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Active flow control can achieve substantial performance gains and meet the challenges of
next-generation air vehicles and energy-harvesting devices. The use of active flow control
techniques with the moving flap or morphing surfaces has been shown to be a viable
path to regulating the flow-induced vibration of the foil. However, due to the complex
nature of flow over morphing surfaces, all physical phenomena are intertwined, which
prevents a clear understanding of the underlying flow physics and, therefore, a successful
design of a controlling action to optimally modify them. In this research an active flow
control framework with the model predictive control theory is proposed to modulate the
flow-induced flutter of a foil using the morphing flap surface. The geometrically weighted
dynamic-relevant modes are used to build surrogate models to achieve rapid model-based
active control of complex systems. It is shown that the flap is capable of both facilitating
and eliminating fluid-induced vibrations by regulating the lift forces exerted on the foil.
Furthermore, the control framework provides full knowledge of how the structure modifies
the flow and has the potential to identify the ambient environmental change simultaneously.
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I. INTRODUCTION

Fluid-structure coupled phenomena such as flutter or limit cycle oscillations have an impact
on various engineering systems, such as the stability of the aircraft or the performance of wind
turbines and hydrofoil energy extractors. Hence, regulating such phenomena has been a central
topic in the fluid community. However, due to the complex nonlinear nature of the problem, the
traditional control theories accustomed to linearized systems often fail to provide a simple control
law. To capture the aeroelastic responses induced by the shedding of the leading-edge vortex and
other unsteady vortex separations along the body, different nonlinear models have been proposed
to capture the essential nonlinear responses, such as the model developed by Goman and Khrabrov
[1], the ONERA model [2], and many other models [3]. Some of these models also incorporate the
effect of morphing flaps, such as the ones proposed by Librescu et al. [4] or Block and Stragnac
[5]. Following these models, control strategies have been designed to mitigate or regulate the foil
response. For example, Wang et al. [6] used a multi-input system with active control surfaces at
both leading and trailing edges and designed a full-state feedforward-feedback controller with a
high-gain observer; Zhang et al. [7] adopted an adaptive control scheme to account for unsteady
flow and eliminate vibration with a multi-DoF trailing edge flap; Lee and Singh [8] designed a
robust sliding-mode control that considers only the variables within finite horizon to suppress the
unwanted oscillation; and Pohl et al. [9] mitigated the gust impact with a feedforward-feedbackward
control strategy designed with a simplified ONERA model. Experiments such as that carried out by
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Herrmann et al. [10] or Platanitis et al. [11] proved that these control strategies designed with
experimentally tuned models work well under the intended working conditions.

Many of the models and control strategies developed so far have been based on simplified
aerodynamic loading models stemming from Theodorsen’s theory [12], where the airfoil is often
seen as a flat plate, and the vortex shedding and local separation effects are captured through
nonlinear force coefficients. Theodorsen’s theory is an algebraic model based on the potential flow
theory, where a low Reynolds number and small deflection of the foil or flap are assumed. These
simplified models allow quick iteration and provide a test bed for different control strategies. Their
simple structure is also ideal for incorporating other effects related to unsteady disturbances such
as flow fluctuations or impending gusts. However, the assumption of small deflection about the
equilibrium point can be rendered invalid in many practical highly nonlinear systems. Also, these
models rely on experimentally tuned coefficients and often fail to respond properly to environmental
condition changes [13]. Moreover, the lack of complete knowledge of the actual flow pattern induced
by the interaction between the foil, flap, and ambient flow makes it difficult to fully understand how
the actuation regulates the flow system. Some of these issues can be improved by increasing the
degrees of freedom of the model or switching between different models, but along with it, the
complexity of the model also rises and overfitting or longer evaluation time becomes a problem.
Overall, the models designed based on Theodorsen’s theory and its extensions have been proven to
be effective when limited to specific settings but are not able to provide detailed physical insight
into how the control implemented impacts the fluid around the structure.

Recently there has been a surge of modern control methods for nonlinear high-dimensional
dynamical systems utilizing modal analysis techniques. The key is building and updating reduced-
order models rapidly with modal information, which can then be used to design control strategies
that adapt to environmental change. The data-driven nature of the modal analysis techniques allow
the model construction to be flexible with different data set and provide ample design possibility
due to its relatively simple mathematical representation compared to the aforementioned nonlinear
simplified models based on Theodorsen’s theory. One major branch of this is using the modal
analysis techniques to construct state space models via Galerkin projection of the Navier-Stokes
equations onto the orthogonal vector space identified by proper orthogonal decomposition (POD)
[14–16]. POD decomposes the data into orthogonal subspaces spanning the data space, and Galerkin
projection can determine the dominant dynamics in each direction by orthogonal projection of the
governing equations. In the case of the Navier-Stokes equation, this procedure transformed it into a
set of ODEs that can be solved to acquire the coefficients for the state space model. An extension
to this method is identifying linear input-output systems with balanced POD that considers the
input with balanced truncation [17,18]. These methods have shown great results in modeling and
controlling complex flows.

Another branch of methods that has become popular in recent years is based on the Koopman
operator theory [19,20]. This is the route we took in this research since the Koopman operator
is fully data-driven (while Galerkin projection requires knowledge about the governing equation),
and the model is easily scalable. Furthermore, the Koopman theory captures the system’s dynamics,
which is straightforward in controller design, and the operator is linear, making it easy to manipulate
the model. These Koopman theory-based reduced-order models are good candidates for the model
predictive control (MPC) framework [21–24], which is a receding horizon-type control scheme that
is widely adopted in various disciplines. The usage of MPC with Koopman theory was introduced
into the fluid community very recently and has shown promising outcomes controlling chaotic
systems such as the wall-driven cavity flow [25], fluidic pinball [26], or simplified aeroelastic
models [27]. Here the MPC scheme along with DMD with control (DMDc) reduced-order model
is used to implement feedback closed-loop control of the flow-induced fluttering of a foil with an
active flap as a controller. In the authors’ previous publications, the geometrical information of the
deforming solid is introduced into the fluidic motion in the form of spatial stretching [28], and this
methodology will be combined with DMDc to incorporate the effect of the morphing surface into
identifying the reduced order model. This will provide additional knowledge on how the flap affects
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the flow around it when actively actuated compared to the simplified models based on Theodorsen’s
theory.

In the following sections, we will introduce the background of the Koopman operator, how
we can approximate it with finite-dimensional DMD algorithms, and how we can perform system
identification with it to build high-accuracy state-space model for our foil-and-flap system in Sec. II.
The procedure to implement the model into a MPC framework to control complex dynamical
systems to regulate the heaving motion of the foil-flap system and the results will be discussed
in Sec. III. Finally, we will give some remarks and future directions for this research in Sec. IV.

II. DATA-DRIVEN MODELING OF FOIL-AND-FLAP SYSTEM

In this section we will introduce the principle of the Koopman operator, how we can approximate
it in a data-driven fashion with DMD, and then introduce the control input into the DMD to form
state-space models. In the second section, we will discuss how we used this procedure to produce
state space model of the foil-and-flap system and then evaluate the accuracy of the model.

A. Koopman operator theory and data-driven system identification

We will review the basics of the Koopman operator for discrete-time dynamical systems to align
with the time-stepping simulations and DMD. Please note that many reviews, e.g., [20,29], can
be referred to for a more thorough discussion on the Koopman operator, including the continuous
description.

Let us consider a dynamical system x+ = Tt (x) defined on a state space M, where the discrete
function Tt is characterized with the time t . We can call any function g : M → R an observable of
the system. The Koopman operator Kt is a linear transformation acting on the vector space of the
observables given by

(Kt g)(x) = g(Tt (x)), (1)

wherein the Koopman operator is essentially an infinite-dimension operator that updates the
observable g based on the evolution of the trajectories in the state space. In other words the
Koopman operator captures the dynamics of the system. To cast this into a discrete-time de-
scription, consider the function to be a t-fold composition of the single time step operator T ,
Tt (x) = T (T (T . . . T (x))), and likewise the discrete Koopman operator K is defined as

gk+1 = K (gk ). (2)

The most intriguing property of the Koopman operator that makes it popular is that it is a linear
operator as long as the observable space G consists of the observables g is linear:

K [αg1(x) + βg2(x)] = αg1(T (x)) + βg2(T (x))

= αK (g1(x)) + βK (g2(x)),
(3)

and more importantly, this property holds whether the original system T is linear or not, which
means that the Koopman operator can approximate a nonlinear system with a linear state space.

The Koopman eigenfunctions ψ (x) corresponding to the eigenvalues λ are defined as

ψ (xk+1) = K ψ (xk ) = λψ (xk ), (4)

and with this relation, one can rewrite the observables formed as linear combinations of the
Koopman eigenfunctions under the Koopman operator by

g(x) =
∑

k

vkψk ⇒ Kt g(x) =
∑

k

vkλ
t
kψk . (5)

In practice, we often need to handle multiple measurements at once. For example, computational
fluid dynamic (CFD) simulations provide refined spatial information about the flow velocity and
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pressure; experimentally, particle image velocimetry calculates the flow velocity by correlating the
movement of particles in the flow. To expand Koopman decomposition into multiple measurements
of a system, we can arrange them into a vector g:

g =

⎡
⎢⎢⎣

g1(x)
g2(x)

...

gp(x)

⎤
⎥⎥⎦, (6)

and each of these observables can be expanded with the eigenfunctions in the form of Eq. (5):

gi(x) =
∞∑
j=1

vi jψ j (x). (7)

The vector of measurements can then be expanded in matrix form as

g =

⎡
⎢⎢⎣

g1(x)
g2(x)

...

gp(x)

⎤
⎥⎥⎦ =

∞∑
j=1

ψ j (x)v j, (8)

where v j consists of the coefficients vi j and is called the Koopman mode. The evolution of the
multiple measurements can then be decomposed as

g(xt ) = Kt g(x0) =
∞∑
j=1

Ktψ j (x0)v j =
∞∑
j=1

λt
jψ j (x0)v j . (9)

This process is called the Koopman mode decomposition [30]. Often this process is approximated
with the dynamic mode decomposition (DMD). We will now provide a short introduction to DMD.

Dynamic mode decomposition (DMD), first proposed by Schmid [31], decomposes data into
modes and corresponding characteristic frequencies. Consider a data series X = {x1, x2, . . . , xm},
which can be partitioned into two time-consecutive sets X 1:m−1 = {x1, x2, . . . , xm−1} and X 2:m =
{x2, x3, . . . , xm} (which don’t have to be strictly one frame apart), DMD aims to find the best-fit
revolution, or dynamics, between the two sets, i.e., find the best-fit matrix A that approximates

X 2:m = A X 1:m−1. (10)

The most common best-fit definition is the minimum Frobenius norm

C =
m−1∑
i=1

||x2,i − A x1,i||2, (11)

where x1,i and x2,i are the ith columns of the matrices X 1:m−1 and X 2:m, respectively. The solution
to this problem is

A = X 2:m X+
1:m−1, (12)

where X+
1:m−1 = (X∗

1:m−1 X 1:m−1)−1X∗
1:m−1 is the Moore-Penrose left inverse of the matrix X 1:m−1.

The eigenvectors of A are defined as the DMD modes ψ j , and the frequencies and growth and
decay rates for these modes are the imaginary and real parts of the corresponding eigenvalues μ j ,
respectively.

A system can be represented with the low-rank projected solution reconstructed at time t with
the decomposition

xDMD(t ) =
K∑

k=1

bk (0) ψk eμ j t , (13)
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where K is the reduced approximation rank and bk (0) is the initial amplitude of the kth mode. This
equation can be represented in matrix form:

xDMD(t ) = � diag(eμ j t ) b, (14)

where � is the matrix consists of DMD modes ψ , diag(eμ j t ) has eμ j t as diagonal entries, and b is a
vector calculated by

b = �+ x1, (15)

where x1 is the initial snapshot and b is a vector formed from the initial amplitude bk (0).
We can now see the similarity between the Koopman mode decomposition and the DMD

comparing Eqs. (9) and (13): both operators approximate the dynamics of a nonlinear system
with the combination of linear modes. In fact, DMD is the finite-dimensional approximation of the
Koopman operator! The DMD eigenvalues, DMD modes, and DMD mode amplitudes are the finite-
dimensional approximations of the Koopman eigenvalues λ j , Koopman modes v j , and Koopman
eigenfunctions ψ j (x0), respectively. Hence, it is common to adopt DMD for the representation of
system’s dynamics due to its simplicity of operation and linear nature. Readers are recommended
to refer to Mezić [20], Bagheri [32], and Tu et al. [33] for more details on the connections between
DMD and Koopman mode decomposition. We will adopt DMD, especially the variant of DMD
with control proposed by Proctor et al. [34], as our tool for modeling the system dynamics in the
following sections.

B. Dynamic mode decomposition with control

For the purpose of developing a control strategy for nonlinear systems, it is beneficial to
approximate the system with linear systems utilizing the Koopman operators (or the approximated
versions). Furthermore, advanced methods are developed to differentiate the effects of the au-
tonomous system response and control input, such as the DMD with control (DMDc) [34], extended
DMD with control [35], interpolated Koopman generators [26], among others. From the research on
the selection of basis functions conducted in literature [29,36], we decided that DMDc with delayed
embedded coordinates is a suitable candidate for deriving the linear model for our foil-and-flap
system along with the embedded geometrical weighting for its accuracy and data efficiency shown
in modeling various dynamic systems.

DMDc, proposed by Proctor et al. [34], aims to extend DMD to actuated systems. On top of the
dynamical system described in Sec. II A, where for the measured state x the evolution is captured
with xk+1 ≈ Axk , additionally, we now have a control input u and the dynamical model of the system
described with

xk+1 ≈ Axk + Buk . (16)

If we organize the system states, or measurements, and the control input sequences into matrices

X ′ =
⎡
⎣ | | |

x2 x3 · · · xm

| | |

⎤
⎦, X =

⎡
⎣ | | |

x1 x2 · · · xm−1

| | |

⎤
⎦ (17)

and

Y =
⎡
⎣ | | |

u1 u2 · · · um−1

| | |

⎤
⎦, (18)

then the problem of finding the best-fit A and B matrices for the system

X ′ ≈ AX + BY (19)
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can be recast into solving the below least-squares optimization problem:

min
[A B]

∥∥∥∥ X ′ − [A B]

[
X
Y

] ∥∥∥∥
2

2

. (20)

This problem conveniently has a solution given by

[A B] = X ′
[
X
Y

]+
, (21)

where the subscript + again represents the Moore-Penrose left inverse. The DMDc provides a
pure data-driven procedure to perform system identification, even when the data are acquired
with undersampled measurement or from highly nonlinear systems [37]. We can increase the
identification accuracy even more by adopting the delay embedding technique, which is a classic
technique to increase the DoF of the identified systems and hence increase the accuracy [38–40].
For example, if a set of observables (e.g., measurements at different spatial locations) x1, x2, . . . , xp

at time tk can be represented as g(tk ) = [x1(tk ), x2(tk ), . . . , xp(tk )], then the time-delayed vector of
time step nd can be constructed as zk = [g(tk−nd ), g(tk−nd +1), . . . , g(tk )]T , and the data matrix is
now

Z ′ =
⎡
⎣ | | |

z2 z3 · · · zm

| | |

⎤
⎦, Z =

⎡
⎣ | | |

z1 z2 · · · zm−1

| | |

⎤
⎦, (22)

and the system identification of the dynamical system is now finding the best-fit (A, B) pairs that
approximate

Z ′ ≈ AZ + BY . (23)

The above relation has the same solution as Eq. (21). This operation allows better tracking in long-
term system dynamics and increases the model DoF for low-data scenarios such as limited available
sensors. In the following section, we will show how we utilize this procedure to build a dynamic
model for the dynamic foil-and-flap system to capture the response to different flap actuation.

C. DMDc model for foil-and-flap system

To demonstrate how the DMDc model works, we will be looking at a heaving airfoil with
an active flap. A previous publication by the authors [41] has shown extensive research on how
the frequencies and amplitudes of the sinusoidally oscillating flap affect the foil heaving motion.
The foil-and-flap system is depicted in Fig. 1(a), with a set of translational spring-and-damper
representing the aeroelastic characteristic of the foil. In the current study, the angle of attack (AoA)
of the foil is fixed at 10◦, and the foil is allowed to heave freely. The Reynolds number based
on the chord length is set to be Re = U∞ L

ν
= 1000, which is sufficiently large to allow the complex

vortex shedding that leads to fluttering phenomena at this AoA setting. The numerical fluid-structure
interaction solver, which is explained in detail and validated in the cited paper, solves the flow
equations in the conformally transformed domain which provides a natural geometric weighting
that represents the solid deformation [28]. This procedure offers a means to apply DMDc to flow
around a deforming object. The results shown in later sections encode the geometrical information
into the identified dynamic systems naturally by performing system identification in the transformed
domain. Note that although this detail fades into the background as we will focus on the control
aspect more in this paper, without this transformation, DMD and its variants do not work with
deforming volumetric structures as they are data-driven and don’t have spatial recognition. Readers
could refer to the previous publications for more details on this geometrically weighted modal
decomposition (GW-MD) technique, how the authors used it to look into the foil-and-flap system,
and the detailed simulation setup [28,41].
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FIG. 1. (a) Numerical model and the sampling points for the flow kinetic energy. Input flap angle tra-
jectories and corresponding lift coefficients, drag coefficients, and flow kinetic energy at specified sampling
points for (b) random frequency, (c) single-frequency sinusoidal, and (d) transitional frequency and amplitude
oscillating case. For flow kinetic energy, blue solid line, top; black broken line: trailing edge; red dotted line:
bottom sampling point.

In the previous research, it is observed that with different actuation amplitude and frequency, at
moderate angles of attack, the foil can heave with either periodic, quasiperiodic, or chaotic motion
patterns. Also through GW-MD, we proved that the flap induces flow structures that interact with
the wake forming from the pitching leading edge, which is the primary mechanism the flap affects
the fluid-induced vibration. We will now show how the active flow control can be employed by
actively commanding the flap motion to regulate the heaving motion, or more directly regulating
the lift force acting on the foil through a data-driven modeling technique. The first step to that goal
is to build a reduced-order model of the system with DMDc, so we can design a control strategy
later on the identified linear system.

The working principle of using the Koopman-based operators like DMDc to conduct system
identification is finding the system trajectory evolution by observing the data collected from
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TABLE I. Tracking error of the DMDc model constructed with different parameters.

Input type Trajectory type and count Delayed dimension Random Single frequency Transitional

θ Random, 10 10 11.48% 15.91% 17.6%
θ Random, 10 20 10.37% 10.87% 17.35%
θ Random, 10 40 8.41% 7.76% 16.17%
θ Random, 10 80 8.27% 5.23% 11.02%
θ Random, 5 80 7.92% 5.92% 10.6%
θ Mixed, 10 80 10.48% 4.62% 12.12%
θ & θ̇ Random, 10 80 7.68% 5.65% 9.84%
θ & θ̇ Mixed, 15 80 8.92% 4.14% 9.83%

actuating the system with different inputs. A diverse input set can be seen as moving the starting
point of a system trajectory to a different spot in the response phase space. Assuming there is a single
attracting limit cycle or sink, eventually every trajectory would converge to them and not much data
will be needed to reconstruct the system; but when there are multiple attractors, distributed starting
points are required to observe more of the system dynamics. Hence, the first step to building the
data-driven state-space model for our foil-and-flap system is to actuate the flap in different settings.

Three types of flap angle input are prescribed to the active flap: random input trajectories, each
consisting of 25 cycles of sinusoidal flapping motion with the same amplitude but randomized
frequencies from St f = [0.05, 1.5]; the periodic trajectories with fixed oscillating amplitude and
frequency chosen from St f = [0.1, 1.5]; and the transitional trajectories having different combina-
tions of smoothly changing amplitude and frequencies. The lift, drag, heaving motion, and flow
field information are recorded for each input trajectory. Figure 1 demonstrates three different types
of input flap angle trajectory and the corresponding lift coefficient, drag coefficient, and flow kinetic
energy recorded at specified points on the foil shown in Fig. 1(a). The flow kinetic energy is
collected at the foil surface, as this is comparable to the actual application scenarios where the
sensors embedded in the foil are generally limited to detecting the flow states adjacent to the
foil. While incorporating more flow states might enhance predictive performance, expanding the
states could result in potential overfitting and increased model complexity. To balance applicability
and model efficiency, we opted to constrain the states to the current selection. It is important to
emphasize that the flow kinetic energy, in this context, is derived from the geometrically weighted
space, encompassing both structural deformation and flow velocity. This formulation results in a
geometrically weighted (GW) DMDc. For the sake of conciseness, we will omit the GW prefix in
this paper.

The calculated responses for different flap trajectories are collected to build the state-space model
with DMDc. Four parameters could potentially affect the model accuracy: the trajectory type, the
number of trajectories used for identification, the number of delay-embedded time steps, and the
type of input included. Table I reports the tracking error of using models constructed by different
parameter combinations to track the system evolution with the same set of initial conditions. For
each trajectory type, three different initial conditions and input sequences (flap angle θ or both θ

and θ̇ ) not in the training data are used to evaluate the tracking error, which is defined as

TE = rms

[
Cref

L − Cmodel
L

Cref
L

]
, (24)

where Cref
L is the lift coefficient recorded from the response of the full-scale CFD simulation of the

foil-and-flap plant, and Cmodel
L is recorded from the DMDc model with the same input sequence and

initial state.
From Table I we can make some key observations, demonstrated graphically in Fig. 2. First,

increasing the number of delayed time steps vastly improves the tracking performance, where
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FIG. 2. Model performance evaluation for (a) delay-embedded time step, (b) trajectory type, and (c) input
type. Red thin line: ground truth; blue thick line: model reconstruction.

in some cases up to 300% improvement can be obtained. Including more data allows long-term
memory for the model, which helps capture slower dynamics better. Second, reducing the number
of trajectories included in the system identification from 10 to 5 minimally changes the accuracy,
which aligns with the observation in [37] that with delay embedding, the Koopman operator-based
models work relatively well at very low-data conditions. Another observation is that including
high-frequency periodic trajectories in the model, construction improves the model performance for
periodic cases. From the previous study [41], we learned that at certain flap oscillation frequencies,
quasiperiodic motion is present, and this phenomenon is not obvious in the randomly actuated cases.
Although the tracking error is not that much different, only the mixed trajectory cases can capture
the quasiperiodic nature of those higher frequency periodic cases. Finally, including an extra DoF
for the control by including the θ̇ in the input sequences improves the tracking of the extrema, but
only marginally better since our two control DoFs are related.
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FIG. 3. Schematic representation of the MPC control framework.

However, in practice, there are some limitations for implementing what was found to be “good”
for the model. Increasing the delayed time step also increases the dimension of the data matrix and
hence causes difficulty in the optimization of the controller design. The more delayed time step also
means data over a longer period have to be stored, which in realistic cases could be demanding for
the hardware. Increasing the numbers of included trajectories also requires more delayed embedded
time steps and/or finer temporal resolution to capture finer details of different scales. Adding an
extra DoF of θ̇ improves the model accuracy; however, in practice, this poses a strong constraint
for finding the optimal control sequence, requiring

∑
�t θ̇ dt = θ over each time step, which could

cause the optimization to fail. Considering all these trade-offs, in this research we determined the
suitable model uses 80 delayed time steps, 10 mixed trajectories including randomly actuated and
some high-frequency periodic cases, and the input will be solely θ . From Table I we can see that
this combination offers reasonable tracking performance over all scenarios tested.

Now that we have the linear model capable of capturing the essential dynamics of a nonlinear
system, in the next section we will discuss how to implement this model into the MPC scheme to
achieve rapid control of the flow-induced fluttering of our foil-and-flap system.

III. MODEL PREDICTIVE CONTROL FRAMEWORK FOR THE FOIL-AND-FLAP SYSTEM

With the DMDc model that can recover the foil-and-flap system dynamics in hand, a control
strategy can be found to regulate the flow-induced flutter. The control scheme we decided to adopt
here is the Koopman-MPC innovated by Korda and Mezić [35]. MPC, overall, is not a specific
control law but a control framework, and here we will provide a simple introduction. For more
information, readers can refer to reviews and books, e.g., [42,43]. The standard procedure of MPC
consists of three steps: first, a model is built for the plant, which we have done through the DMDc
process. Then at each time step of controlling, an optimization problem is solved to find the optimal
input that drives the model from the initial state acquired from the plant to the desired state. Finally,
the optimal control input is applied back to the actual plant, and the modified state is fed into
the optimizer again in the next loop. These three steps are shown graphically in Fig. 3. Note that
for MPC framework, the control input is actually produced in an open-loop fashion by solving
the optimization problem in the model space, and no feedback from the plant is given until the
next instance when the controller is called. This is also where using the Koopman-based model in
the MPC framework shines: the Koopman-based models are linear, and hence, the optimization
problem can be cast into a convex quadratic problem which can be solved rapidly by a plethora of
available solvers, e.g., qpOASES [44], OSQP [45], and the FORTRAN version of the quadprog [46]
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adopted in this work. Next, we will explain how we can cast our control problem into a solvable
form, and we will show the results of applying active control to the foil-and-flap plant later in this
section.

A. Define control problem and quadratic programming formulation for MPC

The goal of this project is to control the flow-induced flutter phenomena with the active flap as
the actuator. In other words, we want to regulate the lift force of the system. The control problem can
be recast into a trajectory-tracking problem, where we want the lift coefficient of the foil to follow
the designated reference trajectory. If this trajectory is a constant, then the flutter is eliminated; the
trajectory can also be oscillatory for the purpose of enhanced energy extraction. For each control
time step t j , we have the dynamic model

x j+1 = Ax j + Bu j,

y j = Cx j, (25)

where x j ∈ Rn×1 are the state vector at current control time step and x j+1 at the next time step. In our
case each xk consists of the delay-embedded lift coefficient, drag coefficient, and flow kinetic energy
at selected points on the foil [as shown in Fig. 1(a)]. The positions of these data acquisition points
are chosen at the spot where the flow shows more fluctuation. The input vector uj ∈ Rm×1 contains
the specified flap angle. A ∈ Rn×n and B ∈ Rn×m are the state-transition matrix and loading matrix,
respectively, acquired from the DMDc system identification process. y j ∈ Rp×1 is the observation
vector that contains the desired measurements of the system, which is the lift coefficient at the
current time step in our case here. C ∈ Rp×n is the user-specified measurement-sensitivity matrix,
and here it will be 1 at where the lift at current time step is and 0 at all the other locations. The control
problem of lift trajectory tracking can be expressed in terms of optimizing the input to minimize the
tracking error over the next N time steps, written in the form of the objective function:

min
u0,...,uN−1

1

2

N∑
k=0

[(yk − yk,ref )
T Qk (yk − yk,ref )] (26)

subject to Eq. (25). yk,ref ∈ Rp×1 is the reference trajectories, and Qk ∈ Rp×p defines the weighting
at each time step. Common choices for the weighting Qk are uniform or a descending function to
improve the short-term control accuracy. However, for a standard QP problem, the control target
and the control input should be in the same input space:

min
x

1

2
xT Hx + f T x, s.t.

⎧⎨
⎩

Ax � b
y j = Cx j

lb � x � ub
. (27)

To write Eq. (26) in the form of Eq. (27), we will have to utilize the evolutionary property of
Eq. (25),

yk+1 = Cxk+1 = C(Axk + Buk ) = CAxk + CBuk, (28)

and for the following time step:

yk+2 = Cxk+2 = C(Axk+1 + Buk+1)

= C[A(Axk + Buk ) + Buk+1]

= CA2xk + CABuk + CBuk+1. (29)

We can see that there is a pattern in this. Derive this for N step, collect all the states into a new state
vector and all input into an input vector,

ỹk ≡ [
yT

k , yT
k+1, . . . , yT

k+N

]T
and ũk ≡ [

uT
k , uT

k+1, . . . , uT
k+N−1

]T
, (30)
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then

ỹk = Ãxk + B̃ũk , (31)

where

Ã ≡

⎡
⎢⎢⎢⎢⎢⎣

C
CA
CA2

...

CAN

⎤
⎥⎥⎥⎥⎥⎦

, B̃ ≡

⎡
⎢⎢⎢⎢⎣

0 0 0
CB 0 0

CAB CB · · · 0
...

...
...

CAN−1B CAN−2B B

⎤
⎥⎥⎥⎥⎦. (32)

The dimensions of these vectors and matrices are ỹk ∈ Rp(N+1)×1, ũk ∈ RmN×1, Ã ∈ Rp(N+1)×n, and
B̃ ∈ Rp(N+1)×mN . Note that in Eq. (31), the xk is the known initial state measured from the plant. If
Eq. (31) is substituted to the objective function Eq. (26), we arrive at

J (xk, ỹk,ref, ũk ) =
N+1∑
k=1

[(yk − ỹk,ref )
T Qk (yk − ỹk,ref )]

= (Ãxk + B̃ũk − ỹk,ref )
T Q̃ (Ãxk + B̃ũk − ỹk,ref )

= (
xT

k Ã
T

Q̃Ã xk + ỹT
k,ref Q̃ ỹk,ref − 2xT

k Ã
T

Q̃ ỹk,ref
)

+ ũT
k (B̃

T
Q̃B̃)ũk + 2

(
xT

k Ã
T

Q̃B̃ − ỹT
k,refQ̃B̃

)
ũk . (33)

The weighting matrix Q̃ ∈ Rp(N+1)×p(N+1) has all the Q j, j ∈ [k, k + N] on the diagonal axis.
Notice that the first three terms of the last expansion of Eq. (33) are constants with the same
initial state xk and reference trajectory ỹk,ref since the modified state-transition matrix Ã and loading
matrix B̃ are derived outside of the optimization process. This allows dropping these terms in the
optimization problem and forming the equivalent QP problem of Eq. (26) as

min
ũk

{
ũT

k (B̃
T

Q̃B̃)ũk + 2
(
xT

k Ã
T

Q̃B̃ − ỹT
k,refQ̃B̃

)
ũk

}
, s.t.

{
ũmin � ũk � ũmax

xk, ỹk,ref given . (34)

Comparing this to the standard QP formulation, Eq. (27), it is clear that this has the exact same
form, and the existing tools can be readily deployed to solve this problem.

Two constraints are enforced through the inequality matrix ũmax and ũmin. The first constraints
are the range of the flap motion, limited to −50◦ � uk � 50◦. This range is determined a priori
and here is set based on the stability of the computational solver. When the flap deflects over 50◦, a
sharp angle is generated at the connection point between the flap and the main foil body, rendering
the conformal mapping to be invalid. Another constraint is named the continuity constraint, |uk+1 −
uk| � urange . We call this the continuity constraint since this condition ensures the flap does not
perform any sudden acceleration, which could make the FSI solver unstable due to the interpolation
required to generate a new computational grid at each time. If we include the angular flap velocity θ̇

in the input vector, we will have to enforce another constraint to connect the flap angle and velocity,
e.g., the central difference scheme θ̇k = (θk+1 − θk−1)/dt . In practice, this is proven to be too strong
of a constraint, and the optimizer used here could not always find the optimal solution. Hence, we
only use the flap angle as the input.

Once the QP problem, Eq. (34), is solved, we get an input sequence ũk for time step tk to tk+N−1

that returns the minimal objective function over the next N time step. For closed-loop MPC control,
we will apply only the first element of this input sequence to the plant, and then at the next control
time step, new states are collected to be the initial condition of the new optimization process. This
is called the receding horizon MPC control, which provides the feedback mechanism for the MPC
framework.
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FIG. 4. Block diagram for the open-loop model-based control.

B. Open-loop model-based control

Now let us design the controller for the foil-and-flap system using the DMDc model derived
above. First, an open-loop model-based control is employed to serves as a baseline case where
no system feedback is given, or the feedback time interval is infinite. The block diagram of the
open-loop control is shown in Fig. 4. The open-loop term here means that there is no feedback from
the plant and trajectory planning is done offline. At t = t0, we acquire the delay-embedded initial
states from the plant as x̃0, then start the control with the reference trajectories ỹref. After completing
optimization at each control time step, we apply the first element of the optimal control sequence
to the model, then take the states returned from the model as the new initial state. Following the
calculation for a specified time span, the collected control sequence is fed to the plant and we let
it evolve on its own. This control strategy has no feedback from the plant and is hence called the
open-loop model-based control. Note that to reduce the computational resource requirement and
facilitate real-time application, the control time step dtctrl is much larger than the FSI simulation
time step. We have dtctrl U∞/L = 0.05 for all of our controlled cases, and the trajectory planning
block is in charge of producing the input trajectory in between. For the current controller, where
only the flap angle serves as the control target, the trajectory is connected piecewise linearly, and
the flap angular velocity is calculated with the slope of the linear piece. This works the same for the
closed-loop cases discussed later.

Since our ultimate goal is to regulate the flow-induced flutter, we choose a scenario that is
realistic to the possible application for energy extraction, which is the sinusoidal lift coefficient
with transitioning amplitude and frequency. The reference lift coefficient is acquired by prescribing
flap motion to the plant. Figure 5 shows three trajectories of the input flap angle and corresponding
lift coefficients in thin red lines. It also shows the results from the open-loop model-based control in
thick blue lines, and the vertical broken line marks where the control is initiated after the flap follows
the original prescribed trajectory. Three different sample trajectories will be used to demonstrate the
control efficacy: trajectory A is the low-frequency trajectory with flap waving at St f = 0.075 to 0.1
with slightly decreasing amplitude; trajectory B oscillates at a higher-frequency range St f = 0.5 to
0.6; and the frequency of trajectory C gradually decreases from St f = 0.5 to 0.4.

The results show that the open-loop control can keep the system responses within 20% range
from the desired trajectories. Table II shows the average tracking error of applying the open-loop
control over every 300 control time steps, i.e., �t U∞/L = 15. For all three cases, we can see that
at the initiation of the control engagement, a large flap deflection is requested by the controller.
This stems from the discrepancy between the desired states and the model-predicted states using the
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FIG. 5. Open-loop model-based control performance evaluation for (a) trajectory A: low-frequency; (b) tra-
jectory B: high-frequency; and (c) trajectory C: high-to-low frequency test cases. Red thin line: ground truth;
blue thick line: controlled cases; vertical broken line: control initiation.

plant-provided initial condition. As the open-loop controller has no feedback from the plant, this
error will require some time to be mitigated, and after that the overall range of the lift force can
be reasonably recovered. Given that this control strategy lacks feedback from the system response,
the paramount factor influencing control effectiveness is the accuracy of the model predictions. For
cases with higher oscillation frequencies, the control input deviates significantly from the reference
input after a brief control action interval, sometimes exhibiting an almost 180◦ phase difference.
Surprisingly, the overall error remains insubstantial. This is attributed to the DMDc model, which,
despite its imperfect reconstruction of detailed higher frequency pulsing responses in quasiperiodic
systems, effectively captures the general trend of fluidic forces and states [see Fig. 2(b)]. Given the
controller’s ability to follow the average, the overall tracking error is consequently confined to a
lower range. However, for trajectory A, characterized by a larger amplitude, it is evident that the
initial error propagates and leads to intense fluctuations in the control input. After t U∞/L > 60, the
controller is able to track the lift coefficient well since the DMDc model performs better at small
amplitude cases and the initial error is mostly mitigated.

TABLE II. Average tracking error with open-loop model-based control corresponding to the three cases
shown in Fig. 5.

Trajectory case t = 15 → 30 30 → 45 45 → 60 60 → 75

A 14.63% 21.26% 10.04% 10.79%
B 10.66% 12.93% 10.38% 12.48%
C 9.71% 10.0% 12.78% 13.78%
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FIG. 6. Block diagram for the closed-loop MPC control.

Overall, open-loop model-based control could not achieve accurate trajectory tracking. More-
over, owing to model inaccuracies, the controller tends to demand excessive actuation. Across all
three cases, an overshoot of the control signal compared to the originally prescribed motion is
evident, presenting an undesirable characteristic for real-world actuators. Nonetheless, the controller
maintains the response within a reasonable range. We will now explore enhancements to the
controller by incorporating system response feedback.

C. Closed-loop MPC control

To further improve the effectiveness of our control scheme, we can take the systems states
acquired from the plant and reinitiate the optimization procedure at each control time step. The
block diagram of this closed-loop MPC control scheme is shown in Fig. 6. We can see that compared
to the open-loop design, the plant is now included in the control cycle to feed back the state altered
by the last control input.

The same three cases used in the open-loop cases are shown here to demonstrate how the
closed-loop MPC performs. The reference lift coefficient and the original input sequence, along with
the results of the controlled cases, are shown in Fig. 7. It is evident that closed-loop control works
better than the open-loop case, especially for the low-frequency cases, where the lift coefficient
nearly perfectly follows the reference trajectory shortly after the control is engaged. The large
error at the initialization is quickly corrected by the optimization, and within 300 iteration cycles
after initiation (t U∞/L = 15), the controller settles down on its steady input sequence. Table III
indicates the tracking error in a different time span, which demonstrates that the closed-loop
controller can track the lift coefficient to a great sub-5% error range for most cases. However,
for high-frequency cases, again, the trend is recovered very well but the high-amplitude pulsing
behavior is suboptimally captured. We can see from the input sequence that the input θ never
goes to the extrema even though the peak is not matched, which reflects the observation that the
DMDc model could not capture the full-rank dynamics of the system. In the authors’ previous
publication [41], we concluded that the quasiperiodic motion is caused by the interaction between
the flow-induced mode and the flap-induced mode. In the phase-space perspective, this means these
two trajectories get so close in the phase space that they intersect with each other and the system
keeps switching between the two trajectories. DMDc cannot distinguish them either due to the
smoothing effect when multiple trajectories are considered or because the data acquisition time
step should be smaller to preserve more details for the identification procedure to recognize the
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FIG. 7. Closed-loop MPC control performance evaluation for (a) low-frequency, (b) high-frequency, and
(c) high-to-low frequency test cases. Red thin line: ground truth; blue thick line: controlled cases.

difference between the trajectories. From the control perspective, at higher-frequency conditions,
this foil-and-flap system is not controllable only by the active flap actuation, or the system state
space cannot be reached entirely by moving the flap. From the various tests conducted for the
open-loop and closed-loop control, we conclude that the active control is especially valid within the
flap oscillating frequency range of St f < 0.5 as seen in Figs. 6 and 7. This range matches that found
in the cited previous research, where the flap-induced modes are the dominant flow mechanism only
when separated farther enough from the flow-induced mode. Still, for the high-frequency cases, the
tracking error is minimal since the long-term average behaviors are still captured well by the DMDc
model and the flap can impact the slower long-range trends.

A crucial parameter distinguishing the open-loop and closed-loop cases is the feedback interval,
as the open-loop case can be regarded as the extreme scenario with an infinite feedback interval.
To further assess the influence of the feedback interval on control effectiveness, we examine four
cases with varying settings of �t,U∞/L = 0.1, 0.2, 0.4, 0.8, all employing the same low-frequency
trajectory as in the preceding instances [refer to Figs. 5(a) and 7(a)]. Figure 8 and Table IV
show, respectively, the flap angle with corresponding lift coefficient and average tracking error

TABLE III. Average tracking error with closed-loop MPC control corresponding to the three cases shown
in Fig. 7.

Trajectory case t = 15 → 30 30 → 45 45 → 60 60 → 75

A 2.97% 2.47% 2.0% 3.17%
B 4.27% 4.23% 3.78% 4.17%
C 3.27% 4.27% 6.82% 8.87%
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(b)

(c)

(a)

(d)

FIG. 8. Closed-loop MPC control performance with feedback interval �t U∞/L = (a) 0.1, (b) 0.2, (c) 0.4,
and (d) 0.8. Red thin line: ground truth; blue thick line: controlled cases.

for the four cases along with the original �t,U∞/L = 0.05 case. We can see that when the
feedback interval increases beyond a certain threshold, the controller performance suddenly drops
to an undesirable extent – over 500%, which is worse than the open-loop approach. Upon further
inspection, the reason behind this is that when there is no system state feedback, the system slowly
sways away from the target trajectory as the planned piecewise trajectory does not optimally track.
This does not present an issue if the target trajectory exhibits a trend with a low frequency, as the

TABLE IV. Average tracking error with closed-loop MPC control corresponding to the four cases shown
in Fig. 8.

�t U∞/L t = 15 → 30 30 → 45 45 → 60 60 → 75

0.05 2.97% 2.47% 2.0% 3.17%
0.1 2.95% 2.46% 2.0% 2.27%
0.2 2.50% 2.43% 1.91% 2.49%
0.4 3.42% 2.82% 2.74% 3.24%
0.8 3.75% 500.03% – –
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FIG. 9. Closed-loop MPC control performance evaluation for two different step-function trajectories. Red
thin line: ground truth; blue thick line: controlled cases.

open-loop approach is proven to have good tracking performance, given the model is well con-
structed. When a new feedback signal arrives, the controller is able to regain control. Yet, as
the tracking frequency increases, the state feedback introduces a notable discrepancy between
the current state and the desired state, as observed in the open-loop scenario. In such instances,
the model predictive control (MPC) controller fails to find a feasible solution, resulting in the
propagation of errors and eventual destabilization of the system. Conversely, when the feedback
interval is sufficiently small, the tracking performance seems to exhibit reduced dependence on the
interval.

The previous tests aim to demonstrate how the flap can help facilitate a large amplitude of flow-
induced vibration; how about the opposite, trying to use the flap to stop the vibration? We will now
tackle this problem. Figure 9 shows the desired lift coefficient and the closed-loop MPC-controlled
results. In this set of tests, two lift coefficient trajectories are tested, both of which start with the same
oscillating lift and settle down at the average lift of waving the flap at a large range (−30◦ to 30◦),
which is about CL = 0.189. Then the target lift coefficient shifts to the other constant value after a
period, then to another. The flap angle trajectories generated by the closed-loop MPC controller to
track these lift trajectories are shown, where we can see the flap has to be constantly adjusted to cope
with the shedding leading edge vortices so that the lift can stay at a constant value. The oscillation
especially becomes intense when the flap goes to negative values (pointing upward), which creates
stronger nonlinear interaction with the vortex wake created at the leading edge. Nonetheless, the
constant lift target is well achieved, with the average tracking error between all piecewise segments
being 3.19%. This shows that the presented control mechanism can successfully eliminate the flow-
induced vibration.

The closed-loop control achieves the goal that we set at the beginning of this work: regulation of
the flow-induced flutter of a foil with the active flap as the actuator. With the Koopman-based MPC,
this task is satisfied with great accuracy for low-frequency oscillation and constant lift scenarios
(no vibration), and reasonable response for high-frequency oscillation. Let us further consider the
practical application situation, where the speed of the controller is crucial. Differently from the
simulation where we can wait until the optimization is finished before evolving the flow, in practice
the flow just keeps going. If the controller is not fast enough, when the optimized input is acquired,
the flow is already in a different state. The performance of utilizing QP solvers to perform MPC
depends on many factors, including the model type, number of inputs to optimize, the number of
states considered, tolerance required, etc., and it is also an iterative process so there is no single
performance criteria that can describe its efficiency. Readers are referred to papers with benchmark

014702-18



KOOPMAN-BASED MODEL PREDICTIVE CONTROL …

FIG. 10. Vorticity field of the low-frequency flap trajectory case for the (a) prescribed flap motion and
(b) closed-loop MPC-controlled cases.

tests, such as Kouzoupis et al. [47], that compare the performance of different QP solvers to learn
more on this aspect. A crucial benefit of using a Koopman-based model is that solving the convex
optimization problem can be rapid to enable real-time controlling of nonlinear systems. For our
case, each call of the quadprog in MATLAB takes about 0.006 sec to perform with the delayed
dimension 80 and control horizon N = 10 using a desktop PC equipped with the Intel Xeon CPU
E5-1603 v4 running at 2.8 GHz.

D. Flow field observations

As elaborated in Sec. I, another benefit of using the DMDc-based MPC structure is that the
control is designed on the fly and applied to the nonlinear full-scale plant. This allows us to
examine how the flow responds to the flap actuation, and this could provide real-time insight on the
actuator impact and inform about the optimal sensor placement. Combining the MPC framework
with methods that can incorporate new observations online [48,49], one can create more accurate
models without conducting system identification again. This property could be crucial to practically
implement this control method to real-world systems, as the ambient environment can provide more
accurate working conditions to improve the model prediction.

Let us take a look at the flow field of the low-frequency and high-frequency cases shown in the
previous sections. The vorticity field snapshots of the ground-truth simulations with prescribed flap
motion compared with the closed-loop MPC controlled cases are shown in Figs. 10 and 11. We can
now see why the MPC controller cannot fully capture the high-frequency response regimes. The
smoothing effect of the DMDc model treats the desired lift trajectory as a slowly varying sinusoidal
pattern and categorizes the behavior into a simple limit cycle oscillation. However, the spiking
peaks come from the nonlinear interaction between the leading and trailing edge vortex shedding,
which creates a much more chaotic wake in the ground truth case. The small MPC-generated flap

FIG. 11. Vorticity field of the high-frequency flap trajectory case for the (a) prescribed flap motion and
(b) closed-loop MPC-controlled cases.
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amplitude could not excite the intense trailing edge separation that kicks the system out of the stable
limit cycle. Including an online state estimator in the system could improve the identification of this
kind of behavior. On the other hand, in the low-frequency cases, the two scenarios exhibit an almost
identical wake patterns after the control sequence settles down after the initial error is mitigated.

E. Unsteady ambient flow condition identification

Although the optimization process of the MPC framework could be sufficiently fast for real-
world scenarios, in practice robustness of the solver against environmental condition disturbances
is another crucial factor for the controller to work. For example, for a flying airfoil, the flow
conditions constantly change due to humidity, temperature, turbulence, and many other factors
to consider. The model used here is built with just one set of environmental conditions (uniform
ambient flow), and it showed good potential at tracking different kinds of trajectories produced
from diverse flap motion. However, how it will respond to other forms of disturbances remains to
be explored. For the control purpose, MPC is very robust at hiding the model’s inaccuracy [29],
but a model that inherently considers unsteady conditions could provide more robust control of
the system and a better understanding of the underlying physics. This remains an open question
to be scrutinized thoroughly with realistic environmental conditions, but here we will provide a
preliminary discussion with simplified conditions.

A number of reduced order models developed for flow-induced fluttering systems also take
unsteadiness into account [50], and some of them can be easily fitted into the current MPC structure.
For example, Deem et al. [51] designed an adaptive separation control of a laminar boundary layer
based on online DMD [48]. By periodically updating the DMD model after modifying the flow,
the control gain based on the new flow state can be adjusted accordingly. Another example is the
DMD with exogenous input proposed by Kou and Zhang [52] that models the disturbance as an
external input and separates the effect of the natural unperturbed response and the external input.
We will adopt this idea and treat the flow fluctuations as an external input characterized by certain
parameters and test our MPC control framework on a foil subject to unsteady flow.

We will use a simple model to represent the unsteady condition caused by the incoming gust.
This canonical disturbance can be described with a sinusoidal oscillating streamwise velocity and is
a classic case described in Theodorsen’s original work [12], which then has been adopted by various
research [53,54]. The streamwise ambient flow velocity is represented as

U∞(t ) = Umean + UA(t ) sin [ω∞(t ) t + φ∞(t )], (35)

where UA(t ) is the oscillation amplitude of the free stream velocity, and ω∞(t ) and φ∞(t ) are the
frequency and the phase of the ambient flow oscillation, respectively. Recall that in Sec. III, we
defined the control input u as the flap angle. To incorporate the effect of the oscillating flow, we can
treat the ambient flow velocity as a separate external input and write the control input at time tk as

uk = [ θk, U∞,k ]T , (36)

and the rest of the optimization procedure follows Eq. (21) and following. Figure 12 shows an
example of a foil subject to oscillating flap actuation and streamwise oscillating gust. Both the
frequency of the flap motion and that of the ambient flow transition from 0.1 to 0.05 in this specific
case.

The GW-DMDc model with both flap angle and ambient flow velocity as input is again con-
structed with 10 different trajectories consisting of lift and drag coefficients and flow kinetic energy
sampled on the foil surface. These trajectories all have smoothly transitioned input magnitudes.
The following cases are not part of the training data. Performing the same open-loop model-based
control described in Sec. III B on the case shown in Fig. 12, we are able to recover the trajectory of
both the flap motion and ambient flow oscillation to a reasonable accuracy, as shown in Fig. 13. A
similar issue that with open-loop model-based control, the lift coefficient cannot be perfectly
recovered due to the model imperfection still being present, and the amplitude of the flap angle
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FIG. 12. Vorticity field and the corresponding magnitude of the flap angle θ and ambient flow velocity U∞.

is incorrect. Still, even with the added disturbance in the ambient flow velocity, the model exhibits
good simultaneous predictability for the ambient environmental conditions and the active actuation
required to follow the reference lift coefficient trajectory.

With this simple example, we see the potential in both control and identification of the MPC
framework. Moreover, with the geometrically weighted DMDc, the identification process can be
extended to identify spatial structure changes. The nonlinear impact of the actuators on the flow
can finally be scrutinized. This could enable a new territory of morphing control development, with
multiple actuators responsible for mitigating different kinds of disturbances. Furthermore, the modal
information can be used to reconstruct the whole flow field with limited available sensors.

FIG. 13. The lift coefficients, flap angle, and ambient flow velocity trajectories. Red broken line: reference;
blue dotted line: model response with original input; black solid line: open-loop model-based control results.
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IV. CONCLUSION

In this paper we introduce how we can build a linear model with control input utilizing a
geometrically weighted DMDc procedure. This model is then used to derive the objective function
used in the MPC scheme to satisfy trajectory tracking requirements. Both open-loop model-based
control and closed-loop MPC control are tested on our foil-and-flap system, which exhibits good
tracking performance. The results show that we successfully regulate the flow-induced flutter with
the active flap by directly controlling the lift forces acting on the foil.

However, the controllability of the flap actuator and the limitation of the DMDc model offer some
restrictions on the control scheme, mainly in tracking high-frequency nonlinear pulsing responses.
From the previous study [41], we know an active flap interacts with the flow-induced mode very
differently at different amplitudes and frequencies, and at a high flapping frequency limit, the
flow-induced mode is more dominant. If one wish to track these higher-frequency dynamics, adding
another high-frequency actuator such as a fluidic actuator at the leading edge of the foil is a possible
solution. Another possible solution to this problem is to utilize some forms of state estimators to
update the model to match the observed responses. For example, the Kalman filter [55] is a recursive
state estimation technique that can estimate the future state with the recorded state history. Through
a Kalman filter, the underlying nonlinear interactions between the flap- and flow-induced modes
can be estimated in real time and provide another layer of predictability to the GW-DMDc model.
Another benefit of including a state estimator is the improvement of the controller’s robustness.
As discussed in Sec. III E, by adding an extra control input, the effects of coherent flow structures
can possibly be isolated to provide better control sequence design. Moreover, the state estimator
could help screen the turbulence fluctuation, model inaccuracy, or other unknown noncoherent
disturbances and identify the dynamics controllable by the available controller.

In this work we adopted the idea of linear modeling with the Koopman operator, which has the
benefits of data-driven and linearity. There are still many options of models that can fit into the MPC
framework, as the only requirement is the prediction the system response with a certain accuracy,
and that the model can be evaluated quickly. The classical Theodorsen’s model is constantly being
improved and could be a great candidate for the model used in the MPC framework. For example,
the work by Pohl and Hermann et al. [9,10] links multiple models acquired from different airfoil
postures to capture the hysteresis effect of the foil-and-flap system. Other works aim to expand
the modeling horizon of Theodorsen’s model, such as those conducted by Wang et al. [6], which
formulates the effects of gust, or by Platanitis et al. [11], which considers the interaction of multiple
morphing surfaces. These efforts have been improving the elegant classical model and could be used
in the MPC framework. Another branch of methods worth mentioning is the vortex model, which
can capture the vortex distribution and evolution in the wake. For example, Darakananda et al.
[56] represented the flux of vorticity into the wake by a continual release of time-variable vortex
elements from both edges of the airfoil, and the strengths of the vortices are corrected by a Kalman
filter based on local measurements. Mathieu et al. [57] further extended the model to identify the
possible connection between the vortex strength and a cluster of variables to reject disturbances of
the local measurement. These methods are all part of a continuous effort for better modeling of
aerodynamic flows with moving and deforming structures, and the authors are excited to see how
the combined effort of the community can bring a better control and design philosophy to the FSI
systems.
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[14] B. R. Noack, K. Afanasiev, M. Morzyński, G. Tadmor, and F. Thiele, A hierarchy of low-dimensional
models for the transient and post-transient cylinder wake, J. Fluid Mech. 497, 335 (2003).

[15] C. W. Rowley, T. Colonius, and R. M. Murray, Model reduction for compressible flows using POD and
Galerkin projection, Physica D 189, 115 (2004).

[16] M. J. Balajewicz, E. H. Dowell, and B. R. Noack, Low-dimensional modelling of high-Reynolds-number
shear flows incorporating constraints from the Navier–Stokes equation, J. Fluid Mech. 729, 285 (2013).

[17] C. W. Rowley, Model reduction for fluids, using balanced proper orthogonal decomposition, Int. J.
Bifurcation Chaos 15, 997 (2005).

[18] K. Willcox and J. Peraire, Balanced model reduction via the proper orthogonal decomposition, AIAA J.
40, 2323 (2002).

[19] B. O. Koopman, Hamiltonian systems and transformation in hilbert space, Proc. Natl. Acad. Sci. USA 17,
315 (1931).
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