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Viscoplastic fluids flow through a microfluidic channel having a built-in two-part cylin-
der inside, while the upstream and downstream parts of the cylinder bear the surface
potential of the same sign but of different magnitudes. We consider the Herschel-Bulkley
model in describing the rheology of the viscoplastic fluids considered in this analysis.
Consistent with the finite element method, the modeling framework employed here con-
siders the prevailing effect of fluid rheology, and geometrical configuration−modulated
electroosmotic forcing while solving the transport equations governing the mixing dynam-
ics. We demonstrate that electroosmotic forcing, induced from the topology-modulated
electrical double-layer effect, upon interacting with the prevalent viscous force in the
field, leads to the flow reversal in the region closer to the built-in cylinder, which in turn,
gives rise to the formation of vortices therein. As seen, the shear-thinning nature of the
viscoplastic fluid results in an enhancement of the recirculation velocity strength, albeit
the inevitable yield stress of the fluid sparsely influences the onset of flow recirculation.
By showing the impact of the geometrical parameter of the cylinder and viscoplastic effect
(signifying the effect of yield stress) on the recirculation strength, we show that the devel-
oped vortices in the pathway promote mixing of the constituent fluids nontrivially. Also,
the characteristic time for shear-induced binary aggregation that illustrates the underlying
mixing of fluids containing biomolecules, such as proteins and DNAs, is calculated based
on the maximum strain rate. It is seen that cylinder radius and flow behavior index strongly
affect the shear-induced binary aggregation kinetics and the associated probability density
distribution of particles, while the yield stress has a negligible impact on the same.
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I. INTRODUCTION

Microfluidics and microscale transport processes have received significant attention from the
interdisciplinary research community due to their great many applications in chemical, biochemical,
and biological processes [1–11]. Examples include drug delivery [12,13], DNA hybridization
[14,15], sample separation [16,17], micromixing [18,19], biochemical analysis [20,21], etc. Typi-
cally, the candidate fluid(s) used in the arena of these applications is/are different biofluids [22–27].
The presence of plasma, red blood cells, white blood cells, protein molecules, DNAs, etc., alters the
rheology of biofluids to exhibit non-Newtonian models in nature, while different non-Newtonian
models are used to describe the rheological behavior of these fluids as well [22–27]. Apostolidis and
Beris [26] explored that biofluid like blood consists of a significant value of yield stress, which leads
to the alteration of its rheology exhibiting viscoplastic nature. Viscoplastic fluids can only flow if
the stress exceeds a specific threshold, known as the yield stress. They reviewed that the yield stress
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is a function of the hematocrit level and fibrinogen concentration, while its value increases with the
increase in both fibrinogen concentration and hematocrit level. It may be mentioned here that several
researchers have employed the Herschel-Bulkley viscoplastic model to represent the rheology
of biofluids mentioned above, and analyzed the effect of external forcing, viz., electrical force,
rotational forces, on the underlying transport under the modulation physicochemical properties of
the surface [28–33].

The micromixing phenomenon that concerns the mixing of exceedingly small volumes is an
important functionality of different state-of-the-art microfluidic systems and devices used in the
aforementioned applications [34,35]. This fluidic functionality at the microfluidic scale is largely
governed by the interplay between molecular diffusion of the candidate fluids and the convective
strength of the flow. For the typical range of molecular size (d) of proteins and DNAs [36,37],
and the order of reference viscosity of 10−2 Pa s for shear-thinning fluids (μ∗

r ) and using the
Stokes-Einstein equation (D = kBT/6πμ∗

r d ), where T represents the reference temperature and kB

is the Boltzmann constant [38], the bound of the diffusion coefficient falls within the range of
10−12–10−10 m2/s [39,40]. When considering typical microfluidic length scales of O(10–100) µm
and electroosmotic flow velocities of O(10−5) m/s, the diffusive Peclet number (Pe) for an elec-
troosmotic flow configuration significantly exceeds unity (Pe � 1) for lower values of diffusive
Peclet numbers. It is important to note that the diffusive Peclet number is commonly defined as
the ratio of the diffusive timescale to the convective timescale, determined by characteristic length
and velocity scales. Alternatively, it denotes the relative significance of convection compared to
diffusion in terms of species transfer. This scale analysis is suggestive that the underlying mixing at
small scale is expected to be dominated by convective strength even in the highly laminar regime
of the electroosmotic flow (Reynolds number �1) [40–42]. Accounting for this transport feature,
the generation of vortices in the flow pathway of microfluidic devices and systems seems to be
an avenue to increase the mixing efficiency. To this end, several studies have been conducted to
examine the characteristics of vortices generated under the influence of surface charge heterogeneity
or nonuniform zeta potential when an external electric field is applied across the fluidic pathway
[40–43]. Here, it is important to note the zeta potential, also referred to as the potential at the
shear plane. The potential is obtained at the interface between the stern layer and the diffused layer
of ionic components within the electric-double layer generated by the interaction of an aqueous
electrolyte solution and a charge surface. To modify the electrical forces in electroosmotically
driven flows within a microchannel, one can manipulate the ionic distribution through variations
in the nonuniform zeta potential [40–43]. In the paradigm of field driven forcing modulated
mixing phenomena of both Newtonian and non-Newtonian (elastic, inelastic, and plastic) fluids,
several authors have investigated the impact of fluid rheological and electrokinetic parameters
on the underlying mixing strength, while aptly discussing mixing enhancement strategy as well
[43–51].

A review of the state-of-the-art literature witnesses that the simple microfluidic channel with
a built-in two-part cylinder having dissimilar zeta potential is able to generate vortex in the flow
pathway under the influence of an external field [51,52]. It should be noted that the flow has
a very low Reynolds number (�1) since these vortices are generated in microfluduic channels.
Consequently, these vortices are also referred to as laminar flow vortices [51,52]. Quite evidently,
this vortex can be utilized for the enhancement of mixing at small-scale systems as well [51]. The
impact of the intervening viscoplastic behavior, which is often exhibited by biofluids [22–27], and
its interaction with the interfacial electrochemical phenomenon on the generation of vortices in
a microfluidic channel has not yet been examined, despite having enormous significance of this
kind of simple flow configuration toward ensuring augmented solute mixing through the formation
of vortices therein. In this context, it is worth noting that a variety of interfacial electrochemical
phenomena occur when electrolytic solutions come into contact with charged microfludic walls.
These phenomena encompass ion-electron transfer, molecular-ion adsorption and desorption, and
complex interface remodeling [51,52]. In order to effectively mix viscoplastic fluids, the current
work aims to investigate the interactive effect between the fluid rheology and laminar flow vortices
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FIG. 1. (a) Three-dimensional view of the physical domain. (b) Cross-sectional view of the physical
domain in the x∗y∗ plane.

in a simple microchannel with a built-in two-part cylinder having different zeta potential at its
upstream and downstream sides.

Furthermore, in the paradigm of non-Newtonian solute mixing, the shear-induced aggregation
kinetics [40,53] has recently been extensively studied by several researchers [54–57]. Shear-induced
irreversible aggregation is a common occurrence in the context of biological colloidal particles,
such as cells, protein solutions, blood plasma, and macromolecules. Researchers have utilized
the two-body Smoluchowski equation as a theoretical tool to investigate this intricate aggregation
phenomenon. It has been found that the active cluster size produced by the aggregation kinetics
triggers shear-driven aggregation. As a result, an explosive increase in viscosity under specific shear
rates is predicted to occur after a critical period of time. This critical time is estimated based on the
kinetic equation for the rate of change in particles, and it is determined by the reciprocal of the
kinetic constant for the aggregation of the primary particles [53]. The thickness of the charged
polyelectrolyte layer (PEL) is found to have a critical influence on the characteristic time for binary
aggregation within the context of electroosmotic vortex production in micromixers. For alternate
PEL arrangements at the top and bottom walls with a thinner PEL, the characteristic time for binary
aggregation is greater. However, when the PEL is arranged side by side on the walls and is thicker,
the characteristic time for binary aggregation is higher [40]. Recent research has highlighted the
significance of non-Newtonian shear-thinning liquid rheological parameters on the characteristic
time for binary aggregation, which is attributed to electroosmotic vortex generation by zeta potential
patterning in micromixers with cylinders [51]. This aspect is found to be of practical significance
in characterizing mixing when dealing with non-Newtonian fluids and solutes containing colloidal
particles. Following this direction, the present work also critically discusses how the viscoplastic
nature affects aggregation kinetics.

II. THEORETICAL MODEL

The schematic diagram of the present micromixer is depicted in Fig. 1. The height, length,
and width of the micromixer are taken as 2H , 10H , and W , respectively. Here, the width of the
micromixer is significantly larger than its height (W � 2H ). Therefore, as depicted in Fig. 1(a),
a two-dimensional flow model [50] is employed in this analysis. It may be mentioned here
that three-dimensional real-world systems can be modeled by a cost-effective two-dimensional
model under certain conditions without gross Comptonization. For a nearly constant effect (almost
invariant) of the underlying physical phenomenon along any specific axis, it is reasonable to
presume that the physics being analyzed on that axis can be accurately reproduced by the justified
approximations of prevalent physical phenomena therein. Consequently, under these circumstances
as considered in seminal works [33,40,51,52], a two-dimensional model can be assumed to mimic
a three-dimensional physical phenomenon quite effectively. A two-part cylinder with radius r∗,
having dissimilar values of surface potential with the same sign in its two parts, is placed inside
the micromixer. In order to get a faster as well as an efficient mixing by the formation of
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vortices adjacent to the cylinder (i.e., better mixing quality and desired flow rate), the magnitude
of the zeta potential at the upstream side (ζ ∗

U = ζ ∗) is taken as eight times higher than that of
the downstream side (ζ ∗

D = ζ ∗/8) [51,52]. According to Ref. [51], using ζ ∗
D = ζ ∗/8 allows for

greater vortex strength, which can be advantageous in situations dominated by convection for
mixing. Also, to obtain a larger size of the recirculation zone, the arc angles at the upstream
and downstream sides are taken as 120◦ and 240◦, respectively [51,52]. Moreover, the tracer fluid
(fluid 1) is inserted at the intermediate part of the micromixer inlet, while the pure fluid (fluid
2), which has the same thermophysical properties as fluid 1, is inserted at the upper and lower
parts of the inlet. For the chosen configuration of the micromixer, the flow is actuated by the
application of an external electric field, leading to the potential difference �V across the micromixer
ends. We have assumed that the flow is steady, incompressible, and two-dimensional. Also, the
thermophysical properties are considered to be temperature independent as the temperature rises
(<10 K) because Joule heating is ignorable for the order of external electric field intensity ∼10 000
V/m [58,59]. Moreover, the order of induced electric field [due to the electrical double-layer (EDL)
phenomenon] is much higher than the externally applied electric field [51]. Therefore, the ionic
distribution inside the EDL is independent from the external electric field. Additionally, in the
current context, the ionic Peclet number (Pei = HU ∗

HS/Di < 1) is very small due to the velocity
scale, characteristic length scale (H), and order of ionic diffusion coefficient (Di). Here, U ∗

HS is
the reference Helmholtz-Smoluchowski velocity. Hence, the ionic distribution is independent from
the convective field as well. Considering the physically justified assumptions as discussed above,
the following dimensionless equations are used to compute the external potential, EDL potential,
flow, and species concentration fields, respectively:

Laplace equation:

∇2φ = 0, (1)

where φ is the dimensionless external potential normalized by the scale �V H/L [42,43,51].
Poisson-Boltzmann equation:

∇2ψ = κ2 sinh (ψ ). (2)

The EDL potential field is represented by ψ in the present case and is normalized by scale
kBT/ze.

Continuity equation:

∇ · U = 0. (3)

Momentum equation:

Re(U · ∇)U = −∇P + ∇ · τ + κn+1

nn
sinh (ψ )∇(φ + ψ/�). (4)

Here, the dimensionless velocity vector, local pressure, and deviatoric stress tensor, respectively,
are represented in the aforementioned equation by U, P, and τ.

Species transport equation:

∇2C = Pe(U · ∇C). (5)

Here, C stands for species concentration in its dimensionless form. It is important to note that the
scaling reference species concentration (C∗

ref ) used here corresponds to the species concentration in
fluid 1 (C∗

ref = C∗
1 ) at the inlet. In all cases, a constant species concentration in fluid 1 is considered.

Moreover, the dimensionless external potential, dimensionless EDL potential, dimensionless
velocity vector, dimensionless pressure, and dimensionless species concentration, respectively, are
expressed in terms of its dimensional form as

φ = φ∗L/�V H, ψ = ψ∗ze/kBT, U = U∗/U ∗
HS = uî + v ĵ,

P = P∗H/μ∗
rU ∗

HS, and C = C∗/C∗
ref . (6a)
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In Eqs. (1)–(5), the del operator, ∇, is written as

∇ ≡ (î∂/∂x + ĵ∂/∂y) ≡ H (î∂/∂x∗ + ĵ∂/∂y∗). (6b)

Here, note that the superscript “*” represents the dimensional quantity.
The dimensionless Debye parameter (κ), Debye length (λD) and bulk ionic number concentration

(no) are expressed as

κ = H/λD, λD =
√

εrεokBT/z2e2no, no = 1000NAMc. (6c)

Here, λD, Mc, and NA are Debye length, molarity of the ionic solution of monovalent ions, and
Avogadro’s number, respectively. Also, εr , εo, kB, T , z(= z+ = z−) = 1, and e are relative permit-
tivity of the fluid, electric permittivity of the free space, Boltzmann constant, reference absolute
temperature, valency of the ions, and charge of a single electron, respectively.

The reference Helmholtz-Smoluchowski velocity (U ∗
HS) for normalizing the velocity field can be

written as [30,33]

U ∗
HS = n(λD)(n−1)/n(εoεrErefψ

∗
ref/m)1/n

. (6d)

Here, the reference zeta potential and reference electric field are expressed as

ψ∗
ref (= kBT/ze), Eref (= �V/L). (6e)

Also note that n and m are the flow behavior index and flow consistency index, respectively.
The dimensionless deviatoric stress tensor scaled by m(U ∗

HS/H )n and expressed as

τ = η(γ̇ )((∇U) + (∇U)T ), (7)

γ̇ = 1/2S : S. (8)

Here, γ̇ is the dimensionless second invariant of the rate of deformation tensor and the strain rate
tensor is represented as

S(= [(∇U) + (∇U)T ]) (9)

The ratio of reference external and reference EDL potential is represented as [51]

�(= Eref H/ψ∗
ref ). (10)

Moreover, following the Herschel-Bulkley model with Papanastasiou modification [60,61], the
apparent viscosity [η∗(γ̇ ∗)] can be written as

η∗(γ̇ ∗) = τ ∗
y

γ̇ ∗ [1 − exp(−M∗
p γ̇

∗)] + m(γ̇ ∗)n−1 for τ ∗ > τ ∗
y , (11a)

γ̇ ∗ = 0 for τ ∗ < τ ∗
y . (11b)

Here, M∗
p and τ ∗

y are stress growth parameters proposed by Papanastasiou and Boudouvis [60,61]

and yield stress, respectively. Now, using the reference viscosity scale μ∗
r = m(U ∗

HS/H )n−1, the
dimensionless apparent viscosity can be written as

η(γ̇ ) = Bn

γ̇
[1 − exp (−MPγ̇ )] + (γ̇ )n−1 for τ > Bn, (12a)

γ̇ = 0 for τ < Bn. (12b)

It is worth noting that the curve-fitting parameters for the plot of apparent viscosity and shear
rate, often derived from experiments, are the flow behavior index (n) and the flow consistency index
(m). Furthermore, by extrapolating the fitted polynomial at zero shear rate, the yield stress value can
be determined if a polynomial equation is fitted to the nonlinear stress-strain experimental data. The
growth rate parameter can also be found using the best fitted experimental stress-strain curve. In
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Eqs. (12a) and (12b), the dimensionless stress growth parameter (MP) and Bingham number (Bn),
respectively, are expressed as

MP = M∗
PU ∗

HS/H and Bn = τ ∗
y /m(U ∗

HS/H )n (12c)

Also, the Reynolds number and diffusive Peclet number, respectively, appearing in Eqs. (4) and
(5) are expressed as

Re = ρU ∗
HSH/μ∗

r and Pe = U ∗
HSH/D. (12d)

We have used the following boundary conditions to solve the aforementioned dimensionless
governing transport equations.

At the inlet:

n · ∇ψ = 0, φ = 0, P = Patm, C = 1 for 0.6 � y � 1.4, and

C = 0 for y < 0.6 and y > 1.4. (13a)

In this instance, it is important to note that the boundary condition C = 1 for 0.6 � y � 1.4 was
selected to achieve a uniformly mixed state (C∞) with a final composition of 50% of fluid 1 and
50% of fluid 2, i.e., C∞ approaches 0.5 in the final mixed state.

At the outlet:

n · ∇ψ = 0, φ = 10, P = Patm, and dC/dx = 0. (13b)

At the plane wall:

n · ∇ψ = 0, n · ∇φ = 0, U = 0, and dC/dy = 0. (13c)

At the cylinder wall:

ψU = ζ ∗
U ze/kBT, ψD = ζ ∗

Dze/kBT, n · ∇φ = 0, U = 0, and dC/dχ = 0. (13d)

Here, n is the normal unit vector to the surface and χ is the normal direction to the cylinder wall.
The net throughput associated with the bulk flow in its dimensionless (Q) form can be expressed

as [51]

Q =
∫ y=2

y=0
u dy. (14)

Here, Q = Q∗/Q∗
ref ; Q∗ is the flow rate per unit width and Q∗

ref (=U ∗
HSH ) is the reference scale

for flow rate per unit width.
Further, the mixing quality at the outlet of the mixer is quantified in terms of mixing efficiency

(η) and given as [50,51]

η =
[

1 −
(∫ y=2

y=0
|C − C∞|dy

)/(∫ y=2

y=0
|Co − C∞|dy

)]
× 100%, (15)

where Co(=0 or 1) and C∞ represents the purely unmixed (η = 0%) and mixed state (η = 100%),
respectively. It should be noted in this context that the value of C∞ relies on the inflow rate of
the tracer liquid. By changing the rheological and geometrical parameters, it is anticipated that the
electroosmotic flow velocity profile at the inlet will be distinct. In light of the local velocity field at
the entrance, we have defined the expression of C∞ as follows:

C∞ =
∫ y=2

y=0 uC dy∫ y=2
y=0 u dy

. (16)
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TABLE I. Mixing efficiency at the different mesh system (M) for ζ = 4, r = 0.7, Bn = 0.25, κ = 30,
Pe = 250, and n = 0.5.

Mesh system (M) Number of elements Mixing efficiency Error (%)

M1 5789 77.14 2.71
M2 9968 77.45 3.12
M3 25204 75.845 0.99
M4 62266 75.096 0.01
M5 109038 75.104 0

III. NUMERICAL METHODOLOGY AND MODEL VALIDATION

The dimensionless governing transport equations [Eqs. (1)–(5)] are numerically solved using
the finite element method-based solver COMSOL MULTIPHYSICS. Consistent with this solver, the
nonuniform triangular mesh elements divide the physical domain into subdomains. In Appendix A,
we have provided an illustration of the mesh structure. To accurately predict the sharp EDL potential
gradient, ψ , and velocity gradient, we employ a denser mesh closer to the cylinder wall. Addition-
ally, the mesh is denser in regions with discontinuities in the zeta potential boundary condition
(see zoomed view of the mesh structure in the bottom-right section of Appendix A) and near the
species concentration boundary condition at the inlet (see zoomed view of the mesh structure in
the bottom-left section of Appendix A). The dimensionless element size near the cylinder wall
and plane wall falls within the range of 0.005 to 4 × 10−5, except in the region of zeta potential
and species concentration boundary condition discontinuity, where the range is 0.001 to 4 × 10−5

It is worth noting that the distinctive dimensionless EDL thickness is predominantly found in the
normal region with a dimensionless length of 1/κ , which is calculated as 0.033 33 for κ = 30.
The mesh element sizes considered for the EDL region (ranging from 0.005 to 4 × 10−5) are much
smaller than 0.033 33. As a result, we can confidently assert the accuracy of the expected EDL
potential gradient. Additionally, we apply the Galerkin weighted method [62–64] to convert the
governing differential equations into integral equations, which are then iteratively solved until we
reach the relative residual condition of 10−6 for all transport variables. Further, the grid indepen-
dence test is performed by calculating mixing efficiency at the mixer outlet for higher cylinder
radius (r∗/H = r = 0.7), while other parameters considered are n = 0.5, Bn = 0.25, κ = 30, and
Pe = 250. The grid test results are presented in Table I. A closer look at Table I discloses that the
results insignificantly change (by less than 1%) as the number of elements increases from 62 266 to
109 038, while other variables remain the same. Therefore, for the current numerical analysis, we
consider 62 266 mesh elements.

We have compared the efficacy of the numerical model employed here by comparing the present
results with both the existing experimental and theoretical results from different prospectives. First,
as presented in Fig. 2(a), the flow velocity profile obtained from our analysis for Newtonian fluid
(n = 1, Bn = 0) and Bingham plastic fluid (n = 1, Bn = 0.5, MP = 500), under the electroos-
motic actuation through the parallel plate microchannel, is compared with the result of Qi and Ng
[32] when κ = 10. This validation verifies the accuracy of the electroosmotic flow field’s yield
stress impact. Next, in Fig. 2(b), the average electroosmotic flow (EOF) velocity for the flow of
non-Newtonian fluid through a plane microchannel obtained at the different electric field intensity
is compared with the experimental result of Huang et al. [65] for the zeta potential −24 mV in
the limiting case Bn = 0. These findings were generated by Huang et al. [65] in the context of
electroosmotic flow within a rectangular planar microchannel using an aqueous NaCl-polyethylene
oxide solution. This benchmarking process validates the prediction made by the current numerical
model regarding the impact of shear-thinning behavior on electroosmotic flow. Further, as shown in
Fig. 2(c), the normalized species concentration at the outlet of the plane electroosmotic micromixer
is validated with the result of Biddiss et al. [39] for the electric field strengths 70 and 280 V/cm
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Experimental result by Song et al.  

 

Present result at limiting case 

(a) (b)

(c) (d)

FIG. 2. (a) Comparison of flow velocity profile for Newtonian fluid (n = 1, Bn = 0) and Bingham plastic
fluid (n = 1, Bn = 0.5, MP = 500) with the result of Qi and Ng [32] for κ = 10. (b) Comparison of ex-
perimental average electroosmotic flow (EO) velocity for the flow of non-Newtonian fluid through a plane
microchannel at the different electric field intensity (E) with the experimental result of Huang et al. [65] for the
zeta potential −24 mV at the limiting case Bn = 0. (c) Comparison of normalized species concentration at the
outlet of the plane electroosmotic micromixer with the result of Biddiss et al. [39] for the electric field strengths
70 and 280 V/cm at the limiting case n = 1, Bn = 0. (d) Comparison of flow field in the PDMS microchannel
having a modified section zeta potential of −5 mV (left) and an untreated PDMS side zeta potential of
−60 mV (right side) with the experimental result by Song et al. [66] at limiting case n = 1 and Bn = 0.

in the limiting cases n = 1 and Bn = 0. Finally, we have attempted to benchmark the formation
of electroosmotic vortices by leveraging the discontinuity in zeta potential difference at the wall.
Hence in Fig. 2(d), we have compared the flow field in a Polydimethylsiloxane (PDMS) plane
microchannel having a modified section zeta potential of −5 mV (left side of the channel) and an
untreated PDMS side zeta potential of −60 mV (right side of the channel) with the experimental
results of Song et al. [66]. For this benchmarking, the microchannel is set to have a width and length
of 70 and 2000 µm, respectively. The ratio of the length of the modified section to the untreated
section is chosen as 4, with the liquid density and viscosity set at 1000 kg/m3 and 0.001 Pa s,
respectively. For this part, we have considered a limiting case of n = 1 and Bn = 0 to obtain the
numerical results. The benchmarking results presented in Figs. 2(a)–2(d) underline the accuracy
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of the current numerical framework, which makes it suitable for further calculation as discussed
systematically in the forthcoming sections.

IV. RESULTS AND DISCUSSION

A. Range of parameters

For the present study, we have taken micromixer half height as H = 50 µm. We consider
fluids commonly used in microfluidic devices, such as blood, DNAs solutions, or polymeric
solutions, which exhibit shear-thinning behavior (n < 1) and have decreasing apparent viscosities
at higher shear rates [67–69]. In this context, a range of flow behavior index (0.5 � n � 1)
values is considered, and similar ranges are employed in Refs. [28–33]. Here, it should be em-
phasized that when n = 1, it denotes that the solution exhibits Newtonian behavior. The flow
consistency index for biofluids such as blood and density of the aqueous solution are taken
as m = 0.017 Pa − sn [27] and ρ = 1000 kg m−3 [51], respectively. The values of the refer-
ence electric field (Eref ), reference EDL potential (ψ∗

ref ), upstream side zeta potential (ζ ∗
U ), and

relative electric permittivity of the fluid medium (εr ) are taken as 10 000 V m−1, −25 mV,
−100 mV, and 80, respectively [51]. Consequently, the reference Helmholtz-Smoluchowski ve-
locity, U ∗

HS (=n(λD)(n−1)/n(εoεrErefψref
∗m)1/n), is obtained from 1.041 18 × 10−5 to 3.252 14 ×

10−5 m/s. For the aforementioned range of flow behavior index and for the typical Debye parameter
value for the microfluidic channels, κ (=H/λD) = 30 [28,41,43]. As a result, we can say that the
reference velocity order is ∼10−5 m/s. Pertaining to microfluidic applications, the order of yield
stress (τ ∗

y ) for the non-Newtonian fluid is obtained as 1 mPa [22,26]. Hence, given the range of
dependent geometrical and fluidic parameters taken into consideration, the value of the Bingham
number [Bn = τ ∗

y /m(U ∗
HS/H )n] approaches close to 0.25. Accordingly, the range 0 � Bn � 0.25

as considered here, is appropriate for numerical simulations. Additionally, it is worth noting that
Biddiss et al. [39] expected species diffusion coefficients in the range of 10−10 m2/s, while Gaikwad
et al. [40] mentioned values up to 10−12 m2/s. Hence, the order of the species diffusive Peclet
number (Pe = U ∗

HSH/D) is determined to be in the range of 1–1000, considering the examined
range of U ∗

HS and the order of H, as well as the order of species diffusion coefficient ranging
from 10−12 m2/s to 10−10 m2/s. These previous studies pertinent to microfluidics [42,51] have also
investigated a similar spectrum of diffusive Peclet numbers. Moreover, the dimensionless cylinder
radius (r = r∗/H ) is varied in the range of 0.3 � r � 0.7. The value of MP should be higher to
yield convergence and should not be so high that it reduces the convergence speed [29,30,32,33].
Therefore, the effect of MP on the underlying transport is presented in Appendix B. As found
from the tabulated data in Appendix B, the effect of MP on flow rate and recirculation velocity
is miniscule. Consequently, we have taken a constant MP (=500) for the numerical simulations of
this analysis.

B. Flow field

When Bn = 0 and 0.25, Fig. 3(a) shows the streamlines and contours of dimensionless flow
velocity close to the cylinder. The stream function is computed by solving the equation ∇2� =
−(∂v/∂x−∂u/∂y) and by using the developed flow field, while � = 0 is imposed at the bottom
wall. Note that consideration leading to � = 0 follows from the fact that the flow rate between two
streamlines tends to zero near the wall due to the no-slip condition. It is observed from Fig. 3 that
vortices are formed in the region closer to the wall at the upstream end of the cylinder. Here, it
should be mentioned that a stronger EOF field is generated at the upstream cylinder wall, attributed
primarily to the higher electroosmotic actuation caused by the larger magnitude of zeta potential
therein (see Fig. 1). On the other hand, due to the absence of EDL, there is no driving force for
the liquid mass close to the plane wall. Hence, due to a substantial viscous resistance between the
plane and upstream cylinder walls caused by the sharper velocity gradient, vortices are formed
as witnessed in Fig. 3(a). Further, the effect of Bn on the flow velocity profile near the inlet
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FIG. 3. (a) Contours of streamlines and dimensionless flow velocity for (a) Bn = 0 and Bn = 0.25 when
r = 0.7 and n = 0.5. (b) Dimensionless flow velocity profile at sections x = 2 and 4 at different Bn when
r = 0.7 and n = 0.5.

and cylinder is depicted in Fig. 3(b) at sections x = 2 and 4, respectively. We can observe that
the inherent yield stress for Bn = 0.25 reduces the core flow velocity as compared to Bn = 0 at
x = 2. Also, the core flow velocity profile is flatter at Bn = 0.25, attributed to the presence of an
unyielded region in the core. This observation shows similarity with the established work as well
[33]. Moreover, due to the reduction in core region flow velocity, and consequently, the reduction in
velocity gradient between the fluid elements near the cylinder and plane walls, the viscous resistance
decreases as well. Notably, this reduction in viscous resistance for Bn = 0.25 causes a mild decrease
of viscous resistance-induced recirculation strength (�max) [see Fig. 3(a)] and magnitude of reversed
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(a) (b)

(c)

FIG. 4. Variation of (a) dimensionless recirculation velocity (uR) and (b) dimensionless flow rate (Q) in the
plane of n and Bn when r = 0.7. (c) Dimensionless flow velocity profile at x = 2 at different Bn when n = 0.5
(left) and 1 (right).

flow velocity [see Fig. 3(a)]. These two observations, as depicted in Fig. 3(a), are witnessed when
comparing with the similar variation for Bn = 0.

The variation of recirculation velocity (uR) in the plane of Bn and n is shown in Fig. 4(a). It is
noted that uR represents the magnitude of maximum reversed flow velocity in the domain as defined
in previous works [51,52]. We observe that as n increases, the value of uR decreases. The apparent
viscosity increases with n for shear-thinning viscoplastic fluids, which in turn, results in a reduction
in flow velocity. Therefore, the velocity gradient of the fluid elements between near-plane wall and
cylinder, accounting for this reduction in flow velocity, decreases with n as well. Consequently,
with increasing n, the intensity of the viscous resistance-induced recirculation velocity decreases.
Additionally, as witnessed in Fig. 3, an insignificant change in recirculation strength with a change
in Bn from 0 to 0.25 (see Fig. 3) underlines almost no effect of Bn on uR.

In the paradigm of low Re (�1) transport, solute mixing can be either convection or diffusion
dominated based on the scale of diffusive Peclet number dependent on the species diffusion
coefficient. For smaller values of the species diffusive Peclet number (<1), molecular diffusion
predominates in mixing. In contrast, mixing is essentially convection dominated at larger values of
the diffusive Peclet number (�1), which is heavily controlled by the underlying flow velocity. A
relatively higher flow velocity, although it will result in a higher flow rate, may have an adverse
impact on the mixing efficiency in the regime of low Re transport. Thus, pertaining to microscale
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FIG. 5. Contours of streamline and dimensionless flow velocity contour for (a) r = 0.3, (b) r = 0.5, and
(c) r = 0.7 when Bn = 0.25 and n = 0.5. The legend of dimensionless flow velocity (u) is shown in the right
side of the image.

transport, obtaining a desirable solute mixing implicates a compromised flow rate as well. To
illustrate how changes in the dimensionless flow rate (Q) may affect the solute mixing process,
which will be discussed in the coming sections, we have depicted this variation in Fig. 4(b) in the
plane of n and Bn. We can observe that the magnitude of Q decreases with increasing the value of
n. It is because of the increase in apparent viscosity with n, that the intensity of the primary flow
velocity decreases. Thus, it is intuitive to find a decrease in Q with n in Fig. 4(b). Additionally, a
decrease in Q with Bn is due to the reduction in core region flow velocity (see Fig. 3). It is indeed
interesting to note that when n decreases, Q decreases with Bn at a higher rate. The explanation
behind this observation is as follows. As demonstrated in Fig. 4(c), lower n (=0.5) provides a
sharper velocity gradient toward the plane wall as compared to the higher n (=1). This observation
is attributed to the smaller apparent viscosity near the plane wall for lower n. As a result, the flatter
core flow velocity field is obtained for smaller n. As seen in Fig. 4(c), the decrease in core region
velocity with Bn is therefore anticipated up to a longer transverse length for a lower n. What follows
from this observation is that for the viscoplastic fluid having shear-thinning nature, the flow rate
drops with Bn and the rate of decrement is higher when the shear-thinning nature is higher (i.e.,
smaller n).

In Fig. 5, which depicts the contours of a dimensionless flow field and streamlines, the effect
of the dimensionless cylinder radius (r) on the flow field is shown. It has been found that when r
increases, the intensity of the maxima flow velocity increases. The electroosmotic body force and,
consequently, the velocity magnitude are enhanced by an increase in the electric field intensity with
r (see Appendix C). Additionally, when r increases, the recirculation zone’s strength increases.
The increase in viscous resistance with r between the plane wall and cylinder is attributed to this
observation. In particular, this phenomenon facilitates flow reversal with greater strength at a larger
radius.

C. Yielded–unyielded region

Figure 6 shows the contours of the yielded and unyielded regions and streamlines at various
cylinder radii (r). The yielded and unyielded regions are defined as being the region having above
and below the critical dimensionless yield stress, |τ |cri= Bn, and adopted from Ref. [33]. Due to
the flatter velocity profile (see Figs. 3 and 4), we notice that the unyielded zone is present close to
the inlet and outlet side core section. Also, as r is increased, the thickness of the unyielded zone
reduces, attributed primarily to the more concave velocity profile (see Appendix C) in the section at
larger r. An increase in primary flow intensity, developed due to a stronger electric field at bigger r
(see Appendix C), leads to the formation of a more concave velocity profile in the field as shown in
Appendix C.
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FIG. 6. Contours of yielded (white background) and unyielded (dark blue) regions with streamlines at
different cylinder radius (left) and the corresponding zoomed view of streamline contours near the top part of
thr cylinder upstream and downstream (right) when ζ = 4, Bn = 0.25, κ = 30, and n = 0.5.

Furthermore, the presence of a stagnation zone between the recirculation region and the primary
flow close to walls (see the elliptical boxes in the contours of the streamline on the right side of
Fig. 6) permits the creation of a smaller unyielding region (see the elliptical boxes in the contours
of the yielded and unyielded regions on the left side of Fig. 6). Also, due to the larger strength of
both primary and secondary flows at higher radius (see Fig. 5), the size of the unyielded region
becomes relatively smaller due to the shrinkage in the stagnation region (see the elliptical boxes in
the contours of the streamlines on the right side of Fig. 6). Notably, the unyielded zone disappeared
on the downstream side of the vortex. This can be observed by examining the rectangular boxes
corresponding to r = 0.7 in the contours of the yielded and unyielded regions on the left side of
Fig. 6, and the same phenomenon applies to r = 0.7 for the same reason. Additionally, when the
radius is smaller (at r = 0.3 and 0.5), we see smaller unyielded regions inside of the reversed flow
field (see the triangular boxes in the contours of the yielded and unyielded regions on the left side
of Fig. 6) where the shear stress is less than the yielding limit. In contrast, it is not observed for a
larger radius (r = 0.7) because the greater shear rate results in a higher shear stress value (greater
than the yielding limit). Additionally, a “ψ”-shaped unyielded region appeared in the downstream
side of the cylinder when r = 0.3 (see the dotted rectangular box for r = 0.3 in the contours of
the yielded and unyielded regions on the left side of Fig. 6). As seen from Fig. 6, for r = 0.3, the
streamlines are aligned toward the plane wall near the top and bottom ends of the cylinder while they
are directed toward the core in the downstream side of the cylinder (see the contour of the streamline
on the right side of Fig. 6 for r = 3 in downstream). This type of arrangement of streamlines (flow
structure) leads to a weaker shear stress between the regions. Also, the stagnant zone generated near
the extreme downstream end of the cylinder causes the creation of an unyielded region therein, and
hence a ψ-shaped unyielded region appeared in downstream at r = 0.3. Moreover, the region having
weaker shear stress is smaller for higher radius (r = 0.5 and 0.7) due to the relatively stronger flow
strength (see Fig. 5), which allows separate smaller unyielded regions to form near the top and
bottom downstream regions of the cylinder.

D. Effect of yield stress on concentration field and mixing efficiency

Figures 7(a) and 7(b) plot the dimensionless species concentration contour for smaller (Pe = 10)
and higher (Pe = 500) diffusive Peclet number, respectively. The variations depicted in Figs. 7(a)
and 7(b) are obtained from different Bn and corresponding n = 0.5. It can be seen from Fig. 7(a)
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FIG. 7. Contours of dimensionless species concentration contours at different Bn when (a) Pe = 10 and
(b) Pe = 500 when r = 0.7 and n = 0.5. The corresponding average deviation in concentration field over the
fully mixed condition (C = C∞) i.e., |C − C∞|avg is presented in the right side of the image.

that with an increase in Bn, the tracer fluid concentration reaches up to a smaller distance in the
downstream direction. This observation is attributed primarily to the reduction in core flow velocity
with Bn [see Fig. 4(a)], which eventually reduces the strength of species concentration in the core
region. On the other hand, as seen in Fig. 7(a), the value of C∞ can decrease due to the reduction
in inlet flow velocity associated with an increase in Bn [see Fig. 4(c)]. Conversely, as depicted on
the right side of Fig. 7(a), the value of |C − C∞|avg is enhanced as C∞ decreases with increasing
Bn. It may be mentioned here that the systematic difference of |C − C∞|avg is due to the diffusive
flux at the inlet. Accordingly, it can be concluded that the species concentration uniformity, relative
to C∞, decreases with increasing Bn at Pe = 10. On the other hand, a higher Pe (=500) allows
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FIG. 8. Variation of mixing efficiency with Pe at different Bn when r = 0.7 and n = 0.5. The critical
diffusive Peclet number corresponds to the maxima mixing efficiency and is obtained as Pe = 65 for all Bn.

greater dominancy of convection effect on species transport, and thus the effect of yield stress on
mixing pertaining to this case becoming different than as discussed for smaller Pe. Due to the highly
convection dominated species transport, the species concentration follows the flow pattern as well
for higher Pe. The higher amount of species transport from the inlet to near the cylinder and together
with the presence of the vortex therein promotes the mixing of the fluid streams. In addition, the
value of C∞ also decreases in this instance due to the Bn-induced decrease in flow velocity. However,
it is noteworthy that the value of C at the outlet also decreases as a result of the reduced inflow flow
velocity with Bn. Due to the dominant effect of lowering the C value at the outlet with increasing
Bn, |C − C∞|avg can be reduced, as evident on the right side of Fig. 7(b). As a result, we can infer
that at Pe = 500, species homogeneity relative to C∞ is enhanced with an increase in Bn.

The forgoing discussion is suggestive that the underlying mixing nontrivially changes owing
to an intricate interplay between flow and fluid properties. Considering this aspect, we plot the
variation of mixing efficiency (η) with a change in Pe is depicted in Fig. 8, obtained for different
values of Bn. For all Bn, we observe that the mixing efficiency exhibits an increasing–decreasing
trend with an increase in Pe. The increasing pattern in mixing efficiency is anticipated with an
increase in Pe for lower Pe values up to 65. The reduction in |C − C∞|avg with Pe up to 65 can be
attributed to the augmentation in species concentration homogeneity concerning C∞ concentration.
The increase in Pe values in its lower regime causes the value of C to increase from lower values
toward the C∞ at the outlet section due to the intensified convective species transport with Pe.
Consequently, |C − C∞|avg decreases with Pe up to 65, resulting in an increase in mixing efficiency
up to Pe = 65. Furthermore, the value of C at the outlet section can exceed the homogeneity
concentration, C∞, due to the substantial increase in convective species transport strength as Pe
exceeds Pe = 65. As a result, an increase in |C − C∞|avg with Pe for Pe > 65 permits a decrease in
mixing efficiency with Pe. Additionally, for lower Pe values (1–8), the mixing efficiency increases
as Bn increases as shown in Fig. 8. It is because Bn can reduce the value of C at the outlet due to the
decrease in flow velocity. Because of the dominance of this impact, the value of |C − C∞|avg for the
outlet section decreases with Bn, thereby improving the mixing efficiency within Pe < 8. Further,
the mixing efficiency slightly declines with an increase in Bn for Pe values between 8 and 50.
According to Fig. 7(a), the slight increase in |C − C∞|avg with Bn in this range of Pe is responsible
for the observed effect. Finally, mixing efficiency continues to exhibit a growing pattern with Bn
at larger values of Pe (50–1000). According to Fig. 7(b), it is caused by reductions in the value of
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(a)

(b)

FIG. 9. (a) Variation of mixing efficiency with Pe at different r when Bn = 0.25 and n = 0.5. The varia-
tions of maximum vortex strength (�max) and dimensionless flow rate (Q) with r is depicted in the inset. Also,
the corresponding minimum Peclet number for which mixing efficiency approaches 99% is also indicated.
(b) Contours of dimensionless species concentration contours at different r when Pe = 1000, Bn = 0.25, and
n = 0.5. The corresponding average deviation in concentration field over the fully mixed condition (C = C∞),
i.e., |C − C∞|avg is also depicted in the right side of the figure.

|C − C∞|avg for this range of Pe, which in turn improves mixing efficiency with Bn at larger values
of Pe.

E. Effect of cylinder radius on mixing efficiency

In this section, the effort has been made to analyze the effect of the cylinder radius on mixing
efficiency for viscoplastic fluids in the physically justified range of diffusive Peclet number. The
variation of mixing efficiency with change in Pe at different r is depicted in Fig. 9(a) when Bn =
0.25. When Pe approaches unity, we observe that the mixing efficiency is higher for the smaller
radius (r = 0.3). It is explained by the fact that, compared to larger radii, the weaker flow velocity
at smaller radii (see Appendix C) results in smaller C values at outlet sections that are closer to
the uniformity condition concentration, C∞. For the lower radius (r = 0.3) compared to the larger
radii (r = 0.5 and 0.7), as Pe tends toward unity, there is a reduced prediction of |C − C∞|avg.
Therefore, when Pe approaches unity, higher mixing efficiency is obtained for a smaller radius
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(r = 0.3). Further, it is found that the mixing efficiency is enhanced with an increase in r at the
intermediate values of Pe. This increase in efficiency is because of the increase in the intensity
of flow velocity near the cylinder (see Fig. 5) with r. An enhancement of flow velocity with r
augments the core velocity as well, which in turn allows stronger stream function strength, �max

[see variation of �max with r in the inset of Fig. 9(a)]. With an increase in r, therefore, a greater
amount of tracer fluid gets transported and mixed by the vortex of higher strength. As a result, a
more uniform concentration field which is close to the uniformity concentration, C∞, is obtained
at higher r, and results in an enhancement of η with r. Additionally, as depicted in Fig. 9(a), it is
evident that the minimal Peclet number required to achieve mixing efficiencies close to 99% follows
a decreasing trend as the radius increases. This observation aligns with the fact that a larger flow rate
at a larger radius transports more tracer liquid into the domain [see inset of Fig. 9(a)]. Consequently,
this enables the attainment of η = 99% at a significantly lower value of Pe for a larger radius,
resulting in a relatively lower |C − C∞|avg. Importantly, for the intermediate Pe values, both mixing
efficiency and flow rate are enhanced with r [see variation of Q with r in the inset of Fig. 9(a)].
Therefore, this is the condition of “quick and efficient mixing.” However, for the higher values of
Pe, the effect of r on mixing efficiency is seen to be opposite. The higher strength of primary core
flow for higher radius allows a larger amount of species to get injected into the field. This effect, as
shown in Fig. 9(b), leads to a decrease of the species uniformity at the outlet owing to an increase
in |C − C∞|avg at Pe = 1000 [see right side of Fig. 9(b)]. Notably, from the forgoing discussion it is
seen that the smaller cylinder radius (r = 0.3) is beneficial for the mixing of candidate fluids having
very high Pe (�1).

F. Shear-induced binary aggregation kinetics for viscoplastic fluid

The mixing of biological fluids that contain biomolecules such as proteins and DNA is char-
acterized by the shear-induced binary aggregation kinetics [40,51]. For two-body aggregation, let
the kinetic constant for the aggregation of the primary particle be k1,1 and its reciprocal is the
characteristic time of aggregation (tc). The mathematical expression of tc for the shear-induced
aggregation kinetics is written as [53]

tc ∼ exp(−6παsμ
∗
r γ̇

∗a3/kBT )√
3παsμ∗

r γ̇
∗a3/kBT

. (17)

In this context, it is important to note that in Ref. [53], the two-body Smoluchowski equation
was employed with a constant shear to study binary (two-particle) aggregation. While constant
shear was used to simulate the aggregation time, a closer examination of the time-dependent
viscosity of charge-stabilized polystyrene colloids under different shear rate in Ref. [53] reveals
that it is crucial to calculate the typical time frame of aggregation, beyond which viscosity increases
almost asymptotically. Equation (17), which links shear rate, particle size, and solution viscosity
to the characteristic time of two-body aggregation, can be used for this estimation. Furthermore,
the time-dependent viscosity data for charge-stabilized polystyrene colloids under different shear
rates in Ref. [53] indicates that higher shear rates correspond to the minimal critical time for a
significant increase in viscosity due to aggregation. In this context, the “characteristic time of binary
aggregation” gives an idea of the timescale beyond which a higher probability of binary aggregation
results in a substantial viscosity increase, achieved by increasing the effective volume fraction of
clusters through two-body hydrodynamic interactions. As a result, the present work estimates the
characteristic time of binary aggregation based on the maximum shear rate. In addition, in Eq. (17),
the Peclet number for the transport of particle is Pec = 3πμ∗

r γ̇
∗a3/kBT . The ratio (tDiff/tCon) of the

diffusive timescale based on particle size [tDiff = a2/(kBT/(3πμ∗
r a))] to the convective timescale

(tCon = 1/γ̇ ∗) can be used for establishing the diffusive Peclet number associated with the particle
interaction (Pec = 3πμ∗

r γ̇
∗a3/kBT ). The other parameters are taken as T = 300 K, as = 1/3π ,

a = 100 nm [40,53], and m = 0.017 Pa sn [27]. The maximum Pec is obtained up to 12.199 for
r = 0.7. Therefore, binary aggregation must be convection dependent. It may be mentioned here

023301-17



SUMIT KUMAR MEHTA AND PRANAB KUMAR MONDAL

FIG. 10. Contours of characteristic time (tc ) of the binary aggregation (left) and shear rate (right) near the
cylinder when r = 0.7, n = 0.5, and Bn = 0.25. For the calculation of tc, the other parameters are taken as
T = 300 K, as = 1/3π , a = 100 nm, and m = 0.017 Pa sn.

that the probability of collision rate of the particle is enhanced with the increase in γ̇ ∗, while at the
same time, the activation energy for the aggregation decreases with γ̇ ∗ as well [53]. Therefore, an
exponential increase in reaction rate for two-body aggregation and an exponential decrease in the
kinetic constant for the aggregation with γ̇ ∗ is predicted to visualize the binary aggregation kinetics.
To see the clear visualization of tc, the corresponding contour is depicted in Fig. 10 (left side). As
seen, the intensity of tc is much lower near the cylinder upstream side. This is because of the higher
intensity of shear rate near this region (see shear rate contours on the right side of Fig. 10) due to
the existence of the stronger flow velocities therein (see Fig. 5). The stagnant region at the vortex
center allows a nearly zero shear rate which causes a higher intensity of tc (see rectangular box in
the left side of Fig. 10). Also, the stagnant region at the interface of the primary and secondary flow
junction, formed near the top and bottom plane wall, causes a higher intensity of tc (see elliptical
box) as the intensity of shear rate is smaller therein. For other regions, the weaker shear rate causes
a higher intensity of tc.

Further, with the variation of tc, based on the maximum shear rate, various n are depicted in
Fig. 11(a) while varying the cylinder radius. The variations are shown for two values of Bn (= 0,

(a) (b)

FIG. 11. (a) Variation of characteristic time (tc ) of the binary aggregation based on maximum shear rate in
domain with change in fluid behavior index (n) at the different values of r and Bn. (b) Variation of maximum
shear rate with fluid behavior index (n) at the different values of r and Bn. The other parameters are taken as
T = 300 K, as = 1/3π , a = 100 nm, and m = 0.017 Pa sn.
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FIG. 12. (a) Contours of particle probability density distribution [pN = CN/CN,0 = 1/(1 + tref/tc )] at dif-
ferent Bn in steady state when r = 0.5, n = 0.5, T = 300 K, as = 1/3π , a = 100 nm, and m = 0.017 Pa sn.
(b) Contours of pN at different cylinder radius in steady state when Bn = 0.25, n = 0.5, T = 300 K, as =
1/3π , a = 100 nm, and m = 0.017 Pa sn.

0.25). Interestingly, tc is enhanced with n. The decrease in the maximum shear rate with an increase
in n [see Fig. 11(b)] is mainly due to the reduction in shear-thinning behavior. This reduction leads
to an enhancement of tc [see Eq. (17)]. The relatively smaller prediction of maximum shear rate
for Bn = 0.25 compared to Bn = 0 [see Fig. 11(b)] allows higher tc. Also, the enhancement in
maximum shear rate with r [see Fig. 11(b)] due to the enhancement in flow intensity (see Fig. 5)
allows a decrease in tc with r for the considered range of n.

We can correlate the associated probability density (pN ) of finding a second particle within a
radius b = 2a (a is the particle radius) based on the bulk number concentration of particles, CN,0.
Accordingly, the probability number concentration field (CN ) can be expressed as CN = CN,0 pN

[53]. Therefore, the probability density of aggregation [70,71] within the domain can also be
estimated as described in pN = CN/C0,max = 1/(1 + tref/tc) [53]. Therefore, by estimating tc and
the shear rate field, the probability density of particles aggregating can be estimated in the domain.
Here, the contours of pN are depicted in Fig. 12(a) for different values of Bn. It is observed from
Fig. 12(a) that the increase in Bn enhances the thickness of maxima pN near the upstream and
downstream core regions. This observation is because of the increasing unyielded region thickness
with Bn where the shear rate is nearly zero. Therefore, the smaller shear rate results in higher tc
and maximizes the probability of a higher intensity of particle number concentration. It is for this
reason that pN approaches unity in that region. Similar observations are predicted in Fig. 12(b) that
an increase in cylinder radius decreases the thickness of maxima pN due to the reduced unyielded
core region near the upstream and downstream parts of the cylinder (see Fig. 6). The intensity of
pN seems to be smaller near the cylinder region except for the smaller flow stagnation regions [see
Fig. 10(a)]. The higher intensity of tc inside the flow stagnation region [see Fig. 10(a)] allows a
higher intensity of pN . Importantly, it should be noted that the proposed approach for predicting
the probability density of particles aggregating in a binary fashion under shear is less expensive
and simpler than the method used for estimating the actual particle number concentration field.
Note that the actual particle number concentration field is typically calculated from a full-scale La-
grangian particle tracing, which is indeed computationally intensive. While quantitative estimation
requires the expensive Lagrangian particle tracing method, the current approach offers a qualitative
representation of the probability distribution of particle numbers in binary aggregation under
shear.

023301-19



SUMIT KUMAR MEHTA AND PRANAB KUMAR MONDAL

V. CONCLUDING REMARKS

We have investigated electroosmotic mixing of viscoplastic fluids in a microchannel with a
built-in two-part cylinder having the same sign but different zeta potential in its upstream and
downstream portions. We have solved the transport equations numerically, and the underlying
mixing efficiency (η) and shear-induced binary aggregation kinetics for the chosen configuration
are studied systematically for a set of pertinent parameters. Effort has also been taken to benchmark
the modeling framework developed here, and it has been demonstrated that results obtained from
the present endeavor in the limiting cases show good agreement with the reported experimental and
theoretical results.

We have shown that the flow velocity developed in the field due to in built geometry modulated
EDL phenomenon upon interacted with the viscous resistance leads to the generation of vortices in
the regions between the plane wall and built-in cylinder. We have shown through this analysis that
both inevitable yield stress and the shear-thinning nature of viscoplastic fluid promotes the vortex
generation in the field following the flow reversal phenomenon. As shown, inevitable yield stress
of the viscoplastic fluid only minimally impacts the vortex generation, while the shear-thinning
nature of the fluid triggers the vortex generation phenomenon substantially. Additionally, it was
observed that flow velocity and flow rate increased with greater cylinder radius, but decreased as
flow behavior indices and Bingham numbers increased. It has also been seen that the presence of
the stagnation zone forms between the primary flow close to the walls and the recirculation zone
allows for the development of smaller unyielding zones, and its size decreases as the cylinder radius
increases. Quite interestingly, it is seen that at smaller cylinder radius, a ψ-shaped unyielded zone
has emerged in the downstream side of the cylinder. This onset of unyielded zone, which is affected
by the cylinder radius and diffusive Peclet number, nontrivially modulates the mixing efficiency
of viscoplastic fluids. With an increase in the diffusive Peclet number, it was observed that mixing
efficiency followed an increasing–decreasing trend. Also, at lower and higher values of the diffusive
Peclet number, mixing efficiency increases with the Bingham number, although it slightly decreases
with the Bingham number for intermediate values of the Peclet number. Additionally, it was found
that mixing efficiency is greater for smaller radii when the diffusive Peclet number approaches unity.
At intermediate diffusive Peclet numbers, it exhibits an increasing pattern with increasing cylinder
radius, while at higher diffusive Peclet numbers, it decreases with radius. We have established
that the condition leading to “rapid and efficient mixing” is that the flow velocity and underlying
mixing efficiency both increase with an increase in the cylindrical radius. Interestingly, when the
cylinder radius is lower, the proposed micromixer predicts greater than 95% mixing efficiency up to
higher values of the diffusive Peclet number (∼103). Moreover, we have unveiled that the flow field
developed near the built-in cylinder has a significant impact on the characteristic time of binary
aggregation kinetics—an index that underlines the mixing of solutes and biofluids that contain
colloidal particles. For viscoplastic fluids, a slightly higher value of the characteristic time for binary
aggregation, based on the maximum shear rate, is observed compared to the case with zero yield
stress. Furthermore, the characteristic time for binary aggregation is enhanced with an increase in
the flow behavior index and reduces with an increase in the cylinder radius. Interestingly, it has
been observed that the fluid yield stress has a significant influence on the predicted distribution of
particle probability density distribution based on the characteristic time of binary aggregation. We
believe that inferences of this endeavor may certainly be useful in designing the state-of-the-art
micromixers intended for efficient mixing of viscoplastic fluids in particular, and effective solute
mixing in general.
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FIG. 13. Mesh structure in the domain. The denser mesh is taken near the cylinder wall to predict an
accurately sharp EDL potential gradient, ψ , and velocity gradient, and comparatively denser near the region
having discontinuity in the zeta potential boundary condition (see zoomed view of the mesh structure in the
bottom-right part) and species concentration boundary condition discontinuity at the inlet (see zoomed view
of the mesh structure in the bottom-left part). The dimensionless element size range near the cylinder wall
(except the region of zeta potential and species concentration boundary condition discontinuity) and the plane
wall is taken as 0.005 to 4 × 10−5, while the same range is taken as 0.001 to 4 × 10−5 at the region having
discontinuity in the zeta potential and species concentration boundary conditions.

APPENDIX A: MESH STRUCTURE IN THE DOMAIN

In this appendix, we demonstrate in Fig. 13 the mesh structure inside the domain. At the inlet
where two liquids arrive the mesh structure is denser. Additionally, the closer look at the cylinder
makes it evident that the denser mesh at the zeta potential discontinuity point is necessary to
accurately anticipate the EDL potential gradient.

APPENDIX B: EFFECT OF STRESS GROWTH PARAMETER ON FLOW RATE AND
RECIRCULATION VELOCITY

The computed solution also gets influenced by the dimensionless stress growth parameter, which
was first put out by Papanastasiou and Boudouvis and controls the yield-stress’s exponential growth.
Table II shows the corresponding change in the dimesionless flow rate at various MP. Additionally,
Fig. 14 shows how flow rate and recirculation velocity change when MP varies.

TABLE II. Variation of dimensionless flow rate (Q) and error in Q with respect to corresponding value at
MP = 800 with a change in MP when r = 0.7, n = 0.5, and Bn = 0.25.

MP 50 100 200 300 400 500 600 700 800

Q 0.35455 0.35445 0.3544 0.35437 0.35436 0.35434 0.35445 0.35445 0.35444
Percentage
error in Q
with respect
to MP 3.10 2.82 −1.13 −1.97 −2.26 −2.82 2.82 2.82
= 800 ×10−2 ×10−3 ×10−2 ×10−2 ×10−2 ×10−2 ×10−3 ×10−3
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FIG. 14. Variation of Q and dimensionless recirculation velocity (uR ) with MP when r = 0.7, n = 0.5, and
Bn = 0.25.

APPENDIX C: EXTERNAL ELECTRIC FIELD, EQUIPOTENTIAL LINES, AND FLOW
VELOCITY PROFILE AT DIFFERENT RADIUS

The influence of cylinder radius (r) on the equipotential lines and dimensionless electric field
intensity is discussed in this appendix in Fig. 15. It is observed that between the cylinder and
plane wall, the distance between equipotential lines is less. This is because of denser electric field
lines in this location. Thus, the aforementioned region likewise has a higher electric field intensity.
Additionally, when the cylinder radius is greater between the cylinder and plane wall, the distance
between equipotential lines is reduced because of the denser electric field lines. The intensity of the
electric field there increases with radius as a result. Furthermore, Fig. 16 shows how the cylinder
radius affects the flow velocity profile.

FIG. 15. Contours of dimensionless electric field intensity and equipotential lines at different cylinder
radius. The legend of the dimensionless external electric field magnitude [

√
(∂φ/∂x)2 + (∂φ/∂y)2] is shown

in the right side of the image.
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FIG. 16. Dimensionless flow velocity profile at x = 2 at different r when n = 0.5 and Bn = 0.25.
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