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In this study we investigate stably stratified channel flow (SCF) between two solid
walls, focusing on its transition from fully developed turbulence to the onset of global
intermittency, characterized by the coexistence of laminar and turbulent patches in the
flow. With direct numerical simulations, we examine this transition across various friction
Reynolds (180 < Reτ < 960) and shear Richardson (Riτ ) numbers, parameters that are
observed to impact intermittency dynamics. To quantify intermittency, we measure the
volume fraction of turbulent patches using enstrophy as a criterion and examine the
variation of the turbulent fraction along the wall-normal direction. Our findings reveal that
intermittency in SCF can originate independently from either near-wall or midchannel re-
gions, depending on the values of Reτ and Riτ . With increased stratification, intermittency
originating from both regions may merge across the channel’s depth. Particular attention is
paid to near-wall intermittency (NWI) and identifying its occurrence boundary within the
Reτ -Riτ parameter space. We assess various dimensionless parameters for their ability to
predict NWI, discovering that intermittency consistently occurs when the Nusselt number
falls below a critical value of approximately 3.0. To establish the intermittency boundary
following this Nusselt number criterion, a Reynolds-averaged Navier-Stokes model is
formulated based on a first-order closure scheme. This model proves effective in predicting
the occurrence of NWI in SCF in terms of Reτ and Riτ . Furthermore, we verify the Nu
scaling recently proposed by Zonta et al. [J. Fluid Mech. 945, A3 (2022)], which leads to
an intermittency boundary in the form of Re2

τ Ri−1
τ = const.
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I. INTRODUCTION

Global intermittency, as defined by Mahrt [1], refers to the uneven distribution (or “pathiness”) of
turbulence on a scale larger than the “main eddies.” In contrast, small-scale intermittency concerns
the substructure of the main eddies and is characterized by rapid local fluctuations in turbulence
properties, such as dissipation [2,3]. In stably stratified atmospheric boundary layers during the
nocturnal cycle, when significant surface cooling occurs at the ground, a stationary observer would
detect globally intermittent flows as episodes of intense turbulence interspersed with periods of weak
fluctuations [4–6]. Numerical studies of stably stratified flows demonstrate global intermittency
through the simultaneous coexistence of laminar and turbulent patches within the flow [7–11].

In the context of stable atmospheric boundary layers, global intermittency (hereinafter referred
to as “intermittency” for simplicity) is thought to be a result of suppression of turbulence by
stratification, with the onset of intermittency often linked to turbulence collapse [7,9]. However,
intermittently turbulent states can also occur independently of stratification, such as in nonstratified
plane Couette flow experiments with moderate Reynolds numbers [12], which seems to attribute
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intermittency also to viscous effects. Despite its implications for geophysical flows, our ability to
predict the onset of intermittency in stratified wall-bounded turbulence is limited, with the notable
exception of Ref. [10], which identified such a boundary for stratified plane Couette flow based on
external flow parameters. In the present study, our main goal is to expand this predictive capacity to
a different flow configuration, i.e., stably stratified channel flow.

In their study on stratified plane Couette flow (SPCF), Deusebio et al. [10] examined the charac-
teristics of intermittency in this wall-bounded flow and highlighted the effects of both stratification
and viscosity on the intermittency. They noted qualitative differences in the intermittency at various
Reynolds numbers and reported the quantitative effects of a dimensionless parameter, L+ ≡ L/δν ,
on the intermittency. Here L+ represents the ratio between two length scales: L is the Obukhov
length, determined jointly by the wall fluxes of momentum and heat, and δν is the viscous scale at the
wall. Based on their direct numerical simulation (DNS) of statistically stationary SPCF, Deusebio
et al. [10] discovered an increasing trend of the volumetric fraction of turbulence with L+ for
L+ < 200. No intermittency was observed for L+ > 200, leading the authors to propose L+ � 200
as a criterion for the onset of intermittency. Furthermore, they developed a Reynolds-averaged
Navier-Stokes (RANS) model for SPCF, which allowed them to predict L+ as a function of external
flow parameters, such as the bulk Reynolds and Richardson numbers. By combining the RANS
model with the L+ � 200 criterion, Deusebio et al. [10] successfully delineated the occurrence
boundary for intermittency within the Reynolds-Richardson number parameter space. In the very
recent work by Issaev et al. [11], a “local” version of L+ was defined [see their Eq. (3.8)] based on
the local Reynolds stress in the interior of an open-channel flow. It was observed that intermittency
occurs when the local L+ falls below 260.

In the present study, we aim to extend the efforts in predicting the onset of intermittency to
stratified channel flow (SCF), which exhibits distinct dynamical differences compared to SPCF or
stratified open-channel flow. Unlike Couette flow, which is driven purely by shear with zero mean
flow when averaged between the two walls, SCF is driven by a pressure gradient and possesses a
net mean flow, distinguishing it significantly from Couette flow. The Couette flow is generated by
the shearing of two parallel plates moving in opposite directions, leading to a constant-flux layer
for both momentum and buoyancy in a statistically stationary state. The concept of a constant-flux
layer is fundamental to the formulation of Monin-Obukhov similarity theory but may apply only to
the surface layer in a “weakly stable” atmospheric boundary layer (see Fig. 1 of Zhou et al. [13] for
a schematic illustrating these differences). In both SCF and SPCF, stable stratification is observed
extending to the bottom boundary, as noted in various studies such as those by García-Villalba and
del Álamo [14] and Deusebio et al. [10]. However, in the case of open-channel flow, like the one
described by Issaev et al. [11], an adiabatic boundary condition is typically set, leading to minimal
stratification near the wall. These distinguishing features of SCF, which are not found in previously
studied flows, motivate us to focus on SCF in this paper.

To the best of our knowledge, the L+ � 200 criterion proposed in Ref. [10] has not been
validated to be applicable for situations other than a constant-flux layer, which partially motivates
our investigation. SCF is characterized by a hot stationary wall at the top and a cold one at
the bottom, with a horizontal pressure gradient as the driving force. In fully developed SCF, the
turbulent momentum flux or Reynolds stress peaks in the near-wall region (e.g., see Fig. 20 in
Ref. [14]) and decreases linearly towards the channel midplane. Due to symmetry, the momentum
flux in SCF must vanish at the midplane between the top and bottom walls. The buoyancy flux also
exhibits nontrivial variations in the wall-normal direction. These flux variations in SCF make it an
appropriate configuration for studying intermittency in non-constant-flux, wall-bounded, stratified
shear flows.

SCF has been widely investigated through numerous numerical studies [14–21]. Reference
[15] examined SCF at a friction Reynolds number (Reτ ) of 180 using wall-resolved large-eddy
simulation. Depending on the relative dominance of stratification and shear, three flow regimes
were identified: buoyancy-affected (characterized by general turbulence suppression), buoyancy-
controlled (characterized by transient and partial flow relaminarization), and buoyancy-dominated
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(characterized by complete flow relaminarization). The condition for flow relaminarization was
investigated by Refs. [14,16,17], which reported the sensitivity of the relaminization process to
the friction Richardson number, Riτ , as well as the size of the computational domain [14]. Such
a relaminarization process was interpreted in the framework of the linear stability analysis of
a plane Poiseuille flow [22], yielding a “relaminarization boundary” in the Reτ -Riτ plane (e.g.,
see Fig. 3 of Ref. [14]), i.e., the transition between fully laminarized and intermittently turbulent
flows. It is worth noting that in the present study we aim to delineate a different boundary, i.e., the
“intermittency boundary,” which is between fully turbulent flow and the onset of intermittency. More
recent simulations reported in Ref. [20] expanded the Reτ value to 1000. The authors highlighted the
dynamical role of “nonturbulent wavy structures,” presumably internal gravity waves, in reducing
the wall-normal fluxes of momentum and buoyancy by imposing a “blockage effect” on the
interactions between the two walls.

Several flow parameters are considered relevant for maintaining wall-bounded, stratified shear
turbulence. The renowned Miles-Howard theorem [23,24] establishes the linear stability of inviscid,
parallel shear flow, depending on a critical value of the local gradient Richardson number (Rig)
of 1/4. Another stability parameter is the length scale ratio, h/L, where h represents a character-
istic height of the flow, and L is the Obukhov length. Nieuwstadt [25] presented DNS data that
indicated the possibility of relaminarization in open-channel flows subjected to strong cooling at
the bottom wall. In this flow the upper boundary condition is characterized by free slip rather than
no slip, the latter of which is the condition explored in the current paper. Intermittency occurs
when h/L � 1.25, with h being the height of the open channel. Flores and Riley [7] reported
a critical value for h/L of approximately 1.0 for the onset of intermittency also in stratified
open-channel flows. However, the h/L criterion was unsuccessful in predicting intermittency for
stratified plane Couette flow, as documented in Ref. [10]. Instead, Deusebio et al. [10] proposed
a criterion of L+ � 200, which turned out to be effective for the specific flow, a constant-flux
layer. This L+ criterion was adapted by Ref. [11] for stratified open-channel flow. In summary, the
criterion for the onset of intermittency in stratified wall-bounded flows remains inconclusive in the
literature.

In the broader scope of stably stratified, wall-bounded atmospheric flows, the phenomenon of
intermittency plays a crucial role, significantly impacting surface mixing events and turbulence
statistics. This is extensively reviewed in the work by Mahrt [2]. A fundamental, yet unresolved,
question raised by Mahrt [2] concerns the origin of atmospheric flow intermittency: is it a result
of external forces, specifically submeso-scale motions which are typically under 2 km in terms of
horizontal scale [2]? Our problem setup, which excludes sophisticated forcing representative of the
submeso-scale motions, could shed light on this matter.

The aim of this study is thus to investigate the transition from fully developed turbulence to the
onset of intermittency in stably stratified channel flow between two solid walls, focusing specifically
on the near-wall region (in contrast to a recent work [11] which focused instead on predicting
intermittency throughout the depth in an open-chanel flow). We will utilize our DNS data to
characterize intermittency in SCF across a broad range of friction Reynolds and Richardson numbers
(Reτ and Riτ ), both qualitatively and quantitatively. Additionally, following a similar approach to
Deusebio et al. [10], we will employ RANS to establish the intermittency boundary in terms of the
control parameters.

The remainder of the paper is organized as follows: Sec. II details our numerical simulations. In
Sec. III we provide an overview of the qualitative features of intermittency observed in our DNS
and some statistics. Section IV focuses on quantifying intermittency in SCF, specifically examining
the turbulent volume fraction and its variation along the wall-normal direction. In Sec. V we assess
the applicability of various criteria for identifying the onset of intermittency. The Appendix presents
the development of a first-order closure model to predict the boundary between fully turbulent and
intermittent turbulence in the Reτ -Riτ parameter space, which is shown in Sec. VI. Finally, we offer
concluding remarks in Sec. VII.
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FIG. 1. Schematic illustrating the setup of stratified channel flow along with the respective boundary con-
ditions applied at the top and bottom walls. The computational domain is of the size Lx × Ly × Lz represented
by Nx × Ny × Nz grid points.

II. NUMERICAL SIMULATIONS

In the present study, we examine stratified channel flow in a Cartesian coordinate system
x = (x, y, z). The domain is bounded in the vertical (y) direction by two no-slip, impermeable
walls separated by a distance of 2h. The channel flow is driven by a constant mean pressure
gradient f = (u2

τ /h, 0, 0) in the streamwise (x) direction. Here uτ is the friction velocity and is
related to the wall shear stress that counters the pressure gradient. Numerical periodicity is imposed
in the horizontal directions, which are thus considered statistically homogeneous. Stable density
stratification is maintained by prescribing a constant potential temperature difference, �φ ≡ 2φw,
between the lower (colder) and upper (hotter) walls. A schematic diagram of the configuration and
boundary conditions for SCF is presented in Fig. 1. It is important to distinguish the current setup of
SCF with stratified open-channel flow, where the top wall is absent, a flow that has been the subject
of other studies [7,11,25–27].

The fluid dynamics of SCF are described by the Navier-Stokes equations for incompressible
flows under the Boussinesq approximation, as follows:

∇ · u = 0, (1a)

∂u
∂t

+ u · ∇u = −∇p

ρ0
+ ν∇2u + f + αV φg, (1b)

where u = (u, v,w) represents the fluid velocity, ρ0 denotes the reference density, φ stands for the
potential temperature, g ≡ −gey signifies the gravitational force acting in the y direction with g being
the gravitational constant, αV is the thermal expansion coefficient in the linear equation of state, and
ν refers to the kinematic viscosity. The evolution of the potential temperature, φ, is described by the
advection–diffusion equation as follows:

∂φ

∂t
+ u · ∇φ = κ∇2φ, (2)

with κ being the thermal diffusivity. In the present study, the Prandtl number Pr = ν/κ is set to 0.71
to model thermal stratification in air.

Two dimensionless parameters can be defined based on dynamical quantities at the walls, i.e.,
the friction Reynolds number,

Reτ ≡ uτ h

ν
, (3)
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and the shear (friction) Richardson number [15],

Riτ ≡ 2φwαV gh

u2
τ

. (4)

In these equations uτ ≡ √
ν(∂U/∂y)w relates the friction velocity to the gradient of the mean

streamwise velocity at the walls, (∂U/∂y)w. Here and throughout the paper, the subscript w denotes
values evaluated at the walls, and U ≡ 〈u〉 is the mean streamwise velocity with 〈·〉 denoting
horizontal averages over the statistically homogeneous x - z plane. Similarly, the mean potential
temperature is denoted as � ≡ 〈φ〉. In a statistically stationary turbulent state, the wall shear in
the current setting must compensate for the applied streamwise pressure gradient f to maintain
momentum balance in the system.

The governing equations, Eqs. (1) and (2), are solved using direct numerical simulation (DNS).
Comprehensive descriptions of the DNS algorithm can be found in Ref. [28]. The DNS algorithm
has been extensively validated and employed to study wall-bounded turbulent flows (see, e.g.,
Refs. [10,13,29]), including the work by Deusebio et al. [10]. Spectral Fourier modes are utilized
for spatial discretization in the horizontal (x and z) directions, while the wall-normal (y) direction
is discretized using a second-order finite difference method. The convective terms are advanced in
time through a low-storage third-order Runge-Kutta method, while the viscous and diffusive terms at
each time step are updated using a semi-implicit Crank-Nicolson method. The convective terms are
evaluated in physical space, with a two-thirds dealiasing rule applied to the two horizontal directions
to prevent aliasing errors [30]. Adaptive time stepping, based on a Courant-Friedrichs-Lewy number
of 0.5, is enabled to reduce computational time while maintaining numerical stability.

Following standard practices for DNS of wall-bounded turbulent flows [31], we utilize uniform
grids for the horizontal directions with spacings of �x+ � 8 and �z+ � 4. The superscript +
denotes nondimensionalized quantities with respect to the near-wall viscous length scale δν = ν/uτ .
In the wall-normal direction y, the grid is condensed towards the walls using a hyperbolic tangent
stretching function, which provides better resolution of small-scale structures in the near-wall
region. In this study we investigate SCF for a range of Reτ . For each Reτ , the grid is adjusted
such that the distance of the tenth point to the wall satisfies y+

10 < 10 (see, e.g., Ref. [31]), following
DNS of stratified wall-bounded turbulent flows using the same solver [10,29]. As Reτ increases,
the required grid spacing for resolving the smallest turbulent length scales decreases, necessitating
more grid points. Consequently, the computational cost increases rapidly with Reτ . To maintain
an affordable cost, the computational domain in the present study is adjusted for each Reτ , with
the smallest ones (for cases with Reτ = 480 and 960 as shown in Table I) sized at Lx ≈ 6000δν

and Lz ≈ 3000δν . Such a size is large enough to accommodate more than 900 minimal flow units;
each of the minimal flow units is approximately 200 and 100 wall units long in x and z directions,
respectively [32].

The size of the computational domain has been reported to play a crucial role in successful
numerical simulations of SCF. SCF may undergo nonphysical laminarization in computational
domains that can barely contain one minimal flow unit [32,33]. Another indication of domain
confinement, according to Ref. [14], is low-frequency oscillations with a period of O(10uτ /h)
in the temporal evolution of bulk quantities. In the present study, all simulations maintain either
fully or intermittently turbulent conditions at a statistically stationary state with no significant flow-
frequency oscillation in the temporal statistics, suggesting robust turbulence free of finite-domain
effects in our simulations. Some examples of the temporal statistics can be found in Fig. 4.2 of
Ref. [21].

In this study we consider SCF at four values of Reτ ranging from 180 to 960, as shown in
Table I where a summary of simulation parameters and grid resolution is provided. At each Reτ ,
several degrees of stratification are imposed. The stratification level is varied incrementally from
moderate to relatively strong, leading the flows to transition from fully turbulent to intermittent, as
suggested by the decreasing values of γw, the near-wall turbulent fraction (to be defined in Sec. IV),
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TABLE I. Summary of simulation parameters and grid resolution. The last column shows the value of the
turbulent fraction at the wall, γw , which is discussed in Sec. IV.

Case Reτ Riτ Re Nu (Lx, Lz )/h (Nx, Ny, Nz ) L+ h/L γw

1 18 3044 4.10 1554 0.12 1.00
2 36 3217 3.32 957 0.19 1.00
3 180 60 3464 2.83 (16π, 8π ) (1024, 129, 1024) 670 0.27 0.80
4 80 3579 2.62 548 0.33 0.68
5 120 3856 2.33 408 0.44 0.57
6 72 7108 4.70 1360 0.26 1.0
7 140 7652 3.75 875 0.41 1.0
8 360 280 8651 3.07 (8π, 4π ) (1024, 161, 1024) 523 0.68 1.0
9 560 10 313 2.46 335 1.07 0.83
10 840 11 753 2.23 247 1.46 0.71
11 500 13 070 3.12 551 0.88 1.0
12 800 15 004 2.85 394 1.25 0.91
13 480 1000 15 977 2.56 (4π, 2π ) (768, 289, 768) 277 1.75 0.83
14 1200 17 239 2.41 261 1.84 0.78
15 1600 18 812 2.23 246 1.96 0.74
16 2000 40 026 4.26 415 2.36 1.0

960 (2π, π ) (768, 385, 768)
17 3840 46 432 2.76 309 3.10 0.86

with increasing Riτ . In the present study, the runs with the lowest values of Riτ are initialized
from the neutral (nonstratified) statistically stationary states of the corresponding Reτ . Runs with
stronger stratification are each initialized from the statistically stationary state of the previous run
(at the immediate lower Riτ ). The Riτ value is adjusted from one simulation to another by changing
the product gαV in Eq. (4), and Reτ is varied by adjusting the viscosity. The lightest run in the
present study (Case 1 in Table I) takes roughly 6000 core hours, while the heaviest (Case 17) takes
more than 500 000 core hours. The substantial increase in computation is mainly attributed to the
significantly smaller time step required to maintain numerical stability. In the following discussion,
a particular case is referred to according to its friction Reynolds and Richardson numbers for ease of
reference. For example, the case with (Reτ , Riτ ) = (360, 560) is denoted as Re360-Ri560 (with the
subscript τ dropped). As Reτ and Riτ vary from one simulation to another, the flow’s bulk Reynolds
number, Re, and Nusselt number, Nu, also vary accordingly. The bulk Re is defined in terms of the
volume-averaged (bulk) streamwise velocity, ub, in the channel,

Re ≡ ubh

ν
, (5)

while Nu is associated with the convective heat transfer coefficient H, the characteristic length L,
and the thermal conductivity κ , in the following form:

Nu ≡ HL
κ

. (6)

Here H is the ratio between the heat flux q and the temperature difference between the two solid
walls, 2φw, i.e., H = q/(2φw ), and L can be taken as the channel height, 2h (see Fig. 1). The heat
flux across the flow can be calculated based on the mean temperature gradient at the wall, (∂�/∂y)w,
i.e., q = κ (∂�/∂y)w. Therefore,

Nu =
κ

(
∂�

∂y

)
w

2φw

2h
1

κ
=

(
∂�

∂y

)
w

φw

h

. (7)
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The Nusselt number (Nu) can be interpreted as the ratio of these two heat transfer scenarios. It
compares the actual heat transfer due to convection in the fluid to what the heat transfer would
be under the hypothetical scenario where all heat transfer is through pure conduction (e.g., when
the fluid is motionless). This ratio Nu measures the enhancement of heat transfer due to the fluid’s
motion, i.e., higher Nu would imply that convection plays a significant role in heat transfer, making
the process more efficient than it would be in a purely conductive scenario. This physical implication
of Nu as it relates to the prediction of intermittency will be revisited in Sec. V.

III. FLOW CHARACTERISTICS

A. Phenomenology of intermittency

First, a qualitative understanding of intermittency at various flow parameters can be obtained
through flow visualization. Figure 2 displays selected snapshots of streamwise velocity fluctuations,
u′ = u − U , on distinct horizontal (x-z) planes for cases of low and intermediate Reτ values, specif-
ically for cases Re180-Ri120 and Re480-Ri500. These snapshots are taken during the statistically
stationary phase of the flow. In the Re180-Ri120 case, laminar patches can be seen across the
channel depths, akin to those observed in Ref. [14]. Although fine-scale turbulence occupies a
considerable portion of the near-wall region [Fig. 2(a); y+ = 15], streaky structures characteristic
of near-wall turbulence disappear at midchannel [Fig. 2(g); y+ = 180].

The Re480-Ri500 case exhibits qualitative differences when compared to the Re180-Ri120 case.
With a larger Riτ of 500, the flow at midchannel (y+ = 480) is almost entirely laminar, with only
a small portion of the domain displaying noticeable turbulent fluctuations [Fig. 2(h)]. Nevertheless,
the larger Reτ of 480 allows near-wall turbulence to remain robust enough to counterbalance the
suppression caused by stratification. As shown in Figs. 2(b) and 2(d), which focus on y+ = 15 and
240 respectively, turbulence retains consistent intensity across the entire x-z plane, with no apparent
intermittency. As the distance from the wall increases, intermittency begins to appear, as indicated
by the partial laminarization at y+ = 384 [Fig. 2(f)] and the nearly total laminarization at y+ = 480.
A comparison of the two columns in Fig. 2 implies that intermittency may either persist throughout
the entire channel depth or be partially present in the midchannel region.

B. One-point statistics

Here we probe the flow further using one-point statistics. Figure 3 displays the mean streamwise
velocity (U ) and potential temperature (�) profiles for simulations with Reτ = 180 and 480 at
increasing levels of stratification, represented by larger Riτ values. As stratification increases for
a given Reτ , there is a notable increase in bulk flow velocity, as illustrated in Figs. 3(a) and 3(b).
By maintaining a consistent pressure gradient and diminishing turbulence through stratification, the
flow indeed encounters smaller frictional losses, leading to acceleration, and thus an increase in the
kinetic energy in the system. Consequently, the bulk Reynolds number Re of the flow also increases
(see Table I). Despite the increased Riτ , the wall shear and the gradient of the mean streamwise
velocity at the wall, (∂U/∂y)w, remain constant due to the constant pressure gradient, u2

τ /h, under
the same value of Reτ .

The value of Riτ also has a significant impact on the mean potential temperature, as illustrated
in Figs. 3(c) and 3(d). First, the heat flux and the gradient of the potential temperature at the wall
decrease as Riτ increases, resulting in a reduced Nusselt number, as shown in Table I. Second,
the potential temperature profile exhibits a steeper gradient near the channel’s midplane (y/h = 1),
indicating a tendency to form a density interface therein. It is important to note that, unlike in
plane Couette flow, where a constant flux layer exists in the midgap region [10,29], the vertical
momentum transport ceases in SCF as the channel’s core is approached due to the symmetry of the
flow configuration.

The wall-normal profiles of the plane-averaged fluctuation kinetic energy (FKE), k = 〈u′u′ +
v′v′ + w′w′〉/2, are displayed in Figs. 4(a) and 4(b) for cases with Reτ = 180 and 480, respectively.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 2. Sample horizontal transects depicting the instantaneous streamwise velocity fluctuation, u′, normal-
ized by the friction velocity, uτ , for two cases: Re180-Ri120 (left column) and Re480-Ri500 (right column).

In both groups, the profiles reach their peaks in the near-wall region. It is somewhat counterintuitive
that k, after being normalized by u2

τ (which remains constant for all cases with the same Reτ ), is
generally larger for cases with higher Riτ values at a given y/h. This trend in FKE with respect
to Riτ is consistent with that of the mean-flow kinetic energy [Figs. 3(a) and 3(b)]. It is important
to note that the flow tends to be more energetic in cases with larger Riτ values under a given Reτ

before we proceed to predict intermittency. As intermittency is more likely to occur with larger Riτ
values, FKE alone is not a reliable predictor of intermittency. This is because an intermittent flow
may exhibit a higher k value than its fully turbulent counterpart, as demonstrated in Figs. 4(a) and
4(b). Essentially, Reynolds averaging serves to distinguish the energy in the fluctuations from that
in the mean flow. Nevertheless, these fluctuations might also include energy from internal waves
[20] or large coherent structures. This is likely why the quantity k does not precisely reflect the
turbulence’s energy level.
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(a) (b)

(c) (d)

FIG. 3. Wall-normal profiles of mean velocity and potential temperature at Reτ = 180 (left column) and
480 (right column) for various degrees of stratification.

The profiles of the local gradient Richardson number,

Rig ≡
gαV

(
∂�

∂y

)
(

∂U

∂y

)2 , (8)

for cases with Reτ = 180 and 480 are displayed in Figs. 4(c) and 4(d). As the mean shear ∂U/∂y is
zero at the midchannel due to symmetry, Rig approaches infinity at y/h = 1. In other words, there
exists a highly stable region at the midchannel in SCF regardless of the Reτ and Riτ values. For the
lower Reτ = 180 shown in Fig. 4(c), the case with a larger Riτ corresponds to a higher Rig at a given
y/h, suggesting increased stability overall. However, this dependence of Rig on Riτ weakens as Reτ

increases, and the curves nearly overlap for Reτ = 480 [Fig. 4(d)], where Rig reaches a plateau value
slightly below 0.2 at y/h � 0.8 and then increases abruptly towards the midchannel singularity at
y/h = 1. The differences in Rig are insignificant among cases shown in Fig. 4(d), even though it is
observed that the four cases vary from fully turbulent to intermittent (see Table I). Again, Rig alone
would be a poor indicator for predicting intermittency, at least among the four cases considered in
Fig. 4(d).
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(a) (b)

(c) (d)

FIG. 4. Wall-normal profiles of the plane-averaged turbulent kinetic energy and gradient Richardson
number at Reτ = 180 (left column) and 480 (right column) for various degrees of stratification.

IV. QUANTIFYING INTERMITTENCY

A. Seperation of laminar and turbulent patches

To quantify intermittency in SCF, a dynamical marker is needed to separate laminar and turbulent
regions that coexist in the flow field. There are various choices for the field variable used to identify
laminar and turbulent regions, including vertical velocity magnitude [8], potential enstrophy [34]
(i.e., the magnitude of potential vorticity), vertical gradient of total density [35], and magnitude
of the vertical component of vorticity [36]. Following Deusebio et al. [10], we base our separation
technique on estrophy, η ≡ |ω|2, where ω ≡ ∇ × u is the vorticity. At the wall the enstrophy reduces
to the following form:

ηw =
(

∂u

∂y

)2

+
(

∂w

∂y

)2

. (9)

The local variation of ηw over a horizontal subdomain area centered around (x, z) can be quantified
as follows:

ηw,mbf (x, z) =
√

1

A

∫
x+,z+

η2
w dx+ dz+ −

[
1

A

∫
x+,z+

ηw dx+ dz+
]2

, (10)
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(a) (b)

FIG. 5. (a) Examples of PDF of local variation ηw,mbf for typical strongly intermittent (Re180-Ri120),
weakly intermittent (Re360-Ri560), and fully turbulent flows (Re480-Ri500); (b) variation of threshold χw

against Reτ .

where A = �x+�z+ is the subdomain area, and the subscript mb f stands for “minimal box fluctu-
ation” following Ref. [10]. The subdomain area is chosen such that it covers the size of a minimal
flow unit with �x+ � 200 and �z+ � 100 [32]. The quantity ηw,mbf (x, z) is calculated for all points
on the wall and provides a local measure of the fluctuation of enstrophy in the neighborhood of a
given point.

The quantity ηw,mbf (x, z) varies strongly in space, and Fig. 5 presents examples of the probability
density function (PDF) of ηw,mbf for cases Re180-Ri120, Re360-Ri560, and Re480-Ri500. These
specific cases have been chosen because they represent strongly intermittent, weakly intermittent,
and fully turbulent flows, respectively. The fully turbulent case (Re480-Ri500) produces a PDF
with an approximately log-normal shape and a single prominent peak [37]. As stratification be-
comes more pronounced, intermittency starts to manifest, causing the PDF to skew to the left, as
exemplified by the Re360-Ri560 case. For strongly intermittent cases, such as Re180-Ri120, the
PDF exhibits a clear double-peak shape.

Following the approach from Ref. [10], we choose the local minimum between the two peaks,
χw, as the threshold for differentiating between laminar and turbulent regions at the wall. For any
group of cases sharing the same Reτ , we compute the χw value corresponding to the case with
the highest Riτ , and then apply this threshold value to all cases within that particular Reτ group.
Regions where ηw,mbf < χw are classified as laminar, while those with ηw,mbf > χw are considered
turbulent. Notably, the threshold χw demonstrates a strong dependency on Reτ . Figure 5(b) presents
the χw values applied at each Reτ , revealing an increasing trend with Reτ . Utilizing these thresholds,
the turbulent fraction at the wall, γw, defined as the ratio of the turbulent area to the total area,
is computed for each simulation and listed in Table I. To calculate γw, a minimum of 20 flow
snapshots, spaced approximately 0.5 advective time units (i.e., 0.5h/uτ ) apart, are analyzed for each
case.

B. Wall-normal variation of turbulent fraction

To investigate the variations of intermittency in the wall-normal direction, we adopt the algorithm
used in Ref. [10], which employed the total enstrophy, η, as the field variable to separate turbulent
and laminar regions within the flow. To account for the substantial variation of enstrophy in the
wall-normal direction, the threshold level, χ (y), is adjusted locally based on the local pseudo-
dissipation rate, εK (y) ≡ ν〈∂u′

i/∂x j∂u′
i/∂x j〉, and the corresponding dissipation at the wall, εK,w.
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(a)

(b)

FIG. 6. Representative snapshots illustrating the identification of turbulent and nonturbulent regions using
the automatic algorithm described in Ref. [10] are shown for case Re180-Ri120 at (a) y+ = 15 and (b) y+ =
180. The red line denotes the turbulent-nonturbulent interface and is overlaid on the enstrophy field depicted
by the grayscale map.

This adjustment is performed using the following relation, similar to Ref. [10]:

χ (y) = χw

εK (y)

εK,w

. (11)

Figure 6 illustrates the identification of laminar and turbulent regions in the Re180-Ri120 case.
The turbulent-nonturbulent interface (indicated in red) overlays the instantaneous enstrophy field
for both near-wall (y+ = 15) and midchannel (y+ = 180) regions. The wall-normal profile of the
turbulent fraction, γ , is shown in Fig. 7. In cases with Reτ = 180, γ exhibits a value smaller than
unity at the wall and progressively plateaus as it moves away from the wall. This suggests that
the wall may be a potential source of intermittency, unlike the open-channel flow case studied
in Ref. [11] where the flow is completely turbulent at the lower wall. In stratified plane Couette
flow, laminar patches are primarily confined to the wall [8], whereas in SCF an additional site
of intermittency appears to emerge at the midchannel, which is reminiscent of the midchannel
“blockage effect” discussed in Ref. [20]. As demonstrated in Fig. 7, cases with Reτ = 480 exhibit
strong intermittency at the midchannel as well, which can presumably be ascribed to the absence of
shear and the consequent singularity in Rig (see Fig. 4). When the stratification is adequately strong,
such as in the Re180-Ri120 case, the value of γ remains below unity across the entire channel, which
is also illustrated in Fig. 2 (left column). This observation suggests that intermittency originating
from both near-wall and midchannel regions may merge and establish a continuous connection
throughout the channel’s depth.
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(a)

(b)

FIG. 7. Wall-normal profile of the turbulent fraction γ . Top panel: Reτ = 180. Bottom panel: Reτ = 480.
Black, blue, and red curves represent the weakest, intermediate, and strongest degrees of stratification,
respectively.

V. ONSET OF NEAR-WALL INTERMITTENCY

As discussed in Sec. I, various theories exist concerning the dynamical criterion for the onset
of intermittency. The results presented in Sec. III B reveal that neither the kinetic energy level nor
the gradient Richardson number (Rig) accurately predict this onset. In this section we continue
our evaluation by examining three additional parameters, L+, L/h, and Nu, with respect to their
effectiveness in predicting the onset of near-wall intermittency (NWI), i.e., when γw < 1.0.

The first criterion is based on the length scale ratio between the Obukhov scale, L, defined as

L = u3
τ

κmgαV κ

(
∂�

∂y

)
w

, (12)

and the near-wall viscous scale, δν . In the above definition, km is the von Kármán
constant (= 0.41). The Obukhov scale, L, approximates the height at which buoyancy effects ini-
tially become dynamically significant [38]. The ratio L+ ≡ L/δν characterizes the scale separation
between the height of the near-wall dynamic layer and the viscous scale of the turbulence contained
within the near-wall region. Flores and Riley [7] observed the onset of intermittency for L+ � 100
in numerical simulations of stratified open-channel flows, while Deusebio et al. [10] reported the
criterion for stratified plane Couette flow to be L+ � 200, attributing intermittency to a limited
dynamical range of turbulent scales. Figure 8(a) illustrates the near-wall turbulent fraction γw plotted
against L+ for all simulations listed in Table I. The criterion L+ � 400 seems to effectively identify
intermittent cases, with the majority of γw < 1 (intermittent) instances occurring when L+ � 400.
However, data points from Reτ = 180 appear to be outliers in Fig. 8(a), likely due to the influence
of viscous effects at this low Reynolds number.

In Ref. [11] the authors utilized the locally defined L+ < 260 as a criterion to predict inter-
mittency within the interior of an open-channel flow. Notably, in their simulations, turbulence at
the bottom wall consistently meets the criteria for full turbulence according to their definition, as
shown in their Fig. 4(a), which depicts a turbulent fraction of 1.0 at the wall. The observation of
intermittency at the wall in our SCF, in contrast to the open-channel flow investigated in Ref. [11],
can be attributed in all likelihood to the different treatment of the bottom boundary. In Ref. [11] an
adiabatic boundary condition was imposed at the channel bottom, inducing negligible stratification
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(a)

(b)

(c)

FIG. 8. Plots of γw with respect to three flow parameters for the entire set of simulations.

capable of suppressing turbulence. In our configuration, however, the stratification at the wall is
significant (see Fig. 3), which effectively inhibits turbulence and triggers intermittency.

In the literature the stability parameter, h/L, is another criterion considered for intermittency
(e.g., by Refs. [7,25,39]). Here h represents a characteristic height of the flow, which, for channel
flow, is taken as the half channel height (see Fig. 1). When h/L < 1, buoyancy effects become
dynamically insignificant throughout the entire flow. Conversely, if h/L > 1, stratification signifi-
cantly impacts at least a portion of the flow above height L. Figure 8(b) examines the use of h/L
as a criterion for the onset of NWI, comparing it to the h/L � 1.0 criterion observed by Flores and
Riley [7] in stratified open-channel flow. In each group with the same Reτ , the near-wall turbulent
fraction, γw, appears to decrease monotonically with increasing h/L. This finding aligns with the
physical interpretation of this “stability” parameter, which suggests that as the flow becomes more
affected by buoyancy and hence more stable, NWI is more likely to occur. However, the critical
h/L value at which γw falls below one varies strongly with Reτ . As Reτ rises, the critical h/L also
increases, indicating that h/L alone cannot serve as a criterion for γw < 1.0.

The final criterion for the onset of intermittency explored in Fig. 1(c) is based on the Nusselt
number, which is simply the ratio of the wall heat flux through the turbulent flow to that of a

014803-14



QUANTIFYING AND PREDICTING NEAR-WALL GLOBAL …

hypothetical, fully laminar case with a linear temperature gradient between the two walls. By
definition [see Eq. (7)], a fully relaminarized channel flow would result in a Nusselt number
(Nu) of unity. This led García-Villalba and del Álamo [14] to examine Nu as a criterion for flow
relaminarization. They observed that at Nu = 1.57, the flow appears “nearly laminar.”

Since we are seeking the boundary between fully turbulent flow and intermittency in the present
study, the critical Nu value should naturally be larger than the relaminarization boundary examined
in Ref. [14]. Deusebio et al. [10] attempted to use Nu as the intermittency criterion for stratified
plane Couette flow and observed intermittency within a range of Nu between approximately 2 and 7
(see their Fig. 10). In the 17 stratified channel flow cases examined in this study, no intermittent
cases are observed for Nu � 3.0. Thus, a Nusselt number of 3.0 and above appears to be a
sufficient condition for fully turbulent SCF (γw = 1.0), as shown in Fig. 1(c). Additionally, the
γw vs Nu relationship for intermittent cases (γw < 1.0) seems to collapse nearly onto a single
curve, except for the case with Reτ = 180. Out of the three potential criteria investigated in
Fig. 8,

Nu � 3.0, (13)

is the only one that applies to all SCF simulations examined in this study and robustly predicts the
onset of near-wall intermittency. The very definition of Nu may shed some light on the Nu criterion
discovered above. In turbulent flows, where convection is enhanced, the efficiency of convective
heat transfer increases, leading to a higher Nu. Conversely, as the flow becomes fully laminar, heat
transfer relies solely on conduction, causing Nu to approach unity. The transition to intermittency
in the flow, marked by the emergence of laminar patches within turbulent regions, corresponds to
a decrease in Nu from the fully turbulent state. This is because these laminar areas diminish the
overall effectiveness of convective heat transfer. The Nu criterion affirms the expected behavior of
Nu with the onset of intermittency and aligns well with observed data.

VI. PREDICTION OF INTERMITTENCY BOUNDARY

A. The intermittency boundary

In this section we attempt to formulate the the intermittency boundary in the Reτ -Riτ plane (see
a review in Ref. [40]). Specifically, we plot a contour line corresponding to Nu ≈ 3.0 within the
parameter space to represent the intermittency boundary, as indicated by the dashed-dotted line
in Fig. 9. This line for Nu ≈ 3.0 was obtained by applying a Reynolds-averaged Navier-Stokes
(RANS) model for many combinations of (Reτ , Riτ ). Details on this RANS model can be found in
the Appendix. The relaminarization boundary based on stability analysis, as described by Ref. [22],
is depicted by a solid line in Fig. 9. The symbols represent four groups of simulations with varying
Reτ values. These symbols are filled using a grayscale that corresponds to the near-wall turbulent
fraction, γw, with darker shades representing a larger γw. Several key observations can be made
from Fig. 9:

(1) At a given Reτ , the flow transitions from a fully turbulent state (represented by fully dark
symbols) to an intermittent state (depicted by gray symbols), and ultimately to a laminar state as
stratification increases, i.e., with an increased value of Riτ .

(2) As Reτ increases by nearly one order of magnitude from 180 to 960, the critical Riτ at which
the onset of intermittency occurs is reached at a considerably larger value.

(3) The intermittency boundary, denoted by a dash-dotted line, exhibits an approximate power
law of Riτ ∝ Re2

τ , a scaling we explore further in the next subsection. The boundary’s slope of 2,
while generally reliable for larger Reτ values, shows less accuracy at Reτ = 180. Specifically, the
data point (Reτ , Riτ ) = (180, 60) is classified as fully turbulent according to the boundary depicted
in Fig. 9. However, DNS data indicate that this flow is actually intermittent, with γw = 0.83. This
discrepancy arises because the RANS model used to predict the boundary tends to overestimate Nu
for this Reτ value, as shown in Fig. 12 in the Appendix. Apart from this particular case at the lowest
examined Reτ value, the intermittency boundary with a slope of 2 aligns well with the rest of the
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FIG. 9. Diagram showing various flow regimes in the Reτ -Riτ plane, including the relaminarization
boundary (solid line) based on linear stability analysis [22], the intermittency boundary (dash-dotted line)
derived from the RANS model, and a compilation of DNS data (circles) color-coded by the wall turbulent
fraction, γw . The hypotenuse of the red triangle denotes a power-law slope of Riτ ∝ Re2

τ .

DNS data. Due to the aforementioned issues of the RANS model, caution should be exercised when
considering the predicted boundary at lowest value of Reτ at 180.

B. The Riτ ∝ Re2
τ scaling

The dashed-dotted line in Fig. 9 delineates the intermittency boundary, representing the combi-
nation of Reτ and Riτ that gives rise to a Nusselt number (Nu) of approximately 3.0. In a recent
DNS study by Zonta et al. [20], a scaling relationship is provided as follows:

NuRe−2/3
τ ∝ Ri−1/3

τ , (14)

which aligns well with existing numerical data (see Fig. 14 in Ref. [20]). We corroborate this scaling
using our own DNS results in Fig. 10 and find a notable consistency. Furthermore, our data provide
a fitting result expressed as NuRe−2/3

τ ≈ 0.36Ri−1/3
τ , which is represented by the dashed line in

Fig. 10. By considering the condition Nu ≈ 3.0 for intermittency onset, we derive

Reτ Ri−1/2
τ = const ≈ 24, (15)

which can be identified as the intermittency boundary. The above scaling is substantiated by Fig. 9,
where the intermittency boundary determined via the RANS model exhibits a power-law slope of
Riτ ∝ Re2

τ , particularly at Reτ > 180, affirming the analysis that led to Eq. (15).

VII. CONCLUDING REMARKS

In this work we have investigated wall-bounded turbulence in stratified channel flow using
direct numerical simulations (Sec. II), with the aim of understanding both qualitative (Sec. III)
and quantitative (Sec. IV) characteristics and predicting the occurrence of global intermittency in
SCF (Secs. V and VI). We have explored the flow dynamics over a range of Riτ values for Reτ
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FIG. 10. NuRe−2/3
τ as a function of the friction Richardson number Ri−1/3

τ . Results of present study are
shown together with those obtained in Ref. [20].

ranging from 180 to 960 (Table I), covering both intermittent and fully turbulent regimes in SCF.
We have observed two potential sites of intermittency (Fig. 7), one near the wall and the other
at midchannel. We have particularly focused on near-wall intermittency and identified the Nusselt
number (Nu) as the parameter dictating the onset of NWI (Fig. 8). To predict the onset of NWI in
the parameter space, we have developed a first-order closure model (see the Appendix) that reliably
predicts Nu as a function of Reτ and Riτ (Fig. 12). All these results have led to the delineation
of the intermittency boundary shown in Fig. 9, which suggests that, for the range of parameters
investigated, the transition from fully turbulent to intermittent states occurs at Reτ Ri−1/2

τ = const in
the parameter space, i.e., Eq. (15).

Our findings for the SCF reveal a significant dynamical distinction between a constant-flux
layer, exemplified by a stratified plane Couette flow [10], and the SCF, where both momentum
and buoyancy fluxes display complex variations in the wall-normal direction. In the case of the
constant-flux layer scenario, Deusebio et al. [10] identified a criterion of L+ � 200 for the onset of
intermittency. However, for the SCF, as illustrated in Fig. 8(a), the criterion appears to be L+ � 400
for Reτ � 360, with an even higher L+ threshold for Reτ = 180. Conversely, we determined that
Nu � 3.0 offers a reliable criterion for near-wall intermittency in the SCF [Fig. 8(c)], while for the
Couette flow, no clear cutoff Nu value for intermittency seems to exist (see Fig. 10 of Ref. [10]).
In the context of stably stratified atmospheric boundary layer flows (e.g., see a review by Mahrt
[2]), neither the SCF nor a constant-flux layer can adequately capture the intricate structures within
these flows. Consequently, the intermittency criteria derived from idealized configurations should
be applied cautiously in atmospheric flow scenarios. In our setup, absent of time-varying submeso-
scale forcing, we indeed observe intermittency, hinting at the possibility that intermittency is an
inherent characteristic of stratified turbulence near the wall, rather than being forced exclusively by
submeso-scale motions [2].

A practical challenge in conducting DNS studies of stratified turbulence is to access large
Reynolds numbers, which demand substantial computational resources. In this study the highest
Reτ achieved is 960, comparable to a recent DNS of SCF [20] that examined Reτ = 1000. Although
Riτ increases monotonically with Reτ for the intermittency boundary identified at Reτ � 960
(as depicted in Fig. 9), it remains uncertain whether the Riτ ∝ Re2

τ scaling holds for flows with
larger Reτ values than those investigated here. Specifically, will the intermittency boundary level
off as Reτ → ∞, or will the critical Riτ also approach infinity following the same power law?
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Intermittency is a widespread phenomenon in stratified flows, many of which are not directly
influenced by wall effects, such as homogenous turbulence (e.g., Ref. [35]) or strongly stratified
wakes (e.g., Refs. [41,42]). Consequently, an intriguing direction for future research would be to
determine the intermittency boundary for these non-wall-bounded stratified flows, in which neither
the Nu nor the L+ criterion is applicable. The complex interactions between internal waves and
intermittency could be significant in geophysical flows. One challenge in this line of inquiry is
how to separate contributions from internal waves or other coherent structures from the small-scale
turbulence; a possible solution to this is employing the triple decomposition methodology, which
has been successful for several canonical flows [43,44]. To thoroughly investigate these dynamics,
larger horizontal domains than those employed in this study are recommended. This is due to the
considerable length scales associated with internal waves, as discussed in the literature (see e.g.,
Zonta et al. [20]).

ACKNOWLEDGMENTS

We gratefully acknowledge the support from the Natural Sciences and Engineering Research
Council of Canada (NSERC) through a Postgraduate Scholarship awarded to H.C. and Discovery
Grants awarded to A.K. and Q.Z. This research was enabled in part by the support provided by
the Advanced Research Computing cluster at the University of Calgary and by the Digital Research
Alliance of Canada (formerly Compute Canada). H.C. also received additional support from Alberta
Innovates and Environment and Climate Change Canada through multiple scholarships. We thank
two anonymous referees whose comments helped us improve this paper substantially.

APPENDIX: REYNOLDS-AVERAGED NAVIER-STOKES MODEL

The Nusselt number criterion (13) for the onset of intermittency, shown in Sec. VI, can be utilized
to determine the intermittency boundary on the Reτ -Riτ plane. This helps in predicting the onset of
global intermittency in SCF as a function of the control parameters. For this purpose, it is crucial
to develop a model that estimates the Nusselt number based on Reτ and Riτ . In this Appendix we
present a RANS model specifically formulated for this task.

The Reynolds-averaged momentum (U ) and buoyancy (�) equations for SCF are as follows:

∂U

∂t
= ν

∂2U

∂y2
+ u2

τ

h
− ∂〈u′v′〉

∂y
, (A1a)

∂Φ

∂t
= κ

∂2Φ

∂y2
− ∂〈v′φ′〉

∂y
. (A1b)

These equations are solved numerically to obtain the steady-state solution for U and �. In the RANS
model, the Reynolds stress and buoyancy flux terms are represented by the turbulent viscosity (νt )
and diffusivity (κt ) multiplied by the respective mean gradients:

−〈u′v′〉 = νt
∂U

∂y
, (A2a)

−〈v′φ′〉 = κt
∂Φ

∂y
. (A2b)

Subsequently, a closure model for νt and κt is required. A popular first-order scheme for stable
boundary layers is one proposed by Brost and Wyngaard [45]. This parametrization has proven
effective in operational weather and climate models (see, e.g., Refs. [46–49]). In Ref. [45] the eddy
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(a)

(b)

FIG. 11. Comparison of predicted mean profiles for streamwise velocity (U ) and potential temperature (�)
with DNS data. Results for cases Re180-Ri18, Re360-Ri280, and Re480-Ri1500 are shown as examples.

viscosity is given by

νt = kmuτ ŷ

(
1 − ŷ

H

)1.5

1 + 4.7
ŷ

L

, (A3)

where ŷ is the wall-normal distance, and H represents the characteristic depth of the stable boundary
layer (SBL) and must be parameterized.

Current research is inconclusive regarding the parametrization of SBL height H , a question
that is complicated by complex forcings in atmospheric boundary layers (see, e.g., Refs. [50–54]).
Given that the gradient Richardson number increases monotonically with wall-normal distance, as
illustrated in Fig. 4, it is convenient to base the estimate of SBL depth H on Rig. Specifically, one
can identify H by finding the wall-normal distance ŷ such that Rig retains the critical value Rig,c,
i.e., Rig|ŷ=H = Rig,c. It follows that for height ŷ > H , the flow is “stable” with Rig > Rig,c, and
vice versa. This definition is employed to estimate H dynamically during the RANS calculation.
Multiple choices for the numerical values of Rig,c exist (see Table I of Ref. [53]), and a value of
0.25 is adopted in our model following the Miles-Howard criterion.

As suggested by our DNS data (not shown), the turbulent Prandtl number, i.e., the ratio of the
turbulent viscosity to the turbulent diffusivtity, νt/κt , is close to unity for the entire channel except in
regions within close proximity to the wall. We thus set νt = κt in the RANS model. In the near-wall
region, the values of νt and κt are corrected using the van Driest damping function to ensure their
correct convergence rate toward the wall [19,55].

Figure 11 illustrates the wall-normal profiles of streamwise velocity and potential temperature
predicted by the first-order closure model. The model demonstrates good agreement with DNS data,
accurately reproducing the profiles in both intermittent and fully turbulent flow states.

In Sec. V our analysis suggests that the onset of intermittency for SCF occurs at Nu ≈ 3.0. To
evaluate the model’s accuracy in predicting Nu, we apply it to calculate Nu for all cases included in
our DNS runs, as well as data provided in Refs. [14,20]. Figure 12 displays the Nu predicted by the
RANS model, alongside the DNS data for comparison. The predicted values generally show good
agreement with DNS, although it should be noted that the relative errors tend to be larger for cases
with the lowest friction Reynolds number (Reτ = 180), and that the model seems to consistently
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FIG. 12. Comparison of Nusselt number between the model and DNS. The symbols are color-coded with
the natural logarithm of Riτ . DNS data for Reτ = 550 are from Ref. [14], and for Reτ = 1000 from Ref. [20].

overestimate Nu as compared to DNS results. However, the model’s overall performance is deemed
acceptable, as the relative error between model-predicted values and DNS data stays within 10%.
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