absence of any external
flow, the rotation of a nonuniformly charged particle eventually stops irrespective of the suspending
fluid, when its dipole moment orients itself along the applied electric field [8], after which the
particle simply follows a straight trajectory. However, a background flow with nonzero vorticity
will inevitably induce its own angular velocity, which may aid or oppose the rotation caused by the
nonuniform surface charge. This interaction, coupled with the nonlinear rheology of the medium,
may indeed lead to nontrivial particle trajectories, which may be exploited to further improve
separation, sorting, and detection processes.
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In this article we thus aim to construct a semianalytical asymptotic framework to analyze
electrophoretic trajectories of particles carrying arbitrary nonuniform surface charge, suspended in a
viscoelastic fluid, subject to an externally imposed linear (shear) flow. The particle’s surface charge
is assumed to be weak, while the fluid’s constitutive property is governed by the Oldroyd-B model
[7,48]. Further, the EDL surrounding the particle is assumed to be thin, and we confine ourselves
only to weakly viscoelastic flows. The asymptotic formulation is based upon a combination of singu-
lar and regular perturbation. First, we use matched asymptotic expansion to derive an expression for
the modified Smoluchowski slip velocity [7] pertaining to the thin EDL limit. This is subsequently
used in combination with the Lamb’s general solution [49] and the generalized reciprocal theorem
[50,51] to compute the angular and the translational velocities of the particle and later its trajectory
in the suspending medium. We establish that for the special case of Newtonian fluids, particle
trajectories may be computed by simply solving a set of ordinary differential equations (ODEs)
without a detailed knowledge of the velocity field. This same framework also turns out to be useful in
understanding particle motion when the suspending medium is viscoelastic. Our results demonstrate
that the particle’s angular and translational velocities as well as its trajectories exhibit qualitatively
different trends depending on whether electrophoresis or the external flow dominates locally around
the particle. In general, we show that the impact of a particle’s size on its velocity and trajectory
gets enhanced in the presence of a background flow.

The rest of this article proceeds as follows. We begin with the problem statement, the key assump-
tions, the elementary governing equations, and the asymptotic framework in Sec. II. The solutions to
the particle velocities are discussed in Sec. III. Section IV outlines the numerical procedure adopted
to compute the particle trajectories. The reduced order model for the special case of Newtonian
fluids, along with a few representative results for particle trajectories in viscoelastic media, are
included in Sec. V. In Sec. VI we compare some of our results with available experimental data
from the literature and discuss a prospective experimental setup to test the predictions of this work.
Finally, we conclude in Sec. VII.

II. THE PROBLEM STATEMENT

A. Physical description of the system

We consider a rigid nonconducting spherical particle of radius a bearing an arbitrary nonuniform
charge density σ ′(θ, φ) on its surface (see Fig. 1), where θ and φ are respectively the polar and
the azimuthal angles measured with respect to the direction of the flow. The particle is suspended
in a viscoelastic fluid whose constitutive behavior in governed by the Olyroyd-B model [48].
This particular constitutive model is chosen such that the problem remains amenable to analytical
treatment, yet without sacrificing the essential physics of viscoelastic contributions to particle
motion. Indeed, the Oldroyd-B model, which is not without its limitations, does capture various key
rheological features of polymeric fluids, such as the relaxation timescales, normal stress coefficients,
etc., and has been shown [48] to be particularly useful for weakly viscoelastic flows considered
in this article. The suspending medium has viscosity μ, permittivity ε, relaxation time λ′

1, and
retardation time λ′

2 [48]. The electrolyte present in the fluid (bulk concentration c′
0) dissociates

into its constitutive ions and forms an EDL around the particle, as also shown in the figure.
We shall use three sets of axes to carry out the subsequent analysis. The first is the laboratory-

fixed axis (r′, θ , φ or, x′, y′, z′, shown in green in Fig. 1), which will be used to track the
particle’s pathway. The second is the body-fixed axis (r̃′, θ̃ , φ̃ or x̃′, ỹ′, z̃′; see the schematic),
which is attached to the particle’s center of mass and rotates and translates with it. The third is
the central axis (r̄′, θ̄ , φ̄ or, x̄′, ȳ′, z̄′; see Fig. 1), which at any given instant is stationary (like
the laboratory-fixed axis) with its origin coinciding with the particle center. The central and the
laboratory-fixed axes are always oriented along the same direction and hence have identical unit
vectors. Initially (at t ′ = 0), the body-fixed axis and the central axis coincide with each other, unless
otherwise mentioned. Therefore, the coordinates in these two axes are related as x̄ = x − xP(t ),
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FIG. 1. Schematic of a spherical particle of radius a carrying arbitrary surface charge density σ ′(θ̄ , φ̄),
suspended in a shear flow (v∞ = Gy′êz) and subject to an electric field E0êz. The particle translates with velocity
U ′ and rotates with angular velocity �′. The surrounding medium is viscoelastic with viscosity μ, permittivity
ε, relaxation time λ′

1, and retardation time λ′
2 and obeys the Oldroyd-B constitutive relation. The laboratory-

fixed, central, and body-fixed axes are shown. The central and the body-fixed axes are assumed to coincide at
t = 0.

where xP(t ) is the particle’s position at time t measured in the laboratory-fixed axis. The purpose
of defining three separate axes will become clear as we move on to compute the particle velocity in
the forthcoming sections.

A steady electric field of magnitude E0 (at r̄ → ∞) is imposed along the z direction to move the
particle electrophoretically. At the same time, it is also subject to a steady linear (shear) background
flow with a far-field velocity, v′

∞ = Gy′êz (see Fig. 1), where G is the imposed strain rate. We shall
assume that initially the particle is located at x′ = y′

0êy in the laboratory-fixed axis, i.e., it has an
initial offset of y′

0 along with y′ axis. Note that in applications such as FFE, the imposed flow and
the electric field do not always act along the same direction, as is the case here. Therefore, the
system under consideration represents a somewhat simplified scenario, which nevertheless helps
shed light on how electrophoretic motion and externally imposed flows interact with each other.
The framework presented here may indeed be extended to scenarios where the imposed flow and
the applied electric field are not colinear, akin to the applications mentioned as above; this we leave
as a scope for future work.

Because of the background flow and the imposed electric field, the particle in general will
undergo both translational and rotational motion. We assume the instantaneous translational velocity
of the particle to be U ′(t ′), while its instantaneous angular velocity is denoted by �′(t ′). Both of
these velocities are a priori unknown and will be determined as part of the solution. The rotation
of the particle will cause the charge density [σ ′(θ, φ)] to evolve with time in the laboratory-fixed as
well as the central axes, which in turn will dictate its angular as well as translational velocities. At the
same time, the translational velocity [U ′(t ′)] of the particle will govern its cross-stream migration,
thus changing its position with respect to the imposed flow, which will subsequently impact the z
component of the particle’s velocity. This nontrivial coupling between the particle’s surface charge,
angular and translational velocities, and position with respect to the background flow may indeed
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TABLE I. Characteristic scales chosen [1,52,53] to nondimensionalize pertinent variables, equations, and
boundary conditions.

Quantity Characteristic Scale Remarks

Length rc = a Particle radius
Ionic concentration c′

0 Bulk concentration
Surface charge σc Known quantity
Surface potential ζc = σcλD/ε Debye length: λD = √

εkT/2c′
0e2

EDL potential ϕc = ζc –
External potential ψc = E0a –
Velocity uc = uS = Ga Characteristic far-field velocity
Pressure and stresses pc, τc = μuc/a –
Relaxation time λc = λ′

1 Usually, λ′
1 > λ′

2

lead to fascinating trajectories, as discussed in this article. It is worth noting at this point that in the
body-fixed axis, the particle’s surface charge distribution [σ ′(θ̃ , φ̃)] remains invariant with time.

B. The characteristic scales

We shall directly start with dimensionless variables for brevity as well as the convenience of
analysis. To this end, the nondimensional version of any variable, say, ξ ′, is expressed as ξ = ξ ′/ξc,
where ξc is the characteristic value of the said variable. Table I outlines the characteristic scales
chosen for all the relevant quantities. While most of these scales are trivial and have been extensively
used by other researchers [1,7,54], it is nevertheless important to focus on two particular choices.
First, we assume the characteristic surface charge density to be σc such that, σ ′(θ̄ , φ̄) ∼ O(σc).
Based on this, we have further defined a characteristic surface potential (ζc), which quantifies
the typical order of magnitude of the “zeta potential” on the particle surface. When the surface
charge is uniform [say, σ ′(θ̄ , φ̄) = σ ′

0], we may trivially choose σc = σ ′
0. On the other hand, for a

variable σ ′(θ̄ , φ̄), its surface average may be chosen as σc. Second, in the present scenario, there
are two distinct velocity scales, namely, the characteristic electrophoretic velocity of the particle,
uE = εζcE0/μ, and the characteristic imposed velocity, uS = Ga. Table I shows that the latter (i.e.,
uS) has been chosen as the velocity scale.

Enforcing the nondimensional variables defined using the characteristic scales as shown in
Table I, several nondimensional numbers appear in the subsequent analysis and are listed in Table II.
Of particular interest to us is the Deborah number (De), which quantifies the relative strength of the
medium’s viscoelasticity, and α, whose magnitude indicates the strength of electrophoretic motion
relative to the imposed flow. Thus, α � 1 will indicate a dominant imposed flow; α � αcr (defined

TABLE II. Various nondimensional numbers [1,7,48,52] that are relevant to the present analysis. D is the
ionic diffusivity.

Quantity Symbol Expression

Ionic Péclet number Pe uca/D
EDL thickness δ λD/a
Char. surface potential w.r.t. thermal potential ζ̄0 eζc/kT
External field strength w.r.t. thermal potential β eE0a/kT
Ratio of the uE to uS α uE/uS

Deborah number De ucλc/a = Gλ1

Initial offset of the particle y0 –
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later) leads to electrophoresis controlling the particle motion, and α ∼ O(1) means that both
electrophoresis and the imposed flow play important roles in controlling the particle’s movement.

C. The key assumptions

It is necessary to make a few assumptions in order to tackle the governing equations (discussed
later) semianalytically. Although these assumptions simplify the equations, the essential physics of
the problem is indeed preserved. We discuss the key ones among them below.

First, the EDL is assumed to be thin, which implies δ � 1; this condition is indeed met in most
practical applications [54]. Second, we assume the particle’s surface charge density to be weak,
which mandates ζ̄0 � 1 [7]. Third, we consider the suspending medium to be weakly viscoelastic,
which necessitates De � 1. Fourth, the flow field is assumed to be quasisteady, which implies
that the timescale associated with the evolving surface charge distribution is large compared to
the relaxation timescale of the fluid itself [8]. Recall that the characteristic angular velocity of the
particle is �c ∼ uc/a ∼ G and hence the quasisteady assumption will be satisfied if �−1

c � λ′
1,

which leads to De � 1, and this is consistent with the third assumption. Fifth, the presence of a
depletion layer around the particle is ignored in our analysis, as is routinely done in the literature
[36,37,55,56], and hence the entire fluid medium is assumed to obey the Oldroyd-B constitutive
relation. Finally, we confine our attention to the low Reynolds number regime (Re ∼ ρd uca/μ � 1,
ρd is the fluid’s density), which implies a viscosity dominated flow field.

D. Mathematical description of the problem

1. The fundamental equations

Here we shall lay out the fundamental equations that govern the particle’s instantaneous angular
and translational velocities, for a given charge distribution [σ (θ̄ , φ̄)] on its surface. The flow around
the particle is governed by the Poisson-Nernst-Planck-Cauchy momentum equations [1,48], coupled
with the continuity equation for mass conservation and the Olyroyd-B constitutive model. As noted
earlier, we shall directly start with the dimensionless versions of the above equations. In what
follows, the total potential (�′) has been split as �′ = ψ ′ + ϕ′, where ψ ′ is the externally imposed
potential due to the applied electric field and is independent of the conditions on the particle’s
surface. ϕ′ accounts for the contributions from the particle’s surface charge and the EDL surrounding
it. Note that these two components of the potential �′ have two distinct characteristic scales as
shown in Table I, such that ψ and ϕ are both O(1) close to the particle.

For convenience, the Nernst-Planck equations are reformulated in terms of the salt concentration,
c = c+ + c− and the net charge density, ρ = c+ − c− [7,57], where c+(−) is the concentration of
positive (negative) ions present in the electrolyte. It may then be shown [1,54] that in the limit of
weak surface charge, ρ ∼ O(ζ̄0), and hence we may define ρ̃ = ρ/ζ̄0 such that ρ̃ ∼ O(1). Now,
using the nondimensionalization scheme stated in Sec. II B, the characteristic scales outlined in
Table I, and the change of variables as discussed above, the governing equations take the following
form:

Pe(v · ∇c) = ∇ · (∇c + ζ̄0βρ̃∇ψ + ζ̄ 2
0 ρ̃∇ϕ

)
, (1a)

Pe(ζ̄0v · ∇ρ̃ ) = ∇ · (ζ̄0∇ρ̃ + βc∇ψ + ζ̄0c∇ϕ), (1b)

∇2ψ = 0 and δ2∇2ϕ = −ρ̃

2
, (1c)

−∇p + ∇ · τ + α∇2ϕ∇ψ + αζ̄0

β
∇2ϕ∇ϕ = 0 and ∇ · v = 0, (1d)

τ + DeT = 2D + 2λ2DeS, (1e)
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where p is the pressure, v is the velocity field, τ is the deviatoric stress tensor, D is the strain rate
tensor, and T and S are respectively the upper convected derivatives [48] of the stress tensor τ and
the strain rate tensor D. The upper-convected derivative of a second rank tensor A may be written as
B = ∂A

∂t + v · ∇A − (∇v)T · A − A · (∇v). The detailed expressions for the various components of
the convected derivatives may be found in Ref. [8]. The above equations are subject to the following
boundary conditions, when expressed w.r.t. the central axis:

êr̄ · (−∇c + Pecv − ζ̄ 2
0 ρ̃∇ϕ − βζ̄0ρ̃∇ψ

)∣∣
r̄=1 = 0, (2a)

êr̄ · (−ζ̄0∇ρ̃ + Peζ̄0ρ̃v − ζ̄0c∇ϕ − βc∇ψ )|r̄=1 = 0, (2b)

∇ψ · êr̄ |r̄=1 = 0, ∇ϕ · êr̄ |r̄=1 = − ζ̆ (θ̄ , φ̄)

δ
, (2c)

v(r̄ = 1, θ̄ , φ̄) = � × êr̄ + U , (2d)

ϕ|r̄→∞ = 0, ∇ψ |r̄→∞ = −êz, (2e)

v → v∞ = (ȳ + y0)êz, c → 2 and ρ̃ → 0, as r̄ → ∞.

(2f)

In Eq. (2c), ζ̆ (θ̄ , φ̄) = σ ′(θ̄ , φ̄)/σc is analogous to the nondimensional zeta potential at the particle
surface; since σ ′ ∼ O(σc), it follows that ζ̆ ∼ O(1). Recall that the Cartesian unit vectors (i.e.,
êx, êy, and êz) are identical in the central as well as the laboratory-fixed axes.

The particle velocities � and U are to be evaluated by carrying out a force and moment balance
(about the particle’s center) on the particle. It may be shown [8,58,59] that in the limit of thin EDL
(δ � 1), these two conditions may be respectively written as∫

Sp

(−pI + τ ) · êr̄ dS = 0 and
∫

Sp

êr̄ × (τ · êr̄ ) dS = 0, (3)

where the integration is carried out over the particle surface (Sp). The externally imposed potential
(ψ) may be evaluated by solving Eq. (1c) subject to (2c) and (2e), which yields

ψ = −
(

r̄ + 1

2r̄2

)
P1(η), (4)

where η = cos(θ̄ ) and P1(η) is the Legendre polynomial of the first kind and order 1. We would like
to clarify that the above solution has been expressed w.r.t. the central axis, with its origin located at
the particle center.

2. The asymptotic limit of thin EDL, weak viscoelasticity, and weak surface charge

From Eq. (1c), it is evident that the thin EDL limit leads to a singular perturbation problem
[7,60], which requires the use of matched asymptotic expansion. As such, the entire fluid domain is
divided into two distinct regions: (1) the inner region encompassing the EDL with a characteristic
length of δ and (2) the bulk or the outer region whose characteristic length scale remains O(1). In
either region any generic variable (say, ξ ) may be asymptotically expanded in δ as follows:

ξ = ξ (0) + δξ (1) + · · · . (5)

Subsequently, the inner and the outer layer variables have to be asymptotically matched at the edge
of the EDL. In what follows, we shall consider only the leading order problem in δ, and hence the
superscript “(0)” will not be used hereafter.

Inside the EDL (i.e., the inner layer), several of the variables will require rescaling, given that
the relevant length scale there is δ. In particular, the shear strain rate within the EDL scales as
O(δ−1), which coupled with the viscoelastic nature of the medium will result in the normal stresses
(τθθ , τφφ , along with τθφ) scaling as O(δ−2) [7,8]. The remaining shear stress components scale
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as O(δ−1). On the other hand, the θ and the φ components of the velocity remain O(1), while
the r-component scales as O(δ) [7]. The detailed rescaled equations within the EDL have been
included in Appendix A 1; see Eqs. (A1). Subsequently, in Appendix A 2 we also invoke the weak
charge approximation (ζ̄0 � 1) in the inner layer equations and ignore all O(ζ̄0) and higher order
terms appearing therein. Finally, the weak viscoelasticity approximation is enforced by expanding
the relevant variables in both layers in an asymptotic series of De as follows:

ξ = ξ0 + Deξ1 + · · · . (6)

Note that in Eq. (6), ξ represents leading order variables in δ. The detailed solutions to the
leading order and the O(De) velocity and pressure fields within the EDL have been included in
Appendix A 2; see Eqs. (A3) and (A4). It is important to note that the particle’s translational and the
angular velocities (U and �, respectively) also have expansions similar to Eq. (6).

In the leading order of δ, the flow in the inner layer drives the outer layer fluid through the
Smoluchowski slip velocity (VHS), which is essentially the velocity at the edge of the EDL (or
the inner layer) parallel to the particle surface. Therefore, one of the main purposes of solving the
inner layer equations is to determine this slip velocity at the outer edge of the EDL, which may
then be used to compute the flow in the bulk (i.e., the outer layer). In a viscoelastic medium, the
Smoluchowski slip velocity gets modified, as discussed further below.

3. The modified Smoluchowski slip velocity VHS

Formally, the Smoluchowski slip velocity can be evaluated using the matching condition for the
velocity at the edge of the EDL as follows:

VHS = lim
R→∞

[U êθ̄ + W êφ̄] − � × êr̄, (7)

where R is the inner layer coordinate (see Appendix A), and U and W are respectively the θ̄ and the
φ̄ components of the velocity in the inner layer. Akin to other variables, VHS also has an asymptotic
expansion in De, which reads

VHS = V(0)
HS + DeV(1)

HS + · · · , (8)

where V(k)
HS = V (k)

HS,θ̄
êθ̄ + V (k)

HS,φ̄
êφ̄ , k = 0, 1, . . . . In Eq. (8), V(0)

HS is the slip velocity in a Newtonian
fluid, while the O(De) correction accounts for the influence of viscoelasticity on the inner layer
kinetics. Using the solutions for the velocity fields U and W as presented in Appendix A 2, the
orderwise expressions of V(k)

HS may be deduced as follows:

V (0)
HS,θ̄

= 3

2
α
√

1 − η2ζ̆ (θ̄ , φ̄), V (0)
HS,φ̄

= 0, (9a)

V (1)
HS,θ̄

= (1 − λ2)

[
− 9ηα2

2(1 − η2)3/2
ω2

1 + ω1

(
3αη

1 − η2
�1 − 27α2√

1 − η2
ω1,η

− 3α√
1 − η2

ω2

)
+ 3α�1ω1,η − 3α

1 − η2
χ1ω1,φ̄

]
, (9b)

V (1)
HS,φ̄

= −(1 − λ2)
3αω1ω3√

1 − η2
. (9c)

In the above, ω1 = ζ̆ (θ̄ , φ̄)Q1(η), Q1(η) = 1
2 (η2 − 1) is the Gegenbauer polynomial [30] of

order 1, �1 = �(0)
y cos(φ̄) − �(0)

x sin(φ̄), ω2 = χ1,φ̄ + η�1/
√

1 − η2, where χ1 = �(0)
z

√
1 − η2 −

η[�(0)
x cos(φ̄) + �(0)

y sin(φ̄)] and ω3 =
√

1 − η2χ1,φ̄ + ηχ1√
1−η2

; further ω1,η = ∂ω1/∂η, ω1,φ̄ =
∂ω1/∂φ̄, etc., whereas �k = �(k)

x êx + �(k)
y êy + �(k)

z êz.
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There are several important features of the O(De) slip velocity that are noteworthy. To begin, we
observe that V(1)

HS depends on the leading order angular velocity of the particle (�0), which is of the
form [as shown later in Eq. (31b)] E1 + αE2 owing to the presence of an external flow. Therefore, the
O(De) slip velocity takes the form αG1(θ̄ , φ̄) + α2G2(θ̄ , φ̄) [as evident from Eq. (9)] and hence will
indirectly depend on the imposed flow through the leading order rotational velocity of the particle
due to the linear terms in α (e.g., αG1). This is in stark contrast to Newtonian fluids, where the
Smoluchowski slip is independent of any external flow (provided that the flow is not too strong). It
thus becomes evident that in a viscoelastic medium, the motion in the outer layer cannot be a linear
superposition of the individual contributions from a pure shear flow and pure electrophoresis.

In the absence of any imposed shear flow, α � 1 and hence α2 � α. The O(De) slip velocity
in this limit may be derived by neglecting the O(α) terms in Eqs. (9b) and (9c), and it may then
be shown that the resulting expressions are identical to those reported in Ref. [8]. Furthermore, the
nonlinear relation between the modified slip velocity and the applied electric field as reported in
earlier studies [7,8] is indeed preserved here. Finally, although there are no azimuthal components
of the slip velocity in the leading order (V (0)

HS,φ̄
= 0), the φ component of V(1)

HS turns out to be nonzero
at O(De); see Eq. (9c). Later we will establish that this will have important implications with regard
to particle migration under the action of applied electric fields.

4. Simplified equations in the outer layer

Following the work of [60,61], it may be shown that in the outer region (bulk), the salt
concentration, the net charge density and the EDL potential have the following solutions in the
leading order of δ: c = 2, ρ̃ = 0 (or equivalently ρ = 0), and ϕ = 0. Therefore in the thin EDL
limit, the simplified outer layer equations governing the flow take the following form:

−∇p + ∇ · τ = 0, and ∇ · v = 0. (10a)

τ + DeT = 2D + 2λ2DeS. (10b)

They are subjected to the following boundary conditions, expressed w.r.t. the central axis:

v(r̄ = 1, θ̄ , φ̄) = � × êr̄ + U + VHS, (11a)

v(r̄ → ∞, θ̄ , φ̄) = v∞ = (ȳ + y0)êz. (11b)

It is important to note that Eq. (11a) accounts for the Smoluchowski slip velocity (VHS) at the edge
of the EDL, when imposing the boundary condition at the particle surface. Enforcing VHS from
Eq. (9), Eqs. (10) may be solved subject to the Eqs. (11), along with the force and torque balance
conditions as mentioned in Eq. (3) to determine U and �. These velocities may be subsequently
used to track the particle’s trajectory, as discussed below.

III. ASYMPTOTIC ANALYSIS FOR THE INSTANTANEOUS PARTICLE VELOCITIES

From our knowledge of VHS , we may evaluate the instantaneous linear and angular velocities of
the particle using the outer layer equations (10) and the corresponding boundary conditions (11). To
this end, it will be assumed that ζ̆ (θ̄ , φ̄) is known on the particle surface at the given time instant
but is otherwise arbitrary. The linear and the angular velocities of the particle may be expanded as

U = U0 + DeU1 + O(De2), (12a)

� = �0 + De�1 + O(De2), (12b)

where U0 and �0 denote the particle velocities in a Newtonian medium and U1 and �1 quantify the
first corrections due to the viscoelasticity of the medium. In what follows, we shall only evaluate
the first two terms in the above asymptotic series, from which the particle trajectories will be
subsequently determined. Furthermore, we will be using the central axis (see Sec. II A and Fig. 1)
for evaluating the velocity field throughout this section.
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A. The leading order solution

Enforcing the asymptotic expansion (6) in Eqs. (10), the leading order equations may be written
as follows: τ0 = 2D0, −∇p0 + ∇2v0 = 0, and ∇ · v0 = 0, subject to v0(r̄ = 1, θ̄ , φ̄) = �0 × êr̄ +
U0 + V(0)

HS and v0(r̄ → ∞, θ̄ , φ̄) → v∞, where the expression for V(0)
HS is given in Eq. ((9) Recall

that in order to evaluate the particle velocities, we need to impose the force and torque-free
conditions [see Eq. (3)], which at the leading order take the form

∫
Sp

(−p0I + τ0) · êr̄ dS = 0 and∫
Sp

êr̄ × (τ0 · êr̄ ) dS = 0.
In an effort to systematically evaluate U0, �0, along with the leading order velocity field (v0), we

use the Lamb’s general solution by defining a disturbance velocity field to the externally imposed
flow owing to the presence of the charged sphere as follows [50,62]: v0(d ) = v0 − v∞ (note that v∞
and v0,∞ are identical). The disturbance velocity field v0(d ) satisfies the same equations as v0, subject
to v0(d )(r̄ = 1, θ̄ , φ̄) = �0 × êr̄ + U0 + V(0)

HS − v∞(r̄ = 1, θ̄ , φ̄) and v0(d )(r̄ → ∞, θ̄ , φ̄) → 0. We
may use the Lamb’s general solution [49] to evaluate v0(d ), which may be expressed terms of the
solids harmonics �−(n+1), Q−(n+1) and P−(n+1), where −(n + 1) denotes their order. Using the
central axis, we may therefore write

v0(d ) =
∞∑

n=1

[
∇ × (r̄�−(n+1)) + ∇Q−(n+1) − n − 2

2n(2n − 1)
r̄2∇P−(n+1) + n + 1

n(2n − 1)
r̄P−(n+1)

]
,

(13)
where r̄ = r̄êr̄ . The solid harmonics P−(n+1) has the following expression:

P−(n+1) = r̄−n−1
n∑

l=0

Pl
n (η)[Aln cos(lφ̄) + Ãln sin(lφ̄)], (14)

while the expressions for the two remaining harmonics are also of the similar form and have been
provided in Appendix B; see Eq. (B1). In the above, Pl

n (η) is the associated Legendre polynomial of
degree n and l . The unknown coefficients Aln, Ãln, . . . , etc., may be evaluated using the boundary
condition for v0(d ) on the particle surface. The detailed procedure for evaluating the coefficients
along with their expressions may be found in Refs. [8,63]. A brief outline of this method has also
been included in Appendix B; see Eq. (B3).

Once the coefficients Aln, Ãln, . . . , etc., are known, we may impose the hydrodynamic force and
torque free conditions, which may be recast using the solid harmonics as follows [49]:

F = −4π∇(r̄3P−2) = 0, (15a)

T = −8π∇(r̄3�−2) = 0. (15b)

From the above two conditions, the force balance yields A01 = A11 = Ã11 = 0, while the torque
balance results in C01 = C11 = C̃11 = 0. Since these coefficients themselves contain the unknowns
U0 and �0, equating them to zero will directly yield the leading order linear and angular particle
velocities for a specific surface charge distribution ζ̆ (θ̄ , φ̄).

B. The viscoelastic [O(De)] corrections

1. The generalized reciprocal theorem

The equations governing the fluid flow at O(De) are rather complicated and not amenable to
analytical solutions. However, since we are mainly interested in the linear and angular velocities
of the particle, the calculations may be considerably simplified by making use of the generalized
Reciprocal theorem [36,50]. As such, before proceeding, we shall first briefly state the theorem
itself. Consider a (nondimensional) primary flow field (v, p) around a spherical particle that satisfies
the creeping flow equations as ∇ · � + b = 0 and ∇ · v = 0, where � = −pI + τ is the total stress
tensor, τ = 2D is the deviatoric stress, and b is the body force per unit volume. Consider further an
auxiliary flow field around that same particle (v̂, p̂) with an analogously defined stress tensor (�̂)
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which satisfies ∇ · �̂ = 0 and ∇ · v̂ = 0. Assuming that v̂ decays away from the particle and that
the stresses in the primary flow field decay faster than 1/r̄2, the generalized reciprocal theorem may
be expressed as ∫

Sp

êr̄ · � · v̂ dS −
∫

Sp

êr̄ · �̂ · v dS =
∫
V

b · v̂ dV . (16)

In the above, the integrations on the l.h.s. are carried out over the particle surface, and the one on
the r.h.s. is over the entire fluid volume.

We shall first apply the reciprocal theorem to the leading order problem (which we have already
solved using the Lamb’s general solution) to have an alternative derivation as well as to test the
theorem’s validity. Recall that in the leading order, b0 = 0 and �0(d ) = −p0I + 2D0(d ), where
�0(d ) = �0 − �0,∞ is the perturbed stress field (�0 and �0,∞ also have analogous definitions)
and D0(d ) is the strain rate emanating from the disturbance velocity field v0(d ). Noting that �0(d )

decays faster than 1/r̄2, Eq. (16) may be simplified to∫
Sp

êr̄ · �0(d ) · v̂ dS =
∫

Sp

êr̄ · �̂ · v0(d ) dS. (17)

In what follows, we shall use two types of auxiliary flow fields in order to evaluate the transla-
tional and angular velocities of the particle. These two are as follows:

(i) For evaluating U , we choose the flow field generated by a sphere translating with velocity ê
(a unit vector pointing in any arbitrary direction) in a Newtonian fluid, as the auxiliary flow.

(ii) For evaluating �, we choose the flow field generated by a sphere rotating with angular
velocity ê in a Newtonian fluid, as the auxiliary flow.

For auxiliary flow field (i), the traction on the particle’s surface evaluates as [64] êr̄ · �̂ = − 3
2 ê.

At the same time, on Sp, v0(d ) = U0 + �0 × êr̄ + V(0)
HS − v∞ [from Eq. (11)], v̂ = ê, whereas the

force-free condition simplifies to
∫

Sp
�0 · êr̄ dS = ∫

Sp
�0(d ) · êr̄ dS = 0, since

∫
Sp

�0,∞ · êr̄ dS = 0
identically. As a result, Eq. (17) may be further simplified to deduce the following expression for
U0:

U0 = − 1

4π

∫
Sp

(
V(0)

HS − v∞
)
dS, (18)

which is of course a well-known result [62]. In Eq. (18) we have used the fact that v0,∞ = v∞.
Similarly, for auxiliary field (ii), the traction on Sp evaluates as [64]: êr̄ · �̂ = −3ê × êr̄ , while

v̂ = ê × êr̄ . The torque free condition simplifies to
∫

Sp
êr̄ × (�0(d ) · êr̄ )dS = − ∫

Sp
êr̄ × (�0,∞ ·

êr̄ ) dS = 0, since the components of �0,∞ are constants. Using these in Eq. (17), the expression
for the particle’s leading order rotational velocity (�0) may be evaluated as

�0 = − 3

8π

∫
Sp

êr̄ × (
V(0)

HS − v∞
)
dS. (19)

It may be verified that the above expressions simplify to those reported in Ref. [8] when v∞ = 0.

2. The O(De) corrections using the reciprocal theorem

We first note that the convected derivatives appearing in Eq. (10) have asymptotic expansions
of the form T = DeT 1 + · · · and S = DeS1 + · · · , since in the leading order, all polymeric
stresses vanish identically. The deviatoric stresses at O(De) may be expressed as [from Eq. (10b)]
τ1 = 2D1 + τexc

1 , where τexc
1 = 2(λ2 − 1)S1 is the excess polymeric stresses at this order, and

the expression for S1 may be computed using the definition of the convected derivative provided
after Eq. (1). We further note that at O(De), v1 = v1(d ), since v1,∞ = 0. However, because of the
viscoelastic nature of the fluid, S1,∞ (and thereby the excess far field polymeric stresses) is nonzero
and may be expressed as: S1,∞ = v0,∞ · ∇D0,∞ − (∇v0,∞)T · D0,∞ − D0,∞ · (∇v0,∞). Akin to
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Sec. III B 1, we may thus define S1(d ) = S1 − S1,∞, which captures the excess polymeric stresses
caused by the disturbance flow in the leading order. It then becomes possible to split the excess
polymeric stresses τexc

1 into the contributions from the far field and the leading order disturbance
flow as τexc

1 = τexc
1(d ) + τexc

1,∞, where τexc
1(d ) = 2(λ2 − 1)S1(d ) and τexc

1,∞ = 2(λ2 − 1)S1,∞. By denoting
�1 = −p1I + 2D1, the equation governing fluid flow at O(De) may be written as ∇ · �1 + b1 = 0
and ∇ · v1 = 0, where b1 = ∇ · τexc

1 . It straightforward to show that ∇ · τexc
1,∞ = 0, and therefore

b1 simplifies to b1 = ∇ · τexc
1(d ) = 2(λ2 − 1)∇ · S1(d ). As such, the reciprocal theorem [Eq. (16)] at

O(De) may be written as∫
Sp

êr̄ · �1 · v̂ dS −
∫

Sp

êr̄ · �̂ · v1 dS =
∫
V

b1 · v̂ dV . (20)

Recall from Eq. (11a) that on Sp, v1 = U1 + �1 × êr̄ + V(1)
HS . On the other hand, the force balance

at O(De) yields
∫

Sp
(�1 + τexc

1 ) · êr̄ dS = 0. Using the fact that τexc
1 = 2(λ2 − 1)S1, the force-free

condition may be further simplified to∫
Sp

�1 · êr̄ dS = −
∫

Sp

2(λ2 − 1)S1 · êr̄ dS. (21)

Now, in order to evaluate U1 we appeal to auxiliary field (i) outlined in Sec. III B 1. Then, using
Eq. (21), the boundary conditions for v1 on Sp, and noting that v̂ = ê on the particle surface, the
particle velocity at O(De) can be deduced from Eq. (20) as follows:

U1 · ê = − 1

4π
ê ·

∫
Sp

V(1)
HS dS + 1

3π
(λ2 − 1)

(
ê ·

∫
Sp

S1 · êr̄ dS +
∫
V

v̂ · (∇ · S1(d ) ) dV
)

. (22)

Using the Gauss divergence theorem and noting that S1 = S1(d ) + S1,∞, where all the components
of S1,∞ are constants, the above expression may be further simplified to

U1 · ê = − 1

4π
ê ·

∫
Sp

V(1)
HS dS − 1

3π
(λ2 − 1)

∫
V
S1(d ) : ∇v̂ dV . (23)

The velocity field of the auxiliary flow v̂ reads [8,64]

v̂ = 3ê
4r̄

(
1 + 1

3r̄2

)
+ 3(ê · r̄)r̄

4r̄3

(
1 − 1

r̄2

)
. (24)

At this point it is important to underline the significance of the individual terms appearing in
Eq. (23). The first term above evaluates the contribution from the surface average of the O(De) slip
velocity to the particle’s movement, and physically, it signifies the impact of the excess polymeric
stresses inside the EDL. The second term accounts for the contributions from the excess polymeric
stresses in the bulk region. Computation of this term requires a detailed knowledge of the leading
order velocity field, which has been outlined in Sec. III A.

We now evaluate the viscoelastic corrections to the particle’s angular velocity by following a
similar procedure. The torque-free condition reads

∫
Sp

êr̄ × {(�1 + τexc
1 ) · êr̄} dS = 0, which upon

simplification yields∫
Sp

êr̄ × (�1 · êr̄ ) dS = −2De(λ2 − 1)
∫

Sp

êr̄ × (S1 · êr̄ ) dS. (25)

The velocity field of auxiliary flow (ii) in Sec. III B 1 has the following expression:

v̂ = ∇ ×
(

ê · r̄r̄
r̄3

)
. (26)

Using Eqs. (25) and (26), the boundary condition for v1 on the surface of the sphere, and noting
that v̂ = ê × êr̄ on Sp, the viscoelastic correction to the particle’s angular velocity may be estimated
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from Eq. (20) as

�1 · ê = − 3

8π
ê ·

∫
Sp

(
êr̄ × V(1)

HS

)
dS + (λ2 − 1)

4π

[
ê ·

∫
Sp

êr̄ × (S1(d ) · êr̄ ) dS

+
∫
V

v̂ · (∇ · S1(d ) ) dV
]
. (27)

In the above, we have used the fact that the components of S1,∞ are constants, and hence its
contribution to the integral over the particle surface vanishes. Using the Gauss divergence theorem,
Eq. (27) may be recast as

�1 · ê = − 3

8π
ê ·

∫
Sp

(
êr̄ × V(1)

HS

)
dS − (λ2 − 1)

4π

∫
V
S1(d ) : ∇v̂ dV . (28)

The various components of U1 and �1 may be computed from Eqs, (23) and (27) respectively
by appropriately choosing ê. Akin to Eq. (23), the combined contributions of the excess polymeric
stresses originating from the EDL, and the bulk are also embedded in Eq. (27). It is important to
note that the far-field polymeric stresses, captured by the term S1,∞, are constants only because the
imposed flow is linear in nature, and hence they do not directly influence the particle’s movement.
However, for other kinds of flows (such as the Poiseuille flow), the contributions from these stresses
to the particle’s translational and rotational velocities may indeed be nonzero at O(De).

Enforcing Eqs. (18) [or, equivalently, Eq. (15a)] and (23) into Eq. (12a), and Eqs. (19)
[or, equivalently, Eq. (15b)] and (27) into Eq. (12b), the translational and the angular velocities
of the particle upto O(De) may be determined for a specified ζ̆ (θ̄ , φ̄) on its surface.

C. Analytical examples of instantaneous particle velocities

To derive analytical insights into the particle’s movement, we shall consider a relatively simple
instantaneous surface charge distribution [ζ̆ (η, φ̄)] and derive closed form expressions for U and �.
To this end, we note that any arbitrary surface charge may be decomposed using surface harmonics
as follows:

ζ̆ (η, φ̄) =
∞∑

n=0

Jn(η, φ̄), where Jn(η, φ̄) =
n∑

l=0

Pl
n (η)[aln cos(lφ̄) + ãln sin(lφ̄)]. (29)

Jn is the surface harmonic of order n. The simplest possible nonconstant and nonaxisymmetric
ζ̆ (η, φ̄) would then include only up to the first harmonic, which leads to

ζ̆ (η, φ̄) = a0 + a10P0
1 (η) + P1

1 (η)(a11 cos φ̄ + ã11 sin φ̄), (30)

where the coefficients a0, a10, a11, ã11 are assumed to be O(1). We proceed to calculate U and �

by first considering this generic surface charge and then explore certain special cases by assigning
specific values to the coefficients and the nondimensional parameter α.

With the form of ζ̆ (η, φ̄) mentioned as above, we evaluate the coefficients in the Lamb’s general
solution using the procedure outlined Appendix B. Subsequently, using the force and the torque-free

023302-13



RAJNANDAN BORTHAKUR AND UDDIPTA GHOSH

conditions from Eq. (15), the leading order particle velocities appear as

U0 = (y0 + a0α)êz, (31a)

�0 =
(

3ã11α

4
+ 1

2

)
êx +

(−3a11α

4

)
êy, (31b)

where y0 is the offset distance of the particle w.r.t. the laboratory-fixed axis. We would like to
clarify that Eq. (31) expresses the particle velocities w.r.t. the lab-fixed as well as the central axis.
It is evident from Eq. (31) that the total velocity (both translational and rotational) of the particle is
simply a linear superposition of the electrophoretic contribution [the O(α) terms] and the external
flow’s contribution, as is expected in case of Newtonian fluids. It may be easily verified from
Eqs. (18) and (19) that the reciprocal theorem also leads to identical results.

The leading order velocity field v0 may be deduced by using the procedure described in
Appendix B, although we do not report it here for the sake of brevity. We may subsequently use
Eqs. (23) and (27) to determine the O(De) corrections to the particle velocities as follows:

U1 = (1 − λ2)
[− 39

20

(
α2a0a11 − 1

26α2a10ã11 − 1
39αa10

)
êx − 39

20α2(a0ã11 + 1
26 a10a11

)
êy

−α2
(

3
5 a0a10

)
êz

]
, (32a)

�1 = (1 − λ2)
{[

9
80α2(a0a11 + 5a10ã11) + 22

3 a10α
]
êx + 3

80 (3a0ã11α
2 − 15a10a11α

2 + 2a0α)êy

− 3
10αa11êz

}
. (32b)

The instantaneous particle velocities with respect to the laboratory-fixed axis (or, the central axis)
up to O(De) may therefore be computed using Eq. (12).

There are several key points to be noted from the O(De) particle velocities. First, we observe
that both U1 and �1 have the form, C1α + C2α

2, where the terms proportional to α2 result from
pure electrophoretic motion, and the terms proportional to α indicate motion originating from the
nonlinear interactions between electrophoresis and the externally imposed flow. Second, the O(De)
velocity has components along all three directions, thus indicating that the particle will tend to
migrate along the x and y directions, while the z component of the velocity also has corrections at
O(De). If α = 0, U1 = �1 = 0, which implies that the presence of an electric field is necessary
for particle migration to take place, although both electrophoresis and the external flow eventually
contribute to it. Third, we note from Eq. (32b) that �(1)

z ∝ α, which again indicates that the rotation
around the z axis comes about because of the nonlinear interactions between the electrophoretic
motion and the background flow and is otherwise absent if either of these two agents vanish. Fourth,
the offset distance y0 only seems to influence the leading order velocity. This is of course expected,
since any offset distance along the y axis is simply equivalent to adapting a different inertial frame
moving with the offset velocity and thus should not result in any corrections at O(De).

1. Special case I: Axisymmetric surface charge (a0, a10 �= 0; a11, ã11 = 0)

For this special case, the charge distribution takes the form ζ̆ (θ ) = a0 + a10η. Therefore,
from Eqs. (31) and (32), the particle velocities are evaluated as: U = (y0 + a0α)êz +
De(1 − λ2)[(1/20)αa10êx − (3/5)α2a0a10êz] and � = (1/2)êx + De(1 − λ2)[(22/3)αa10êx +
(3/40)αa0êy]. Remarkably, even though the surface charge distribution is axisymmteric, we still
witness a migratory velocity along the x direction at O(De). It has been shown by Borthakur
and Ghosh [8] [see also Eq. (33a)] that pure electrophoretic motion of axisymmetrically charged
particles does not result in any migration perpendicular to the direction of the applied electric
field. Similarly, a particle in a pure shear flow (α = 0) will also not exhibit any lateral migration.
Therefore, we conclude that the nonzero U1,x [which is O(α)] reported above must be borne out of
the nonlinear interactions between the externally imposed flow and the electrophoretic movement
of the particle.
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2. Special case II: Pure shear (α = 0)

In the absence of any electrophoretic motion, α = 0, and the resulting particle velocities become
U = y0êz and � = (1/2)êx. Therefore, the particle simply rotates with a constant angular velocity
and moves in a straight line, while the viscoelastic nature of the surrounding medium has no
influence on its motion, at least up to O(De). This is simply because the problem becomes inherently
symmetric when α = 0, and thus the polymeric stress arising at O(De) does not contribute to either
particle’s translation and rotation. The presence of an electric field, however, breaks this fore-aft
symmetry, and this phenomenon does not seem to occur in a Newtonian medium in the creeping
flow limit.

3. Comparison with the existing literature

Several special cases of the analytical results reported here may be compared with the existing
literature. First, the expression for the O(De) correction to the particle’s translational as expressed in
Eq. (23) is very similar to the one reported by Li and Koch [36], who considered pure electrophoretic
motion of a uniformly charged particle, although in their study, the first correction came at O(De2).
Second, in a Newtonian medium (De = 0), for pure electrophoretic motion of a particle carrying
a surface charge as given in Eq. (30), its translational and rotational velocities are given by [see
Eq. (31)] U0 = αa0êz and �0 = (3/4)α(ã11êx − a11êy). Anderson [2] derived general expressions
for the electrophoretic velocities of nonuniformly charged spherical particles in a Newtonian fluid
in the thin EDL limit, and it may be verified that the above expressions for the particular choice of
ζ̆ match those reported by Anderson; also see the discussion ahead in Sec. V A 1.

For the viscoelastic corrections, the limit of pure electrophoretic motion may be recovered by
enforcing α � 1, which also mandates α2 � α. As such, neglecting the O(α) terms in Eq. (32), we
deduce

U1 = α2(1 − λ2)
[− 39

20

(
a0a11 − 1

26 a10ã11
)
êx − 39

20

(
a0ã11 + 1

26 a10a11
)
êy − 3

5 a0a10êz
]
, (33a)

�1 = α2(1 − λ2)
{[

9
80 (a0a11 + 5a10ã11)

]
êx + [

3
80 (3a0ã11 − 15a10a11)êy

]}
, (33b)

both of which agree with the velocity reported in Ref. [8]. Considering the special case of a particle
carrying axisymmetric surface charge (a0, a10 �= 0 and a11 = ã11 = 0), the electrophoretic velocity
(pure electrophoresis) comes out to be U = αa0êz − (3/5)Deα2(1 − λ2)a0a10êz, which matches
exactly that derived by Ghosh et al. [7]. Ghosh et al. [7] in turn validated their results for the special
case of uniformly charged particles with Li and Koch [36].

It is evident from Eq. (32) that for a uniformly charged particle (a10 = a11 = ã11 = 0), U1 = 0,
and hence the particle does not migrate, even in a viscoelastic medium. However, if one ignores
the contributions from the O(De) slip velocities to the particle’s translational velocity; i.e., if the
term − 1

4π
ê · ∫

Sp
V(1)

HS dS in Eq. (23) is discarded, the resulting velocity at O(De) becomes U1 · ê =
−(1/3π )(λ2 − 1)

∫
V S1(d ) : ∇v̂ dV . When evaluated for a uniformly charged particle (choosing

a0 = 1), this yields U1 = −Deα(1 − λ2)/4 êy and shows a nonzero migration velocity in the y di-
rection, as also reported by Khair and Kabarowski [46] [they also ignored the contributions from the
O(De) Smoluchowski slip velocity]. Using the appropriate characteristic scales mentioned earlier,
the dimensional (with units) version of the above velocity becomes U ′

1 = −0.25G′(λ′
1 − λ′

2)uE êy =
(−1/8)G′μ−1uE�1êy or, |U ′

1| ∼ μ−1�1uE , where �1 = 2μ(λ′
1 − λ′

2) is the first normal stress
coefficient of an Oldroyd-B fluid [48]. Apart from the numeric prefactor, the above expression for
the migration velocity agrees well with Khair and Kabarowski [46]’s result upon equating the second
normal stress coefficient in their work to zero. Later Choudhary et al. [47] suggested a correction to
their results for the migration velocity, and our result for U ′

1 mentioned as above matches exactly
that of Choudhary et al. [47] when the second normal stress coefficient is equated to zero. It is also
worth noting that Khair and Kabarowski carried out their analysis for a second-order fluid, which
has subtle differences with the Oldroyd-B model when De � 1.
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IV. CONSTRUCTING THE PARTICLE TRAJECTORIES

A. Equations governing the particle trajectories

Here we shall outline a general framework to construct the pathway followed by a particle under
the following conditions: (1) the initial charge distribution of its surface, denoted as ζ̆ (η, φ̄; t = 0)
(recall that η = cos θ̄ ) is known and (2) the particle starts its journey from a given initial position,
say, xP(t = 0) = y0êy, when measured using the lab-fixed axis. For obvious reasons, the particle
trajectory will be computed only in the lab-fixed axis. The surface charge distribution at any
instant ζ̆ (η, φ̄; t ) will dictate the instantaneous translational and angular velocities of the particle.
The translational velocity in turn will govern how the particle moves in space, and the angular
velocity will dictate how the surface charge ζ̆ (η, φ̄; t ) evolves in time in the central axis. This
is precisely why ζ̆ also becomes a function of time when viewed in w.r.t. the central axis. In
the same spirit, we shall denote the instantaneous velocities of the particle as U [ζ̆ (η, φ̄; t )] and
�[ζ̆ (η, φ̄; t )], which stems from the fact that both U and � depend on the instantaneous distri-
bution of ζ̆ (because of the quasisteady approximation) and may be computed using the analysis
of Sec. III.

The position of the particle in the laboratory-fixed axis [x(t )] is related to its instantaneous
velocity as

dxP

dt
= U [ζ̆ (η, φ̄; t )] = U0[ζ̆ (η, φ̄; t )] + De U1[ζ̆ (η, φ̄; t )] + O(De2), (34)

subject to xP(0) = y0êy. Further, since x̄ = x − xP(t ), it follows that the offset along the y axis plays
a key role in governing the particle’s velocity along the z direction, and as such for applying Eq. (34),
y0 should be replaced by yp(t ) while evaluating v0 and thereby U0 in Sec. III A.

We require an additional set of equations which are to be solved simultaneously along with
Eq. (34) to specify ζ̆ (η, φ̄; t ) on the particle surface. For this, we appeal to the body-fixed axis
(r̃′, θ̃ , φ̃ or, x̃′, ỹ′, z̃′), which translates as well as rotates with the particle, and hence ζ̆ (θ̃ , φ̃) =
ζ̆ (η, φ̄; t = 0) remains invariant with time w.r.t. this axis. Let î(t ), ĵ(t ), and k̂(t ) be the unit vectors
in the body-fixed axis, all of which are functions of time when evaluated w.r.t. the central (or the
laboratory-fixed) axis, due to the particle’s rotation. By tracking any two of these unit vectors, the
orientation of the body-fixed axis w.r.t. the central axis will be known from which the instantaneous
ζ̆ (η, φ̄, t ) may be determined. The said unit vectors evolve as [8,65]

d ĵ
dt

= �[ζ̆ (η, φ̄; t )] × ĵ,
d k̂
dt

= �[ζ̆ (η, φ̄; t )] × k̂, and î = ĵ(t ) × k̂(t ), (35)

subject to î(0) = êx, ĵ(0) = êy, and k̂(0) = êz. Equations (34) and (35) may be integrated using the
Euler explicit scheme to track the particle’s pathway and the evolution of the body-fixed unit vectors.
Recalling that ζ̆ (η̃, φ̃) (with η̃ = cos θ̃ ) is invariant in time (and thus always remains identical to the
initial distribution of ζ̆ ), we may determine ζ̆ (η, φ̄; t ) by simply evaluating the (η̃, φ̃) coordinates
of a point on the particle surface from its (η, φ̄) coordinates. The relationship between (η̃, φ̃) and
(η, φ̄) may be evaluated as follows [8]:

η̃ = ηk̂z(t ) +
√

1 − η2 sin φ̄ k̂y(t ) +
√

1 − η2 cos φ̄k̂x(t ), (36a)

sin φ̃ = η√
1 − η̃2

ĵz(t ) +
√

1 − η2

1 − η̃2
sin φ̄ ĵy(t ) +

√
1 − η2

1 − η̃2
cos φ̄ ĵx(t ), (36b)

cos φ̃ = η√
1 − η̃2

îz(t ) +
√

1 − η2

1 − η̃2
sin φ̄ îy(t ) +

√
1 − η2

1 − η̃2
cos φ̄ îx(t ). (36c)

Here îx, îy, îz, . . . , etc., are respectively the x, y, and z components of the body-fixed unit vectors
î, ĵ, and k̂.

023302-16



ELECTROPHORETIC MANEUVERING OF NONUNIFORMLY …

To summarize, at any given time instant, we first compute the particle velocities using Eqs. (12)
along with Eqs. (18), (23), (19), and (27) and plug them into (34) and (35) to deduce the particle’s
position and orientation at the next time instant. We then use Eqs. (36) and ζ̆ (η, φ̄; t = 0) to evaluate
the surface charge distribution in the central axis at the next time step. The steps outlined above are
repeated at every time step to construct the particle’s trajectory. Finally, recall that computation of
the O(De) corrections to the particle velocity requires the leading order velocity field, which is of
the form (13).

B. Numerical computation of the particle trajectories

We place an η × φ̄ grid (η ∈ [−1, 1], φ̄ ∈ [0, 2π ]) consisting of 150 × 300 elements, on which
ζ̆ (η, φ̄; t ) will be defined at any given time step. The leading order velocity field (v0) is subsequently
computed using the Lamb’s general solution and the boundary conditions on the particle’s surface as
outlined in Sec. III A and Appendix B on a 3D η × φ̄ × r̄ grid (1 � r̄ � 20) with 150 × 300 × 200
grid points. The stresses (τ1) and the convected derivative (S1) are also computed on this same 3D
grid. The grid along r̄ is finer close to the particle to accurately capture the variations in the velocity.
We have verified that changing the number of grid points does not change our results.

For integrating Eqs. (34) and (35), we use a time step size �t = 0.01. We have ensured that this
is sufficient to yield accurate results; see Appendix C for further details. Although in our framework
any arbitrary number of modes may be taken to represent the surface charge distribution, in what
follows we have considered up to N = 7 modes of solid harmonics, which includes a total of 35
modes of the associated Legendre polynomials, in an effort to limit the computational time. While
computing the particle velocities, all integrations have been carried out using the trapezoidal rule.

V. RESULTS AND DISCUSSION

This section is arranged as follows. First, we shall explore particle dynamics in Newtonian
medium (Sec. V A) and show that the trajectories may be constructed by solving a set of ordinary
differential equations (what we refer to as the “Reduced Order Model”) without detailed knowledge
of the velocity field. In Sec. V B we shall discuss a few representative examples of particle
trajectories in viscoelastic media, for specific choices of surface charge distributions. It will be
shown that although the reduced order model discussed in Sec. V A does not directly apply to
viscoelastic fluids, the insights derived from it will nevertheless be helpful in understanding particle
motion therein.

A. Particle motion in Newtonian fluids

1. Reduced order equations for the particle trajectories

We shall derive ordinary differential equations governing the trajectory (and the velocity) of
a particle in a Newtonian medium, subject to the specific circumstances being considered in this
article. To this end we follow the lead of Anderson [2] and note that the electrophoretic component
of the particle’s velocities in a Newtonian fluid (denoted as, UE

0 and �E
0 ) may be represented using

the multipole moments of its surface charge distribution. For instance, in the example considered
in Eqs. (31), the electrophoretic components are UE

0 = αa0êz and �E
0 = (3α/4)(ã11êx − a11êy).The

multipole moments are defined as follows (using the central axis):

Monopole Moment: H (0) = 〈ζ̆ (η, φ̄)〉, (37a)

Dipole Moment: H(1) = 〈ζ̆ (η, φ̄)êr̄〉, (37b)

Quadrupole Moment: H(2) = 〈ζ̆ (η, φ̄)(3êr̄ êr̄ − I)〉, (37c)

where 〈·〉 denotes the surface average and the superscript denotes the order of the moment. Anderson
[2] showed that UE

0 and �E
0 are related to the multipole moments defined above, through the
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following equations:

UE
0 = L0

(
H (0)I − 1

2 H(2)
) · E∞ and �E

0 = K0(H(1) × E∞), (38)

where E∞ = êz is the imposed electric field away from the particle, L0 = α and K0 = (9/4)α. It
may be easily verified that the expressions in Eqs. (31) agree with the form given above.

The particle trajectories may be constructed by following the same procedure as outlined in
Sec. IV A. To this end, we require the particle’s orientation at any time, from which its instantaneous
velocities may be computed, out of which the angular velocity will dictate how the orientation
changes thereafter. However, examining Eq. (38), we realize that one does not need to know the
detailed distribution of ζ̆ at every time instant; rather only the knowledge of the dipole and the
quadrupole moments (the monopole moment is the net charge which is independent of the particle’s
orientation) are sufficient to uniquely determine the particle’s instantaneous velocities. Moving
ahead, we shall first outline the set of ODEs that govern the orientation as well as the multipole
moments of the particle, following which the equations for its trajectories will be laid out.

Without the loss of generality we may choose k̂ to be oriented along the dipole moment H(1)

of the surface charge distribution, such that H(1)(t ) = H (1)k̂(t ) at all times, where H (1) = |H(1)| =√
(H (1)

x )2 + (H (1)
y )2 + (H (1)

z )2 , where H (1)
x (t ) = 1

4π

∫
Sp

ζ̆ (η, φ̄; t )
√

1 − η2 cos φ̄ dS and so on. We

would like to emphasize that H (1) is an invariant, since it denotes the magnitude of the dipole
moment. The unit vector ĵ may be chosen along any convenient direction on the plane perpendicular
to k̂, while î = ĵ × k̂, and this uniquely determines the orientation of the particle as well as
the body-fixed axis. Note that we need to specify two unit vectors attached to the particle to
uniquely prescribe its orientation because in general it may carry a nonaxisymmetric surface charge.
Equation (35) governs the evolution of these unit vectors, wherein the angular velocity now becomes
(Newtonian medium): � = �0 = �E

0 + �∞
0 , where �E

0 is given by Eq. (38) and �∞
0 = 1

2 êx is the
rotation induced by the externally imposed flow (also see Sec. III C 2). Therefore, k̂(t ) and ĵ(t ) are
respectively governed by the equations

d k̂
dt

= 1

2
êx × k̂ + R0(k̂ × êz ) × k̂, (39a)

d ĵ
dt

= 1

2
êx × ĵ + R0(k̂ × êz ) × ĵ, (39b)

where R0 = 9
4αH (1), and we have used the fact that H(1)(t ) = H (1)k̂(t ) and E∞ = êz. Equa-

tion (39a) is subject to k̂(t = 0) = H(1)(0)/H (1), while the initial condition for ĵ depends on the
choice of its orientation and can be arbitrary (subject to ĵ · k̂ = 0). We would like to clarify here
that unlike Fig. 1, the body-fixed and the central axis may not coincide at t = 0 in the present
scenario. Further note that H(1)(0) will be known from ζ̆ (η, φ̄; t = 0). The instantaneous angular
velocity of the particle may then be evaluated as

�0 = (
1
2 + R0k̂y

)
êx − R0k̂x êy. (40)

Equations (39) offers a multitude of insights into the rotational motion of the particle, which in
turn will govern its translation. First, observe that Eq. (39a) is nonlinear in k̂ whenever R0 �= 0–a
condition that is satisfied for nonuniform distributions of surface charge (because then H (1) > 0).
Therefore, one concludes that even in Newtonian fluids, externally imposed flow and electrophoresis
can not be superimposed linearly when assessing the trajectories of nonuniformly charged particles.
However, for a uniformly charged particle, H (1) = H (2)

mn = 0 (where H (2)
mn is the mnth component

of the quadrupole moment in the central axis) identically, and hence Eq. (39a) simplifies to
d k̂/dt = (1/2)êx × k̂, which is linear in k̂ and shows that for this special case, linear superposition
of external flow and electrophoresis applies. Second, it is evident from Eq. (39a) that the second term
on the r.h.s. denotes the contribution to the angular velocity from electrophoresis (namely, �E

0 ),
and this helps us identify the electrophoresis-dominated scenario, where |�E

0 |/|�∞
0 | > 1, which
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may be recast as 2R0 > 1 or, α > αcr, where αcr = 2/9H (1). Although it is perhaps obvious that
electrophoresis will start dominating over the imposed flow as α is increased, the above argument
nevertheless helps us pinpoint the critical value of α where this transition occurs. Conversely, when
α < αcr, the externally imposed flow dominates the motion of the particle; in what follows, this case
is referred to as the flow-dominated scenario. We further note that αcr is not a universal constant and
depends on the dipole moment of the particle’s surface charge distribution.

It is rather straightforward to deduce the fixed points [66] of Eq. (39a), from which further
insights may be gained. When α < αcr (flow-dominated scenario), there are two fixed points in

Eq. (39a), given by ( ±
√

1 − 4R2
0 ,−2R0, 0). It may be shown that the eigenvalues at both of these

fixed points (γ ∞
± , say) are purely imaginary (indeed, we find γ ∞

± = ± i
2

√
1 − 4R2

0 ), which indicates
that these are possibly centers [66]. Although as fixed points, centers are delicate objects, noting that
in Eq. (39a) the quantity |k̂(t )|2 = k̂2

x + k̂2
y + k̂2

z = 1 is conserved, it may be concluded that the two
fixed points mentioned above are indeed nonlinear centers [66], as also confirmed by the numerical
simulations discussed ahead. As a consequence, we infer that in the k̂x − k̂y − k̂z phase space,
k̂(t ) follows closed orbits around one of the two fixed points depending on the initial condition.
Physically, this implies that the vector k̂ oscillates around the vector ±

√
1 − 4R2

0 êx − 2R0êy when
viewed w.r.t. the central axis. In other words, in the flow-dominated scenario, the particle will
continually rotate around the vector(s) ±

√
1 − 4R2

0 êx − 2R0êy, and its angular velocity itself will
also oscillate in time because the electrophoretic torque on the particle is not sufficiently strong to
balance the torque from the external flow. As a result, generally speaking, H(1), H(2), and U0 all
will continually vary with time. At the same time, it may be verified that Eq. (39b) has no fixed
points, which further establishes that the particle’s orientation never comes to a steady state in the
flow-dominated scenario.

Conversely, for α > αcr (electrophoresis-dominated scenario), the fixed points of k̂ are
(0,− 1

2R0
,±

√
1 − 1

4R2
0

). By evaluating the eigenvalues (say, γ E
±) at these two points, it

may be shown that the first of the two fixed points is a stable node [66] (with γ E
+ =

−R0

√
1 − 1

4R2
0
,−2R0

√
1 − 1

4R2
0
) and the second one is unstable (γ E

− = R0

√
1 − 1

4R2
0
,

2R0

√
1 − 1

4R2
0
). Hence, for α > αcr, all orbits in the k̂x − k̂y − k̂z phase space eventually approach

the first fixed point. At the same time, it is straightforward to show that the fixed points for ĵ in
Eq. (39b) are degenerate (but stable) in nature, and hence the ultimate (fixed) state of ĵ will depend
on how it was initially oriented. Physically, this means that after an initial transience, the body-fixed
unit vector k̂ will point in the direction −(2R0)−1êy +

√
1 − (4R0)−2êz and the particle will stop

rotating after this alignment occurs. In other words, in the electrophoresis-dominated scenario, the
torque on the particle due to the electric field balances that from the external flow, because of which
the particle’s rotation eventually stops, and from this point onwards, its cross-stream migration
velocities (if any) along with the multipole moments also become steady. The above discussion thus
highlights that depending on whether electrophoresis or the external flow is dominant, a particle’s
rotational motion and its orientation can exhibit qualitatively very different behavior.

Figure 2 illustrates the orbits (or, integral paths) of k̂(t ) in the k̂x − k̂y − k̂z phase space for the
electrophoresis-dominated [Fig. 2(a)] and the flow-dominated [Fig. 2(b)] scenarios. The surface
charge distribution has been chosen as ζ̆ (η, φ̄, ; t = 0) = 1 −

√
1 − η2 sin φ̄. The integral paths in

the figure have been constructed by solving Eq. (39a) numerically using a fourth-order Runge-Kutta
method. It may be verified that for the specific choice of ζ̆ mentioned as above, H (1) = 0.333,
αcr = 0.667, while H (2)

mn = 0, ∀ m, n. As such, we have chosen α = 0.4 < αcr in Fig. 2(a) (and
therefore, R0 = 0.3), while in Fig. 2(b), α = 1 (and thus R0 = 0.75). The respective fixed points
then become (±0.8,−0.6, 0) [Fig. 2(a)] and (0,−0.667,±0.7453) [Fig. 2(b)], all of which have
been plotted in the figure as bold red dots. It is important to note here that because of the condition
k̂2

x + k̂2
y + k̂2

z = 1, all the orbits in the the k̂x − k̂y − k̂z phase space will lie on the surface of a unit
sphere centered at the origin, as also shown in the figure.
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FIG. 2. Three-dimensional phase portraits of the body-fixed unit vector k̂(t ) for the flow-dominated
scenario with α = 0.4 < αcr (a) and the electrophoresis-dominated scenario with α = 1 > αcr (b). We choose
ζ̆ (η, φ̄; t = 0) = 1 − √

1 − η2 sin φ̄. The black lines indicate the integral paths of the unit vector k̂; the red dots
are the fixed points corresponding to the two cases. All integral paths will lie on a unit sphere centered at the
origin.

Indeed, when α < αcr, all the orbits are closed, indicating that k̂(t ) varies periodically and hence
undergoes continuous oscillations. On the other hand, the existence of a stable fixed point is also
evident in Fig. 2(b) as all the integral paths tend to move towards it (and away from the unstable
fixed point) in time.

We end our discussion on rotational motion with a final note on the case of pure electrophoresis,
which entails �∞ = 0. Then Eq. (39a) simplifies to d k̂/dt = R0(k̂ × êz ) × k̂, which has only two
fixed points (0, 0,±1) with the first one being the stable one. Physically, it means that for pure
electrophoretic motion, the particle will keep on rotating until its dipole moment points in the
direction of the applied electric field, after which it stops rotating [67] and travels along a straight
trajectory, as reported earlier in Ref. [8].

We now proceed to complete the reduced order model by evaluating the particle’s trajectory,
for which its linear velocity (U0) first has to be estimated. To this end, we appeal to Eq. (38) and
note that the particle’s monopole (which is simply the net charge) is independent of its orientation,
and thus it will be sufficient to compute the quadrupole moment [H(2)(t )] associated with the zeta
distribution ζ̆ (θ̄ , φ̄; t ) as a function of time in the central (or the laboratory-fixed) axis to have a
complete knowledge of the particle’s velocity.

We would like to clarify that the components of H(1)(t ) and H(2)(t ) evaluated in the central axis
continually vary in time because the surface charge also varies when viewed w.r.t. to this axis owing
to the particle’s rotation. On the other hand, in the body-fixed axis, all components of H(2) (and
also H(1)) remain invariant in time, and as a result the quadrupole moment may be expressed as
H(2) = H̃ (2)

mn f̂m f̂n (the Einstein summation rule has been followed here), where f̂m ≡ î when m = 1,
f̂m ≡ ĵ when m = 2 and f̂m ≡ k̂ when m = 3 and H̃ (2)

mn ’s are constants denoting the mnth component
of H(2) in the body-fixed axis. In the central (or the laboratory-fixed) axis, the quadrupole moment
may then be written as

H(2) = H (2)
pq (t )êpêq, where, H (2)

pq (t ) = Mpm(t )Mqn(t )H̃ (2)
mn . (41)
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In the above, êp ≡ êx, êy and êz, respectively, for p = 1, 2, and 3; Mpm(t ) = êp · f̂m is the pmth
component of the rotation tensor and is a function of time as f̂m’s (or, î, ĵ and k̂) vary with time in
the laboratory-fixed axis. The rotation tensor (M) may be computed by solving for î(t ), ĵ(t ), and
k̂(t ) using Eqs. (39). The electrophoretic component of the particle’s velocity [UE

0 (t )] may now be
trivially computed using Eq. (38), from which the total particle velocity in a Newtonian fluid may be
evaluated as U0(t ) = UE

0 (t ) + U∞
0 (t ), where U∞

0 (t ) = yp(t )êz is the contribution from the far-field
flow. The trajectory of the particle may then be constructed in the laboratory-fixed axis by solving

dxP

dt
= yp(t )êz + α

(
H (0)I − 1

2
H(2)

)
· êz, (42)

subject to xP(0) = y0êy. To summarize, the particle trajectories may be computed using Eq. (42),
wherein H (0) is calculated from Eq. (37a), H(2) is estimated from Eq. (41), and the rotation tensor
M appearing therein may be evaluated by tracking the unit vectors î(t ), ĵ(t ), and k̂(t ) using
Eqs. (39). Finally, it is worth noting that the reduced order framework presented here is quite general
and may also be applied to other kinds of imposed flows (such as the Poiseuille flow) with little
modification.

2. Comparison of the reduced order model and the numerical simulations for Newtonian fluids

In an effort to assess the validity of the reduced order model, as an illustrative example, we
consider the motion of a particle bearing a surface charge distribution, which has the following
form at t = 0 in the central axis:

ζ̆ (η, φ̄, t = 0) = 1 + η + 1
2

√
1 − η2(sin φ̄ + cos φ̄)(1 + η). (43)

This particular charge distribution in so chosen as it bears a nonzero quadrupole moment H(2),
due to which we expect particle migration normal to the applied electric field even in a Newtonian
medium. At the same time, the dipole moment resulting from the above charge distribution takes
the form (at t = 0): H(1) = 0.4082(0.4083êx + 0.4083êy + 0.8165êz ), where |H(1)| = 0.4082 and
hence, at t = 0, k̂(t = 0) = 0.4083êx + 0.4083êy + 0.8165êz. On the other hand, ĵ is chosen as
ĵ(t = 0) = 0.9128êx − 0.1826êy − 0.3652êz, while î = ĵ × k̂.

Figure 3 compares the results of the numerical simulation based on Sec. IV (with De = 0) and
the reduced order model for the chosen surface charge distribution up to t = 40. Figures 3(a)–3(c),
respectively, exhibit the temporal variations in the x, y and z components of U0, while Figs. 3(d) and
3(e) portray the variations in the x and y components of �0, respectively. Figure 3(f) depicts a direct
comparison between the resulting particle trajectories, for α = 0.4 < αcr, with αcr = 0.544 in the
present case, which implies that Fig. 3 showcases particle motion in the flow-dominated scenario
(α < αcr).

It is evident that the numerical simulations and the reduced order model show excellent agree-
ment in all panels, thus underlining the accuracy of the latter. As noted in Sec. V A 1, in the
flow-dominated scenario, the particle continuously rotates [see Figs. 3(d) and 3(e)], while the an-
gular velocities themselves oscillate in time, and this results in the multipole moments periodically
changing directions w.r.t. the applied electric field. As a consequence, the cross-stream migration
velocities [see Figs. 3(a) and 3(b)] also undergo continuous oscillations in time, and this results
in the particle continuously shifting between the negative and the positive halves of the xy plane.
This has two interesting consequences; first, Uz also shows oscillatory behavior as the background
flow periodically aids and opposes the electrophoretic motion; second, the resulting trajectory
has a “spiraling” nature [see Fig. 3(f)], which prevents the particle from undergoing continuous
cross-stream migration in any given direction. In the forthcoming subsection, we establish that
similar trends are also observed when the suspending medium is viscoelastic, although the particle’s
overall tendency to migrate increases considerably in such complex fluids.
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FIG. 3. Plot of the translational velocity components (a) Ux, (b) Uy, (c) Uz, and the angular velocity
components (d) �x and (e) �y for the same ζ̆ (θ̄ , φ̄; t = 0) chosen in Eq. (43). The resulting particle trajectory
is shown in (f). In all panels, the numerical simulations of Sec. IV B and the reduced order model of Sec. V A 1
have been compared. α = 0.4.

B. Particle motion in viscoelastic fluids

1. Particles without any quadrupole moment (H (2)
pq = 0)

As the first illustrative example, we consider the motion of a particle bearing an intrinsically
axisymmetric charge represented in the laboratory-fixed (or the central) axis as follows:

ζ̆ (η, φ̄; t = 0) = 1 −
√

1 − η2 sin φ̄. (44)

It is straightforward to verify that here H(1) = 0.333êy and thus initially, the dipole moment is not
aligned with the direction of the applied electric field (as well as the flow). We emphasize that in this
section, we shall follow the convention outlined in Fig. 1, wherein the central and the body-fixed
axes coincide with each other at t = 0.

Figure 4 exhibits the resulting particle trajectories up to t = 30 for various choices of De = 0
(Newtonian), 0.05, 0.1, and 0.2, while the values of other relevant parameters have been mentioned

FIG. 4. Particle trajectories (up to t = 30 sec) for an initial surface charge distribution ζ̆ (η, φ̄; t = 0) = 1 −√
1 − η2 sin φ̄ are shown for various choices of De = 0 (Newtonian), 0.05, 0.1, 0.2. α = 0.4 (< αcr = 0.667),

and λ2 = 0. The light blue lines illustrate the imposed far-field linear flow (not to scale).
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(a) (b) (c)

(d) (e) (f)

FIG. 5. Plot of the translational velocity components (a) Ux , (b) Uy, (c) Uz, and the angular velocity
components (d) �x , (e) �y, and (f) �z of the particle as a function of time for De = 0, 0.05, 0.1, 0.2. All
other parameters are identical to Fig. 4.

in the caption. The velocity field of the far-field external flow has also been shown (although this is
not to scale) in this figure, and we have chosen α = 0.4 < αcr(= 0.667), indicating that the motion
is flow-dominated. Figure 5 illustrates the associated temporal variations in the translational and
rotational velocities of the particle with time [the x, y, and z components of U (t ) respectively in
Figs. 5(a)–5(c), and the x, y, and z components of �(t ) respectively in Figs. 5(d)–5(f)] for the
scenario considered in Fig. 4.

Figure 4 shows that in a Newtonian medium (De = 0), the particle moves in a straight line along
the direction of the applied electric field, simply because it does not possess any net quadrupole
moment which can propel its cross-stream migration normal to the direction of the applied field
[in Eq. (42), H(2) = 0]. This is corroborated by Fig. 5, wherein we observe that Ux and Uy are
indeed zero when De = 0. Concomitantly, as expected in the flow-dominated scenario based on the
discussion in Sec. V A 1, the particle undergoes continuous rotation around the x axis (only �x is
nonzero), although this rotation does not have any influence on its trajectory.

However, for De > 0, we do witness particle migration normal to applied electric field (primarily
along the y direction), as also confirmed by Fig. 5, where both Ux and Uy become nonzero. The
extent and the direction of migration as well as the distance traversed along the z direction strongly
depends on the strength of viscoelasticity of the suspending medium, quantified by De = Gλ′

1.
From Figs. 5(d)–5(f) we observe that akin to Newtonian fluids, the particle undergoes continuous
rotation in viscoelastic fluids as well. This implies that although the reduced order model derived
earlier does not directly apply here, the general features of the electrophoresis-dominated and the
flow-dominated scenarios do remain valid for viscoelastic fluids, at least in the limit of weak
viscoelasticity. At the same time now, �y and �z also become nonzero, which signals that the
viscoelasticity of the medium changes the direction of the particle’s rotation. In particular, nonzero
�z is rather rare in Newtonian fluids (for electric fields applied along the z direction) and is caused
by the spontaneous breaking of fore-aft symmetry in viscoelastic media for nonuniformly charged
particles [7].

From Figs. 5(a) and 5(b) we further observe that the cross-stream velocities oscillate in time,
which causes the particle to shuttle back and forth in the xy plane. This explains the “oscillatory”
nature of the trajectories shown in Fig. 4. On the other hand, any migration along the y direction
will enhance the axial (i.e., the z component) velocity of the particle owing to the imposed flow
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by increasing the offset distance [see, for instance, Eq. (31a)]. However, the oscillatory nature
of Uy implies that the offset distance that the particle witnesses also varies periodically in time,

which explains the oscillations seen in Uz in Fig. 5(c). From Fig. 5(b) we note that
∫ T

0 dtUy(t ) > 0
whenever De > 0, where T is the period of oscillation, which indicates net migration along the
positive y axis and also explains the upward trend shown by Uz in Fig. 5(c).

The nonzero migration velocities (Ux and Uy) originate from the interactions between the
multipole moments (e.g., interactions between H(1), H (0), and E∞), along with the coupling between
translation and rotation from the leading order, due to the nonlinear fluid constitution [8]. In
case of pure electrophoretic motion of a particle with zero quadrupole moment, one observes an
initial transient period during which the particle’s dipole moment aligns itself along the applied
electric field, which simultaneously causes the particle to rotate and undergo migration [8]. After
the said alignment occurs, the particle stops rotating and moves along a straight trajectory in the
direction of the applied field. However, in the presence of a background flow and especially in the
flow-dominated scenario, the dipole moment of the particle undergoes continuous rotation and thus
is unable to permanently orient itself along the imposed electric field. This keeps the interactions
between the multipole moments along with the coupling between rotation and translation active at
all times, and results in continuously nonzero cross stream migration velocities. As a consequence,
despite having no quadrupole moment and carrying an intrinsically axisymmetric surface charge,
the particle still undergoes cross-stream migration in viscoelastic fluids, albeit to a limited extent,
which is otherwise not possible in a Newtonian medium. In fact, in Sec. III C 1 it has indeed been
shown that presence of an imposed flow can lead to cross-stream migration, even when the particle
carries an axisymmetric surface charge.

The oscillatory nature of Ux and Uy may be attributed to the fact that the direction of H(1) (dipole
moment) varies periodically because of the continuous rotation, and therefore the interactions
between the multipole moments will also undergo periodic variations, which causes the cross-stream
velocities to oscillate in time. Remarkably, Fig. 3 (and the reduced order model) also portrays a sim-
ilar behavior of Ux and Uy in Newtonian fluids, albeit for a ζ̆ distribution with nonzero quadrupole
moment, and this comes about primarily because of the periodic reorientations of H(1) and H(2),
due to the particle’s rotation. The same general features are also observed in viscoelastic medium,
although now the nonlinear constitution of the fluid itself gives rise to additional interactions that
increases the particle’s propensity to undergo cross-stream migration.

2. Particles with nonzero quadrupole moments (H (2)
pq �= 0)

As a second representative example, we choose the same surface charge distribution considered
in Sec. V A 2,

ζ̆ (η, φ̄; t = 0) = 1 + η + 1
2

√
1 − η2(sin φ̄ + cos φ̄)(1 + η), (45)

which bears a nonzero quadrupole moment H(2)(t = 0) = 1
10 (êx êz + êyêz ) and therefore results in

particle migration normal to the applied electric field in Newtonian fluids (De = 0) as well. Figure 6
depicts the resulting particle trajectories for various choices of De = 0, 0.05, 0.1, and 0.2 (the same
as Fig. 4), and Fig. 7 showcases the temporal variations in the translational (Ux, Uy, and Uz) and
the angular velocity components (�x, �y, and �z) of the particle during the course of its motion.
The panelwise description of Fig. 7 is identical to that of Fig. 5. Furthermore, we have chosen
α = 0.4 < αcr (= 0.544).

The overall trends shown by the trajectories as well as the velocity components of the particle
remain unchanged from Figs. 4 and 5. Now the migration velocity components Ux and Uy are
nonzero even when the surrounding medium is Newtonian (De = 0), due to the presence of a
nonzero quadrupole moment. However, these migration velocities increase significantly as the
medium becomes more viscoelastic, driven by the nonlinear interactions between the multipole
moments, and the coupling between the angular and the translational velocities from the leading
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FIG. 6. Particle trajectories (up to t = 30 sec) for an initial surface charge distribution ζ̆ (η, φ̄; t = 0) =
1 + η + 1

2

√
1 − η2(sin φ̄ + cos φ̄)(1 + η) are shown for various choices of De = 0 (Newtonian), 0.05, 0.1,

0.2. Here α = 0.4 < αcr (= 0.544). Other parameters are the same as in Fig. 4.

order, as noted in Sec. V B 1. Therefore, the extent of cross-stream migration is further enhanced in
viscoelastic fluids, as evident from Fig. 6.

Akin to Fig. 4, because of the flow-dominated scenario being considered here (on account of
α < αcr), the particle never ceases to rotate, as evident from Figs. 7(d)–7(f), while the viscoelasticity
of the medium has little impact on its angular velocity (except �z). This signals that the fundamental
kinetics of rotation is still governed by the leading order interactions between the dipole moment,
the electric field and the imposed flow, as discussed in Sec. V A 1. However, the medium’s vis-
coelasticity is now seen to induce a significantly larger �z as compared to the ones observed in
Fig. 5 which is again caused by the breaking of fore-aft symmetry.

(a) (b) (c)

(d) (e) (f)

FIG. 7. Plot of the translational velocity components (a) Ux , (b) Uy, (c) Uz, and the angular velocity
components (d) �x , (e) �y, and (f) �z of the particle as a function of time for De = 0, 0.05, 0.1, 0.2. All
other parameters are identical to those in Fig. 6.
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FIG. 8. Particle trajectories (up to t = 30 sec) for an initial surface charge distribution same as that of Fig. 4
are shown for various choices of α = 0.4 (< αcr), α = 0.667 = αcr, and α = 1 (> αcr). We choose De = 0.15,
while all other entities are same as that of 4.

3. Impact of α on particle trajectories

As the third representative example of our semianalytical framework, we explore the impact
of α on the particle trajectories. Recall that the parameter α (= uE/uS) characterizes the strength
of the electrophoretic velocity relative to the imposed shear flow. The previous discussion in
Sec. V A establishes that in Newtonian fluids, the choice of α determines how the orientation of
the particle evolves and hence will also strongly influence its trajectory. The same discussion also
reveals the existence of a critical value of α (called αcr), beyond which the transition between the
flow-dominated and the electrophoresis-dominated scenarios occur. At the same time, the results
from Secs. V B 1 and V B 2 show that the general features of particle motion (especially rotational
motion) outlined in Sec. V A do remain valid in viscoelastic fluids as well, and hence similar
transitions are also expected to occur therein.

We consider an initial surface charge distribution of the form (in the central axis)

ζ̆ (θ̄ , φ̄; t = 0) = 1 −
√

1 − η2 sin φ̄, (46)

which is identical to that in Fig. 4 and is intrinsically asymmetric in nature, with αcr = 0.667
(evaluated as per Sec. V A). Figure 8 illustrates the particle trajectories for three choices of
α = 0.4 < αcr (the flow-dominated scenario), α = αcr = 0.667 and α = 1 > αcr (electrophoresis-
dominated scenario), while values of all other parameters have been mentioned in the caption.
Figure 9 represents the associated temporal variations of the particle’s velocity components, wherein
the panelwise description remains identical to Fig. 5.

We observe from Fig. 8 that the nature of the particle’s trajectory changes significantly, as
its motion transitions from being flow-dominated (α < αcr) to being electrophoresis-dominated
(α > αcr). For α = 0.4 (flow-dominated scenario), the same trajectory as noted in Fig. 4 persists,
which shows an oscillatory nature because of the continuous rotation of the particle; also see
Figs. 9(d)–9(f). However, when electrophoresis dominates (α � αcr), the particle steadily migrates
normal to the direction of the applied electric field, although now it stops rotating after an initial
transience, as evident from those same panels. Hence, the particle’s orientation eventually becomes
stationary, which leads to steady-state migration velocities along the x and the y directions, as shown
in Figs. 9(a) and 9(b). A steady Uy will enhance the offset distance at a fixed rate, which will cause
Uz to increase linearly with time, as shown in Fig. 9(c). We further note that the migration velocities
along the y direction (Uy) have larger magnitudes in the electrophoresis-dominated scenario, and
hence the extent of cross-stream migration is also expected to be larger, as is indeed observed
in Fig. 8. The behavior described above for α > αcr is not surprising, given the discussions in
Sec. V A 1, where it was shown that in the electrophoresis-dominated scenario, there exists a stable
fixed point in the k̂x − k̂y − k̂z phase space, and hence the dipole moment of the particle will finally
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(a) (b) (c)

(d) (e) (f)

FIG. 9. Plot of the translational velocity components (a) Ux , (b) Uy, (c) Uz, and the angular velocity
components (d) �x , (e) �y, and (f) �z of the particle as a function of time for various values of α = 0.4, 0.667,
and 1. All other entities are identical to those in Fig. 8.

be oriented in the direction of the said point (here at steady state, H(1) = −0.2415êy + 0.2299êz).
Although the above conclusion was drawn only for Newtonian fluids, evidently it also applies to
viscoelastic suspending medium as well, a feature that was also persistent throughout Secs. V B 1
and V B 2.

Perhaps the most striking feature of the trajectories shown in Fig. 8 is that even for particles
without any quadrupole moment, we observe a steady state cross-stream migration, especially when
α > αcr. It has been previously shown [8] that for pure electrophoretic motion, a particle will only
move along the direction of the applied electric field (no migration) at steady state if it carries no
quadrupole moment. At the same time, no migrations occur in pure shear flows as well (α = 0); see
Sec. III C 2. Therefore, one may conclude that the steady cross-stream migration observed in Fig. 8
is a consequence of the interactions between the imposed shear flow and the electrophoretic motion,
driven by the nonlinear constitution of the suspending medium.

4. General discussion on particle trajectories and their potential applications

It may now be possible to draw a few general conclusions based on the particle trajectories
illustrated in the case studies of Secs. V B 1–V B 3. First, the very nature of a particle trajectory
under the combined influence of an applied electric field and an imposed background flow de-
pends on the relative dominance of these two actuating mechanisms. In general, a continuous
trajectory is observed when the former dominates, while an oscillatory trajectory is seen when
the latter dominates the particle motion. Second, it may be concluded that any particle in a
viscoelastic medium will tend to undergo continuous migration (more so in the electrophoresis-
dominated scenario) in the presence of an externally imposed flow, as long as it carries a
nonuniform surface charge, which is sufficient to induce a nonzero dipole moment. However,
if either of the two propelling forces (i.e., electric field or, external flow) is switched off, the
cross-stream migration vanishes in the steady state. This is perhaps one of the most important
features of particle motion, when electric field and background flow act in tandem in a viscoelastic
medium. In contrast, in a Newtonian medium, the particle’s surface charge density must have a
nonzero quadrupole moment for it to undergo migration even in the presence of imposed flows,
when Re � 1.
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FIG. 10. (a) Initial (t = 0) ζ̆ (η, φ̄) distribution of a Janus particle. (b) Variation in the x coordinate of
the particle vs t till t = 40 in Newtonian (De = 0) and viscoelastic medium (De = 0.2), for α = 0.3 < αcr =
0.4454 and α = 0.9 > αcr. (c) Ux vs t and (d) �x vs t for the motion shown in panel (b). All other parameters
are identical to Fig. 4.

To test the above general observations, we carry out a final case study, where the trajectories of
a Janus particle [68] are investigated. Usually the surface of such a particle is divided into two
regions with distinct properties, e.g., charge density, which are represented by a discontinuous
step function [68,69]. However such a description will not be suitable in regard to the present
work as the O(De) slip velocities require the derivatives of ζ̆ with respect to η and φ̄, and a
discontinuous ζ̆ would result in these derivatives blowing up. To overcome this issue, yet without
compromising on the physical nature of a Janus particle, we choose the following surface charge
distribution [8]:

ζ̆ (η, φ̄, t = 0) = tanh(η/0.05). (47)

The “tanh” profile resolves the issue of discontinuity in ζ̆ , while the relatively small width (0.05
in the polar direction) ensures a sharp variation across the particle surface. Equation (47) describes
a particle carrying equal and opposite surface charge (ζ̆ = ±1) on the two halves. Figure 10(a)
exhibits this initial charge distribution. Note that the chosen ζ̆ is inherently axisymmetric, with zero
net charge (equivalently, the monopole H (0) = 0) and its quadrupole moment is also zero (H(2) = 0).
Therefore, we expect that in a Newtonian fluid, the particle would rotate only without undergoing
any net translation and cross-stream migration. Depending on the value of α, the particle’s angular
velocity may oscillate (α < αcr) or it may become completely standstill (α > αcr). On the other
hand, based on the earlier assertions, it is expected that the particle will undergo some migration in
a viscoelastic medium, since its surface charge is nonuniform, although it may not move along the
z direction because of zero net charge.

Figure 10(b) portrays the variations in the x coordinate of the particle with time t for De = 0
(Newtonian) and De = 0.2 (viscoelastic). For each choice of De, we have separately considered
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the flow-dominated (α = 0.3 < αcr) and the electrophoresis-dominated scenarios (α = 0.9 > αcr).
Figures 10(c) and 10(d) respectively exhibit the associated translational and rotational velocities. It
was found that for this particular scenario, the particle migrates along the x direction only when the
medium is viscoelastic, which entails Uy(t ) = Uz(t ) = �y(t ) = �z(t ) = 0 at all times, and hence
the variations in these quantities have not been shown.

It is evident from Figs. 10(c) and 10(d) that in a Newtonian medium the particle rotates without
undergoing any translation. When α = 0.3, �x oscillates in time, whereas for α = 0.9, it eventually
reaches a steady state. In a viscoelastic medium also, the particle’s angular motion shows very
similar behavior, as observed in Fig. 10(d). However, from Fig. 10(c) one notes that despite carrying
no net charge, the particle has a nonzero Ux only in a viscoelastic medium. When α = 0.3, Ux

undergoes oscillations akin to �x, whereas for α = 0.9, it quickly reaches a nonzero steady state
value. The above results are nicely reflected in the particle’s position in Fig. 10(b). In a Newtonian
fluid, the particle does not move at all, while in a viscoelastic fluid, it undergoes either oscillatory or
continuous migration along x, depending on the choice of α. The behavior of the particle described
above is in complete agreement with our general observations laid out at the beginning of this
subsection. We reiterate that the net migration observed in a viscoelastic fluid may be attributed
to the breaking of fore-aft symmetry, forged out of the confluence between a nonuniform surface
charge, an applied electric field and the imposed flow.

The generic features of the particle trajectories noted above may indeed find important ap-
plications in particle sorting and separation in micro- and millifluidic devices. To this end, it
is worth emphasizing that α = uE/uS = εζcE0/μGa, which implies that α ∼ 1/a, where a is
the particle size. Therefore, the various trajectories corresponding to varying α [see Figs. 8 and
10(b)] may also be interpreted as the path followed by particles of different sizes, everything
else remaining the same. Larger particles will tend to have smaller α values, which signals that
under identical external conditions, larger particles will tend to undergo flow-dominated motion,
while the smaller ones will witness electrophoresis-dominated motion. Therefore, larger parti-
cles are more likely to follow oscillatory trajectories akin to the ones shown for α = 0.4 in
Fig. 8, while the smaller ones are likely to undergo continuous migration normal to the applied
electric field.

It is important to note that any difference in the migration velocities along the y direction
between two particles (�Uy, say) will result in the difference between their axial velocities
(z components) grow as �Uz ∼ t because of the imposed flow and hence their axial separa-
tion will grow as �z ∼ t2. Since Uy strongly depends on α and thereby on particle size, we
may conclude that the above features of the particles’ velocity differences may be useful in
separating and sorting them according to their sizes, using a combination of externally con-
trolled flow and electric field. While similar trends may also be possible in Newtonian fluids,
the presence of a viscoelastic medium will undoubtedly improve the separation process, sim-
ply because any particle with a nonuniform surface charge is likely to undergo migration in
such fluids.

In Newtonian medium, electrophoretic separation is usually achieved because particles with
different charge-to-size ratios move with different velocities [14]. However, as per the leading order
theory in the thin EDL limit, all particles move with the same velocity when they have identical
surface charge density, irrespective of their sizes. In viscoelastic fluids on the other hand, a particle’s
velocity and its trajectory (when it is nonuniformly charged) will depend on its size, even in the thin
EDL limit. This feature may potentially add another tool in our arsenal for separating and sorting
particles based on their charge and size.

As a final note, we recall from recent studies [8] that particles of varying sizes carrying
nonuniform surface charge tend to follow distinct trajectories (albeit of similar qualitative nature) in
viscoelastic media. While this feature remains intact when externally imposed flows are present, the
very nature of the trajectories may qualitatively change in such scenarios, depending on the particle
size.
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VI. EXPERIMENTAL PERSPECTIVES

A. Comparison with experimental studies

Li and Xuan [35] in an experimental study reported particle migration in viscoelastic fluids
[aqueous polyethylene oxide (PEO) solution] in the presence of background flows. In an effort
to compare our results with those of Li and Xuan, we refer to Sec. III C 1 where the electrophoretic
velocity for a surface charge distribution of the form, ζ̆ = a0 + a10η was noted as (for simplicity,
take y0 = 0 and λ2 = 0)

U = a0αêz + De
(

1
20αa10êx − 3

5α2a0a10êz
)
. (48)

Now, for the special case of a uniformly charged particle (i.e., a0 = 1 and a10 = 0), the elec-
trophoretic velocity simplifies to U = αêz + O(De2) as also reported earlier in Sec. III C 3. The
dimensional form of this velocity reads U ′ = uE êz. Following the lead of Li and Xuan [35],
we choose ε = 7 × 10−10 F/m, E0 = 300 V/cm, ζc = 50 mV, and μ = 10−3 Pa s. This leads
to U ′ = 1.05 êz mm/s, which is of the same order as the experimentally reported magnitude of
0.36 mm/s. Note that Li and Xuan did not explicitly report the magnitude of the “zeta potential”
(here ζc), and thus if we choose ζc ∼ 20 mV (the typical zeta potential of polystyrene particles used
in the experiments are ∼20–200 mV [70]), we deduce |U ′| = 0.42 mm/s, which is very close to
experimentally measured value.

Since Li and Xuan [35] did not specify whether the particle’s surface charge is uniform (which
is unlikely), we now explore whether a small nonuniformity in it may predict the experimentally
reported cross-stream migration. To this end, we choose a0 = 1 and a10 = 0.1, such that ζ̆ = 1 +
0.1η. The resulting particle velocity becomes (with units):

U ′ =
(

uE − 3

50

u2
Eλ′

1

a

)
êz︸ ︷︷ ︸

U ′
ax

+ 1

200
De uE êx︸ ︷︷ ︸
U ′

mig

. (49)

From the work of Li and Xuan [35], we choose a ∼ 5 µm, λ′
1 ∼ 1.5 ms. The Deborah number may

be evaluated as De = uSλ
′
1/a = G′λ′

1. For a volumetric flow rate of Q′ = 125 µl/hr, and a channel
dimension (width × depth) 50 µm × 100 µm, we deduce [35,46] G′ = 2Q′/w′2d ′ ∼ 277.77 s−1 and
hence De = uSλ

′
1/a = 0.416. Then, assuming ζc ∼ 50 mV, Eq. (49) yields U ′ = 1.03 × 10−3êz +

2.18 × 10−6êx m/s. It thus follows that in principle, even a small nonuniformity in the surface
charge of the simplest form can explain the observed cross-stream migration. It may be further
noted that if we choose the length of the microchannel to be L′ = 2 cm and the average fluid velocity
V ′

flow = 6.9 mm/s [35], the residence time is estimated as t ′
res ∼ L′/(U ′

ax + V ′
flow) ∼ 2.53 s. Hence

for the calculated migration velocity U ′
mig = 2.18 × 10−6, the maximum extent of migration due to

a 10% charge inhomogeneity turns out to be approximately 5.51 µm.
Lu et al. [71] also reported electrophoretic velocities with a similar order of magnitude

(∼0.5 mm/s) for spherical polystyrene particles in a constricted microchannel in both Newtonian
and viscoelastic medium (aqueous PEO solution). However, they witnessed unusual particle oscil-
lations predominantly in viscoelastic fluids, when their size increased beyond a threshold. Although
the authors did not report the precise reason behind these oscillations, they argued that the possible
reason might be either due to the formation of negative wakes downstream of the particles [71]
or the formation and break-up of flow-induced structures [71]. Neither of these effects has been
considered in the current work, and hence they are not expected to predict the occurrence of such
oscillations.

B. A prospective experimental setup to test the present theory

We end our discussion with a brief outline of a prospective experimental setup that could be
used to test some of our findings. A prototypical setup would consist of a capillary connected to
two fluidic reservoirs at the ends. Electrodes may be placed within the reservoirs to impose the
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TABLE III. Estimated range of values of various parameters that are relevant
to a prospective experimental setup. Data taken from [8,35,37,71].

Physical parameters Range of values

Size of polystyrene beads 1–10 µm
External electric field 100–400 V/cm
Concentration of PEO solution 50–1000 ppm
Zeta potential of the beads 10–200 mV
Length of the channel 1–4 cm
Channel dimension 200 µm × 200 µm
Flow rate 50–500 µl/hr
Electrophoretic axial velocity ∼10−3–10−4 m/s
Electrophoretic migration velocity ∼10−6–10−5 m/s

external electric field. Polystyrene spheres may be used as particles in an aqueous PEO solution,
which is a viscoelastic medium with λ′

1 ∼ 5 ms and μ0 ∼ 1.5 mPa s (zero-shear viscosity). The
typical range of the relevant experimental parameters and the expected particle velocities have
been included in Table III. A uniform pressure gradient may be applied to impose the external
flow. The channel dimensions have been chosen to be sufficiently large such that the wall effects
may be ignored. At the same time, a relatively small particle concentration should be used so that
their interactions do not influence the results. The resulting trajectories may be tracked with the
help of an inverted microscope equipped with a recording device, similar to the one reported in
Ref. [35].

Finally, we would like to highlight some of the general predictions of our analysis that could be
tested using the proposed experimental setup. First, particles of different sizes carrying the same
surface charge profile should follow distinct trajectories. Smaller particles are expected to undergo
continuous migration (electrophoresis-dominated motion), while the larger ones should traverse
“oscillatory” trajectories (flow-dominated motion). Second, for a specific type of particle (same size
and charge profile), the nature of its trajectory may be tuned by controlling the imposed electric field.
The extent of migration should also become more prominent with increasing viscoelasticity (i.e.,
increase PEO concentration). Third, in Sec. III C 2 we observed that the viscoelastic medium has no
effect on the particle’s motion when α = 0 (no electric field). It is only the presence of an electric
field that results in the breaking of symmetry and eventual particle migration. Therefore, imposition
of the external electric field should increase the suspended particles’ propensity to undergo cross-
stream migration.

VII. CONCLUSION

In this article we develop a general semianalytical framework to probe the electrophoretic motion
of nonuniformly charged spherical particles in a viscoelastic medium in the presence of externally
imposed linear (shear) flows. The particle is assumed to carry weak but otherwise arbitrary surface
charge, the EDL surrounding it is assumed to be thin, while the viscoelastic effects are assumed to be
subdominant. We use a combination of singular and regular perturbation to derive expressions of the
modified Smoluchowski slip velocity and subsequently combine it with the Lamb’s general solution
and the reciprocal theorem to compute the resulting particle velocities. In general, the particle
undergoes both translational and rotational motion, which transforms its surface charge distribution
w.r.t. a laboratory-fixed axis during the course of its motion. This evolving charge distribution is
computed by tracking a pair of unit vectors attached to the particle, and this knowledge of the
particle’s orientation is subsequently used to construct its trajectory. Our semianalytical framework
is verified by considering a few specific instances of the surface charge distributions for which the
particle velocities have been reported in the existing literature. We go on to extend the framework
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and show that for the special case of Newtonian medium, the particle trajectories may be determined
by solving a set of ordinary differential equations without any detailed knowledge of either the flow
field or the surface charge distribution. As illustrative examples, we finally apply our framework to
concoct particle trajectories in viscoelastic fluids for a few specific choices of initial surface charge
distributions that offer useful insights into some generic features of particle motion.

We report several interesting conclusions from our current analysis. First, we show that in stark
contrast to Newtonian fluids, the Smoluchowski slip velocity in a viscoelastic medium depends on
the external flow (albeit indirectly) through the rotational motion it induces, which essentially stems
from the vorticity of the imposed velocity field. Second, the reduced order model developed for
particle motion in Newtonian fluids reveals that the particle’s rotational motion and thereby to a large
extent its trajectory is governed by the dominant propelling force. In the electrophoresis-dominated
scenario, the particle eventually stops rotating, and its dipole orients in such a way that the torque
due to the electric field and the external flow balance each other in a stable equilibrium. On the
other hand, in the flow-dominated scenario, the torque due to electrophoresis is not sufficiently
strong to balance the torque from the imposed flow because of which the particle continuously
rotates. The transition from the flow-dominated to the electrophoresis-dominated scenario occurs
when the parameter α > αcr, where αcr is a constant and depends on the dipole moment of the
particle’s surface charge. The reduced order model further demonstrates that even in Newtonian
fluids, a nonuniformly charge particle’s trajectory can not be determined by linearly superimposing
the individual effects of the background flow and electrophoretic motion. We go on to show that
although the reduced order model does not quantitatively apply to viscoelastic fluids, the general
features described above nevertheless remain applicable to such fluids, at least in the limit of weak
viscoelasticity.

Third, it is established in the flow-dominated scenario, the particle trajectories tend to have
an oscillatory nature with net cross-stream migration in viscoelastic fluids. In fact, we show
that any particle with a nonuniform surface charge (regardless of the quadrupole moment) will
undergo continuous migration in a viscoelastic fluid, when an externally imposed flow is present,
and the reason for this is attributed to the interactions between the multipole moments and the
imposed flow because of the nonlinear constitution of the fluid itself. It is further demonstrated
that the extent of migration is larger when the particles carry a nonzero quadrupole moment. In
the electrophoresis-dominated scenario, however, the particle attains a stationary orientation and
thereby a steady migratory component of the velocity. This leads to a steady cross-stream migration,
while the imposed flow quickly propels the particle forward. Again, these general characteristics
may be observed whenever the particle carries a nonuniform surface charge.

Finally, we argue that under identical external conditions, larger particles tend to follow the flow-
dominated scenario and smaller particles are more likely to follow the electrophoresis-dominated
scenario, and thus they travel along qualitatively different trajectories. This may results in a quickly
growing separation between particles of different sizes, which may be useful towards improving the
separation processes using a confluence of electrophoretic actuation and imposed flow.
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APPENDIX A: DERIVATION OF THE MODIFIED SMOLUCHOWSKI SLIP VELOCITY (VHS)

1. The inner layer equations

Following the discussion in Sec. II D 2, we deduce that in the thin EDL limit, the entire fluid
domain may be divided into two regions, namely, an inner layer encompassing the EDL and the
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TABLE IV. Rescaled variables within the inner layer.

Scales as
Quantity (within the inner layer) Rescaled version

ur̄ O(δ) δV
ϕ, c, ρ̃ O(1) �, C, �

uθ̄ , uφ̄ , τr̄r̄, Tr̄r̄, Sr̄r̄ O(1) U , W , τ̆r̄r̄ , T̆r̄r̄ , S̆r̄r̄

Dr̄r̄, Dθ̄ θ̄ , Dθ̄ φ̄ , Dφ̄φ̄ O(1) D̆r̄r̄, D̆θ̄ θ̄ , D̆θ̄ φ̄ , D̆φ̄φ̄

Dr̄θ̄ , Dr̄φ̄ O(δ−1) δ−1(D̆r̄θ̄ , D̆r̄φ̄ )
τr̄θ̄ , τr̄φ̄ , Tr̄θ̄ , Tr̄φ̄ ,Sr̄θ̄ , Sr̄φ̄ O(δ−1) δ−1(τ̆r̄θ̄ , τ̆r̄φ̄ , T̆r̄θ̄ , T̆r̄φ̄ , S̆r̄θ̄ , S̆r̄φ̄ )
τθ̄ θ̄ , τθ̄ φ̄ , τφ̄φ̄ , p O(δ−2) δ−2(τ̆θ̄ θ̄ , τ̆θ̄ φ̄ , τφ̄φ̄ , P)
Tθ̄ θ̄ , Tθ̄ φ̄ , Tφ̄φ̄ , Sθ̄ θ̄ , Sθ̄ φ̄ , Sφ̄φ̄ O(δ−2) δ−2(T̆θ̄ θ̄ , T̆θ̄ φ̄ , T̆φ̄φ̄ , S̆θ̄ θ̄ , S̆θ̄ φ̄ , S̆φ̄φ̄ )

outer layer or the bulk. Within the inner layer, the characteristic length scale is δ (i.e., r̄ − 1 ∼ δ), and
hence appropriately rescaled versions of the governing equations must be derived within this region,
which are then solved to deduce VHS as outlined in Sec. II D 3. The flow within the EDL is better
described by defining a relative velocity as follows: u = v − U , where u = ur̄ êr̄ + uθ̄ êθ̄ + uφ̄ êφ̄ .
The details of the rescaling may be found in the Ref. [7], and as such, here we shall present only a
brief summary of the same. First, we rescale the r̄ coordinate as R = (r̄ − 1)/δ, such that R ∼ O(1),
when r̄ − 1 ∼ O(δ). The rest of the rescaled variables within the inner layer have been outlined in
Table IV. We clarify that these rescaled variables are expressed either with capital letters (such as,
U, V, �, etc.) or with a “breve” above (such as τ̆r̄θ̄ , T̆r̄r̄ , etc.). We may now enforce the above
rescaled variables into Eqs. (1), apply the expansion in Eq. (5), and retain only the leading terms in
δ. Furthermore, noting that in the weak surface charge limit, ζ̄0 � 1, ρ ∼ O(ζ̄0), ρ̃ ∼ O(1), � ∼
O(1), C ∼ O(1), and � ∼ O(1), this limit may be enforced by neglecting the O(ζ̄0) and higher
order terms in the resulting equations. As such, the leading order equations (in δ) within the inner
layer in the weak surface charge limit take the following form:

∂2�

∂R2
= −�

2
;

∂2C

∂R2
= 0 and

∂2�

∂R2
+ ∂

∂R

(
C

∂�

∂R

)
= 0, (A1a)

∂V

∂R
− ∂

∂η
(U

√
1 − η2) + 1√

1 − η2

∂W

∂φ̄
= 0, (A1b)

√
1 − η2

∂P

∂η
+ ∂τ̆r̄θ̄

∂R
− ∂

∂η
(τ̆θ̄ θ̄

√
1 − η2) + 1√

1 − η2

∂τ̆θ̄ φ̄

∂φ̄
− ητ̆φ̄φ̄√

1 − η2
+ 3α

2

√
1 − η2

∂2�

∂R2
= 0,

(A1c)
∂P

∂R
= 0;

−1√
1 − η2

∂P

∂φ̄
+ ∂τ̆r̄φ̄

∂R
− ∂

∂η
(τ̆θ̄ φ̄

√
1 − η2) + 1√

1 − η2

∂τ̆φ̄φ̄

∂φ̄
+ ητ̆θφ̄√

1 − η2
= 0, (A1d)

τ̆i j + DeT̆i j = 2[D̆i j+λ2DeS̆i j], when i j ≡ r̄r̄, r̄θ̄ , r̄φ̄, (A1e)

τ̆i j + DeT̆i j = 2λ2DeS̆i j, when i j ≡ θ̄ θ̄ , θ̄ φ̄, φ̄φ̄. (A1f)

The detailed expressions for T̆i j, S̆i j , and D̆i j may be found in Ref. [8]. The above equations are
subject to the following boundary conditions on the particle surface (at R = 0; also see Eqs. (2)]:

∂�

∂R
= −ζ̆ (θ̄ , φ̄);

∂C

∂R
= ∂�

∂R
+ C

∂�

∂R
= 0, (A2a)

U = �y cos φ̄ − �x sin φ̄, V = 0, and W = −(�x cos φ̄ + �y sin φ̄)η + �z

√
1 − η2. (A2b)
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We further require that U, W, C, �, and � all remain bounded within the EDL, as R → ∞.
Evidently, all equations and boundary conditions in the inner layer have been expressed w.r.t. the
central axis.

2. The modified Smoluchowski slip velocity

We note that within the EDL, �, C, and � are independent of the fluid medium and thereby De.
To deduce them, we may solve Eq. (A1a), subject to (A2a) and the solutions are � = ζ̆ (θ̄ , φ̄)e−R,
C = 2, and � = −2�. The velocity field within the EDL may be derived by enforcing the asymp-
totic expansion (6) corresponding to De � 1 in Eqs. (A1b)–(A1f). The orderwise solutions are
given below.

a. The O(De0 ) velocity field

In the leading order of De, P0 = 0 and

U0 = 3

2
α
√

1 − η2ζ̆ (θ̄ , φ̄)(1 − e−R) + �1, W0 = χ1, and V0 = 3αω1,η(1 − R − e−R) − ω2R,

(A3)
where the expressions for �1, χ1, ω1, and ω2 have already been outlined in Appendix A 2. The
leading order slip velocity defined as V(0)

HS = limR→∞[U0êθ̄ + W0êφ̄] − �0 × êr̄ [see Eq. (7)], may
now be estimated using Eq. (A3), which is identical to Eq. (9a).

b. The O(De) velocity field

The O(De) equations governing the flow inside the EDL may be deduced from Eqs. (A1b)–(A1f)
using the expansion (6); see Ref. [7] for further details. It may be shown that at O(De), P1 = 0, while
the θ̄ and the φ̄ components of the velocity field, which are of interest to us, take the following form:

U1 = (1 − λ2)
[
A1(R, η)ω2

1 + A2(R, η)ω1 + A3(R, η)ω1,η + A4(R, η)ω1,φ

] + �2, (A4a)

W1 = χ2 + (1 − λ2)ω3(U0 − �1), (A4b)

where A1(R, η) = 9ηα2

2(1−η2 )3/2 (e−2R − 1), A2(R, η) = A21�1 + A22ω1,η + A23ω2, A21 = 3αη(1−e−R )
1−η2 ,

A22 = − 9α2(3−3e−R−Re−R )√
1−η2

, A23 = − 3α(1−e−R )√
1−η2

, A3 = 3α(1 − e−R)�1, A4 = 3α(1−e−R )χ1

1−η2 and ω3 has

been defined after Eq. (9c). The O(De) correction to the slip velocity defined as V(1)
HS =

limR→∞[U1êθ̄ + W1êφ̄] − �1 × êr̄ , may be evaluated from Eq. (A4) and is identical to Eqs. (9b)
and (9c).

APPENDIX B: DETAILS ON THE COEFFICIENTS IN THE LAMB’S GENERAL SOLUTION

The harmonics Q and � of the Lamb’s general solution appearing in (13) have the following
expressions:

Q−(n+1) = r̄−n−1
n∑

l=0

Pl
n (η)(Bln cos lφ̄ + B̃ln sin lφ̄), (B1a)

�−(n+1) = r̄−n−1
n∑

l=0

Pl
n(η)(Cln cos lφ̄ + C̃ln sin lφ̄). (B1b)

Recall that the boundary condition for v0(d ) on particle surface reads v0(d )(r̄ = 1, θ̄ , φ̄) = U0 +
�0 × êr + V(0)

HS − v∞(r̄ = 1, θ̄ , φ̄), while the surface charge distribution [ζ̄0(η, φ̄)] may be ex-
pressed as ζ̆ (θ̄ , φ̄) = ∑∞

n=0 Jn(η, φ̄), where Jn is the surface harmonic of order n. Hence, in view
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of Eq. (9a) v0(d )(r̄ = 1, θ̄ , φ̄) may be recast in the following general form:

v0(d )(1, θ̄ , φ̄) = vr̄,0(d )êr̄ + vθ̄ ,0(d )êθ̄ + vφ̄,0(d )êφ̄ =
∞∑

l=0

{Ml (θ̄ ) cos lφ̄ + M̃l (θ̄ ) sin lφ̄}, (B2)

where Ml (θ̄ ) = Dl (θ̄ )êr̄ + El (θ̄ )êθ̄ + Fl (θ̄ )êφ̄ , M̃l (θ̄ ) = D̃l (θ̄ )êr̄ + Ẽl (θ̄ )êθ̄ + F̃l (θ̄ )êφ̄ , and these
will depend on the specific form of ζ̆ (θ̄ , φ̄). The coefficients Aln, Ãln, Bln,Cln, C̃ln may then be
evaluated using the following expressions [63]:

Aln = 2n − 1

2

(2n + 1)(n − l )!

(n + 1)(n + l )!

∫ 1

−1

{
nDl + ∂

∂η
(El sin θ̄ ) − lF̃l

sin θ̄

}
Pl

n (η) dη, (B3a)

Ãln = 2n − 1

2

(2n + 1)(n − l )!

(n + 1)(n + l )!

∫ 1

−1

{
nD̃l + ∂

∂η
(Ẽl sin θ̄ ) + lFl

sin θ̄

}
Pl

n (η) dη, (B3b)

Bln = 1

4

(2n + 1)(n − l )!

(n + 1)(n + l )!

∫ 1

−1

{
(n − 2)Dl + ∂

∂η
(El sin θ̄ ) − lF̃l

sin θ̄

}
Pl

n (η) dη, (B3c)

B̃ln = 1

4

(2n + 1)(n − l )!

(n + 1)(n + l )!

∫ 1

−1

{
(n − 2)D̃l + ∂

∂η
(Ẽl sin θ̄ ) + lFl

sin θ̄

}
Pl

n (η) dη, (B3d)

Cln = 1

2n

(2n + 1)(n − l )!

(n + 1)(n + l )!

∫ 1

−1

{
− ∂

∂η
(Fl sin θ̄ ) − lẼl

sin θ̄

}
Pl

n (η) dη, (B3e)

C̃ln = 1

2n

(2n + 1)(n − l )!

(n + 1)(n + l )!

∫ 1

−1

{
− ∂

∂η
(F̃l sin θ̄ ) + lEl

sin θ̄

}
Pl

n (η) dη. (B3f)

The leading order velocity components have the following expressions [63]:

vr̄,0(d ) =
∞∑

n=1

n∑
l=0

(n + 1)Pl
n (η)

2(2n − 1)r̄n+2
{[Aln r̄2 − 2Bln(2n − 1)] cos lφ̄

+ [Ãln r̄2 − 2B̃ln(2n − 1)] sin lφ̄}, (B4a)

vθ̄ ,0(d ) =
∞∑

n=1

n∑
l=0

1

2r̄n sin θ̄

{
sin2 θ̄

[
Pl

n(η)
]′
[

n − 2

n(2n − 1)
(Aln cos lφ̄ + Ãln sin lφ̄)

− 2

r̄2
(Bln cos lφ̄ + B̃ln sin lφ̄)

]
+ 2l

r̄
Pl

n(η)
[
C̃ln cos(lφ̄) − Cln sin lφ̄

]}
, (B4b)

vφ̄,0(d ) =
∞∑

n=1

n∑
l=0

1

2r̄n sin θ̄

{
lPl

n(η)

[
n − 2

n(2n − 1)
(−Ãln cos lφ̄ + Aln sin lφ̄)

+ 2

r̄2
(B̃ln cos lφ̄ − Bln sin lφ̄)

]
+ 2

r̄
sin2 θ̄

[
Pl

n (η)
]′

(Cln cos lφ̄ + C̃ln sin lφ̄)

}
. (B4c)

APPENDIX C: TIME STEP INDEPENDENCE STUDY FOR THE TRAJECTORY COMPUTATIONS

Figure 11 compares the results for the linear and angular velocities of the particle upto t = 15,
computed using time steps �t = 0.01 and 0.005, while all other entities remain the same as in
Sec. V B 1. It is evident that lowering the time step below �t = 0.01 does not change the results,
and hence we have chosen �t = 0.01 for all viscoelastic simulations reported in Sec. V B.
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(a) (b) (c)

(d) (e) (f)

FIG. 11. Plot of the translational velocity components (a) Ux , (b) Uy, (c) Uz, and the angular velocity
components (d) �x , (e) �y, and (f) �z of the particle as a function of time for two different time steps:
�t = 0.01 and �t = 0.005. De = 0.1. All other entities are identical to Fig. 4.
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