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We study the hydrodynamic interaction between a microswimmer and a deformable
interface when the swimmer can stochastically reorient itself. We consider a force- and
torque-free swimmer, modeled as a slender body, that can execute random orientation
tumbles or active Brownian rotations in the plane of the deformable interface. When
the swimmer is in the more viscous fluid, our analysis shows that both tumbles and
Brownian rotations acting on timescales comparable to that of interface deformations
can lead to a pusher-type swimmer rotating away from the interface, while enhancing
its attraction towards the interface. In turn, the intrinsic orientational stochasticity of the
microswimmer favors a stronger migration of pushers towards the interface at short times,
but migration away from the interface in the long-time limit. However, irrespective of
the viscosity ratio of the two fluid medium, the tendency of a pusher to align parallel
to the interface is suppressed; the results for puller-type swimmers are the opposite. Our
study has potential consequences for the residence time of swimming microorganisms near
deformable boundaries.
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I. INTRODUCTION

Swimming microorganisms inhabiting fluid spaces proximate to boundaries, interact with them
for a variety of biological imperatives, such as formation of biofilm colonies and adhesion [1],
navigation [2], and foraging [3,4]. Understanding these microswimmer-boundary interactions is
relevant in biomedical and industrial settings in terms of biofouling resulting from the accumulation
of biota [5,6], in controlling motion of artificial microbots in vascular systems [7], and in patho-
genesis [8–10], to give just a few examples. An important aspect of these systems involves the fluid
mediated hydrodynamics [11], both in quiescent suspensions [12,13] and in the presence of imposed
flows [4,14,15].
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In several settings, the boundaries are compliant [2,10,16], which requires a simultaneous
treatment of the fluid- and boundary deformation fields. As highlighted by recent theoretical and
computational studies [17–21], the dynamical response of such coupled interactions has conse-
quences for swimmer navigation and migration. In addition to the hydrodynamics, these active
swimmers, whether artificial [22] or biological [11], have an intrinsic ability to independently
change their direction of motion, which may influence their interaction with the boundary.

Motivated by these problems, here we study the migration characteristics of a microswimmer
that can intrinsically reorient itself, while it disturbs the fluid near a deformable interface. We
model an infinitesimally thin interface that deforms due to surface tension and elastic bending,
and consider microswimmers that execute orientation tumbles and rotational Brownian motion
as exhibited, for instance, by swimming bacteria [11,23] or artificial self-propelled particles [24].
Building on our previous analysis [21], we discuss how a combination of hydrodynamic interaction
induced rotation and translation of a microswimmer near a deformable interface and its intrinsic
stochastic reorientations can enable it to control its migration. Specifically, we highlight how even
in-plane swimmer reorientations can influence the out-of-plane reorientation, thereby modifying the
swimmer migration behavior. Therefore, our study may have consequences for understanding the
residence time and accumulation of swimmers near deformable boundaries.

The paper is organized as follows. In Sec. II, we briefly describe the coupled equations governing
the hydrodynamic interaction between a slender swimmer and a deformable interface and then in-
troduce the orientation-tumbling and rotational Brownian motion adopted for the intrinsic swimmer
reorientations. The resulting equation for the boundary deformation and the expression for swimmer
translation and rotation are given in Appendix A. The implementation of the intrinsic swimmer
reorientation are discussed in Appendix B. Next, in Sec. III, we present results for the swimmer
migration and interface deformation of a tumbling swimmer when it is in the more viscous fluid.
We first analyze the modification to the swimmer rotation and interface deformation in Sec. III A,
then its translation in Sec. III B, and lastly how the two influence its migration in Sec. III C. In
Sec. IV, we discuss the regime of validity of our analysis and the microswimmer migration character
over a range of fluid viscosities. Finally, we compare the microswimmer rotational response due to
orientational tumbling with rotational Brownian motion before concluding with Sec. V.

II. PROBLEM FORMULATION

The coupled hydrodynamic system considered here involves a swimmer that does not self-propel,
but generates a disturbance field in the surrounding fluid medium, which in turn deforms the
interface in proximity to it. The flow field generated due to the presence of the boundary can
nevertheless result in a nontrivial swimmer mobility. We treat the interface as an infinitesimally thin
boundary, with a prescribed surface tension and elastic bending modulus that control its deforma-
bility. The microswimmer is treated using slender-body theory, which is a reduced order model for,
say, a flagellated swimming microorganism or an artificial self-propelled particle, which preserves
information of its finite length and its orientable geometry [21,25,26]. The slender swimmer model
approximates the origin of the activity in the system; namely, the motions on the boundary of the
swimmer, to a line distribution of forces along the axial coordinate of the swimmer, as shown in
Fig. 1 (see left window).

The equations for the coupled hydrodynamics have been derived recently [21], which we briefly
summarize here. The fluid regions 1 and 2 are governed by the continuity equation and the Stokes
equations,

∇r · v1 = 0,−∇rP1 + ∇2
r v1 = D p

ln κ

∫ 1
2

− 1
2

sgn(s)δ(r)ds and (1a)

∇r · v2 = 0,−∇rP2 + λ∇2
r v2 = 0, (1b)

023102-2



STOCHASTIC REORIENTATIONS AND THE …

FIG. 1. A schematic of the system for tumbling swimmers: A swimmer disturbs the fluid in fluid region 1.
A deformable interface separates regions 1 and 2 with viscosities η1 and η2, respectively. The gray (dashed)
plane represents the reference configuration of the undeformed interface and the black (solid) plane is the
deformed configuration due to the disturbance flow field generated by the swimmer. On average, the swimmer
spends a time τ between two orientation tumbles, and after tumbling it intrinsically adopts a new orientation.
Here, pi represents the swimmer orientations before the ith tumble and is decomposed in the coordinate system
described in the bottom left corner. The lighter swimmers are the in-plane projections on the interface of the
corresponding swimmer located above them in fluid 1. The top left figure shows how the slender swimmer
model relates to an actual swimmer of length L.

for the velocity field vi and pressure field Pi, where i ∈ [1, 2]. Equation (1) is rendered nondi-
mensional by scaling length by the swimmer length L, velocity by the characteristic disturbance
velocity field of the swimmer Vs, and stress by η1Vs/L, where ηi is the viscosity; note that
λ = η2/η1 is the viscosity ratio. The integral forcing on the right-hand side of Eq. (1a) represents
the disturbance velocity field generated by the swimmer activity and is characterized by a dipole
strength D < 0(> 0) for pushers (pullers), the swimmer aspect ratio κ , and the swimmer orientation
p, where p is expressible as p ≡ px1x + py1x + pz1x = sin θ cos φ1x + sin θ sin φ1y + cos θ1z in a
Cartesian coordinate system (see Fig. 1).

The solution to Eq. (1) requires imposing boundary conditions both at the interface and on
the swimmer surface. The boundary conditions on the deformable interface are the impenetra-
bility (v1z|r+

z0
= v2z|r−

z0
) and the no-slip velocity boundary conditions (v1 · [I − 1z1z]|r+

z0
= v2 · [I −

1z1z]|r−
z0

); continuity of tangential stress (σ1−zx(zy)|r+
z0

= λσ2−zx(zy)|r−
z0

); the normal stress jump at the
interface due to surface tension and elastic bending; and, finally, the kinematic boundary condition,
noting that the interface is a material surface. Here, the stress σ i−zα = ∂vi−z/∂rα + ∂vi−α/∂rz for
α ∈ [x, y]. The kinematic and the normal stress boundary conditions, which involve the interface
deformation uz, are

∂uz

∂t
+

(
η1VsL2

κβ

)
v · ∇r‖uz =

(
η1VsL2

κβ

)[
vz|uz

]
and (2a)

−(
P1|r+

z0
− P2|r−

z0

) + 2

(
∂v1z

∂rz

∣∣∣∣
r+

z0

− λ
∂v2z

∂rz

∣∣∣∣
r−

z0

)
= − γ

η1Vs
�r‖uz + κβ

η1VsL2
�2

r‖uz, (2b)

where κβ is the bending modulus, γ is the isotropic surface-tension of the deformable interface,
and �r‖ denotes the Laplacian in the rx − ry plane. In Eq. (2a), tc = η1L3/κβ is chosen as a
timescale.

When a swimmer is at O(1) distances from the interface, we can simplify the nonlinear kinematic
boundary condition using the asymptotics appropriate to a slender swimmer model. We note that,
to leading order, the disturbance velocity field scales as O(ln κ )−1, due to the integral forcing in
Eq. (1a), and is therefore asymptotically small for the swimmer (κ � 1). Therefore, the boundary
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TABLE I. The dimensional and nondimensional parameters of the system with their values and ranges
specified.

Viscosity of fluid region i ηi

Bending modulus κβ

Surface tension γ

Swimmer length L
Swimmer disturbance velocity Vs

Swimmer aspect ratio κ 10
Swimmer dipole strength D −1
Ratio of surface tension to bending stress 
 = γ L2/κβ 1
Ratio of viscous stress to elastic stress η1VsL2/κβ 1
Swimmer rotational diffusivity Dr 6.67
Swimmer mean run duration τ 0.15–1
Viscosity ratio λ = η2/η1 0.1–10

conditions relating uz and v in Eqs. (2) allow us to similarly expand uz as a series in powers of
(ln κ )−1, from which we seek only the leading order term. This yields a linearized version of the
kinematic boundary condition:

∂uz

∂t
≈

(
η1VsL2

κβ

)
vz

∣∣∣∣
rz0

. (3)

Now, the swimmer motion is coupled to the fluid velocity and interface deformation field via the
force- and torque-free conditions on the swimmer, which yield its translation velocity V T and the
rotation rate ṗ respectively, and are

V T =
∫ 1

2

− 1
2

v(sp)ds and (4a)

ṗ = 12
∫ 1

2

− 1
2

(I − pp) · v(sp)sds. (4b)

The above set of linear equations and the boundary conditions are solved using two-dimensional
Fourier transforms [21]. In Appendix A, we provide the expressions for the swimmer translation
velocity, the rotation rate, and the boundary deformation equation. We express the relative impor-
tance of surface tension and bending stress through the parameter 
 ≡ γ L2/κβ [see Eq. (A2)].

As stated at the beginning of the section, we superpose on this hydrodynamic framework the role
of intrinsic stochastic reorientations by the swimmer via orientation tumbling and rotational Brow-
nian motion (see Appendix B for details). For simplicity, we restrict these intrinsic reorientations to
be in the plane of the undeformed interface, shown in Fig. 1 for tumbling; we rationalize this choice
a posteriori in Sec. V. This implies that the swimmer exhibits a random change in the component of
its orientation in the plane of the undeformed interface φ (the reference plane), on average in a time
interval τ for tumbling and continuously by O(Dr )1/2 for active Brownian rotations. Here, τ is the
mean duration between tumbles, and Dr is the rotational diffusion coefficient. Therefore, in addition
to the timescale of the relaxation of the interface deformation, there is an additional scale associated
with the intrinsic swimmer reorientations, and the dynamics depends on a competition between
these two effects. For simplicity, the undeformed flat interface is chosen as the initial condition.

The parameters discussed above are summarized in Table I. For a swimmer at unit length from
the interface rz0 = 1, we present results for the following set of parameters: the swimmer aspect
ratio κ = 10, the ratio of viscous to bending stress η1VsL2/κβ = 1, and the ratio of surface tension to
bending stress 
 = 1. Varying these parameters does not qualitatively affect the results, although we
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FIG. 2. (a) The vertical component of the rotation rate ṗz(t ) plotted as a function of time for a tumbling
(τ = 0.15) and straight (τ → ∞) pusher initially oriented at θ (0) = 70◦, φ(0) = 0◦. The black (open) circles
denote tumbling events and the yellow (filled) circles denote those tumbles where �φ < ±20◦ upon tumbling.
(b) The relative orientation [θ (t ) − θ (0)] plotted as a function of time averaged over five different runs; the
error bars indicate the extremities associated with the individual runs. In all plots, rz0 = 1, λ = 0.1, κ = 10,

 = 1, and η1VsL2/κβ = 1.

note that the validity of the asymptotics of the hydrodynamic flow field requires that η1VsL2/κβ <

O(1) to apply the linearized kinematic boundary condition Eq. (3) [21].

III. ROTATION AND TRANSLATION OF TUMBLING MICROSWIMMERS

If the swimmer orientation is neither parallel nor perpendicular to the plane of the undeformed
interface, the hydrodynamic interactions outlined in Sec. II drive both swimmer translation and
rotation relative to the interface [21]. Otherwise, due to symmetry, there is only translation. For a
swimmer lacking intrinsic reorientation, or a straight swimmer (mean run duration τ → ∞), the
coupled hydrodynamics yield a rotation preference towards a parallel alignment in the long-time
limit. However, when the swimmer is in the more viscous fluid (viscosity ratio λ < 1), the short-time
response is opposite to the long-time response, implying that the swimmer rotates in the opposite
sense on the short interface relaxation time scales [21]. Therefore, to understand these processes we
now focus on a system where λ = 0.1.

A. Effect of in-plane orientation tumbling on out-of-plane rotation of swimmers

In Fig. 2, we plot the time evolution of the rotation rate, ṗz, and the relative orientation,
θ (t ) − θ (0), of a tumbling microswimmer that is initially at an orientation of θ (0) = 70◦, φ(0) = 0◦.
Figure 2(a) shows that the quasisteady ṗz for a straight swimmer is negative, resulting in θ (t )
increasing in time, as shown in Fig. 2(b). Note the signed relation between and the angular velocity
θ̇ and ṗz viz., ṗz = d cos θ/dt = − sin θ θ̇ [12,27]. However, for a tumbling swimmer, ṗz changes
after every tumble event, such that it exhibits a new peak that we interpret as follows. After a tumble,
there is a sudden change in the disturbance flow field that conforms to the randomly chosen new
in-plane swimmer orientation φ due to the instantaneous Stokes component of the hydrodynamics,
thereby yielding the peaks. This is followed by a relaxation due to the interface deformation part of
the hydrodynamics, which has responded to the new swimmer orientation.

In the random tumbling process, the swimmer chooses a new φ randomly, such that φpost ∈
[0◦, 360◦], where the subscript refers to post-tumble. When tumbling does not appreciably modify
the rotational character by changing the disturbance field, the post-tumble orientation must be near
the pretumble orientation. As a convenient choice, we consider small angular deviations to be those
where �φ < ±20◦ between two reorientations. In the realization shown in Fig. 2(a), less than 11%
of tumbles involve φpost − φpre < ±20◦, as expected for a random tumbling process. Therefore,
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FIG. 3. Contour plots of the interface deformation (a) before the first tumble, (b) after two tumbles, and
(c) after three tumbles, for swimmers initially oriented at θ (0) = 70◦, φ(0) = 0◦. The black arrow represents
the in-plane projection of the swimmer orientation. In all plots, rz0 = 1, λ = 0.1, τ = 0.15, κ = 10, 
 = 1, and
η1VsL2/κβ = 1.

owing to the flow fields developed by large swimmer angular deviations, new peaks in ṗz are
dominantly positive. In fact, for φpost − φpre > ±20◦, these new peaks in ṗz can even be higher
than those in response to a flat interface. In turn, the total time trace of the rotation rate in any given
time interval remains positive and θ (t ) decreases with time as shown in Fig. 2(b). Therefore, in
contrast to a straight swimmer, the rotational response of a tumbling swimmer can promote rotation
away from the deformable interface.

To understand the role of tumbling in modifying the disturbance flow field, in Fig. 3 we plot
the contours of the interface deformation which, through the kinematic and normal stress boundary
condition, connect the deformation to the disturbance field [19–21]. In the absence of tumbling, we
are solving an initial value problem (IVP) in which the initial interface configuration is undeformed.
As shown in Fig. 3(a), the disturbance field of the swimmer yields an interface deformation that has
fore-aft asymmetry and left-right symmetry relative to the swimmer. The quasisteady negative ṗz

of straight swimmers is a consequence of this configuration of the deformation. However, tumbling
truncates the evolution of this IVP, following which the swimmer abruptly modifies its in-plane
orientation. Subsequently, the interface must respond to the disturbance flow field of the new
in-plane swimmer orientation, thereby initiating a new IVP. In this new IVP, the initial configuration
of the interface (to which the swimmer is also responding simultaneously) is pre-stressed, unlike
at time t = 0. This tumbling induced deformation field [see Figs. 3(b) and 3(c)] results in a
modification of the flow field, which suppresses the approach to a quasisteady negative ṗz, as in
the case of straight swimmers.

Therefore, despite the exponential decay in time of the rotation rate until the next tumble, ṗz of
tumbling swimmers remains positive for longer times. The above argument suggests that an increase
in the tumbling frequency would enable ṗz(t ) to be positive for a longer time window by decreasing
the time available for the disturbance flow field to relax. In Fig. 4(a), we plot the time evolution of the
rotation rate ṗz for different values of τ . For τ = 0.15, 0.25, and 1, ṗz < 0 for time intervals of 3.64,
5.39, and 12.55, respectively; the shortest times for the shortest timescales τ . In turn, as shown in
Fig. 4(b), the relative orientation of the swimmer decreases most rapidly for τ = 0.15. Interestingly,
Fig. 4(b) also highlights the fact that a tumbling swimmer can maintain a nearly stationary polar
angle (see, for instance, the curve for τ = 0.75).

In Fig. 5(a), we plot the relative orientation of the swimmer for different initial swimmer orien-
tations. For τ = 0.15, θ (t ) decreases for θ (0) � 55◦ and increases for smaller initial orientations.
Such a characteristic initial orientation dependent rotation of a tumbling swimmer is anticipated
because relaxation of the hydrodynamic-interaction induced swimmer rotation rate depends on its
orientation relative to the interface; becoming faster as θ → 0 [21].

The orientation-dependent modification of the out-of-plane rotation for tumbling swimmers has
a robust interpretation if we plot ṗz as a function of pz for a straight-swimming microswimmer,
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FIG. 4. (a) A single realization of the rotation rate ṗz plotted as a function of time for θ (0) = 70◦, φ(0) = 0◦

with mean run durations τ = 0.15, 0.25, 1, and τ → ∞. (b) The relative rotation θ (t ) − θ (0) of a pusher
plotted as a function of time for the same swimmer initial orientation for τ = 0.15, 0.25, 0.5, 0.75, 1, and
τ → ∞, averaged over five runs; the error bars indicate the extremities associated with the individual runs. In
all plots, rz0 = 1, λ = 0.1, κ = 10, 
 = 1, and η1VsL2/κβ = 1.

as shown in Fig. 5(b). Any positive (negative) trajectory implies rotation away from (towards) the
interface. At t = τ = 0.15, the trajectory cuts across ṗz = 0 and is positive for orientations greater
than θ ≈ 60◦. For smaller initial orientations, a mean run duration of τ = 0.15 is too long for ṗz(t )
to remain positive for at least half the duration of a given time interval. That is, the hydrodynamics
evolves more rapidly than the tumbling induced cutoff of the evolution. For instance, ṗz(t ) < 0
for about 9.7, 7.48, and 6.55 time units, in an interval of 15 nondimensional time units for θ (0) =
50◦, 55◦, and 60◦, shown in Fig. 5(a), thereby yielding a net increase in the swimmer out-of-plane
orientation with time for the former.

We note that while orientation tumbling needs to be more rapid for smaller swimmer orientations,
nonetheless any finite τ will suppress the tendency to align parallel relative to that of a straight
swimmer.

B. Effect of in-plane orientation tumbling on out-of-plane swimmer translation

The translation of a straight swimmer relative to a deformable interface due to hydrodynamic
interactions is dependent on its relative orientation. Following an initial transient, for quasisteady
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FIG. 5. (a) The relative rotation θ (t ) − θ (0) of a pusher plotted as a function of time for different initial
swimmer orientations at τ = 0.15 and λ = 0.1. The curves are averages of five different runs and the error
bars indicate the extremities associated with the individual runs. (b) The orientation phase portrait of a straight
swimmer for λ = 0.1. In all plots, rz0 = 1, κ = 10, 
 = 1, and η1VsL2/κβ = 1.
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FIG. 6. (a) A single instance of the vertical translation velocity V T
z of a pusher plotted as a function of

time for initial swimmer orientations of θ (0) = 45◦, 55◦, and 70◦ at τ = 0.15 and λ = 0.1. The black (open)
markers denote tumbling events and the yellow (filled) markers denote those tumbles where �φ < ±20◦ upon
tumbling. (b) The relative vertical translation rz(t ) − rz(0) for initial orientations θ (0) = 45◦, 50◦, 55◦, and
70◦. The solid curves are averages of five different runs and the error bars indicate the extremities associated
with the individual runs. In both (a) and (b), the dashed curves correspond to straight swimmers (τ → ∞). In
all plots, rz0 = 1, κ = 10, 
 = 1, and η1VsL2/κβ = 1.

translation the shift from attraction to repulsion occurs at an orientation of θc ≈ 55◦. Therefore, if
θ (t ) < θc, a pusher (puller) is repelled (attracted) from (towards) the interface, following an initial
transient of opposite character.

In Fig. 6(a), we plot the vertical translation velocity of a tumbling swimmer for initial orientations
of θ (0) = 45◦, 55◦, and 70◦, which straddle θc. In contrast to rotation, where orientation tumbling
indirectly suppresses swimmer translation towards the interface, by enabling rotation away from
the interface, stronger swimmer translation towards the interface is facilitated. That is, the peaks
in Fig. 6(a) corresponding to a tumbling event are inverted. Note that the exponential decay of the
translation velocity between tumbles with �φ < ±20◦ either continues to decay similarly to that
of the pretumble orientation, or the post-tumble peaks appear close to the pretumble values. This
was also the case for the rotation rate in Sec. III A. For swimmer orientations far from θc, the long-
and short-time translation character of a tumbling swimmer follows the straight-swimmer trajectory
with a relative negative shift, as shown in Fig. 6(b) for θ (0) = 45◦, 50◦, and 70◦. Here, V T

z of both
tumbling- and straight-swimmers have the same sign convention, and the magnitude of both are
comparable [see Fig. 6(a)].

However, as θ → θc, the translation character is opposite for the two swimmers. For instance,
for θ (0) = 55◦ in Fig. 6(b), a tumbling swimmer translates towards the interface, whereas the
corresponding straight swimmer is repelled from the interface. Here, the magnitude of the negative
V T

z at short-times is larger than that at long times, where for t > O(1), V T
z |straight → 0+, and thus

the short-time character dominates the migration response. As discussed in Sec. III A, for τ = 0.15,
tumbling is sufficiently rapid to hinder the relaxation of the hydrodynamic flow field for θ (0) = 55◦.
In turn, for θ (0) = 55◦ the swimmer translation follows a sequence of its short-time attraction [see
inset of Fig. 6(b)].

C. Effect of in-plane orientation tumbling on swimmer migration

Having studied the impact of the swimmer rotation and translation in isolation, we now consider
how both influence the swimmer migration. In Fig. 7, we show the relative rotation and translation
of a straight and tumbling swimmer that is initially oriented at θ (0) = 56◦, with a mean run duration
τ = 0.15 for the latter. We first interpret the response of a straight-swimming microswimmer (green
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FIG. 7. (a) The relative rotation θ (t ) − θ (0) of a pusher plotted as a function of time for θ (0) = 56◦. (b) The
corresponding relative vertical translation rz(t ) − rz(0) plotted as a function of time. In both (a) and (b), the
dashed curve corresponds to straight swimmers (τ → ∞) and the solid curve is for a tumbling swimmer with
τ = 0.15. In all plots, rz0 = 1, λ = 0.1, κ = 10, 
 = 1, and η1VsL2/κβ = 1.

curve in Fig. 7). Owing to the short-time response for θ = 56◦, a straight-swimming microswimmer
is initially attracted towards the interface and is then repelled at intermediate times, corresponding
to the quasisteady character for the same orientation. At this intermediate time, while θ (t ) is
increasing, it is still in the vicinity of θ (t ) ≈ 56◦ [see left inset of Fig. 7(b)]. For longer times, θ (t )
increases to orientations whose long-time translation character is attraction, and thus the swimmer
translates towards the interface. Therefore, the swimmer-interface coupled hydrodynamics produces
a reentrant translation character of attraction-repulsion-attraction at short-intermediate-long times.

The migration character is quite different for a rapidly tumbling swimmer. For a mean duration
between tumbles of τ = 0.15, orientation tumbling continues to rotate the swimmer away from
the interface, albeit much more slowly than the straight swimmer rotating towards the interface.
For short times, the translation character for this orientation is attraction towards the interface as
discussed in Sec. III B for θ ≈ θc [see left inset of Fig. 7(b)], and continues until the swimmer
orientation decreases by �θ � 2◦. On further rotation of the swimmer away from the interface,
the faster evolving orientation dependent hydrodynamics begins to dominate despite the cutoff
that tumbling imposes [see right inset of Fig. 7(b)]. Therefore, a tumbling swimmer undergoes
an interfacial attraction followed by repulsion.

IV. COMPARISON AND CONTRAST WITH ROTATIONAL BROWNIAN REORIENTATIONS

Thus far, we have analyzed how the orientation tumbles of swimmers influence the evolution
of the hydrodynamic flow field, and thereby swimmer migration. Given the competing timescales
in the problem, it is prudent to identify the regime in which the above analysis holds. In general,
the swimmers are motile and the timescales associated with swimming a distance of order their
own size is tswim ≡ O(L/Vs) ∼ O(1)s, for L ∼ 6 − 8 µm and Vs ∼ 10 µm/s [11,28,29]. We note that
the timescale on which a swimmer in the vicinity of a nondeforming interface in a Newtonian
fluid responds to rotation by the dipolar disturbance field it generates is the same, that is, tStokes ≡
O(L/Vs) [12]. Therefore, the Stokes hydrodynamic flow field developed when a swimmer is at a
distance of O(L) from a flat interface can result in O(1) angular deviations in the time it takes to
swim its own body length; although the constant prefactor ensures that the deviations are small.
Additionally, for a deforming interface there is a deformation relaxation timescale in response to
the disturbance field generated by the swimmer, which is tinterf ≡ O(η1L3/κβ ) [21]. For membranes,
κβ ∼ 10kBT , where kB is Boltzmann’s constant and T is the temperature, implying tinterf � O(1)s
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FIG. 8. (a) The relative rotation θ (t ) − θ (0) of a pusher plotted as a function of time for θ (0) = 70◦ for
viscosity ratio λ = 0.1, 0.5, 1, 10. (b) The corresponding relative vertical translational rz(t ) − rz(0) plotted as
a function of time. In both (a) and (b), the dashed curves correspond to straight swimmers (τ → ∞) and the
solid curves are averages of five different runs for τ = 0.15; the error bars indicate the extremities associated
with the individual runs. In all plots, rz0 = 1, λ = 0.1, κ = 10, 
 = 1, and η1VsL2/κβ = 1.

[30,31]. Finally, the orientation tumbles occur on time scales of a mean duration tintrin ≡ O(τ )s [23].
Of these four time scales, the analysis presented in Sec. III neglects swimming, and we thereby
neglect tswim for simplicity. In this respect, the model swimmer considered here is similar to the
stresslet-mode squirmer [19,32] and is also referred to as a shaker in literature [33]. Furthermore,
we have considered the regime where tStokes ≈ tinterf, implying η1VsL2/κβ ∼ O(1) as mentioned in
Sec. II, and is of relevance to many biological systems involving motion near deformable boundaries
[10,31,34]. Our focus here is on how swimmer stochasticity, acting on timescales characterized
by tintrins, influences the hydrodynamics, for which we treat swimmers that can rapidly reorient
themselves.

We note that while the results discussed in Sec. III are for viscosity ratios λ < 1, the suppression
of alignment parallel to the interface is itself not restricted to λ < 1, as shown in Fig. 8(a). For λ = 1,
a swimmer oriented at θ (0) = 70◦ rotates weakly away for rapid tumbling with τ = 0.15, although
for λ = 10, the rotation is still towards the interface, albeit with a reduction in the magnitude of the
rotation rate. However, as λ → ∞, the deformation uz → 0 and the interface approaches a planar
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FIG. 9. (a) The vertical component of the rotation rate ṗz(t ) plotted as a function of time for a tumbling
(τ = 0.15), rotationally diffusing (Dr = 6.67) and straight (τ → ∞ or Dr → 0) pusher initially oriented at
θ (0) = 60◦, φ(0) = 0◦; the black (open) circles mark tumbling events. (b) The relative orientation θ (t ) − θ (0)
for the same initial orientation averaged over five different runs plotted as a function of time; the error bars
indicate the extremities associated with the individual runs. The inset of (b) shows the orientation change of a
single realization over long times. In all plots, rz0 = 1, λ = 0.1, κ = 10, 
 = 1, and η1VsL2/κβ = 1.
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FIG. 10. The in-plane component of the swimmer orientation φ(t ) plotted as a function of time for a
(a) tumbling and (b) rotationally diffusing pusher initially oriented at θ (0) = 60◦, φ(0) = 0◦. The black (open)
circles in (a) denote 27 tumbling events and the yellow (filled) circles denote those four tumbles where change
in φ < 20◦ upon tumbling. The yellow circles in (b) show the 616/800 rotational diffusion events in which
�φ � 20◦. In all plots, rz0 = 1, λ = 0.1, κ = 10, 
 = 1, and η1VsL2/κβ = 1.

configuration [see Eq. (A2)]. Therefore, while the translation of a pusher towards the interface due
to tumbling continues to be enhanced independent of λ, as shown in Fig. 8(b), the gap between the
two diminishes as λ → ∞.

Importantly, another mechanism for self-propelled particles to exhibit intrinsic orientational
stochasticity is by executing active Brownian rotations [24]. Unlike tumbling, which involves large
abrupt changes in orientation interspersed with average durations of O(τ ) where only hydrodynamic
effects apply, rotational Brownian motion results in orientation fluctuations at every time step in
conjunction with hydrodynamics. The angular deviations in this case scales as O(Dr )1/2, where Dr

is the rotational diffusion coefficient (see Appendix B). In the following, we briefly compare the
influence of the two reorientation mechanisms on the hydrodynamically induced reorientation.

For comparison, we consider the orientational response of the two swimmer types for Dr =
1/τ = 6.67 in Fig. 9. The rotation rate ṗz in Fig. 9(a) evolves slightly differently for the two
mechanisms. Note that the peaks in ṗz for rotational diffusion are not as high as they are for
tumbling. This is expected given the nonlocal nature of reorientations through tumbling as compared
to rotational diffusion. In other words, in a random tumbling process, the post-tumble in-plane
swimmer orientation can be φpost ∈ [0, 360◦], whereas in rotational diffusion, the reorientations in
the forward direction are more favorable. This aspect is made clear in Fig. 10, where we plot the time
evolution of the in-plane component φ of the swimmer orientation for a tumbling and a rotationally
diffusing swimmer. In Fig. 10(a), only a small fraction of the tumbles yield a �φ < ±20◦. In
contrast, Fig. 10(b) shows that rotational diffusion principally exhibits �φ < ±20◦. Thus, following
the rationale described in Sec. III A, the out-of-plane angular deviation away from the interface is
larger for tumbling in Fig. 9(b) (see inset). Nevertheless, both reorientation mechanisms enhance
rotation away from the interface.

V. CONCLUSION

We have examined how intrinsic stochastic reorientations executed by an orientable microswim-
mer play an important role in its hydrodynamically induced migration near a deformable interface.
We have shown that orientation tumbles or active rotational diffusion compete with interfacial
deformation, thereby enabling a pusher to migrate away from the interface by modifying its
rotational response. While we have formulated the hydrodynamics in three dimensions, we restricted
the intrinsic swimmer reorientation to be in the plane of the undeformed interface. This assumes
that a swimmer at distances of order its own size from a boundary is more likely to reorient itself
in the plane of the boundary, which was also found in recent experiments [35,36]. This suggests
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that microswimmers executing orientation tumbles can exhibit slightly stronger hydrodynamic
reorientations relative to deformable interfaces than those executing active rotational diffusion.
Such planar tumbles, interspersed with out-of-plane tumbles, can influence the overall swimmer
migration relative to the interface and may also be important in studies involving optimal swimmer
navigation strategies [37].

We have only scraped the surface of the multiscale parameter regime for the interaction between
microswimmers and deformable boundaries. Clearly, our results may have bearing on microswim-
mers in a variety of confinements, such as those involving motion of mammalian sperm through
compliant ducts [34,38]. Indeed, hydrodynamic interactions and orientational stochasticity can have
consequences on the boundary accumulation or depletion of microswimmers at long times [12,13],
and influence other effects impacting their rectification on shorter timescales [39,40], as well as
their residence time near boundaries. Moreover, as noted above, experiments have shown that the
residence time of motile bacteria near planar boundaries is correlated with their tumbling frequency
[35,36]. Finally, we note that the nonlinear effects emerging from large boundary deformations and
swimmer flexibility neglected here may become relevant as the swimmer approaches the boundary
[41,42].
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APPENDIX A: EXPRESSIONS FOR THE SWIMMER TRANSLATION VELOCITY
AND ROTATION RATE

The expression for the vertical translation velocity V T
z and rotation rate ṗ of a slender microswim-

mer with orientation p due to hydrodynamic interaction with a deformable interface are obtained
by solving the equations and boundary conditions outlined in Sec. II. The translation velocity is
expressible as

V T
z = −

(
κβ

η1VsL2

)
1

(1 + λ)

∫
dk(4π2k2 + 
) exp(2πkrz0 )ûz

(
1

ipl − pz

)

×
[
πkpz cosh[πk(ipl − pz )] + sinh[πk(ipl − pz )]

(
1 − 2πkrz0 − pz

ipl − pz

)]

−
(

1 − λ

1 + λ

)
D

ln κ

∫
dk

exp(4πkrz0 )

8π2k2

∫ 1
2

− 1
2

ds exp(2π ikpl s) exp(−2πkspz )

×
{
πkpz sinh[πk(ipl + pz )](1 + 4πk(spz − rz0 )) + (1 − cosh[πk(ipl + pz )])

×
(

1 + 2πkspz − 4πkrz0 − 8π2k2rz0 (spz − rz0 ) −
(

ipl − pz

ipl + pz

)
(1 + 4πk(spz − rz0 ))

)}
,

and (A1)

where the interface deformation field is characterized by simultaneously solving

∂ ûz

∂t
+ πk

1 + λ
(
 + 4π2k2)ûz = −

(
η1L2Vs

κβ

)
D

(1 + λ) ln κ

exp(2πkrz0 )

4π2k2

[
πkpz sinh[πk(ipl + pz )]

+
(

1 − 2πkrz0 −
(

ipl − pz

ipl + pz

))
(1 − cosh[πk(ipl + pz )])

]
. (A2)
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Here, ûz and v̂ are the Fourier-transformed interface deformation and disturbance flow fields,

 = γ L2/κβ represents the ratio of the surface tension γ to the bending stress, s ∈ [−1/2, 1/2]
is the coordinate along the axial direction of the swimmer, and pl and pt are the components of the
orientation longitudinal and transverse to wave vector k, respectively.

The components of the swimmer rotation rate ṗ are

ṗx = 12
∫

dk
∫ 1

2

− 1
2

sds exp(2π ikspl )
[
v̂1x

(
1 − p2

x

) − (v̂1y py px + v̂1z pz px )
]
, (A3)

ṗy = 12
∫

dk
∫ 1

2

− 1
2

sds exp(2π ikspl )
[
v̂1y

(
1 − p2

y

) − (v̂1x px py + v̂1z pz py)
]
, and (A4)

ṗz = 12
∫

dk
∫ 1

2

− 1
2

sds exp(2π ikspl )
[
v̂1z

(
1 − p2

z

) − (v̂1x px pz + v̂1y py pz )
]
, (A5)

where the x and y components of v̂1 can be expressed in terms of v̂1l and v̂1t as v̂1x = v̂1l kx/k +
v̂1t ky/k and v̂1y = v̂1l ky/k − v̂1t kx/k. The normal and transverse velocity field components v̂1z and
v̂1t , respectively, are

v̂1z|hyd−int = −
(

κβ

η1VsL2

)
πk

(1 + λ)
(4π2k2 + 
)

[
1 + 2πk

(
rz − rz0

)]
exp

( − 2πk
(
rz − rz0

))
ûz

− D

8π2k2 ln κ

(
1 − λ

1 + λ

)
exp

(
4πkrz0

)
exp(−2πkrz )

×
[

(1 − cosh[πk(ipl + pz )])

(
1 + 2πkrz − 4πkrz0 − 8π2k2rz0

(
rz − rz0

)

−
(

ipl − pz

ipl + pz

)(
1 + 4πk

(
rz − rz0

))) + πkpz sinh[πk(ipl + pz )]

× (1 + 4πk(rz − rz0 ))

]
; rz � rz0

v̂1t |hyd−int = − 1

2π2k2

D

ln κ

pt (i pl − pz )

p2
l + p2

z

(
1 − λ

1 + λ

)
exp

(
4πkrz0

)
exp(−2πkrz )

× sinh2
(π

2
k(i pl + pz )

)
, (A6)

and v̂1l = (i/2πk)∂ v̂1z/∂rz.

APPENDIX B: IMPLEMENTATION AND VALIDATION OF ORIENTATION
TUMBLING AND ROTATIONAL DIFFUSION

We implement orientation tumbling in the plane of the undeformed interface, obeying Poisson’s
interval distribution [43]. At each time step, a uniform random number is generated in the interval
[0, 1]. If this number is less than dt/τ , then tumbling is a success. For successful tumbles, the
in-plane orientation φ is reset to a new random value between [0, 2π ].

Active Brownian rotations are implemented as a Wiener process in orientation space as follows.
At each time step �t , a random number χ is generated from a normal distribution with zero
mean and unit variance. The angular change is �φ = √

2Dr�tχ [39,44] for a prescribed swimmer
rotational diffusivity coefficient Dr .

In Fig. 11, we validate this approach by plotting the averaged in-plane orientation autocorrela-
tion functions 〈p‖(t ) · p‖(0)〉 and 〈[p‖(t ) · p‖(0)]2〉, where p‖(t ) = cos φ(t )1x + sin φ(t )1y. Their
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FIG. 11. The in-plane orientation autocorrelation functions (a) 〈p‖(t ) · p‖(0)〉 and (b) 〈[p‖(t ) · p‖(0)]2〉
plotted for both a tumbling (τ = 0.15) and a rotationally diffusing (Dr = 6.67) swimmer averaged over
five different runs; the error bars indicate the extremities associated with the individual runs. In both plots,
θ (0) = 70◦, rz0 = 1, λ = 0.1, κ = 10, 
 = 1, and η1VsL2/κβ = 1.

analytical expressions for 2D reorientations are 〈p‖(t ) · p‖(0)〉 = exp(−t/tr1) and 〈[p‖(t ) ·
p‖(0)]2〉 = [1 + exp(−t/tr2)]/2, where tr1 = τ , 1/Dr and tr2 = τ , 1/(4Dr ) for orientation tumbling
and active Brownian rotations, respectively [45,46].

[1] A. Siryaporn, M. K. Kim, Y. Shen, H. A. Stone, and Z. Gitai, Colonization, competition, and dispersal of
pathogens in fluid flow networks, Curr. Biol. 25, 1201 (2015).

[2] S. Lee, J. W. M. Bush, A. E. Hosoi, and E. Lauga, Crawling beneath the free surface: Water snail
locomotion, Phys. Fluids 20, 082106 (2008).

[3] I. Sekirov, S. L. Russell, L. C. M. Antunes, and B. B. Finlay, Gut microbiota in health and disease,
Physiolog. Rev. 90, 859 (2010).

[4] J. D. Wheeler, E. Secchi, R. Rusconi, and R. Stocker, Not just going with the flow: The effects of fluid
flow on bacteria and plankton, Annu. Rev. Cell Dev. Biol. 35, 213 (2019).

[5] T. Dalton, S. E. Dowd, R. D. Wolcott, Y. Sun, C. Watters, J. A. Griswold, and K. P. Rumbaugh, An in vivo
polymicrobial biofilm wound infection model to study interspecies interactions, PLoS ONE 6, e27317
(2011).

[6] G. D. Bixler and B. Bhushan, Biofouling: lessons from nature, Phil. Trans. Royal Soc. A: Math., Phys.
and Engg. Sci. 370, 2381 (2012).

[7] S. Martel, M. Mohammadi, O. Felfoul, Z. Lu, and P. Pouponneau, Flagellated magnetotactic bacteria as
controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human
microvasculature, Int. J. Robotics Res. 28, 571 (2009).

[8] D. D. Thomas, M. Navab, D. A. Haake, A. M. Fogelman, J. N. Miller, and M. A. Lovett, Treponema
pallidum invades intercellular junctions of endothelial cell monolayers., Proc. Natl. Acad. Sci. USA 85,
3608 (1988).

[9] A. J. A. McBride, D. A. Athanazio, M. G. Reis, and A. I. Ko, Leptospirosis, Curr. Opin. Infect. Dis. 18,
376 (2005).

[10] T. J. Moriarty, M. U. Norman, P. Colarusso, T. Bankhead, P. Kubes, and G. Chaconas, Real-time high
resolution 3D imaging of the lyme disease spirochete adhering to and escaping from the vasculature of a
living host, PLoS Path. 4, e1000090 (2008).

[11] E. Lauga, Bacterial hydrodynamics, Annu. Rev. Fluid Mech. 48, 105 (2016).
[12] A. P. Berke, L. Turner, H. C. Berg, and E. Lauga, Hydrodynamic attraction of swimming microorganisms

by surfaces, Phys. Rev. Lett. 101, 038102 (2008).

023102-14

https://doi.org/10.1016/j.cub.2015.02.074
https://doi.org/10.1063/1.2960720
https://doi.org/10.1152/physrev.00045.2009
https://doi.org/10.1146/annurev-cellbio-100818-125119
https://doi.org/10.1371/journal.pone.0027317
https://doi.org/10.1098/rsta.2011.0502
https://doi.org/10.1177/0278364908100924
https://doi.org/10.1073/pnas.85.10.3608
https://doi.org/10.1097/01.qco.0000178824.05715.2c
https://doi.org/10.1371/journal.ppat.1000090
https://doi.org/10.1146/annurev-fluid-122414-034606
https://doi.org/10.1103/PhysRevLett.101.038102


STOCHASTIC REORIENTATIONS AND THE …

[13] L. Ning, X. Lou, Q. Ma, Y. Yang, N. Luo, K. Chen, F. Meng, X. Zhou, M. Yang, and Y. Peng,
Hydrodynamics-induced long-range attraction between plates in bacterial suspensions, Phys. Rev. Lett.
131, 158301 (2023).

[14] P. S. Stewart, Mini-review: Convection around biofilms, Biofouling 28, 187 (2012).
[15] J. C. Conrad and R. Poling-Skutvik, Confined flow: Consequences and implications for bacteria and

biofilms, Annu. Rev. Chem. Biomol. Eng. 9, 175 (2018).
[16] C. Montecucco and R. Rappuoli, Living dangerously: How Helicobacter pylori survives in the human

stomach, Nat. Rev. Mol. Cell Biol. 2, 457 (2001).
[17] R. Ledesma-Aguilar and J. M. Yeomans, Enhanced motility of a microswimmer in rigid and elastic

confinement, Phys. Rev. Lett. 111, 138101 (2013).
[18] M. A. Dias and T. R. Powers, Swimming near deformable membranes at low Reynolds number, Phys.

Fluids 25, 101901 (2013).
[19] V. A. Shaik and A. M. Ardekani, Motion of a model swimmer near a weakly deforming interface, J. Fluid

Mech. 824, 42 (2017).
[20] A. Daddi-Moussa-Ider, C. Kurzthaler, C. Hoell, A. Zöttl, M. Mirzakhanloo, M.-R. Alam, A. M. Menzel,

H. Löwen, and S. Gekle, Frequency-dependent higher-order stokes singularities near a planar elastic
boundary: Implications for the hydrodynamics of an active microswimmer near an elastic interface, Phys.
Rev. E 100, 032610 (2019).

[21] S. Nambiar and J. S. Wettlaufer, Hydrodynamics of slender swimmers near deformable interfaces, Phys.
Rev. Fluids 7, 054001 (2022).

[22] M. Rey, G. Volpe, and G. Volpe, Light, matter, action: Shining light on active matter, ACS Photonics 10,
1188 (2023).

[23] H. Berg, E. coli in Motion, Biological and Medical Physics, Biomedical Engineering (Springer, New York,
2008).

[24] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, and G. Volpe, Active particles in
complex and crowded environments, Rev. Mod. Phys. 88, 045006 (2016).

[25] T. V. Kasyap, D. L. Koch, and M. Wu, Hydrodynamic tracer diffusion in suspensions of swimming
bacteria, Phys. Fluids 26, 081901 (2014).

[26] S. Nambiar, P. Garg, and G. Subramanian, Enhanced velocity fluctuations in interacting swimmer suspen-
sions, J. Fluid Mech. 907, A26 (2021).

[27] D. Lopez and E. Lauga, Dynamics of swimming bacteria at complex interfaces, Phys. Fluids 26, 071902
(2014).

[28] N. C. Darnton, L. Turner, S. Rojevsky, and H. C. Berg, On torque and tumbling in swimming Escherichia
coli, J. Bacterio. 189, 1756 (2007).

[29] R. E. Goldstein, Green algae as model organisms for biological fluid dynamics, Annu. Rev. Fluid Mech.
47, 343 (2015).

[30] U. Seifert, Configurations of fluid membranes and vesicles, Adv. Phys. 46, 13 (1997).
[31] J. B. Freund, Numerical simulation of flowing blood cells, Annu. Rev. Fluid Mech. 46, 67 (2014).
[32] J. R. Blake, A spherical envelope approach to ciliary propulsion, J. Fluid Mech. 46, 199 (1971).
[33] J. Stenhammar, C. Nardini, R. W. Nash, D. Marenduzzo, and A. Morozov, Role of correlations in the

collective behavior of microswimmer suspensions, Phys. Rev. Lett. 119, 028005 (2017).
[34] E. Gaffney, H. Gadêlha, D. Smith, J. Blake, and J. Kirkman-Brown, Mammalian sperm motility: Obser-

vation and theory, Annu. Rev. Fluid Mech. 43, 501 (2011).
[35] M. Molaei, M. Barry, R. Stocker, and J. Sheng, Failed escape: Solid surfaces prevent tumbling of

Escherichia coli, Phys. Rev. Lett. 113, 068103 (2014).
[36] G. Junot, T. Darnige, A. Lindner, V. A. Martinez, J. Arlt, A. Dawson, W. C. K. Poon, H. Auradou, and

E. Clément, Run-to-tumble variability controls the surface residence times of E. coli bacteria, Phys. Rev.
Lett. 128, 248101 (2022).

[37] A. Daddi-Moussa-Ider, H. Löwen, and B. Liebchen, Hydrodynamics can determine the optimal route for
microswimmer navigation, Commun. Phys. 4, 15 (2021).

[38] F. L. J. and M. Amy, Sperm motility in the presence of boundaries, Bull. Math. Biol. 57, 679 (1995).

023102-15

https://doi.org/10.1103/PhysRevLett.131.158301
https://doi.org/10.1080/08927014.2012.662641
https://doi.org/10.1146/annurev-chembioeng-060817-084006
https://doi.org/10.1038/35073084
https://doi.org/10.1103/PhysRevLett.111.138101
https://doi.org/10.1063/1.4825137
https://doi.org/10.1017/jfm.2017.285
https://doi.org/10.1103/PhysRevE.100.032610
https://doi.org/10.1103/PhysRevFluids.7.054001
https://doi.org/10.1021/acsphotonics.3c00140
https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1063/1.4891570
https://doi.org/10.1017/jfm.2020.827
https://doi.org/10.1063/1.4887255
https://doi.org/10.1128/jb.01501-06
https://doi.org/10.1146/annurev-fluid-010313-141426
https://doi.org/10.1080/00018739700101488
https://doi.org/10.1146/annurev-fluid-010313-141349
https://doi.org/10.1017/S002211207100048X
https://doi.org/10.1103/PhysRevLett.119.028005
https://doi.org/10.1146/annurev-fluid-121108-145442
https://doi.org/10.1103/PhysRevLett.113.068103
https://doi.org/10.1103/PhysRevLett.128.248101
https://doi.org/10.1038/s42005-021-00522-6
https://doi.org/10.1007/BF02461846


SANKALP NAMBIAR AND J. S. WETTLAUFER

[39] G. Li and J. X. Tang, Accumulation of microswimmers near a surface mediated by collision and rotational
Brownian motion, Phys. Rev. Lett. 103, 078101 (2009).

[40] K. Drescher, J. Dunkel, L. H. Cisneros, S. Ganguly, and R. E. Goldstein, Fluid dynamics and noise in
bacterial cell–cell and cell–surface scattering, Proc. Natl. Acad. Sci. USA 108, 10940 (2011).

[41] S. Dalal, A. Farutin, and C. Misbah, Amoeboid swimming in a compliant channel, Soft Matter 16, 1599
(2020).

[42] S. Weady, D. B. Stein, A. Zidovska, and M. J. Shelley, Conformations, correlations, and instabilities of a
flexible fiber in an active fluid, Phys. Rev. Fluids 9, 013102 (2024).

[43] H. C. Berg, Random Walks in Biology (Princeton University Press, Princeton, NJ, 2018).
[44] A. Callegari and G. Volpe, Numerical simulations of active Brownian particles, in Flowing Matter, edited

by F. Toschi and M. Sega (Springer International Publishing, Cham, 2019), pp. 211–238.
[45] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, International Series of Monographs on

Physics (Oxford University Press, Oxford, 1988), Vol. 73.
[46] M. Sandoval, N. K. Marath, G. Subramanian, and E. Lauga, Stochastic dynamics of active swimmers in

linear flows, J. Fluid Mech. 742, 50 (2014).

023102-16

https://doi.org/10.1103/PhysRevLett.103.078101
https://doi.org/10.1073/pnas.1019079108
https://doi.org/10.1039/C9SM01689A
https://doi.org/10.1103/PhysRevFluids.9.013102
https://doi.org/10.1017/jfm.2013.651

