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The Green function, or the wave motion due to a point source pulsating and advancing at
constant forward speed along a semi-infinite ice sheet in finite water depth is investigated,
based on the linear velocity potential theory for fluid flow and thin elastic plate model for
the ice sheet. The result is highly relevant to the ship motions near marginal seas. The
ice edge is assumed to be free, or zero bending moment and shear-force conditions are
used, while other edge conditions can be similarly considered. The Green function G is
derived first through the Fourier transform along the direction of forward speed and then
by the Wiener-Hopf technique along the transverse direction across both the free surface
and ice sheet. The result shows that in the ice-covered domain, G can be decomposed into
three parts. The first one is that upper ocean surface is fully covered by an ice sheet, and the
second and third ones are due to the free surface and ice edge. Similarly, in the free-surface
domain, G contains the component corresponding to that the upper water surface is fully
free, while the second and third ones are due to the ice sheet and ice edge. In both domains,
the latter two are due to the interactions of the free-surface wave and ice sheet deflection,
which leads to the major complication. In-depth investigations are made for each part of G,
and aim to shed some light on the nature of the wave motions induced by a ship advancing
along a semi-infinite ice sheet at constant forward speed.
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I. INTRODUCTION

Icy water regions have become a focal point for environmental protection and future develop-
ments due to the climate change. In the Arctic region especially, with the reduction of the ice
extent and thickness, an overall uptrend of the wave height has been observed [1], and potentially a
shipping route may become possible [2]. When a ship is advancing in marginal sea, it may navigate
in open water along the edge of a large ice sheet to avoid the additional ice loads. Highly complex
behavior of the ship motion can be expected, because of wave reflection and transmission at the edge
of the ice sheet. To understand the nature of interactions between the ship and external environment
is of important practical relevance. This work aims to shed some light on the behavior of wave
motions due to a ship advancing along the edge of an ice sheet.
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There has been extensive research on the wave interactions with a large ice sheet in the context
of geophysics. Field experiment by Robin [3] suggested that a large ice sheet could bend to let
the energy pass through. In many cases, the large ice sheet can be treated as an elastic plate, and
the linear velocity potential theory can be used to describe the fluid flow [4]. When there is no ice
sheet, the pressure on the water surface is assumed to be atmospheric and the wave is commonly
called the free-surface wave [5]. For the water surface covered by an ice sheet, in addition to gravity,
there is also force due to the flexural elasticity of the ice sheet, and the wave is commonly named
the flexural-gravity wave [6]. As a free-surface wave in open water propagates to the ice-covered
region in the form of a flexural-gravity wave, the energy will be partially reflected back due to the
change of physical properties on the water surface. Based on the matched eigenfunction expansion
(MEE) for finite water depth, Fox and Squire [7] solved the two-dimensional (2D) problem of
wave interaction with a semi-infinite ice sheet, in which the unknowns were computed through
the conjugate gradient method to minimize the error function. During the wave–ice interactions,
Fox and Squire [8] showed numerically that the strain magnitudes for reasonable wave heights
were sufficient to break up the ice sheet. The case was later extended by Fox and Squire [9] to
the oblique incident wave, and they confirmed that a critical angle existed if the wave number for
free surface was larger than that for a flexural-gravity wave, similar to the Snell law. Sahoo et al.
[10] introduced an orthogonal inner product to solve the unknowns of the eigenfunction expansions,
and considered the effect of various ice-edge conditions, i.e., free edge, simply supported edge, and
built-in edge. Chakrabarti [11] studied wave interactions with a semi-infinite ice sheet of infinite
water depth by reducing the problem to that of a singular integral equation of the Carleman type
over a semi-infinite range. For the problem of a semi-infinite free surface and a semi-infinite ice
cover, the Wiener-Hopf technique (WHT) is an effective approach, as used by, e.g., Balmforth and
Craster [12] and Tkacheva [13]. In Balmforth and Craster [12], it was shown that the Kirchhoff-Love
model for a thin elastic plate would gave similar results to those by the Timoshenko-Mindlin model,
within a typical range of ice properties and wave parameters. The scattering problem of water waves
by a semi-infinite ice sheet was also solved by Linton and Chung [14] through the residue calculus
technique.

The work on wave–ice–body interaction problem started only more recently, as new shipping
routes and resource extractions in the Arctic would become more feasible in the coming decades
[15]. For 2D wave interactions with a body in an ice polynya, Sturova [16] derived the corresponding
Green function through MEE, and the radiation problem of a submerged cylinder was studied. The
unknown coefficients in the eigenfunction expansions were recomputed for each source position.
To improve the computation efficiency, the Green function was obtained by Sturova and Tkacheva
[17] through WHT. For a rectangular barge floating on the polynya, Ren et al. [18] derived a
semianalytical solution through MEE. By using the eigenfunction expansions in the two ice-covered
regions and boundary integral equation in the polynya, Li et al. [19] developed a hybrid method for
a 2D floating body of arbitrary shape. For a wide polynya, during the ice–body interactions, the
evanescent wave mode from one body can be ignored near another body. Based on this assumption,
Li et al. [20] further developed an approximate solution procedure, through which the nature of the
oscillatory behavior of the hydrodynamic force was uncovered. For 3D wave–ice–body interaction
problems, Ren et al. [21] derived a semianalytical solution for a bottom-mounted vertical circular
cylinder in a circular polynya, and similar oscillatory behaviors of the hydrodynamic force to the
2D problem were found. For practical engineering problems, both the shapes of structure and
polynya may be arbitrary. Li et al. [22] developed a 3D hybrid method in which a series of 2D
integral equations in horizontal plane under the ice and a 3D integral equation in the polynya
were constructed, and the matching solution was obtained through an orthogonal inner product.
By using the Fourier transform along the straight ice edge of infinite length and MEE in the
transverse plane, Li et al. [23] obtained the Green functions for an oscillating source in an ice
channel and that near a semi-infinite ice sheet [24]. Because the Green function satisfies all the
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boundary conditions except that on the body surface, when the governing differential equation
is converted into an integral equation over the boundary, only the integral over the body surface
needs to be kept, which means that only the body surface needs to be discretized in numerical
calculation.

The above work is mainly about the interactions between ocean waves and a body with zero
forward speed. For a ship advancing at constant speed along a straight line in open water, the
Kelvin wave in V shape can be observed behind the ship. The wave consists of transverse and
divergent components, confined within an angle of arcsin(1/3) in deep water [5]. If the surface-
tension effect is considered, Liang and Chen [25] found that the divergent capillary-gravity waves
would disappear for some particular surface tension coefficients and speed of the disturbance. In
addition to the Kelvin angle, Rabaud and Moisy [26] observed the angle corresponding to the
maximum of the amplitude of the waves for real ships, which decreases as the reciprocal of the
speed at large velocities. This was then studied theoretically in Ref. [27] through an axisymmetric
moving pressure. When there is an ice sheet on the water surface, the wave system will be very
much different. By using the asymptotic Fourier analysis, Davys et al. [28] studied the steady
wave patterns generated by a steadily moving source on the ice sheet, and found that the waves
with larger group velocity dominated by elasticity propagate ahead, and the waves with smaller
group velocity follow behind. From the field experiment, Takizawa [29] also observed the two
wave systems, respectively, ahead and behind the moving load, when the speed is larger than the
critical one. Milinazzo et al. [30] derived an analytical solution to the steady flexural-gravity wave
induced by the uniform motion of a rectangular load, which was expressed in the form of a Fourier
integral. It was suggested that the solution might be unbounded at the critical speed. For an ice
sheet confined within boundaries, Shishmarev et al. [31] studied the deflection of an ice sheet
in a water channel bounded by two parallel vertical walls with clamped edge condition. Fourier
transform was used along the channel and eigenmode expansion was adopted across the channel.
Based on WHT, Tkacheva [32] derived an analytical solution for a uniformly moving load on a
semi-infinite ice sheet, and the deflection of the ice sheet as well as the elevation of the free-surface
wave were investigated. The solution procedure was then extended to a moving pressure on an
infinitely extended ice sheet with a crack [33], and in a channel confined by two semi-infinite ice
sheet [34].

In this work, we consider the Green function or the velocity potential induced by a pulsating
source advancing at a uniform forward speed along a semi-infinite ice sheet. Through the solution
of the Green function itself, we can acquire some in-depth understanding of wave interactions with
a body moving in the marginal ice zone. In a much wider context, with the help of the Green
function, the boundary integral equation can be derived for a practical ship, and the hydrodynamic
problem can be solved numerically through the boundary element method, as in the fully free-
surface problem. To solve the problem, we first perform the Fourier transform in the forward speed
direction. WHT is then used in the transverse direction. When the field point is in the ice-covered
(free-surface) part, the Green function can be written as a combination of the Green function for
infinite ice sheet (free surface) and two parts arising from the ice edge and the semi-infinite free
surface (ice sheet). In each of these cases, details of the wave pattern can then be analyzed and the
natures of the wave can be understood.

In the following sections, the mathematical model is formulated in Sec. II, and the governing
equation for the Green function together with the boundary conditions are described. In Sec. III,
the detailed procedure of WHT for this problem is given, and the solution of the Green function is
provided. Then, the formulations for ice-sheet deflection and free-surface wave elevation are given
in Sec. IV. Results are provided and discussed in Sec. V, followed by the conclusions in Sec. VI. In
Appendix A, the roots of the dispersion equation are given, while Appendix B gives the factorization
of the dispersion equation. Appendix C provides the computation of matrix equation from the WHT.
Special case for an infinite ice sheet and an infinite free surface is given in Appendix D. Finally, wave
feature at the far field is derived in Appendix E.
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FIG. 1. Coordinate system and sketch of the problem.

II. MATHEMATICAL MODEL

As sketched in Fig. 1, we consider the wave motions due to a point source pulsating with
encounter radian frequency ω, and advancing at a constant forward speed U , parallel to the
rectilinear edge of a semi-infinite ice sheet. This is related to the engineering problem of a ship
advancing in waves in marginal sea. To describe the problem, two Cartesian coordinate systems are
defined. One is the earth fixed coordinate system O0 − x0y0z0, with the x0 axis along the straight
edge of the semi-infinite ice sheet, z0 axis pointing vertically upwards from the undisturbed water
surface, and y0 axis pointing into the ice sheet. The other is the coordinate system O−xyz, which
moves with the same forward speed as that of the source. The two coordinate systems are related
through the following equations:

(x, y, z) = (x0 − Ut, y0, z0), (2.1)

where t denotes the time.
The fluid is assumed to be inviscid, incompressible, and homogeneous, and its motion to be

irrotational. Thus, the velocity potential φ can be introduced to describe the fluid flow. Based on
the assumption that the amplitude of wave motion is small compared to its length, the linearized
velocity potential theory can be further applied. For an oscillating source at a point q(ξ, η, ζ ), the
velocity potential φ at a field point p(x, y, z) can be written as

φ = Re[G(p, q)eiωt ], (2.2)

where G is commonly known as the Green function [5]. G should satisfy the following governing
equation:

∇2G + ∂2G

∂z2
= −4πδ(x − ξ )δ(y − η)δ(z − ζ ), (2.3)

throughout the fluid domain, where δ(x) is the Dirac delta function, and ∇2 is the two-dimensional
Laplacian operator with respect to x and y. The ice sheet is modeled as a thin elastic plate with
uniform properties, with its draft effect being ignored [12]. Then, the equation of motion for the
vertical deflection w of the ice sheet can be written as [35](

L∇4
0 + m

∂2

∂t2

)
w = p (y0 � 0+ and z0 = 0), (2.4)

where ∇4
0 = ∇2

0 (∇2
0 ), and ∇2

0 is the two-dimensional Laplacian with respect to x0 and y0; L =
Eh3/[12(1 − ν2)] is the effective flexural rigidity of the ice sheet with E and ν, respectively, as

014801-4



WAVE MOTIONS DUE TO A POINT SOURCE PULSATING …

its Young’s modulus and Poisson’s ratio; m = ρih is the mass per unit area of the ice sheet with ρi

as its density; and p is the difference of water pressure and atmosphere pressure on the ice sheet.
During the ice-sheet deflection, it is assumed that there is no gap between the ice sheet and water
upper surface. Through the linearized Bernoulli equation, the pressure p in Eq. (2.4) can be obtained
by

p = −ρw

(
∂φ

∂t
+ gw

)
, (2.5)

where ρw is the density of water and g is the acceleration due to gravity. The kinematic condition on
their interface requires that the fluid-particle velocity in the normal direction of the ice sheet should
be equal to that of ice-sheet deflection, i.e.,

∂φ

∂z0
− ∂w

∂t
= 0 (z0 = 0). (2.6)

Substituting Eq. (2.5) into (2.4), and using Eq. (2.6), we have(
L∇4

0 + m
∂2

∂t2
+ ρwg

)
∂φ

∂z0
+ ρw

∂2φ

∂t2
= 0 (y0 � 0+ and z0 = 0). (2.7)

For y0 � 0− and z0 = 0, w represents the elevation of the free surface on which p = 0. We have

g
∂φ

∂z0
+ ∂2φ

∂t2
= 0 (y0 � 0− and z0 = 0). (2.8)

Using Eq. (2.1) and noticing

∂

∂t

∣∣∣∣
(x0,y0,z0 )

= ∂

∂t

∣∣∣∣
(x,y,z)

− U
∂

∂x
, (2.9)

Equations (2.7) and (2.8) can be also written as[
L∇4 + m

(
∂

∂t
− U

∂

∂x

)2

+ ρwg

]
∂φ

∂z
+ ρw

(
∂

∂t
− U

∂

∂x

)2

φ = 0 (y � 0+ and z = 0), (2.10)

and

g
∂φ

∂z
+

(
∂

∂t
− U

∂

∂x

)2

φ = 0 (y � 0− and z = 0). (2.11)

Here, the removal of the subscript 0 indicates that the partial derivatives with respect to
(x0, y0, z0) have been replaced by those to (x, y, z). At the edge of the semi-infinite ice sheet, zero
bending moment and shear-force edge conditions are assumed, while other edge conditions can be
considered in a similar way. This, together with Eqs. (2.6) and (2.9), provides

B
(

∂φ

∂z

)
= 0 and S

(
∂φ

∂z

)
= 0 (y = 0+ and z = 0), (2.12)

where the operators B and S are defined as

B = ∂2

∂y2
+ ν

∂2

∂x2
and S = ∂

∂y

[
∂2

∂y2
+ (2 − ν)

∂2

∂x2

]
. (2.13)

It may be noticed that y = 0+ and y = 0− with z = 0 indicate that the line is approached from
the ice-sheet side and free-surface side, respectively. The fluid is assumed to have uniform depth H ,
and the impermeable boundary condition requires that

∂φ

∂z
= 0 (z = −H ). (2.14)
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In the far field or x2 + y2 → +∞, the radiation condition should be also imposed, stating that
the radiated waves are outgoing.

III. SOLUTION PROCEDURE FOR THE GREEN FUNCTION

To derive the Green function G, we first introduce a negative imaginary part or −iε to the radian
frequency ω. The role of ε with ε → 0+ is to ensure that the radiation condition is satisfied at the far
field in a manner described by Lighthill [36]. We introduce the dimensionless variables based on the
three basic parameters, i.e., density of water ρw, acceleration due to gravity g, and a characteristic
length l . Thus,

D = L

ρwgl4
, M = m

ρwl
, ε = ε√

g/l
, f = ω√

g/l
, F = U√

gl
, (3.1)

together with (x̂, ŷ, ẑ) = (x, y, z)/l , (ξ̂ , η̂, ζ̂ ) = (ξ, η, ζ )/l , and Ĥ = H/l . In the following text, the
over-hat in the spatial coordinates will be omitted. Substituting Eq. (2.2) into Eqs. (2.10), (2.11),
(2.12), and (2.14), we have[

D∇4 − M

(
f − iε + iF

∂

∂x

)2

+ 1

]
∂G

∂z
−

(
f − iε + iF

∂

∂x

)2

G = 0 (y � 0+ and z = 0),

(3.2)

∂G

∂z
−

(
f − iε + iF

∂

∂x

)2

G = 0 (y � 0−and z = 0), (3.3)

B
(

∂G

∂z

)
= 0 and S

(
∂G

∂z

)
= 0 (y = 0+ and z = 0), (3.4)

∂G

∂z
= 0 (z = −H ). (3.5)

In order to derive G, we use the following double Fourier transform:
�

G(α, y, z) = 1√
2π

∫ +∞

−∞
G(x, y, z)eiαxdx, (3.6)

G̃(α, β, z) = 1√
2π

∫ +∞

−∞

�

G(α, y, z)eiβydy, (3.7)

in the horizontal O-xy plane. Equations (2.3) and (3.5) become

−k2G̃ + ∂2G̃

∂z2
= −2eiαξ eiβηδ(z − ζ ), (3.8)

∂G̃

∂z
= 0 (z = −H ), (3.9)

where
(α, β ) = k(cos θ, sin θ ). (3.10)

The solution to Eq. (3.8) satisfying the boundary condition (3.9) can be written as

G̃ = A(α, β )C(k, z) − 2

k
eiαξ eiβηC(k, z<)S(k, z>), (3.11)

where

z> = max(z, ζ ), (3.12)

z< = min(z, ζ ), (3.13)
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and

C(k, z) = cosh[k(z + H )], (3.14)

S(k, z) = sinh[k(z + H )]. (3.15)

It may be noticed that the first term on the right-hand side of Eq. (3.11) is the general solution to
Eq. (3.8) when the right-hand side is zero, while the second one is a special solution due to the term
on the right-hand side of Eq. (3.8).

Taking into account the different conditions in Eqs. (3.2) and (3.3) on z = 0, the Wiener-Hopf
technique may be used. We first apply the Fourier transform in the x direction to both of them, or

�

I(α, y) = 1√
2π

∫ +∞

−∞

{[
D∇4 − M

(
f − iε + iF

∂

∂x

)2

+ 1

]
∂G

∂z

−
(

f − iε + iF
∂

∂x

)2

G

}
z=0

eiαxdx, (3.16)

�

F (α, y) = 1√
2π

∫ +∞

−∞

[
∂G

∂z
−

(
f − iε + iF

∂

∂x

)2

G

]
z=0

eiαxdx. (3.17)

G̃ in (3.7) is then split into two parts based on the contributions from y � 0− and y � 0+,
respectively, or

G̃(α, β, z) = G̃−(α, β, z) + G̃+(α, β, z), (3.18)

where

G̃±(α, β, z) = ± 1√
2π

∫ ±∞

0

�

G(α, y, z)eiβydy. (3.19)

Correspondingly, we write Ĩ and F̃ as

Ĩ (α, β ) = Ĩ−(α, β ) + Ĩ+(α, β ), (3.20)

F̃ (α, β ) = F̃−(α, β ) + F̃+(α, β ), (3.21)

where

Ĩ±(α, β ) = ± 1√
2π

∫ ±∞

0

�

I(α, y)eiβydy, (3.22)

and

F̃±(α, β ) = ± 1√
2π

∫ ±∞

0

�

F (α, y)eiβydy. (3.23)

From Eqs. (3.11), (3.16), and (3.20), we have

Ĩ(α, β ) = A(α, β )C(k, 0)Kε
i (α, β ) − 2

k
eiαξ eiβηC(k, ζ )

×{[Dk4 − M( f − iε + αF )2 + 1]kC(k, 0) − ( f − iε + αF )2S(k, 0)}, (3.24)

where

Kε
i (α, β ) = [Dk4 − M( f − iε + αF )2 + 1]k tanh(kH ) − ( f − iε + αF )2

≈ Ki(α, β ) + iε�i(α, β ), (3.25)
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with

Ki(α, β ) = [Dk4 − M( f + αF )2 + 1]k tanh(kH ) − ( f + αF )2, (3.26)

�i(α, β ) = 2( f + αF )[Mk tanh(kH ) + 1]. (3.27)

Here, Ki(α, β ) is the dispersion function for a flexural-gravity wave, and �i(α, β ) is due to the
introduction of exp(εt ) with ε → 0+. Similarly, from Eqs. (3.11), (3.17), and (3.21), we have

F̃ (α, β ) = A(α, β )C(k, 0)Kε
f (α, β ) − 2

k
eiαξ eiβηC(k, ζ )

× [kC(k, 0) − ( f − iε + αF )2S(k, 0)], (3.28)

where

Kε
f (α, β ) = k tanh(kH ) − ( f − iε + αF )2

≈ Kf (α, β ) + iε� f (α, β ), (3.29)

with

Kf (α, β ) = k tanh(kH ) − ( f + αF )2, (3.30)

� f (α, β ) = 2( f + αF ). (3.31)

Here, Kf (α, β ) is the dispersion function for a free-surface wave. Invoking the boundary condi-
tions (3.2) and (3.3), we have

Ĩ+(α, β ) = 0 and F̃−(α, β ) = 0. (3.32)

Eliminating A(α, β ) from Eqs. (3.24) and (3.28), and using Eqs. (3.20), (3.21), and (3.32), we
have

Ĩ−(α, β ) = F̃+(α, β )K (α, β ) + 2eiαξ eiβηĈ(k, ζ )
J (α, β )

Kε
f (α, β )

, (3.33)

where

Ĉ(k, ζ ) = C(k, ζ )

C(k, 0)
, (3.34)

K (α, β ) = Kε
i (α, β )

Kε
f (α, β )

, (3.35)

and

J (α, β ) = [Dk4 − M( f − iε + αF )2]( f − iε + αF )2. (3.36)

From Eqs. (3.25) and (3.29), the dispersion equations Kε
i (α, β ) = 0 and Kε

f (α, β ) = 0 with
ε → 0+ give the wave propagation properties in the ice-covered region and free-surface region,
respectively. From (3.26) at a given α, Ki(α, β ) = 0 has two real roots: k = ±κ0 (κ0 > 0), four
complex roots: k = ±κ−2 and k = ±κ−1 (κ−1 is located in the first quadrant and κ−1 = −κ̄−2

with the overbar denoting the complex conjugate), and an infinite number of imaginary roots:
k = ±κm [Im(κm) > 0 and m = 1, . . . ,∞]. From Appendix A, we can see that corresponding to
Ki(α, β ) = 0 at k = κ0, Kε

i (α, β ) = 0 at k = κ0 − iε1sgn( f + αF ), where ε1 → 0+. Then, the roots
of the dispersion equation Kε

i (α, β ) = 0 for β can be written as χm with

χm = ±
√

κ2
m − α2 (0 � arg(χm) � π ). (3.37)

It should be noticed that the sign before the square root should be taken to ensure 0 � arg(χm) �
π . Based on this condition, when κ0 > |α|, we take χ0 = −sgn( f + αF )

√
κ2

0 − α2 + iε2, where
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ε2 → 0+. Similarly, the dispersion equation Kf (α, β ) = 0 from Eq. (3.30) at a given α has two real
roots: k = ±k0 (k0 > 0), and an infinite number of imaginary roots: k = ±km [Im(km) > 0 and m =
1, . . . ,∞]. Corresponding to Kf (α, β ) = 0 at k = k0, Kε

f (α, β ) = 0 at k = k0 − iε3sgn( f + αF ),
where ε3 → 0+. Thus, the roots of the dispersion equation Kε

f (α, β ) = 0 for β can be written as γm

with

γm = ±
√

k2
m − α2 (0 � arg(γm) � π ), (3.38)

where the sign ± will be chosen based on the condition of 0 � arg(γm) � π . Noticing
arg[k0 − iε3sgn( f + αF )] is taken within [0, 2π ), when k0 > |α|, we then have γ0 = −sgn( f +
αF )

√
k2

0 − α2 + iε4, where ε4 → 0+.

When y � 0−, where the upper boundary is a free surface,
�

G can be written in the form of vertical
mode expansion as

�

G =
∞∑

m=0

ame−iγmy cosh[km(z + H )]

cosh(kmH )
. (3.39)

Based on the definition of γm, this gives an outgoing wave at y → −∞. Substituting this into
Eq. (3.19), we have that G̃− is analytic when Im(β ) < τ1. Here, τ1 = min[Im(γ1), Im(γ0)] > 0,
which is equal to ε4 when k0 > |α|. Similarly, from Eq. (3.37), for y � 0+, where the upper water

boundary is covered by the ice sheet, we may write
�

G as

�

G =
∞∑

m=−2

bmeiχmy cosh[κm(z + H )]

cosh(κmH )
. (3.40)

This, with Eq. (3.19), indicates that G̃+ is analytic when Im(β ) > −τ2. Here, τ2 =
min[Im(χ1), Im(χ0)] > 0, which is equal to ε2 when κ0 � |α|.

In accordance with the Wiener-Hopf technique, at a given α, we need to factorize the function
K (α, β ) as

K (α, β ) = K−(α, β )K+(α, β ), (3.41)

based on the regions in the β plane, where K−(α, β ) and K+(α, β ) are analytical in their own
regions, respectively. From Appendix B, we have

K±(α, β ) = (β ± χ−2)(β ± χ−1)

κ−2κ−1

∞∏
m=0

km(β ± χm)

κm(β ± γm)
, (3.42)

where K± have zeros at all the roots of the dispersion relation Kε
i (α, β ) = 0, and poles at all the

roots of the dispersion relation Kε
f (α, β ) = 0. We define the region S+ as Im(β ) > −τ̄ and the

region S− as Im(β ) < τ̄ , where τ̄ = min(τ1, τ2) with τ1 and τ2 defined below Eqs. (3.39) and (3.40),
respectively. Then, in the region S+ (S−), K+ (K−) is analytical, and also K+ (K−) has no zero.

Substituting Eq. (3.41) into Eq. (3.33), we have

F̃+(α, β )K+(α, β ) = Ĩ−(α, β )

K−(α, β )
− 2eiαξ eiβηĈ(k, ζ )J (α, β )

K+(α, β )

Kε
i (α, β )

, (3.43)

the last term of which needs to be further decomposed. We have

eiβηĈ(k, ζ )J (α, β )
K+(α, β )

Kε
i (α, β )

= M+(α, β ) + M−(α, β ), (3.44)
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where M+ (M−) is analytical in S+ (S−). When η < 0, we may use the Cauchy integral [37] in the
lower half plane and obtain M+ as

M+(α, β ) =
∞∑

m=0

e−iγmηĈ(km, ζ )J (α,−γm )

K−(α,−γm)Kε
f
′(α,−γm)(β + γm)

. (3.45)

Subsequently, M− can be obtained from

M−(α, β ) = eiβηĈ(k, ζ )J (α, β )

K−(α, β )Kε
f (α, β )

− M+(α, β ). (3.46)

When η > 0, Cauchy integral can be applied in the upper half plane to obtain M−. Here,
Eq. (3.41) has been used, and

Kε
f
′(α, β ) = ∂Kε

f (α, β )

∂β
. (3.47)

Substituting Eq. (3.44) into Eq. (3.43), we have

F̃+(α, β )K+(α, β ) + 2eiαξ M+(α, β ) = Ĩ−(α, β )

K−(α, β )
− 2eiαξ M−(α, β ). (3.48)

Each term on the left-hand side of Eq. (3.48) is analytical in the region S+, while that on the
right-hand side is analytical in the region S−. Both of them are analytical in the overlapping region
of S+ and S−, or −τ̄ < Im(β ) < τ̄ . Through analytical continuation, Eq. (3.48) defines a function
Q(β ), which is analytical in the whole β plane. As Q(β ) is an entire function, it can be written as a
power series. Then, we may rewrite Eq. (3.48) as

Q(β ) = F̃+(α, β )K+(α, β ) + 2eiαξ M+(α, β ) = Ĩ−(α, β )

K−(α, β )
− 2eiαξ M−(α, β ). (3.49)

Replacing Ĩ−(α, β ) in Eq. (3.24) by Eq. (3.49), and noticing Eqs. (3.20) and (3.32), we have

A(α, β ) = Q(β )K−(α, β )

C(k, 0)Kε
i (α, β )

+ 2eiαξ M−(α, β )K−(α, β )

C(k, 0)Kε
i (α, β )

+ 2eiαξ eiβηĈ(k, ζ )

[
Dk4 − M( f − iε + αF )2 + 1

C(k, 0)Kε
i (α, β )

+ S(k, 0)

k

]
. (3.50)

Similarly, replacing F̃+(α, β ) in Eq. (3.28) by Eq. (3.49), we obtain

A(α, β ) = Q(β )

C(k, 0)K+(α, β )Kε
f (α, β )

− 2eiαξ M+(α, β )

C(k, 0)K+(α, β )Kε
f (α, β )

+ 2eiαξ eiβηĈ(k, ζ )

[
1

C(k, 0)Kε
f (α, β )

+ S(k, 0)

k

]
. (3.51)

Substituting Eq. (3.50) into (3.11), we have

G̃ = G̃I + Ĉ(k, z)
Q(β )K−(α, β )

Kε
i (α, β )

+ 2eiαξĈ(k, z)
M−(α, β )K−(α, β )

Kε
i (α, β )

. (3.52)

Here, G̃I is given in Eq. (D3), which is the double Fourier transform of the Green function GI for
the case of water surface being fully covered by an ice sheet of infinite extent. Applying the inverse
Fourier transform to Eq. (3.52) with respect to β, or

�

G(α, y, z) = 1√
2π

∫ +∞

−∞
G̃(α, β, z)e−iβydβ, (3.53)
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we have

�

G = �

GI + 1√
2π

∫ +∞

−∞
e−iβyĈ(k, z)

Q(β )K−(α, β )

Kε
i (α, β )

dβ

+ 2eiαξ

√
2π

∫ +∞

−∞
e−iβyĈ(k, z)

M−(α, β )K−(α, β )

Kε
i (α, β )

dβ, (3.54)

where
�

GI is given in Eq. (D7). Because χm and γm both tend to imπ as m → ∞, from Eqs. (3.25) and
(3.42), we have that Kε

i (α, β ) = O(β5) and K−(α, β ) = O(β2) when β → ∞. Thus, in Eq. (3.54),
we may write

Q(β ) = 2eiαξ [a(α) + b(α)β], (3.55)

as β2 in Q(β ) would lead to a singularity in the form of ln(
√

y2 + z2) near the edge of the ice sheet,
and βn with n > 2 would lead to a higher-order singularity in the form of dn−2[ln(

√
y2 + z2)]/dyn−2

or dn−2[ln(
√

y2 + z2)]/dzn−2.
From Eq. (3.54), we obtain(

∂
�

G

∂z

)
z=0

= 2eiαξ

√
2π

[
�

I 1(α, y)a(α) + �

I 2(α, y)b(α) + �

I 3(α, y)], (3.56)

where

�

I 1(α, y) =
∫ +∞

−∞
e−iβyk tanh(kH )

K−(α, β )

Kε
i (α, β )

dβ, (3.57)

�

I 2(α, y) =
∫ +∞

−∞
e−iβyβk tanh(kH )

K−(α, β )

Kε
i (α, β )

dβ, (3.58)

�

I 3(α, y) =
∫ +∞

−∞
e−iβy

[
k tanh(kH )

M−(α, β )K−(α, β )

Kε
i (α, β )

+ eiβηĈ(k, ζ )
( f − iε + αF )2

Kε
i (α, β )

]
dβ.

(3.59)

In Eq. (3.59), the following equation has been used:

∂
�

GI

∂z

∣∣∣∣∣∣
z=0

= 2eiαξ

√
2π

∫ +∞

−∞
eiβ(η−y)Ĉ(k, ζ )

( f − iε + αF )2

Kε
i (α, β )

dβ. (3.60)

Applying Fourier transform to the ice-edge condition (3.4) with respect to x, we have

�

B
(

∂
�

G

∂z

)
= 0 and

�

S
(

∂
�

G

∂z

)
= 0 (y = 0+ and z = 0), (3.61)

where

�

B = ∂2

∂y2
− να2, (3.62)

�

S = ∂

∂y

[
∂2

∂y2
− (2 − ν)α2

]
. (3.63)

Substituting Eq. (3.56) into (3.61), we have[
W11 W12

W21 W22

]{
a(α)

b(α)

}
=

{
D1

D2

}
, (3.64)
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where

W11 = �

I ′′
1(α, 0) − να2

�

I 1(α, 0), (3.65)

W12 = �

I ′′
2(α, 0) − να2

�

I 2(α, 0), (3.66)

W21 = �

I ′′′
1(α, 0) − (2 − ν)α2

�

I ′
1(α, 0), (3.67)

W22 = �

I ′′′
2(α, 0) − (2 − ν)α2

�

I ′
2(α, 0), (3.68)

D1 = να2
�

I 3(α, 0) − �

I ′′
3(α, 0), (3.69)

D2 = (2 − ν)α2
�

I ′
3(α, 0) − �

I ′′′
3(α, 0). (3.70)

Here, the prime denotes partial derivative with respect to y. The computation of Eqs. (3.65) to
(3.70) is given in Appendix C.

Substituting Eq. (3.55) into Eq. (3.54) and performing the inverse transform with respect to α,
we have

G = GI + GIF + GIE , (3.71)

where GI is given in Eq. (D8), and

GIF = 1

π

∫ +∞

−∞

∫ +∞

−∞
ei[α(ξ−x)−βy]Ĉ(k, z)

M−(α, β )K−(α, β )

Kε
i (α, β )

dαdβ, (3.72)

GIE = 1

π

∫ +∞

−∞

∫ +∞

−∞
ei[α(ξ−x)−βy]Ĉ(k, z)[a(α) + b(α)β]

K−(α, β )

Kε
i (α, β )

dαdβ. (3.73)

Equation (3.71) may be rewritten in another form. Substituting Eq. (3.51) into Eq. (3.11), and
using Eq. (3.55), we have

G̃ = G̃F + 2eiαξĈ(k, z)
a(α) + b(α)β

K+(α, β )Kε
f (α, β )

− 2eiαξĈ(k, z)
M+(α, β )

K+(α, β )Kε
f (α, β )

, (3.74)

where G̃F is given in Eq. (D12). Taking inverse Fourier transform of Eq. (3.74) with respect to α

and β, we have

G = GF + GFI + GFE , (3.75)

where GF is the free-surface Green function given in Eq. (D10), and

GFI = − 1

π

∫ +∞

−∞

∫ +∞

−∞
ei[α(ξ−x)−βy]Ĉ(k, z)

M+(α, β )

K+(α, β )Kε
f (α, β )

dαdβ, (3.76)

GFE = 1

π

∫ +∞

−∞

∫ +∞

−∞
ei[α(ξ−x)−βy]Ĉ(k, z)

a(α) + b(α)β

K+(α, β )Kε
f (α, β )

dαdβ. (3.77)

Equations (3.35) and (3.41) indicate that GFE = GIE .
For the free-surface Green function, the wave amplitude at the track is unbounded when both

the source point and field point are on the water surface, or y = η and z = ζ = 0 [38]. This is a
result of idealization of the mathematical model and is nonphysical. It can be eliminated through
the inclusion of fluid viscosity effects as shown in Ref. [39]. Here, while rigorous derivation would
be required to make a solid conclusion, similar behavior is also expected.
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IV. WAVE PATTERNS INDUCED BY THE POINT SOURCE

A. Ice-sheet deflection wave pattern

We use Eq. (3.71) to analyze the wave patterns in the domain covered by a semi-infinite ice sheet
or y � 0+. Invoking the kinematic boundary condition on the ice sheet, or[

i( f − iε) − F
∂

∂x

]
W = ∂G

∂z
(z = 0), (4.1)

where W is the deflection of the ice sheet, and using Fourier transform, we have

W = 1√
2π

∫ +∞

−∞

e−iαx

i( f − iε + αF )

⎛
⎝∂

�

G

∂z

⎞
⎠

z=0

dα. (4.2)

Invoking Eq. (3.56), we obtain

W = WI + WIF + WIE , (4.3)

where

WI = 1

iπ

∫ +∞

−∞
( f − iε + αF )eiα(ξ−x)dα

∫ +∞

−∞
eiβ(η−y) Ĉ(k, ζ )

Kε
i (α, β )

dβ, (4.4)

WIF = 1

iπ

∫ +∞

−∞

eiα(ξ−x)

f − iε + αF
dα

∫ +∞

−∞
e−iβyk tanh(kH )

M−(α, β )K−(α, β )

Kε
i (α, β )

dβ, (4.5)

WIE = 1

iπ

∫ +∞

−∞

eiα(ξ−x)

f − iε + αF
dα

∫ +∞

−∞
e−iβyk tanh(kH )[a(α) + b(α)β]

K−(α, β )

Kε
i (α, β )

dβ. (4.6)

For integration with respect to β, we may use the Cauchy residual theorem in the lower half
of the complex β plane, as the integration along an infinitely large semicircle is zero. Taking into
account of all the poles of Ki(α, β ) = 0, Eqs. (4.4) and (4.6) become

WI = −2
∫ +∞

−∞
( f + αF )eiα(ξ−x)

∞∑
m=−2

eiχm (y−η) Ĉ(κm, ζ )

K ′
i(α,−χm)

dα, (4.7)

WIE = −2
∫ +∞

−∞
eiα(ξ−x)

∞∑
m=−2

eiχmyκm tanh(κmH )
a(α) − b(α)χm

f + αF

K−(α,−χm)

K ′
i(α,−χm)

dα. (4.8)

Substituting Eq. (3.46) into Eq. (4.5), we have

WIF = 1

iπ

∫ +∞

−∞

eiα(ξ−x)

f − iε + αF
dα

∫ +∞

−∞

e−iβyk tanh(kH )

Kε
i (α, β )

×
[

eiβηĈ(k, ζ )J (α, β )

Kε
f (α, β )

− K−(α, β )
∞∑

m=0

e−iγmηĈ(km, ζ )J (α,−γm )

K−(α,−γm)Kε′
f (α,−γm)(β + γm)

]
dβ, (4.9)

which can be converted to a series as

WIF = 2
∫ +∞

−∞

eiα(ξ−x)

f + αF

∞∑
m=−2

eiχmy

K ′
i(α,−χm)

⎡
⎣( f + αF )2e−iχmηĈ(κm, ζ )

+ κm tanh(κmH )K−(α,−χm)
∞∑
j=0

e−iγ jηĈ(k j, ζ )J (α,−γ j )

K−(α,−γ j )K ′
f (α,−γ j )(γ j − χm)

⎤
⎦dα, (4.10)

where Eq. (C5) has been used.
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B. Free-surface wave pattern

Here, we shall use Eq. (3.75) to analyze the free-surface wave pattern in the region of y � 0−.
Applying the inverse Fourier transform to Eq. (3.74) with respect to β, and substituting the obtained
results into Eq. (4.2), we have

W = WF + WFI + WFE , (4.11)

where

WF = 1

iπ

∫ +∞

−∞
( f − iε + αF )eiα(ξ−x)dα

∫ +∞

−∞
eiβ(η−y) Ĉ(k, ζ )

Kε
f (α, β )

dβ, (4.12)

WFI = − 1

iπ

∫ +∞

−∞

eiα(ξ−x)

f − iε + αF
dα

∫ +∞

−∞
e−iβyk tanh(kH )

M+(α, β )

K+(α, β )Kε
f (α, β )

dβ, (4.13)

WFE = 1

iπ

∫ +∞

−∞

eiα(ξ−x)

f − iε + αF
dα

∫ +∞

−∞
e−iβyk tanh(kH )

a(α) + b(α)β

K+(α, β )Kε
f (α, β )

dβ. (4.14)

Here, Eqs. (3.35) and (3.41) indicate that WFE = WIE . Similar to the ice-sheet deflection wave,
the integrals with respect to β in the above equations can be converted into a series using the Cauchy
residual theorem in the upper half plane. For Eqs. (4.12) and (4.14), we have

WF = 2
∫ +∞

−∞
( f + αF )eiα(ξ−x)

∞∑
m=0

eiγm|η−y| Ĉ(km, ζ )

K ′
f (α, γm)

dα, (4.15)

WFE = 2
∫ +∞

−∞
( f + αF )eiα(ξ−x)

∞∑
m=0

e−iγmy a(α) + b(α)γm

K+(α, γm)K ′
f (α, γm)

dα, (4.16)

where km tanh(kmH ) = ( f + αF )2 has been used. Substituting Eq. (3.45) into Eq. (4.13), we
have

WFI = − 1

iπ

∫ +∞

−∞

∫ +∞

−∞

eiα(ξ−x)

f − iε + αF
× e−iβyk tanh(kH )

K+(α, β )Kε
f (α, β )

×
∞∑

m=0

e−iγmηĈ(km, ζ )J (α,−γm)

K−(α,−γm)Kε′
f (α,−γm)(β + γm)

dαdβ, (4.17)

which can be converted to a series as

WFI = −2
∫ +∞

−∞
eiα(ξ−x)

∞∑
m=0

e−iγmy( f + αF )

K+(α, γm)K ′
f (α, γm)

∞∑
j=0

e−iγ jηĈ(k j, ζ )J (α,−γ j )

K−(α,−γ j )K ′
f (α,−γ j )(γm + γ j )

dα.

(4.18)

V. NUMERICAL RESULTS

To provide meaningful results in physics, the typical values of the parameters of ice sheet and
fluid are set to be

E = 5 GPa, ν = 0.3, ρi = 922.5 kg/m3, ρw = 1025 kg/m3, H = 100 m, (5.1)

which are similar to those obtained from the field experiment in polar regions [40]. As given in
Eq. (3.1), all the results in the following text will be provided in the dimensionless form, based
on the combination of the density of water ρw, the acceleration due to gravity g = 9.8 m/s2, and a
characteristic ship length l = 100 m. The forward speed U will vary from 0 to 1.1

√
gl m/s, which

includes the typical range of a displacement ship and a high-speed air-cushion vehicle [41]. The
range of radian frequency ω is set to be from 0 to 4

√
g/l rad/s [42].
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FIG. 2. The free-surface wave elevation at y = 0− and ice-sheet deflection at y = 0+, with different
truncated number MT . (a) real part of W ; (b) imaginary part of W [(ξ, η, ζ ) = (0, −0.5, −0.1), F = 0.2,
f = 1, h = 0.01, D = 4.5582 × 10−4, M = 9 × 10−3].

Numerical computations of a(α) and b(α) in Eq. (3.64) are carried out through truncating the
infinite summations in Appendix B at a finite number of m = MT . The same number m = MT

is also used for the calculation of K± and M± in Eqs. (3.42), (3.45), and (3.46). Similar to the
numerical scheme in Milinazzo et al. [30], the ice-sheet deflection in Sec. IV A and free-surface
wave elevation in Sec. IV B are calculated numerically using an adaptive Gaussian quadrature,
in which the truncated terms of the infinite summations depend on the value of y. Five-decimal
accuracy is used to decide whether the convergence is obtained.

A. Convergence study and verification

Computations are first carried out for the waves near the ice edge induced by a source at
(ξ, η, ζ ) = (0,−0.5,−0.1). Figure 2 shows the free-surface wave elevation at y = 0− and ice-sheet
deflection at y = 0+. The Froude number is taken to be F = 0.2, and the radian frequency of
oscillation is set to be f = 1. It can be observed that there is no visible difference between the results
obtained by MT = 100 and MT = 200, which indicates that the convergence has been achieved. In
the following texts, the former will be used to carry out the numerical computations of the results,
if it is not specified.

Further verifications are carried out for a special case with F = 0. The Green function for a
source oscillating without forward speed has been derived by Li and Wu [24], through first applying
the Fourier transform in the longitudinal direction along the ice edge, and then using the MEE in the
transverse plane normal to the ice edge. Figure 3 shows the free-surface wave elevation at y = 0−
and ice-sheet deflection at y = 0+. The position of the source point is the same as that in Fig. 1, and
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FIG. 3. The free-surface wave elevation at y = 0− and ice-sheet deflection at y = 0+, computed through
different methods. (a) Real part of W ; (b) imaginary part of W [(ξ, η, ζ ) = (0,−0.5, −0.1), F = 0, f = 4,
h = 0.01, D = 4.5582 × 10−4, M = 9 × 10−3].

f = 4. It can be seen from this figure that the results obtained by the WHT show a good agreement
with those computed by the MEE. As noted by Evans and Porter [43], the eigenfunctions for the
vertical modes of flexural gravity wave motion are nonorthogonal in a standard sense, and could
be incomplete. To validate the method of MEE, they solved the same two-dimensional diffraction
problem by an ice crack through the Green function approach, and showed that the two solutions
are identical. Similar verifications were performed by Brocklehurst et al. [44] and Korobkin et al.
[45] through the linear diffraction problem for a vertical circular cylinder frozen in an ice sheet
of infinite extent, and found that the Weber integral transform and the MEE gave identical results.
Here, as demonstrated in Fig. 3, the WHT and MEE give the same numerical results for the upper
water surface partially covered by an ice sheet.

B. Wave motions along the ice edge

The free-surface wave elevation and ice-sheet deflection is generally different at the ice edge,
as shown in Figs. 2 and 3. This is because that although they share the same kinematic boundary
condition (2.6), the dynamic boundary condition is different. Substituting Eq. (3.46) into Eq. (4.5),
we have

WIF = 1

iπ

∫ +∞

−∞
( f − iε + αF )eiα(ξ−x)dα

∫ +∞

−∞
eiβ(η−y)Ĉ(k, ζ )

Kε
i (α, β ) − Kε

f (α, β )

Kε
i (α, β )Kε

f (α, β )
dβ

− 1

iπ

∫ +∞

−∞

eiα(ξ−x)

f − iε + αF
dα

∫ +∞

−∞
e−iβyk tanh(kH )

M+(α, β )

K+(α, β )Kε
f (α, β )

dβ. (5.2)
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FIG. 4. The free-surface wave elevation W at y = 0−, with different ice thickness h. (a) Real part of W ; (b)
imaginary part of W [(ξ, η, ζ ) = (0,−0.5, −0.1), F = 0.2, f = 1].

This, together with Eq. (4.4), indicates that

WI + WIF = WF + WFI . (5.3)

After transforming the integrations with respect to β into the infinite summations, Eqs. (4.7) and
(4.10) can be also used for y = 0−. Thus, the discontinuity of W at y = 0 is due to WIE (y = 0+) in
Eq. (4.8) and WFE (y = 0−) in Eq. (4.16). Since WIE = WFE , as explained above Eq. (4.14). The
discontinuity is due to the fact that WIE or WFE is discontinuous at y = 0.

When the semi-infinite ice sheet is absent, or the upper water surface is fully the free surface, the
waves generated by the source are mainly dependent on the dispersion relation, Kf (α, β ) = 0. We
may rewrite it as

k̂ tanh
(
k̂/F 2

H

) − (τ + α̂)2 = 0, (5.4)

where

(α̂, k̂, τ, FH ) = (αF 2, kF 2, f F,U/
√

gH ). (5.5)

Equation (5.4) indicates that the waves are dependent on both τ and FH . For steady flows with f = 0,
the transverse waves will disappear behind the source for supercritical speed FH > 1, while for
f �= 0, there still exists time-harmonic transverse waves even for FH > 1 [46]. When the source is
moving near the edge of a semi-infinite ice sheet, the waves will be affected by both the free-surface
boundary condition with y � 0− and ice-covered boundary condition with y � 0+.

Figure 4 shows the free-surface wave elevation at y = 0− along the ice edge for a given Froude
number F = 0.2 and wave radian frequency f = 1, with different ice-sheet thickness h. The source
position is at (ξ, η, ζ ) = (0,−0.5,−0.1). Figure 5 depicts the corresponding ice-sheet deflection at
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FIG. 5. The ice-sheet deflection W at y = 0+, with different ice thickness h. (a) Real part of W ; (b)
imaginary part of W [(ξ, η, ζ ) = (0,−0.5, −0.1), F = 0.2, f = 1].

y = 0+ along the ice edge. It can be seen from Figs. 4 and 5 that the waves along y = 0+ and y = 0−
at x > 0 are much longer than those at x < 0. For longer waves, both W at y = 0+ and y = 0− with
different h are much closer to that with h = 0. This is because that at larger wavelength or smaller
wave number, the dispersion relations for flexural-gravity wave and free-surface wave become
closer. From Eq. (E17) for the far-field wave component of the Green function, we have that the
wave motion is mainly determined by components with wave number obtained from the dispersion
relation. Similar dispersion relation leads to similar wave elevations. As the wave becomes shorter or
the wave number becomes larger at x < 0, the effect of ice-sheet thickness becomes obvious. When
h → 0, both W at y = 0+ and y = 0− tend to WF , as can be expected. As h increases, however, the
free-surface wave elevations W at y = 0− for different h depart from each other. Similar results can
be also observed for the ice-sheet deflection W at y = 0+. Generally, the amplitude of both W at
y = 0+ and y = 0− decreases with the increase of h, i.e., the ice sheet will depress the free-surface
wave elevation along the edge.

Figure 6 shows the free-surface wave elevation at y = 0− along the ice edge for a given Froude
number F = 0.2 and ice-sheet thickness h = 0.01. Four wave radian frequencies are considered,
i.e., f = 1, 2, 3, 4. The source position is taken to be the same as that in Fig. 4. The corresponding
ice-sheet deflection at y = 0+ along the ice edge is depicted in Fig. 7. In Figs. 8 and 9, WF for infinite
free surface and WI for infinite ice sheet are provided, respectively. It can be observed from Figs. 6
and 7 that the amplitude of the wave at both y = 0− and y = 0+ ahead of the source decreases with
the increases of f . For infinite free surface, Fig. 8 shows that WF ahead of the source is nearly zero
when f � 2. This is very much related to the critical τ value, which is 1/4 [5] when H is infinite
and is affected by water depth when H is finite (e.g., Ref. [47]), while for the water surface covered
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FIG. 6. The free-surface wave elevation W at y = 0−, with different radian frequency f . (a) Real part of W ;
(b) imaginary part of W [(ξ, η, ζ ) = (0, −0.5, −0.1), F = 0.2, h = 0.01, D = 4.5582×10−4, M = 9×10−3].

by an ice sheet of infinite extent, waves ahead of the source are visible at 1 � f � 4, as shown in
Fig. 9. When the water surface is covered by a semi-infinite ice sheet and the source is located in
the free-surface part, ahead of the source, W is larger than WF at y = 0− while W is smaller than WI

at y = 0+ for f � 2. This is because the free-surface waves generated by the source will transmit
into the ice-covered region, and propagate in form of flexural-gravity waves. The waves dominated
by elasticity propagate ahead of the source, and the deflection of the ice sheet W at y = 0+ will lead
to the free-surface wave elevation W at y = 0−. As only part of the free-surface wave energy can
transmit into the ice-covered region, W at y = 0+ is smaller than that of an infinite ice sheet.

C. The far-field free-surface and ice-sheet deflection wave patterns

The far-field features of the wave pattern can be further determined by applying the stationary
phase method to Eq. (E17), with [48]

ψ = αx̄ + β ȳ (5.6)

as the phase function along the dispersion curves. The stationary points are defined by

ψ ′ = α′x̄ + β ′ȳ = 0, (5.7)

where the prime denotes derivative with respect to S (see Appendix E). The wavelength corre-
sponding to a stationary point of Eq. (5.7) is λ = 2π/k. Introducing the polar coordinate system, or
(x̄, ȳ) = R(cos ϑ, sin ϑ ), and noticing

dK

dS
= Kαα′ + Kββ ′ = 0 (5.8)
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FIG. 7. The ice-sheet deflection W at y = 0+, with different radian frequency f . (a) Real part of W ;
(b) imaginary part of W [(ξ, η, ζ ) = (0, −0.5, −0.1), F = 0.2, h = 0.01, D = 4.5582 × 10−4, M = 9 ×
10−3].

along the dispersion curve K (α, β ) = 0, we can rewrite Eq. (5.7) as

x̄Kβ − ȳKα = R|∇K| sin(γ − ϑ ) = 0. (5.9)

Here, γ is the angle between the unit normal vector to the dispersion curve and the α axis, i.e.,

(Kα, Kβ ) = |∇K|(cos γ , sin γ ). (5.10)

Equation (5.9) indicates that at a stationary point on the dispersion curve, the direction of the wave
is either γ = ϑ with sgn(�) = 1 or γ = ϑ + π with sgn(�) = −1. For flexural-gravity wave and
free-surface wave, we have, respectively, � = �i and � = � f , as given in Eqs. (3.27) and (3.31).

For a wave in the form of exp[−i(ψ− f t )], the phase velocity 	vp and group velocity 	vg can be
given as [36]

	vp = (α, β )
f

k2
, (5.11)

and

	vg =
(

∂ f

∂α
,
∂ f

∂β

)
= −(Kα, Kβ )

1

K, f
, (5.12)

respectively, where K, f = ∂K/∂ f and k =
√

α2 + β2. Invoking Eqs. (5.6) and (5.9), the curves
along which the phase ψ is constant are given as

(x̄m, ȳm) = ψ±
m (Kα, Kβ )/(αKα + βKβ ), (5.13)
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FIG. 8. The free-surface wave elevation WF at y = 0−, with different radian frequency f . (a) Real part
of WF ; (b) imaginary part of WF [(ξ, η, ζ ) = (0, −0.5, −0.1), F = 0.2, h = 0.01, D = 4.5582 × 10−4, M =
9 × 10−3].

where

ψ±
m = ψ0 ± 2mπ (m = 1, 2, . . .), (5.14)

and ψ0 is the solution of Eq. (5.7). Here, the phase jump at the cusp line is ignored, where the cusp
angle can be determined by requiring the second-order derivative of the phase function equal to zero
or ψ ′′ = 0 [36]. From (E17), we have

sgn[(x̄Kα + ȳKβ )�] > 0. (5.15)

In Eq. (5.14), only those m which satisfy Eq. (5.15) can be taken. From Eqs. (5.12) and (5.15), we
have

(x̄m, ȳm) · 	vg = − x̄mKα + ȳmKβ

K, f
> 0, (5.16)

where � = −K, f has been used. This indicates that the wave energy is propagating away from the
source, which is consistent with the radiation condition.

We may consider the wave pattern when the field point p is sufficiently far from the source point
q, or R =

√
x̄2 + ȳ2 → ∞ with (x̄, ȳ) = (x−ξ, y−η). Invoking Eq. (E17) in Appendix E, Eqs. (4.3)

to (4.6) can be approximated as

lim
R→∞

W ≈ −
MI∑

m=1

∫
SI

m

�i(α, β )wi(α, β )
e−i(αx̄+β ȳ)

|∇Ki| dS, (5.17)
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FIG. 9. The ice-sheet deflection WI at y = 0+, with different radian frequency f . (a) Real part of WI ;
(b) imaginary part of WI [(ξ, η, ζ ) = (0, −0.5, −0.1), F = 0.2, h = 0.01, D = 4.5582 × 10−4, M = 9 ×
10−3].

where

wi(α, β ) = wI (α, β ) + wIF (α, β ) + wIE (α, β ), (5.18)

wI (α, β ) = ( f + αF )Ĉ(ζ ), (5.19)

wIF (α, β ) = M−(α, β )K−(α, β )

f + αF
k tanh(kH )e−iβη, (5.20)

wIE (α, β ) = [a(α) + b(α)β]K−(α, β )

f + αF
k tanh(kH )e−iβη, (5.21)

�i(α, β ) = sgn[x̄Ki,α (α, β ) + ȳKi,β (α, β )] + sgn[�i(α, β )]. (5.22)

SI
m (m = 1, . . . , MI ) in Eq. (5.17) represents the mth segment of the dispersion curve in the (α, β )

plane with Ki(α, β ) = 0. Similarly, Eqs. (4.11) to (4.14) can be approximated as

lim
R→∞

W ≈ −
MF∑

m=1

∫
SF

m

� f (α, β )w f (α, β )
e−i(αx̄+β ȳ)

|∇Kf | dS, (5.23)
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FIG. 10. Crestlines of the free-surface wave at ȳ � 0− and flexural-gravity wave at ȳ � 0+, with different
radian frequency f . (a) is for f = 1; (b) is for f = 2; (c) is for f = 3; and (d) is for f = 4 [(ξ, η, ζ ) =
(0,−0.5, −0.1), F = 0.2, h = 0.01, D = 4.5582 × 10−4, M = 9 × 10−3].

where

w f (α, β ) = wF (α, β ) + wFI (α, β ) + wFE (α, β ), (5.24)

wF (α, β ) = ( f + αF )Ĉ(ζ ), (5.25)

wFI (α, β ) = − M+(α, β )

( f + αF )K+(α, β )
k tanh(kH )e−iβη, (5.26)

wFE (α, β ) = a(α) + b(α)β

( f + αF )K+(α, β )
k tanh(kH )e−iβη, (5.27)

� f (α, β ) = sgn[x̄Kf ,α (α, β ) + ȳKf ,β (α, β )] + sgn[� f (α, β )], (5.28)

and SF
m (m = 1, . . . , MF ) represents the mth segment of the dispersion curve in the (α, β ) plane with

Kf (α, β ) = 0.
Figure 10 shows the crestlines for fully free-surface wave WF at ȳ � 0− and fully flexural-gravity

wave WI at ȳ � 0+. The Froude number is taken to be F = 0.2. Four wave radian frequencies are
considered, i.e., f = 1, 2, 3, 4. For flexural-gravity wave dominated by the dispersion equation
Ki(α, β ) = 0, the wave system is composed of ring waves, and within the computed range of wave
radian frequency the wavelength decreases with the increase of f . For free-surface wave dominated
by the dispersion equation Kf (α, β ) = 0, at a smaller wave radian frequency ( f = 1), the wave
system is composed of inner-V waves, outer-V waves, and the ring waves. As the wave radian
frequency increases, the ring waves disappear when τ is larger than a critical value, and the outer-V
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FIG. 11. The free-surface wave elevation WF at y � 0− and ice-sheet deflection WI at y � 0+, with different
radian frequency f . (a), (b) are for f = 1; (c), (d) are for f = 2; (e), (f) are for f = 3; and (g), (h) are for f = 4
[(ξ, η, ζ ) = (0,−0.5, −0.1), F = 0.2, h = 0.01, D = 4.5582 × 10−4, M = 9 × 10−3].
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FIG. 12. The free-surface wave elevation W at y � 0− and ice-sheet deflection W at y � 0+, with different
radian frequency f . (a), (b) are for f = 1; (c), (d) are for f = 2; (e), (f) are for f = 3; and (g), (h) are for f = 4
[(ξ, η, ζ ) = (0, −0.5, −0.1), F = 0.2, h = 0.01, D = 4.5582 × 10−4, M = 9 × 10−3].
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FIG. 13. The free-surface wave elevation W at y � 0− and ice-sheet deflection W at y � 0+. (a), (b) are the
same as (c), (d) in Fig. 12 but with a higher color resolution [(ξ, η, ζ ) = (0,−0.5, −0.1), F = 0.2, h = 0.01,
D = 4.5582 × 10−4, M = 9 × 10−3].

waves become the partial ring and fan waves. For the ring waves, the wavelengths for free-surface
wave and flexural-gravity wave are close to each other. This can be more clearly observed from
Fig. 11, which shows the contour plot of free-surface wave elevation WF in Eq. (4.15) at y � 0−
and ice-sheet deflection WI in Eq. (4.7) at y � 0+. The source position is taken to be at (ξ, η, ζ ) =
(0,−0.5,−0.1). It can be also observed from Fig. 11 that the amplitude of the inner-V waves is
generally smaller than that of the ring waves or partial ring and fan waves.

Figure 12 depicts the contour plot of wave patterns when the upper water surface is covered by
an ice sheet of semi-infinite extent, i.e., the free-surface wave elevation in Eq. (4.11) at y � 0− and
ice-sheet deflection in Eq. (4.3) at y � 0+. It can be observed from Fig. 12 that the free-surface wave
pattern at y � 0− will be very much affected by the semi-infinite ice sheet at y � 0+. Due to the
change of the physical properties of upper water surface, the wave energy generated by the source
will be partially reflected back to the region y � 0−. Compared with Fig. 11, there are two systems
of free-surface wave in Fig. 12. The outer-V wave is very much similar to WF itself. Then, WF will
propagate towards the ice sheet. It will be reflected back to the free surface by the ice sheet and its
edge. The reflection forms an inner-V wave. When f = 1, the ring waves appear ahead of the source
both in the ice-sheet domain and the free-surface domain. When f = 2 in Figs. 12(c) and 12(d), the
wave ahead of the source in the free-surface domain is no longer visible, as in Figs. 12(e) to 12(h)
for f = 3, 4. Figures 12(c) and 12(d) are produced in Figs. 13(a) and 13(b) with a higher color
resolution or smaller scale. It is interesting to see that even though the far-field wave may not appear
ahead of the source on the free-surface side, the local waves are still visible, which is different from
the free-surface-only problem. This may be very much due to the fact the waves ahead of the source
on the ice sheet side have transmitted into the free surface.

VI. CONCLUSIONS

The problem of wave motion due to a point source pulsating and advancing at constant forward
speed along a semi-infinite ice sheet in finite water depth has been solved. The mathematical model
is based on the linear velocity potential theory for fluid flow and thin elastic plate model for ice sheet.
Then, the Green function, which satisfies all the boundary conditions, is derived through the Fourier
transform and Wiener-Hopf technique. The solution shows that when the upper surface is composed
of two parts of semi-infinite extent, the wave motion below each surface can be decomposed into
three parts. One is due to the upper surface itself, either free surface or the ice sheet, and the other
two are due to interactions with the other upper surface and with the intersection line of these two
surfaces, i.e., the ice edge.
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For wave motions along the ice edge, the wavelength of the waves ahead of the source is much
longer than that of the waves behind the source. Thus, the wave elevation ahead of the source for
different ice thickness all tend to that for fully free surface, while behind the source, the ice thickness
has a very stronger effect on the wave elevation. The amplitude of the wave on both sides of the ice
edge decreases with the increase of ice thickness, which indicates that the ice sheet will depress the
free-surface wave elevation along the edge.

When the source is below the free surface, the free-surface wave pattern has two V-shaped
components. The outer-V wave is very similar to the common free-surface wave without the ice
sheet, while the inner-V wave is mainly due to the reflection of the outer-V wave by the ice sheet
and ice edge. When τ is larger than a critical value, the free-surface ring wave far ahead of the
source may disappear. However, the ice-sheet deflection ring wave is still quite visible ahead of the
source, which may affect the local free-surface wave ahead of the source.
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APPENDIX A: THE REAL ROOT OF THE DISPERSION EQUATION

We assume κ0 as the positive real root of the dispersion equation Ki(κ0, f ) = 0 at a given f . The
replacement of the real frequency f with a complex frequency f̂ = f −iε (ε → 0+) will change the
real root κ0 to a complex root κ̂0 in the complex plane, or Kε

i (κ̂0, f̂ ) = 0. Here, Kε
i (k, f̂ ) ≡ Kε

i (α, β )
in Eq. (3.25), or

Kε
i (k, f̂ ) ≈ Ki(k, f ) + iεPi(k, f ), (A1)

where

Ki(k, f ) = [Dk4 − M( f + αF )2 + 1]k tanh(kH ) − ( f + αF )2, (A2)

Pi(k, f ) = 2( f + αF )[Mk tanh(kH ) + 1]. (A3)

The Taylor expansion of Kε
i at k = κ0 and ε = 0 provides

Kε
i (k, f̂ ) ≈ (κ − κ0)K′

i(κ0, f ) + iεPi(κ0, f ), (A4)

where

K′
i(k, f ) = ∂Ki(k, f )

∂k

= [Dk4 − M( f + αF )2 + 1][tanh(kH ) + kHsech2(kH )] + 4Dk4 tanh(kH ). (A5)

From Eq. (A4), we have

κ̂0 = κ0 − iε�(κ0, f ), (A6)

where

�(κ0, f ) = Pi(κ0, f )

K′
i(κ0, f )

. (A7)

Invoking Eqs. (A2) and (A3), we have

�(κ0, f ) = 1

f + αF

(
Dκ4

0 + 1
)
κ0 tanh(κ0H )

2Dκ4
0 tanh(κ0H ) + ( f +αF )2

2κ0
+ H ( f +αF )2

sinh(2κ0H )

. (A8)

As ε → 0+, the only effect of �(κ0, f ) on Eq. (A6) is the sign of the imaginary part. In Eq. (A8),
only the term f + αF may change its sign, and the rest is always positive. Thus, we may rewrite
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Eq. (A6) as

κ̂0 = κ0 − iε1sgn( f + αF ) = κ0 − iε1sgn( f /κ0 + F cos θ ), (A9)

where sgn is the sign function, ε1 → 0+ as ε → 0+, and Eq. (3.10) or α = κ0 cos θ has been used.

APPENDIX B: THE FACTORIZATION OF EQ. (3.41)

From the Weierstrass factorization theorem, and noticing Kε
i (α, 0) �= 0, we have

K̃ε
i (α, β ) ≡ cosh(kH )Kε

i (α, β ) = eg(β )
∞∏

m=−2

(
1 − β2

χ2
m

)
, (B1)

which is convergent since χm → imπ as m → ∞. This gives

log
[
K̃ε

i (α, β )
] = g(β )+

∞∑
m=−2

log

(
1 − β2

χ2
m

)
. (B2)

Taking partial derivative with respect to β on both sides of Eq. (B2), we have

K̃ε
i
′(α, β )

K̃ε
i (α, β )

= g′(β )+
∞∑

m=−2

2β

β2 − χ2
m

, (B3)

where K̃ε
i
′(α, β ) = ∂K̃ε

i (α, β )/∂β. We may apply the Mittag-Leffler theorem to the left-hand side
of Eq. (B3), which provides

K̃ε
i
′(α, β )

K̃ε
i (α, β )

= g1(β ) +
∞∑

m=−2

(
1

β − χm
+ 1

β + χm

)
, (B4)

where Res[K̃ε
i
′(α,±χm)/K̃ε

i (α,±χm)] = 1 has been used. Here, the summation in Eq. (B4) is
convergent. As the first term on the right-hand side is analytical and obviously finite in the β

plane, it must be independent of β based on Liouville’s theorem. Let β = 0 in Eq. (B4). Since
K̃ε

i
′(α, 0)/K̃ε

i (α, 0) = 0 and the summation is zero, we obtain g1(β ) = 0. Invoking Eqs. (B3) and
(B4), we have

g′(β ) = 0. (B5)

This means that g(β ) or exp[g(β )] is a constant at a given α, or g(β ) is a function of α only. Equation
(3.26) provides

lim
β→iα

K̃ε
i (α, β ) = −( f − iε + αF )2, (B6)

as k = 0. Together with Eqs. (3.37) and (B1), this gives

eg(β ) = −( f − iε + αF )2
∞∏

m=−2

χ2
m

κ2
m

. (B7)

Substituting Eq. (B7) into (B1), we have

K̃ε
i (α, β ) = ( f − iε + αF )2

∞∏
m=−2

(β − χm)(β + χm)

κ2
m

. (B8)

Following a similar procedure, we can obtain

K̃ε
f (α, β ) ≡ cosh(kH )Kε

f (α, β ) = ( f − iε + αF )2
∞∏

m=0

(β − γm)(β + γm)

k2
m

. (B9)
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Based on the definition of K± in Eq. (3.41), and using (B8) and (B9), we can write

K±(α, β ) = (β ± χ−2)(β ± χ−1)

κ−2κ−1

∞∏
m=0

km(β ± χm)

κm(β ± γm)
, (B10)

where Kε
i (α, β )/Kε

f (α, β ) = K̃ε
i (α, β )/K̃ε

f (α, β ) has been used.

APPENDIX C: THE COMPUTATION OF MATRIX EQUATION (3.64)

We may first assume that the source is located in the free-surface part, i.e., η � 0−. Since y → 0+
in Eq. (3.64), we have y−η > 0. Then, using the Cauchy residual theorem in the lower half plane
of β and noticing that singularities are due to the roots of Ki(α, β ) = 0 at β = −χm, we can rewrite
Eqs. (3.57) and (3.58) as

�

I 1(α, y) = −2π i
∞∑

m=−2

eiχmyκm tanh(κmH )
K−(α,−χm)

K ′
i(α,−χm)

, (C1)

�

I 2(α, y) = 2π i
∞∑

m=−2

eiχmyχmκm tanh(κmH )
K−(α,−χm)

K ′
i(α,−χm)

. (C2)

For the integral (3.59), by using Eq. (3.46) we can rewrite it as

�

I 3(α, y) =
∫ +∞

−∞
e−iβ(y−η)Ĉ(k, ζ )

[
k tanh(kH )J (α, β )

Kε
i (α, β )Kε

f (α, β )
+ ( f − iε + αF )2

Kε
i (α, β )

]
dβ

−
∫ +∞

−∞
e−iβy

[
k tanh(kH )

K−(α, β )

Kε
i (α, β )

∞∑
m=0

e−iγmηĈ(km, ζ )J (α,−γm )

K−(α,−γm)Kε
f
′(α,−γm)(β + γm)

]
dβ, (C3)

which can be further converted to a series as

�

I 3(α, y) = 2π i
∞∑

m=−2

eiχmyκm tanh(κmH )K−(α,−χm)

K ′
i(α,−χm)

∞∑
j=0

e−iγ jηĈ(k j, ζ )J (α,−γ j )

K−(α,−γ j )K ′
f (α,−γ j )(γ j − χm)

.

(C4)

In Eq. (C4), the following relation has been used:

J (α,−χm)

Kf (α,−χm)
= − ( f + αF )2

κm tanh(κmH )
. (C5)

The elements of the matrix equation (3.64) involve the partial derivative of
�

I 1(α, y),
�

I 2(α, y), and
�

I 3(α, y) with respect to y up to the third order at y = 0, or

�

I
(n)

1 (α, 0) = −2π in+1
∞∑

m=−2

χn
mκm tanh(κmH )

K−(α,−χm)

K ′
i(α,−χm)

, (C6)

�

I
(n)

2 (α, 0) = 2π in+1
∞∑

m=−2

χn+1
m κm tanh(κmH )

K−(α,−χm)

K ′
i(α,−χm)

, (C7)

�

I
(n)

3 (α, 0) = 2π in+1
∞∑

m=−2

χn
mκm tanh(κmH )K−(α,−χm)

K ′
i(α,−χm)

∞∑
j=0

e−iγ jηĈ(k j, ζ )J (α,−γ j )

K−(α,−γ j )K ′
f (α,−γ j )(γ j − χm)

,

(C8)
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where n = 1, 2, 3. Because κm is the root of the dispersion equation (3.26), we have

κm tanh(κmH ) = ( f + αF )4

J (α,−χm) + ( f + αF )2 , (C9)

where Eq. (3.36) has been used. Substituting Eq. (C9) into Eqs. (C6) to (C8), it can be shown that
the summations with respect to m are convergent.

APPENDIX D: THE GREEN FUNCTION FOR INFINITE ICE SHEET OR FREE SURFACE

When the water surface is covered by an ice sheet of infinite extent, we denote GI as the Green

function.
�

GI and G̃I correspond to the Fourier transforms in (3.6) and (3.7), respectively. Similar to
Eq. (3.11), we may write G̃I as

G̃I = AI (α, β )C(k, z) − 2

k
eiαξ eiβηC(k, z<)S(k, z>). (D1)

The left-hand side of Eq. (3.24) becomes zero, which provides

AI (α, β ) = 2

k
eiαξ eiβηĈ(k, ζ )

× [Dk4 − M( f − iε + αF )2 + 1]kC(k, 0) − ( f − iε + αF )2S(k, 0)

Kε
i (α, β )

. (D2)

Substituting Eq. (D2) into (D1), we have

G̃I = 2eiαξ eiβη

[
C(k, ζ )C(k, z) tanh(kH ) − C(k, z<)S(k, z>)

k

+ Ĉ(k, ζ )Ĉ(k, z)
Dk4 − M( f − iε + αF )2 + 1

Kε
i (α, β )

]
, (D3)

or

G̃I = eiαξ eiβη

[
e−k|ζ−z| + e−k(ζ+z+2H ) − 2N (ζ , z)

k

+ 2Ĉ(k, ζ )Ĉ(k, z)
Dk4 − M( f − iε + αF )2 + 1

Kε
i (α, β )

]
, (D4)

where

C(k, ζ )C(k, z) tanh(kH ) − C(k, z<)S(k, z>) = e−k|ζ−z| + e−k(ζ+z+2H ) − 2N (ζ , z)

2
, (D5)

has been used, with

N (ζ , z) = e−2kH {cosh[k(ζ + z + 2H )] + cosh[k(ζ − z)]}
1 + e−2kH

. (D6)

Taking inverse Fourier transform of G̃I with respect to β, we have

�

GI = 1√
2π

∫ +∞

−∞
eiαξ eiβ(η−y) e−k|ζ−z| + e−k(ζ+z+2H ) − 2N (ζ , z)

k
dβ

+ 2√
2π

∫ +∞

−∞
eiαξ eiβ(η−y)Ĉ(k, ζ )Ĉ(k, z)

Dk4 − M( f − iε + αF )2 + 1

Kε
i (α, β )

dβ. (D7)
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Taking inverse Fourier transform of
�

GI with respect to α, we have

GI = G0 + 1

π

∫ +∞

−∞

∫ +∞

−∞
eiα(ξ−x)eiβ(η−y)

×
[

Ĉ(k, ζ )Ĉ(k, z)
Dk4 − M( f − iε + αF )2 + 1

Kε
i (α, β )

− N (ζ , z)

k

]
dαdβ, (D8)

where

G0 = 1

r1
+ 1

r2
. (D9)

Here, r1 is the distance between p and q, and r2 is the distance between p and the mirror image of q
about the flat seabed z = −H .

Similarly, when the upper water surface is a free surface of infinite extent, we have the Green

function GF , and the corresponding Fourier transforms
�

GF and G̃F as

GF = G0 + 1

π

∫ +∞

−∞

∫ +∞

−∞
eiα(ξ−x)eiβ(η−y)

[
Ĉ(k, ζ )Ĉ(k, z)

Kε
f (α, β )

− N (ζ , z)

k

]
dαdβ, (D10)

and
�

GF = 1√
2π

∫ +∞

−∞
eiαξ eiβ(η−y) e−k|ζ−z| + e−k(ζ+z+2H ) − 2N (ζ , z)

k
dβ

+ 2√
2π

∫ +∞

−∞
eiαξ eiβ(η−y) Ĉ(k, ζ )Ĉ(k, z)

Kε
f (α, β )

dβ, (D11)

and

G̃F = 2eiαξ eiβη

[
C(k, ζ )C(k, z) tanh(kH ) − C(k, z<)S(k, z>)

k
+ Ĉ(k, ζ )Ĉ(k, z)

Kε
f (α, β )

]
, (D12)

or

G̃F = eiαξ eiβη

[
e−k|ζ−z| + e−k(ζ+z+2H ) − 2N (ζ , z)

k
+ 2

Ĉ(k, ζ )Ĉ(k, z)

Kε
f (α, β )

]
. (D13)

APPENDIX E: FAR-FIELD WAVE COMPONENT OF THE GREEN FUNCTION

We consider the wave component of the Green function, which is written in general form of
double Fourier integral as

GW = lim
ε→0+

∫ +∞

−∞

∫ +∞

−∞

A(α, β )e−i(αx̄+β ȳ)

K (α, β ) + iε�(α, β )
dαdβ. (E1)

This is similar to what was considered by Noblesse and Chen [49]. Here, we follow a different
procedure. K (α, β ) in Eq. (E1) is the dispersion equation for free-surface wave or flexural-gravity
wave, and the only importance of the function �(α, β ) is its sign. We first transform the coordinate
system (α, β ) to (K, S). Here, K (α, β ) and S(α, β ) axes are orthogonal, which gives

KαSα + KβSβ = 0, (E2)

where the subscript α (β) indicates the partial derivative with respect to α (β). Then, Eq. (E1) can
be rewritten as

GW = lim
ε→0+

∫ +∞

−∞

∫ +∞

−∞

Ae−i(αx̄+β ȳ)

K + iε�
J (K,S)dKdS, (E3)
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where J (K,S) is the Jacobian due to the transformation of the coordinates, and α = α(K, S), β =
β(K, S). The integral with respect to K can be decomposed into two parts, i.e.,

IW = lim
ε→0+

∫ +∞

−∞

Ae−i(αx̄+β ȳ)

K + iε�
J (K,S)dK = IW

P + IW
R , (E4)

where

IW
P = P.V.

∫ +∞

−∞

Ae−i(αx̄+β ȳ)

K
J (K,S)dK (E5)

is due to the principal value (P.V.) of the integral, and

IW
R = −iπsgn((� )K=0)(A)K=0e−i[α(0,S)x̄+β(0,S)ȳ]J (0,S) (E6)

is due to the simple pole at K = 0. Equation (E5) can be rewritten as

IW
P =

∫ +∞

−∞

[A − (A)K=0]e−i(αx̄+β ȳ)

K
J (K,S)dK + (A)K=0 × P.V.

∫ +∞

−∞

e−i(αx̄+β ȳ)

K
J (K,S)dK . (E7)

The integrand of the first integral is nonsingular. As r =
√

ξ 2 + β2 → ∞, the stationary-phase
method can show that it decays at a rate of 1/

√
r. For the second one, the contribution to the result

will mainly be from the singular point, K = 0. We may introduce

ϕ = (αx̄ + β ȳ)/r, (E8)

and expand this near K = 0 or

ϕ = (ϕ)K=0 + (ϕK )K=0K + (ϕKK )K=0K2/2 + · · · , (E9)

where ϕK = ∂ϕ/∂K , and ϕKK = ∂2ϕ/∂K2. Substituting Eq. (E8) into the second integral of (E7),
and ignoring the higher-order terms, we have

lim
r→∞ P.V.

∫ +∞

−∞

e−i(αx̄+β ȳ)

K
J (K,S)dK ≈ lim

r→∞ e−i(ϕ)K=0rP.V.

∫ +∞

−∞

e−i(ϕK )K=0rK

K
J (K,S)dK

≈ −iπ [sgn(ϕK )J (K, S)e−irϕ]K=0. (E10)

Invoking Eq. (E10), we obtain that

lim
r→∞ IW

P ≈ −iπsgn[(ϕK )K=0]AJ (0, S)e−ir(ϕ)K=0 . (E11)

Because S now represents the dispersion curves of K (α, β ) = 0 in the Fourier plane, by using

ϕK = (∇ϕ)(∇K )

|∇K|2 (E12)

we have

ϕK = x̄Kα + ȳKβ

r|∇K|2 (K = 0), (E13)

which provides

sgn(ϕK ) = sgn(x̄Kα + ȳKβ ) (K = 0). (E14)

Substituting Eqs. (E6) and (E11) into Eq. (E3), and using Eq. (E14), we have

lim
r→∞ GW ≈ −iπ

M∑
m=1

∫
Sm

[sgn(x̄Kα + ȳKβ ) + sgn(�)]AJ (0, S)e−i(αx̄+β ȳ)dS, (E15)
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where Sm represents the mth segment of the dispersion curve in the (α, β ) plane. Substituting the
following equation [49]

J = 1

|∇K| , (K = 0) (E16)

into (E15), we have

lim
r→∞ GW ≈ −iπ

M∑
m=1

∫
Sm

[sgn(x̄Kα + ȳKβ ) + sgn(�)]
Ae−i(αx̄+β ȳ)

|∇K| dS. (E17)

It may be noticed that Eq. (E17) is identical to Eq. (27b) of Noblesse and Chen [49].
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