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The prediction of gust loads during atmospheric flight can aid in the design, assessment
and certification of aircraft, and can also enhance the reliability of low-inertia vehicles
which are susceptible to large atmospheric disturbances. In this paper, we explore how the
vorticity distributions shed from a wing’s leading and trailing edges affect its lift history
during a large-amplitude transverse gust encounter. Emphasis is placed on comparing
experimental lift transients and vorticity distributions with those predicted by Kiissner’s
transverse gust model. Wings with both sharp and blunt leading edges are towed through a
vertical jet in a water towing tank to simulate the wing-gust encounter. It is observed that
while the quasisteady circulation of Kiissner’s model increases, its lift prediction provides a
good first-order approximation of the experimental lift transient across a large range of gust
ratios and Reynolds numbers. The success of the inviscid model is traced to its ability to
capture the circulatory characteristics of the viscous separated flow. Its performance deteri-
orates in the latter phases of the encounter, when the quasisteady circulation decreases. This
is shown to be due to a fundamental difference in the lift reduction mechanism between the
model and the experiments, resulting in contrasting shed vorticity distributions. Namely,
the lift drop-off in the model is governed by the delayed response to a negative change in its
quasisteady bound circulation, while in the experiments it is governed by the detachment of
the leading-edge vortex and the persistent shedding of negative circulation into the wake.
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I. INTRODUCTION

Calculating the forces on a body immersed in a fluid is a fundamental problem in fluid mechanics
with important engineering applications. In aeronautics, calculation of the static and dynamic loads
produced by an aircraft flight surface is an essential aspect of flight vehicle design. The governing
equations of fluid motion are, in general, extremely difficult to solve. Aerodynamicists have instead
resorted to either numerical simulations of the governing equations, also known as computational
fluid dynamics (CFD), or to simplified fluid flow models that can be solved analytically or numeri-
cally. Specifically, the use of potential flow, which assumes an inviscid, irrotational, incompressible
fluid, has been successful at predicting the aerodynamic lift on wings at low angles of attack, serving
as the foundation of what is known as classical aerodynamics [1]. Its success can be traced to
the observation of Prandtl [2], who postulated that viscous forces are negligible except close to
solid boundaries, where the no-slip condition needs to be satisfied. Through a simplification of the
governing equations, Prandtl showed that the pressure is approximately uniform across a boundary
layer and, thus, for attached flows at high Reynolds numbers, potential flow is able to approximate
the pressure distribution on a lifting surface [3]. Experimental data have shown that this holds true
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for both steady and unsteady flows, as long as the flow remains attached, and the vorticity shed from
the trailing edge is accounted for [3—-6].

At high angles of attack, lifting surfaces exhibit trailing- or leading-edge separation, and the
boundary layer arguments which justified the use of potential flow are no longer valid. This is
manifested in the inability of potential flow to predict the reduction in the steady-state lift slope that
occurs at high angles of attack. Unsteady potential flow lift predictions suffer the same shortcomings
several convective times after an initial unsteady forcing—say, a large step change in the angle
of attack [7]. However, during the initial transient, researchers have observed that wings are able
to sustain lift values close to the potential flow prediction [7—13]. This phenomenon, often called
delayed stall, is a well-known characteristic of separated flows and is facilitated by the formation
of a leading-edge vortex (LEV). As described by McCroskey [14], a growing LEV attached to the
wing delays stall at high angles of attack, which allows for higher instantaneous lift coefficients
than would otherwise be possible under steady conditions. The LEV detachment process marks the
end of lift enhancement and the inception of stall. Flows encompassing LEVs have been studied
extensively due to their prevalence in the unsteady locomotion of biological fliers and swimmers
[15,16].

The accuracy of unsteady potential flow models outside the domain of their validity can be
perhaps explained through the concept of fluid impulse. In the absence of nonconservative forces,
the fluid impulse is an invariant of the flow, despite any unsteadiness [17]. Thus, any forces on an
immersed body can be calculated from the change in fluid impulse, which can be computed as a
moment of the flow vorticity field [18],

1
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where n; denotes the number of dimensions, V; is the fluid volume, S}, is the solid surface with unit
normal vector #i, x is the spatial coordinate, and u# and @ are velocity and vorticity vector fields,
respectively. Caution must be used when applying this equation to experimental data because it
only applies to unbounded domains. Thus, it is possible that vorticity that is located outside an
experimental field of view can influence the body forces. The second integral in (1) vanishes under
the conditions that the reference frame is fixed to the body, and that this body frame is inertial. Lift
can then be expressed as the change in vertical fluid impulse,

d
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Equation (2) shows that lift can be explicitly computed from the generation of vorticity and its
streamwise movement. It has been recently demonstrated that, in many cases, potential theory
correctly predicts the development of both circulatory and noncirculatory vortex sheets [19,20],
which can be experimentally isolated using standard results of potential theory [21]. Hence, even
if potential flow models require the use of erroneous assumptions, they can still approximate
lift transients by capturing the hydrodynamic impulse of viscous separated flows. Furthermore,
vortex-impulse can be used to augment models using data from experiments or simulations. Notably,
Babinsky et al. [9] used the above ideas to develop a low-order model for pitching and surging
wings. They found that Wagner’s model [5] accurately predicted the lift of pitching and surging
wings when the relative advection of vortices is properly accounted for. Polet ef al. [22] used similar
ideas to estimate the force on a wing undergoing a perching maneuver. Otomo et al. [23] found
that Theodorsen’s pitch model performs remarkably well despite the formation of a LEV, and the
discrepancy in lift after the LEV detaches can be accounted for using the relative advection of the
LEV with the circulation in the wake. Stevens and Babinsky [24] found that the LEV circulation as
calculated from experimental measurements of a pitching wing closely follows the bound circulation
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FIG. 1. Example experimental transverse gust encounter measurements: (a) vorticity and velocity field and
(b) experimental lift transient compared with Kiissner’s model.

predicted by Wagner’s model, suggesting that the lift is dominated by the circulatory component
regardless of whether a leading-edge vortex is formed or not. Furthermore, the work of Ford and
Babinsky [10] showed that, for an impulsively started airfoil at high angle of incidence, most of the
vorticity in the flow is not in the bound vortex but shed in the wake.

Kiissner’s transverse gust encounter model has also been reported to agree with experimental
data for a wide range of gust ratios and gust profiles [25-27]. This model is the focus of the
current work, as there has been a recent effort to understand the physics of gust mitigation and
to design new gust alleviation strategies [28,29]. In the past, models of varying fidelity have been
used to predict force transients produced during gust encounters, including unsteady potential flow
[30], state-space formulations [31], and experimental, data-driven models [32]. However, Kiissner’s
model has several enticing properties. Its computational simplicity makes it a great candidate for
online control applications. Moreover, Kiissner’s model is based on well-understood physics, and
its agreement with data suggests that it can be used to understand the different force producing
mechanisms during a gust encounter [33]. Defining the gust ratio to be the ratio of peak gust
velocity to freestream velocity, i.e., GR = V/U, and the gust-width-to-chord ratio (w/c) to be
the streamwise width of the gust divided by the chord, Fig. 1 depicts an example flowfield and lift
transient for a transverse gust encounter with a trapezoidal gust profile, GR = 0.75, and w/c = 1.4.
The gray area denotes the convective times that the leading edge is in the gust. The flow is massively
separated at the leading edge (and therefore not potential), the wake is deflected due to the gust
velocity, and the gust vorticity is deformed. However, the predictive ability of Kiissner’s model
shown in Fig. 1(b) suggests that the model is able to capture some essential aspects of the encounter.
One of the goals of this paper is to identify the mechanisms by which this inviscid model is able to
predict the lift transients of viscous, separated flows, and explore its limitations.

All unsteady potential flow models mentioned above have a known limitation: They overpredict
force transients after LEV detachment. The concept of the optimal vortex formation introduced by
Gharib et al. [34] and extended to unsteady airfoil kinematics by Dabiri [35] can be used to estimate
the timescale of LEV detachment. It describes the nondimensional period of time over which a
single vortex created by a vortex generator grows. Its maximal value denotes the time that the vortex
stops entraining fluid from the shear layer and detaches. Optimal vortex formation is defined as 7 =
CT'/(DAU), where I' is the instantaneous circulation of the vortex, C is a constant depending on
the configuration, D is the characteristic length scale of the flow, and AU is the velocity difference
across the shear layer feeding the vortex. Dabiri [35] showed evidence that there is a universal
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optimal formation time 7 2 4 in vorticity-driven lift and propulsion. However, subsequent research
revealed that this is not always true [36,37]. The variation in optimal vortex formation time has been
attributed to differing LEV detachment mechanisms. Two competing mechanisms governing LEV
detachment have been identified: the bluff body detachment mechanism and the boundary layer
eruption mechanism [38]. The former is associated with the interaction of the LEV with the trailing
edge of the wing. The latter is associated with the vortex-wall interaction between the LEV and
the airfoil surface. A characterization of the relevant vortex detachment parameters can be found in
Kissing et al. [39].

Given the demonstrated importance of the LEV, another goal of this paper is to analytically
investigate its growth during a gust encounter. The seminal work of Didden [40] expressed the
growth rate of a vortex by integrating the vorticity flux over the shear layer. By assuming a linear
velocity profile across the shear layer, the vorticity can be approximated by

du AU
w; N — R —

dy 1)
where § is the thickness of the shear layer feeding the vortex. The approximation is shown in
equation (3). Similarly, the size of the LEV can be approximated by the mass flux from the shear
layer into the vortex. Written in terms of nondimensional quantities, the results for circulation and
area of a vortex are shown in equations (4) and (5), respectively, where t* = tUy,/c is the convective

time:
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Widmann and Tropea [38] used the above results along with a Falkner-Skan approximation for
the boundary layer thickness § to investigate the vortex detachment mechanisms of a plunging
airfoil. Rival et al. [41] and Sattari et al. [42] used a similar approximation to study the growth
of starting vortices and the effects of leading-edge geometry on LEV growth and detachment.

It is important to note that this paper considers wings with a geometric angle of attack of 0° as
Kiissner’s model is formulated this way. Thus, the effect of upward and downward gusts is identical,
which is in general not true and care must be taken to account for additional effects. Furthermore,
this paper considers the prediction of lift and not pitching moment. Kiissner’s model predicts that
the lift always acts through the quarter-chord, which is in clear disagreement with the well-known
suction peak that propagates down the chord of the wing with the LEV. Thus, it is expected that the
moment coefficient between the inviscid model and the experiment will be different. Furthermore,
finite wing effects are not considered in this work and will be the subject of future research. It is
believed that the tip vortex has a small influence on the flow early in the gust encounter. This can be
justified based on the following intuition: (1) The full wing tip only enters the gust at a convective
time of 1, (2) the wing tip vortex does not extend to infinity but only starts at gust entry.

The objectives of this study are (i) to investigate the effect of the shed leading-edge and
trailing-edge vorticity distributions on the lift experienced by a wing during a transverse gust
encounter, (ii) to make an in-depth comparison between viscous and inviscid gust encounters. The
organization of the paper is as follows: Section II presents the experimental setup, Kiissner’s model,
and the vorticity flux methods used in the paper. Section III A presents the general flow and lift
characteristics. Section III B investigates the scaling of the LEV growth during a gust encounter.
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FIG. 2. Experimental apparatus at the University of Maryland water towing tank depicting (a) the tow tank
configuration (b) the wing and its instrumentation during a transverse gust encounter.

Section III C analyzes the experimental shed vorticity distributions and compares them to Kiissner’s
inviscid model. Finally, Sec. III D discusses the vortex detachment timescales for transverse gust
encounters.

II. METHODOLOGY
A. Experimental methods

Experiments were carried out in The University of Maryland (UMD) free-surface water towing
tank shown in Fig. 2. The tank dimensions are 7 m long, 1.5 m wide, and 1 m deep. The tank
is equipped with a four-degree-of-freedom model motion system, allowing for streamwise, stream
normal, and pitching motions. The freestream was created by towing the wing through the tank, and
a transverse gust was created via a planar jet flow. Two gust generation systems can be interchanged
to produce two different gust profiles: A sine-squared gust profile and a trapezoidal gust profile,
depicted in Fig. 3(a). Details on the gust system design and profiles can be found in Ref. [43].

This paper presents data from two separate experimental campaigns: (i) A flat plate wing
encountering a sine-squared gust, (ii) and a NACA0012-64 wing encountering a trapezoidal gust.

1.4 T T 5 T T T T
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127 —&— Sine-squared | T ab |7 Run#2 Ensemble Average
Run#3 Low-Pass Filtered (SHz)
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FIG. 3. (a) Time-averaged gust velocity profiles generated by the UMD towing tank gust generator.
Figure obtained from Ref. [43] with permission. (b) Example of an unfiltered, ensemble averaged, and low-pass
filtered lift signal obtained using the ATI Mini-40 force balance.
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TABLE I. Experimental test matrix

Gust profile Gust ratio Maximum incidence Reynolds number
Trapezoidal 0.75 37° 6000, 12 000
Trapezoidal 0.50 27° 12 000, 17 000
Trapezoidal 0.30 17° 12 000, 28 000
Trapezoidal 0.20 11° 12 000, 42 000
Sine-squared 1.50 56° 20 000
Sine-squared 1.00 45° 20 000
Sine-squared 0.75 37° 20 000
Sine-squared 0.50 27° 20 000

The purpose of using data from different experiments is not to make a direct comparison between
them but to take advantage of the different frames of reference the experiments were conducted
in. Notably, the flat plate experiments took advantage of the tow particle image velocimetry (PIV)
capability of the UMD tank, where the camera and laser sheet were towed with the wing model.
Thus, the PIV data are in the frame of reference of the model and all shed vorticity is captured.
The flat plate was made from brass and has a chord of 7.62 cm and a span of 30.48 cm, resulting
in an aspect ratio of 4 and a 0.043 thickness-to-chord ratio. The experiments were conducted at a
Reynolds number of 20 000 and the gust width-to-chord ratio was 2.6. More details on the flat plate
experiments can be found in Ref. [44].

The NACAO0012-64 wing used has a chord of 10.5 cm and a span of 63 cm, resulting in an aspect
ratio of six. The gust width-to-chord ratio was calculated to be 1.4. The velocity vector fields were
measured using static PIV in which the laser and the camera are fixed in the laboratory reference
frame. A laser sheet was created in the vicinity of the gust, using a Quantel Evergreen Nd:YAG
532 nm laser, as shown in Fig. 2(b). The water tank was seeded with class IV soda lime spheres
with 37 um diameter. The images were taken 2.5 chords away from the wing tip. A Phantom v641
camera with 2560 x 1600 pixel resolution was used to capture images at 15 Hz in the laboratory
reference frame. Both wing models were equipped with a six-degree-of-freedom ATI Mini-40
force balance that measured forces and moments at 1 kHz. Figure 3(b) shows an example of the
postprocessing applied to the unfiltered lift signal. Each experiment was repeated five times and all
measurements were ensemble averaged, as well as filtered at a cutoff frequency of 5 Hz to remove
structural vibrations in the 8-10 Hz range.

Table I summarizes the experiments used in this study. All experiments were conducted at a
geometric angle of attack of 0°. For the trapezoidal gust experiments, two different Reynolds
numbers were tested at four gust ratios. The gust ratios were chosen to investigate two different
regimes: a high gust ratio and a low gust ratio regime. The effective angles of attack seen by the wing
when fully immersed in gusts of gust ratios 0.75 and 0.5 are 37° and 27°, respectively. The effective
angles of attack seen by the wing when the gust ratios are 0.3 and 0.2 are 17° and 11°, respectively.
The properties of the LEV are extracted from PIV using the vortex identification method proposed
in Graftieaux et al. [45]. The I'; criterion was used to identify the centroid of the leading edge
vortex. The T"; criterion was then used to identify the boundary of the vortex, and Stokes’ theorem
was used to compute the circulation using the vorticity within the identified boundary (see also the
Supplemental Material [46] for the control volumes used in the integration).

The uncertainty of the PIV vector fields was quantified using a built-in DaVis error tool which
uses correlation statistics to construct an error estimate [47]. The maximum uncertainty in the
velocity field was 3.6% while the average error was about 1%. The paper also computes integral
quantities of the vector field, such as vortex circulation. The error for these quantities was estimated
by employing linear error propagation theory [48] to the numerical integration scheme used to

014701-6



ROLE OF VORTICITY DISTRIBUTION IN THE RISE ...

N QOO U

FIG. 4. The flowfield in Kiissner’s gust encounter model. The wing and wake are represented as vortex
sheets and the local angle of attack of the airfoil changes according to the local gust velocity V.

compute these quantities. The average error was found to be approximately 8% of the instantaneous
vortex circulation.

B. Kiissner’s gust-encounter model

Classical unsteady aerodynamics theory uses a set of simplifying assumptions to derive analytic
or semi-analytic expressions for the loads on a wing section. Typically, the wing is modeled as a
thin airfoil with a vortex sheet placed on its camber line. The wake is also modeled as a vortex
sheet starting at the trailing edge and is assumed to be flat and frozen in the flow. Using the
above simplifying assumptions along with the enforcement of no flow through the wing, as well
as the Kutta condition and Kelvin’s circulation theorem, load coefficients can be derived as a
function of the unsteady operating conditions and wing kinematics. Using this approach, Wagner
[5] successfully calculated the lift evolution of a wing due to a step change in its quasisteady bound
circulation. Kiissner [49] later used this result to calculate the load transients during a transverse gust
encounter. He modeled the wing as a broken-line airfoil, whose local angle of attack and quasisteady
bound circulation are computed from the gust velocity. The modeled flowfield is shown in Fig. 4. For
a detailed derivation of Kiissner’s model the interested reader is pointed to Leishman [50, Chapter
8.1].

von Karman and Sears [51] decomposed the lift produced in this unsteady aerodynamics
framework into three components: The quasisteady lift, the added-mass lift, and the lift due to
the presence of the wake. The first component corresponds to the results of steady thin-airfoil
theory, where wake vorticity is assumed to be infinitely far downstream of the wing. The second
component corresponds to the vortex sheet that develops in order to enforce no flow through
the wing during wing accelerations, and the last component corresponds to the vortex sheet that
develops to counteract the downwash (or upwash) due to the wake. A paradox arises in the case of a
gust encounter, as there is an added-mass force according to the definition of von Karman and Sears
[51] but with no body accelerations. Corkery and Babinsky [52] showed that this force arises due to
the change in the vortex sheet induced by the gust vorticity on the wing. In accordance with Kelvin’s
circulation theorem, all vorticity in the flow not shed by a body must sum to zero. Therefore, this
induced vortex sheet must have no total circulation and is appropriately called “noncirculatory.”
It is worth noting that researchers have identified these vortex sheets even in the presence of flow
separation and external vorticity [21,52,53]. In light of this evidence, in this work we assume that
noncirculatory effects approximately superimpose with circulatory effects. The quasisteady lift and
the lift due to the wake make up what is often called circulatory lift, as they are associated with the
build-up of bound circulation. Further discussion on the resolution of this apparent paradox for the
general case of a body immersed in a viscous flow can be found in Limacher er al. [54].

Each of the lift contributions are shown Fig. 5 for a trapezoidal gust profile with gust width of
1.4 chords and a sine-squared gust profile with a gust width of 2.6 chords. These forces have been
obtained using unsteady vortex simulations which explicitly enforce the frozen wake and attached
flow assumptions. Epps and Roesler [55] showed that this method accurately extracts the forces and
circulations from classical unsteady theories, which often do not have closed-form time-domain
solutions. These forces are extracted numerically from the vortex model in the following way: At
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FIG. 5. Lift decomposition in Kiissner’s model for (a) trapezoidal gust profiles and (b) sine-squared gust
profiles.

each time step, the bound vorticity distribution can be determined by solving the linear system
AT' = RHS, where A is a matrix containing the influence coefficients of the bound vortices, I" is a
vector containing the circulation of the bound vortices, and RH S is a vector containing the induced
velocities from the flowfield. The circulatory and noncirculatory bound vorticity distributions are
extracted by decomposing RHS into contributions from the shed vorticity and the gust, RHS =
RH Sgust + RH Sgheq, and then solving the two linear systems for I'** and I'“. The corresponding
circulatory and noncirculatory lift is then calculated using equation (2). The quasisteady lift L% is
obtained by integration of the effective angle of attack induced by the gust along the chord of the
wing. The lift induced by the wake, L", is calculated by subtracting the quasisteady lift from the
total circulatory lift.

Figures 5(a) and 5(b) show that, during the early phases of the gust encounter, most of the
force is noncirculatory. As the effective angle of attack increases, the quasisteady lift increases
accordingly and there is a (delayed) build-up in bound circulation following Wagner’s theory [5],
which is balanced by opposite sign vorticity shed in the wake. This negative wake vorticity induces
downwash on the wing and therefore has a negative contribution to the overall lift, as shown in
Fig. 5. Similarly, as the effective angle of attack decreases in the later stages of the gust encounter,
the quasisteady bound circulation also decreases. Consequently, the vorticity that is shed in the
wake is positive and induces upwash on the wing and therefore has a positive contribution to lift.
This positive wake-induced lift is the sole contributor to lift after the gust exits and persists for
several chord lengths in accordance with Wagner’s initial response.

C. Vortex-prediction methods

In this section we use vorticity flux methods to predict the general scaling between LEV growth
and the relevant transverse gust encounter parameters. The goal can be stated as follows: Given
some fixed geometry, what are the effects of the experimental parameters such as Reynolds number
and gust ratio on the leading-edge vortex.

The problem at hand is depicted in Fig. 6. A control volume can be drawn around the LEV, shown
in Fig. 6(a). The LEV circulation can be determined by integrating the fluxes on the boundary of
the control volume. The LEV vorticity flux equation is derived in Ref. [16] and in two dimensions
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Control Volume, B

FIG. 6. (a) Control volume analysis of LEV growth and (b) geometry of the problem after simplifying
assumptions have been applied.

it reads

dr . dw,
—:/wzu-ndB—i—/v —dB, (6)
dr B B dn

where #1 is the normal vector along B. The first term represents the convective flux and the second
term represents the diffusive flux through the control volume boundary B. All of the vorticity of the
LEV originates from the leading edge shear layer and therefore the integral in equation (6) is only
nonzero along the part of the control volume boundary intersecting the shear layer C. Furthermore,
as noted by Eldredge and Jones [16], the diffusive flux is likely to be small when compared with the
convective flux through the shear layer. Therefore the integral can be simplified to

dr / ndC @)
— = | wu-adC.
dr c

The angle of curve C is fixed by the effective angle of attack seen at the leading edge, aesr, shown

in Fig. 6(b). Assuming a linear profile for the two velocity components across the shear layer, the
vorticity can be written as the total velocity over the shear layer thickness,

du dv JUZ +V?
w, = — — — o _,
¢ dy dx 8

where V is the local vertical velocity induced by the gust. The assumptions stated above and shown
in Fig. 6(b) imply that the velocity vector in the integral in equation (7) is always normal to curve C,
ie., u-f= u®+v?)"2 Introducing a parametric variable r € [0, 1], equation (7) can be written
and evaluated as shown below,

dr .
— = / w.u - ndC
dr c

Ll /U2 +v2
o</0 (—008 ),/Uozo+V2r8dr

1
x EUOZO(GR2 +1). (8)
The proportionality symbol has been used to emphasize that this is not an exact relationship because

the flow acceleration effects around the leading edge have been ignored. For example, Fage and
Johansen [56] found that for an airfoil at a high angle of attack, the velocity of the shear layer, Us;, is
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about 35%—-50% higher than the freestream velocity, depending on the angle of attack. Furthermore,
induced velocities by the bound vorticity and LEV will also change the shear layer velocity. This
will inevitably lead to errors, but the elementary scaling effects of the experimental parameters can
still be captured. An identical calculation can be carried out for the size of the LEV by integrating

the mass flux across curve C.
dArgv
——— = | u-ndC
c

dr
1
O(f JUZ +V2rédr
0

8
o 5 U GR? + 1. (€))

This calculation shows that the LEV area has a direct dependence on the shear layer thickness §, a
quantity not known a priori. Assuming that the vorticity in the shear layer originates at a stagnation
point on the pressure side [57], and that the stagnation point flow is quasisteady since the angle
of incidence in a trapezoidal gust is approximately constant, the Hiemenz equations [58] can be
used to approximate the thickness of the shear layer, as discussed by Widmann and Tropea [38] and
Schlichting and Gersten [59]. This approximation is given by

v
8= 2.4\/j, (10)
a

where v is the kinematic viscosity of the fluid and « is a parameter that describes the local flow
curvature around the stagnation point on the pressure side, i.e., a = Uy (x, y)/x = =V (x,y)/y, with
the origin of the coordinate system located at the stagnation point. a is proportional to Uy, a =
apUs, and equation (10) can then be written as

v
§=24

U (11)
Equation (11) can be used in conjunction with equation (9) to predict the area growth of an LEV.
Unfortunately, for the trapezoidal gust experiments there was no optical access of the pressure side
of the wing during the gust encounter and therefore ay cannot be directly computed. Instead, a steady
vortex panel method was used to compute the location of the stagnation point and the parameter aj.
It is found to be 1.67 and 2.59 for gust ratios 0.75 and 0.5, respectively. This method was also used
in Ref. [38] to calculate ag.

III. RESULTS

A. Flow morphology and Reynolds number effects

This section presents the general flow evolution characteristics, as well a comparison between
the experimental force transients and those predicted by Kiissner’s model. The effects of Reynolds
number on the flow and loads are also briefly explored, as previous Reynolds number independence
results have only been demonstrated for flat plate wings [60—62]. The low gust ratio regime consists
of gust ratios 0.2 and 0.3 and the high gust ratio regime consists of gust ratios 0.5 and 0.75. Each
gust ratio is repeated at a different Reynolds number as shown in Table 1. For brevity, flowfields
only for GR = 0.3 and GR = 0.75 are presented.

1. High gust ratio regime

Figure 7 depicts the gust encounter vorticity fields at four different time steps for GR = 0.75.
tUs/c = 0 corresponds to the leading edge entering the gust and Uy /c = 1.4 corresponds to
the leading edge exiting the gust. Figure 8 shows the LEV circulations and areas for the cases
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FIG. 7. The vorticity fields for GR = 0.75 at (left) Re = 6000 and (right) Re = 12 000.

GR = 0.50 and GR = 0.75 which have been extracted from PIV using the method discussed in
Sec. ITA. At tUy/c = 0.5 the flow for both Reynolds numbers has already separated and formed
a small but coherent LEV. The vortex has the same strength for both Reynolds numbers but for
Re = 6000, the vortex encompasses a slightly larger area as shown in Fig. 8(b). For tUy/c = 1.1, a
large region of secondary vorticity has formed under the LEV and the flow is attached past the
midchord. As the wing moves through the gust the primary and secondary vorticities grow in
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FIG. 8. The evolution of (a) the nondimensional circulation and (b) the nondimensional area of the LEV
for the high-gust-ratio cases.

strength and the reattachment point moves down the chord of the wing. As the wing is exiting
the gust at tUy /c = 1.5, the LEV is noticeably larger for Re = 6000 as well as at a higher vertical
position with respect to the wing. This is consistent with the fact that low Reynolds numbers promote
viscous effects and the shear layer (originally a boundary layer on the leading edge with thickness
oRe"3) has diffused over more fluid and therefore has more mass. Although at both Reynolds
numbers the secondary vorticity is separating at tUy,/c = 1.5, the separation at Re = 6000 is more
advanced and has partly severed the advection of vorticity into the LEV. This is again consistent with
the fact that at lower Reynolds numbers secondary vorticity is more diffuse but also more susceptible
to separation. Thus, for a given imposed adverse pressure gradient, the vortex-wall interaction is
expected to be more advanced. Before the boundary layer eruption mechanism can fully detach the
LEYV, the wing exits the gust and the LEV is shed. As the wing moves past the LEV in Figs. 7(g) and
7(h), the reattachment point eventually reaches the trailing edge which induces flow reversal and a
small trailing edge vortex (TEV) forms. A topological perspective on this flow reversal mechanism
can be found in Rival et al. [41] for plunging kinematics. Furthermore, from Fig. 8 it is clear that
the Reynolds number also affects the convective time of LEV onset, #; ... As expected, increasing
the Reynolds number delays the onset of flow separation and LEV formation.

2. Low gust ratio regime

The flowfields for GR = 0.3 are shown in Fig. 9. At tUy/c = 0.5 the flow is fully attached.
The flow develops differently for each Reynolds number as the wing moves through the gust at
tUs/c = 1.1. At Re = 28000 a boundary layer instability is seen at this time on the surface of
the airfoil, while at Re = 12000 there is shear layer roll-up at the leading edge. At tUy/c = 1.5
this leading-edge vortex has grown and is forcing flow reattachment, while at Re = 28 000 no such
forcing mechanism exists and the flow is separating at the trailing edge.

3. Force measurements

Figure 10 depicts the lift coefficients for each of the gust encounters discussed in Secs. IIT A2
and IIT A 1. For the low gust ratio cases (GR = 0.2, GR = 0.3) the force coefficients are larger when
the Reynolds number is lower. This is consistent with the results seen in Sec. III A 2. At low gust
ratios, the effective angle of attack is close to the static stall angle of attack, which is known to be
a strong function of the Reynolds number. Therefore, changes in the Reynolds number can change
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FIG. 9. The vorticity fields for GR = 0.30 at (left) Re = 12 000 and (right) Re = 28 000.

the separation dynamics of the encounter. As shown in Fig. 9, the flow separates at the leading edge
at GR = 0.3, Re = 12000 but not at GR = 0.3, Re = 28 000. Furthermore, this effect can be seen
in the gust ratio normalized lift coefficients of Fig. 10(b). The high Reynolds number cases at low
gust ratios converge to a smaller peak coefficient than the rest of the cases. A two sample t-test has
been used to verify that the differences in maximum lift coefficient between Reynolds numbers is
statistically significant at the 5% significance level.
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FIG. 10. Lift coefficient comparison for different gust ratios and Reynolds numbers for a blunt-edged
airfoil encountering a trapezoidal gust: (a) non-normalized (b) normalized by gust ratio.

Given the similarity of the flowfields and the strengths of the LEVs, it is not surprising that in
the high gust ratio regime lift is independent of Reynolds number. This can be attributed to the fact
that at high gust ratios the boundary layer effectively separates at the leading edge, not allowing
any Reynolds number dependent effects to materialize. It is worth noting that the difference in size
of the LEV as shown in Fig. 8(b) does not affect the forces. However, this might not always hold
true, as the size of the LEV can trigger different LEV detachment mechanisms [38] which can in
turn change the dynamics of the LEV. Figure 10(b) shows that the well-known gust ratio scaling is
appropriate for high gust ratio gust encounters with rounded leading-edge wings. Figure 10(b) also
shows the lift response of Kiissner’s model for the trapezoidal gust shape. As observed in previous
studies, the overall agreement with experimental data is good. The success and shortcomings of the
model will be investigated in Sec. III C.

B. Leading-edge vortex growth

In this section the vortex integral properties discussed in Sec. II C are used to study the growth
of the vorticity shed from the leading edge. A trapezoidal gust has an approximately uniform gust
ratio across its width. Therefore, the LEV circulation in equation (8) and LEV size in equation (9),
written in terms of the nondimensional variables scale as follows:

r 1

— & =(GR* + 1)t*, 12
cUooO(Z( +1) (12)

A GR? + 1
N ey (13)
c? (apc)Re

According to this formulation the growth of nondimensional circulation is linear in t* with slope
proportional to (GR? + 1). The growth of the nondimensional LEV size is also linear in ¢* but with
a slope that is governed by three nondimensional parameters: gust ratio, Reynolds number, and the
product of chord with ag, the streamline curvature around the stagnation point (for details on its
calculation, see Sec. I1 C).

Equations (12) and (13) suggest an alternative scaling of the LEV growth. Figure 11 depicts
the data of Fig. 8 normalized by the prediction of equations (12) and (13) for each case, i.e.,
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FIG. 11. Normalized LEV properties using the shear layer scaling suggested by equations (12) and (13):
(a) normalized LEV circulation and (b) normalized LEV area.

(GR? + 1) for the circulations, and (GR? + 1)*%(agc)~%3Re " for the areas. The normalized LEV
properties in Fig. 11 have similar growth rates across the different cases, which suggests that, for the
parameter space examined, the LEV circulation and size growth are approximately proportional to
the quantities suggested by equations (12) and (13). The disparity in the growth rates increases with
convective time. This could be attributed to the simplified calculation of the shear layer velocity. At
the initial stages of the gust encounter, the flowfield is dominated by gust vorticity. However, in the
latter stages, there is significant build up of bound and LEV circulation, which affect the shear layer
velocity. The two cases with Re = 12 000 remain in fair agreement, while the case with Re = 6000
has a slightly larger maximum LEYV circulation, and the case with Re = 17 000 has a slightly lower
maximum LEV circulation. This suggests that the Reynolds number is important in the leading edge
vorticity production after the wing has spent more than one convective time inside the gust.

C. Comparison of experimental and theoretical circulations

This section evaluates the differences in circulation budget and lift between the experimental
data and Kiissner’s model. The normalized experimental and theoretical lift coefficients for the two
different gust profiles are presented in Fig. 12. The model performs remarkably well during the early
phases of the gust encounter. This suggests that the experimental lift early in the gust encounter is
indeed noncirculatory as shown in Fig. 5. This phenomenon has been investigated by Corkery and
Babinsky [52] for wings with small thickness and extended to bodies of finite thickness by Gehlert
and Babinsky [53]. Effects that do not scale with gust ratio appear around * = 0.75, approximately
coincident with the onset of flow separation. Namely, the rate of increase of normalized lift slightly
increases with increasing gust ratio, and the convective time of the peak lift coefficient slightly
decreases with increasing gust ratio. This has also been reported by Andreu-Angulo et al. [30] and
Andreu-Angulo and Babinsky [28] (see, for example, Fig. 18 in Andreu-Angulo and Babinsky [28]).
After the peak lift coefficient is reached, the experimental lift has a sharper drop-off than Kiissner’s
model. This drop-off is more pronounced for the sine-squared gust encounter.

To investigate the above results, the experimental circulations shed from the leading and trailing
edges are quantified. The partitioning is carried out as shown in Fig. 13(a). All vorticity shed from
the leading edge is counted as LEV circulation I' gy, while all vorticity shed from the trailing edge
is counted as wake circulation I',. As the sum of gust circulation must be zero, the bound circulation
I', can be approximated by the (negative) sum of the leading- and trailing-edge circulations.
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FIG. 12. Experimental and theoretical lift coefficients normalized by gust ratio for (a) trapezoidal gust
profile and (b) sine-squared gust profile.

Therefore, I'y = —(I'Lgy + 'y ). The leading edge circulation is captured by measuring the flux of
vorticity through a control volume centered at the leading edge with side length 8% of the chord. The
trailing edge circulation is quantified by measuring the flux of vorticity through a plane located at
the trailing edge which is perpendicular to the wing. The flux surfaces used are shown in Fig. 13(b).

A similar circulation decomposition can be applied to Kiissner’s model. Since in this case the
flow is attached, the bound circulation must be equal and opposite of the total circulation in the
wake, F}If = —Fg, where ()X denotes quantities related to Kiissner’s model. The bound circulation
in Kiissner’s model can be further decomposed into quasisteady circulation Ffs and the circulation
due to the image vorticity of the wake, T'X,.

Figure 14 depicts the evolution of each circulation in Kiissner’s model as well as the experi-
mental circulations for sine-squared gust encounters at gust ratios of 0.75 and 1. From Fig. 12(b),
GR = 0.75 shows the best agreement with Kiissner’s model. The circulation trends for this case are
shown in Fig. 14(a). Early on in the gust encounter, both experimental and theoretical circulations
are small. This is consistent with the understanding that in this phase of the gust encounter most
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FIG. 13. The circulation of the LEV was measured from the flux of positive vorticity through a square
control volume centered at the leading edge. Circulation shed in the wake was measured from the flux of
total circulation through a plane perpendicular to the trailing edge. (a) Decomposition of the circulation in the
flowfield and (b) surfaces through which vorticity fluxes were measured.
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FIG. 14. Experimental and theoretical circulation trends during a transverse gust encounter for a sine-
squared gust at (a) GR = 0.75 and (b) GR = 1.

of the force is noncirculatory as discussed in Sec. IIB and shown in Fig. 5. As the effective
angle of attack increases, the flow separates and a LEV forms at a convective time of t* = 0.75.
As positive circulation accumulates in the LEV, negative bound circulation develops on the wing
which is manifested in the wing’s attached pressure side boundary layer, as well as suction side
secondary vorticity. Circulation shed from the trailing edge starts to increase as the wing is fully
immersed in the gust at around #* = 1. Interestingly, this trailing edge circulation very nearly
follows the theoretical circulation shed in Kiissner’s model up until #* = 2. Since in Kiissner’s model
' = —I'f and in the experiments T',, = —(I'gy + I'), it then follows that I'i gy + I, = 'K,
i.e., although the real viscous flow is separated, the bound circulation of Kiissner’s inviscid model
captures the combined circulations of the bound vortex and LEV in the experiments.

For GR = 0.75, the circulation trends possess two more interesting characteristics: (i) The LEV
circulation is approximately equal to the theoretical quasisteady circulation and (ii) the experimental
bound circulation is approximately equal to the theoretical bound circulation induced by the wake
in Kiissner’s model (the image vorticity required to enforce no flow through the wing, and the
Kutta condition). In other words, Kiissner’s bound circulation approximates the experimental bound
vortex-LEV pair with the LEV carrying positive circulation instead of the quasisteady bound vortex.
This fact, along with favorable vortex dynamics (to be discussed in Sec. III D), gives the model
predictive power over a significant portion of the gust encounter.

However, this phenomenon breaks down at around ¢* = 2, at which point the circulations diverge
between theory and experiment. This is caused by the following discrepancy between Kiissner’s
model and the real separated flow: In the attached flow theoretical model, the wing’s quasisteady
circulation decreases as it nears the exit of the gust and positive upwash-inducing vorticity must be
shed to satisfy Kelvin’s circulation theorem, as discussed in Sec. II B. This is shown in Fig. 15(a),
where in the second half the gust encounter the circulation shed from the trailing edge is positive.
In contrast, in the real separated flow it is the LEV that is supplying the lift and not the bound
circulation. As the effective angle of attack decreases, the wing will shed part of its bound
circulation, which in this case is negative and downwash-inducing. This is depicted in Fig. 15(b)
and can be seen in the PIV vorticity fields of Figs. 7(e) and 7(f). The absence of upwash-inducing
wake vorticity is the reason a much sharper drop-off is observed in experiments when compared with
Kiissner’s model. The model is only able to capture the correct wake topology while the quasisteady
circulation is increasing. This is also shown quantitatively in Fig. 14, where in the second half of
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FIG. 15. Wake vortex sheet distributions during a transverse gust encounter for (a) Kiissner’s model and
(b) experiments.

the gust encounter the experimental wake circulation continues to decrease, while Kiissner’s wake
circulation increases until it reaches zero. This persistent negative circulation in the experimental
wake and the negative bound circulation after the gust exit often cause negative lift in the aftermath
of the encounter (see for example, Figs. 12(b) and 18 in Ref. [28]). Upon gust exit the effective
angle of attack is zero. The LEV is shed and is no longer supplying much positive lift, but the wake
is still inducing downwash, thus causing negative lift.

Further discrepancy between theory and experiments can be caused by the fundamental dif-
ference in the vorticity generation mechanism between linear theory and separated lifting flows.
The circulation of Kiissner’s quasisteady bound vortex is created from the integrated effect of the
effective angle of attack over the chord of the wing and thus scales linearly with gust ratio. In
contrast, the LEV has no such restriction. In Sec. III B it was shown that, under certain conditions,
the vorticity generated at the leading edge can instead be a function of the gust ratio squared, and
only a function of the effective angle of attack at the leading edge. Furthermore, it has been observed
in this study as well as in studies of wings with unsteady kinematics [39,63], that increasing the
magnitude of the unsteady parameters can lead to earlier flow separation and thus a decreasing
time of LEV onset, #;.... This can be seen in Fig. 14(b) which shows the circulation trends for
Kiissner’s model and the experiments at a gust ratio of one. In this case, the LEV circulation
leads the quasisteady circulation in Kiissner’s model by approximately 0.1 convective times. The
corresponding lift transient in Fig. 12(b) shows similar characteristics, as the peak lift coefficient is
earlier than Kiissner’s model and the rate of increase of lift is slightly larger for higher gust ratios.
This effect can also be seen in Fig. 12(a) for a trapezoidal gust, where again the rate of increase of
normalized lift increases with gust ratio. It is worth noting that the rate of increase of LEV vorticity
does not directly translate to a corresponding increase in lift, as the bound circulation also needs
to be accounted for. Unfortunately, bound circulation is a function of the proximity of the LEV to
the wing, as well as the size of the region the LEV occupies, and thus its growth rate is a nontrivial
function of gust ratio. The data suggest that the circulatory lift during a transverse gust encounter
increases with a factor slightly larger than gust ratio, i.e., GR" where 1 <n < 2.

D. Vortex detachment

In the previous section it was observed that, early in the gust encounter, Kiissner’s model captures
the general circulatory characteristics of the real viscous flow. However, equation (2) implies that the
convection of vorticity is also a contributor to the overall lift of the system. Indeed, the experimental
agreement with Kiissner’s model demonstrated in this study and in previous studies [25-27] is
expected to break down after some critical gust width, due to the convection of the LEV. For long
enough gusts, the LEV will reach its maximum circulation and detach. The purpose of this section is
to quantify the critical gust width and to show that the gust widths under investigation are shorter
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than the critical vortex formation timescale. Thus, we can expect the LEV to remain attached for the
duration of gust encounter. In this study, an LEV is called attached if it is connected to the feeding
shear layer while also convecting at a speed close to the freestream velocity.

Stall delay has been shown to be a function of the unsteady flow parameters [63]. Le Fouest et al.
[65] quantified the stall delay for pitching wings as a function of reduced pitch rate. They found
that the delay obeys a decaying power law, and, as pitch rate increases, the delay asymptotically
approaches the vortex formation number discussed in Sec. I, i.e., the maximum time the LEV can
grow before reaching its maximum circulation and detaching. For a gust encounter, the pitch rate
corresponds to the rate of change of the effective angle of attack. This means that the high-amplitude,
high-frequency gust encounters presently being studied have an effective pitch rate that is an order of
magnitude higher than that required to achieve vortex formation stall delay. Therefore, it is expected
that the vortex formation timescale is the limiting timescale of the observed lift transient and can be
used to approximate how wide a gust needs to be for stall to occur—stall in this case referring to the
lift drop-off at the end of the dynamic stall process.

Starting from the definition of vortex formation time 7 = CT'/(DAU ) for leading-edge vorticity
production, the constant C is often taken to be one, as discussed by Rival er al. [41], and the
characteristic length-scale D to be the chord. Furthermore, the velocity across the shear layer
during a gust encounter is Us;, = (U2 + V?)!/2 = U, (GR* 4 1)"/? and the circulation of the LEV
is expected to scale with USZL [38,40,66],1.e.,I' gy = K US2Lt, where K is the proportionality constant
between the square shear layer velocity and the LEV circulation. Thus, we have the following:

. CT KtU? Usot
F=— Y 2 SL g2 JGR2+ 1 =Kt*V/GR2 + 1. (14)
cAU cUgy, c

According to vortex formation theory, there a exists a critical formation time T at which the LEV
will reject any additional vorticity and detach. Using the above relation it is then possible to recover
the critical convective time (or the gust width-to-chord ratio) that a wing can spend inside a gust
without stalling. Rearranging equation (14) gives

A

Tcril

w
crit ¢/ ait K /—GRZ 1

Equation (15) states that as the gust ratio increases, the critical width-to-chord ratio decreases
since the LEV will reach its critical circulation faster. To the authors knowledge, there exist no
experimental apparatus that can vary the gust width to determine the constants in equation (15).
Badrya et al. [64] conducted a CFD study for sine-squared gusts, keeping the gust ratio fixed and
varying the gust width. The lift coefficients are shown in Fig. 16 along with Kiissner’s prediction for
each. Their results show that, for GR = 0.8, Kiissner’s theory captures the lift transient all the way
up to a gust width-to-chord ratio of four, after which stall onset hampers the model’s performance.
The experiments presented in this paper have a maximum gust width-to-chord ratio of 2.6, well
below the critical width-to-chord ratio predicted above, even after accounting for a higher gust ratio.
Therefore, the LEV grows until the wing exits the gust at which point it detaches. This is evident
in Fig. 8(a), as the peak circulation for each of the cases takes place as the wing is exiting the gust.
Furthermore, Fig. 16 shows that for gust widths longer than four chords, the peak lift coefficient
takes place before the wing starts exiting the gust. The detachment of the LEV is facilitated by a
forced interaction between the primary shear layer and the secondary vorticity. The progression of
the forced detachment is depicted in Fig. 17 for GR = 0.75, Re = 12000. In Fig. 17(a), the wing
is fully immersed in the gust. The LEV is attached and the separation angle at the leading edge is
high due to the high effective angle of attack. As the wing is exiting the gust in Figs. 17(b) and
17(c), the effective angle of attack gradually decreases and the shear layer moves closer to the wing
surface where it interacts with the secondary vorticity. The downward-moving fluid of the secondary
vorticity reverses part of the flow of the primary shear layer, reducing the advection of vorticity into

15)
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FIG. 16. Computational and theoretical lift transients for a sine-squared gusts, varying the gust width at a
gust ratio of 0.8 [64].

the LEV. By tUy/c = 1.8 in Fig. 17(d), the advection of vorticity into the vortex has ceased and the
LEV has detached.

IV. CONCLUSION

The results show that Kiissner’s model provides a good first-order approximation of the lift
transient experienced by wings with blunt leading edges during the initial stages of a transverse gust
encounter. It is also observed that at low gust ratios (GR = 0.2 and GR = 0.3), wings with blunt
leading edges experience increasing lift coefficients with decreasing Reynolds number. In contrast,
at high gust ratios (GR = 0.5 and GR = 0.75), the lift transient experienced by blunt leading-edged
wings is found to be independent of the Reynolds number.

The following concepts are applied to transverse gust encounters: (i) The notion of optimal
vortex formation time, and (ii) LEV growth prediction through the integration of shear layer fluxes.
The timescale of optimal vortex formation is shown to be larger than the timescale of the gust
encounters studied in this paper. Thus, the LEV remains attached to the wing for the duration of
the encounter and only detaches upon the wing’s exit of the gust due to the rapid reduction of the
effective angle of attack. The LEV flux model predicts that while the LEV is attached to the feeding
shear layer, its circulation growth is proportional to GR?> + 1 and area growth is proportional to
(GR? + 1)%3(agc) " Re 3. For the gust ratios and Reynolds numbers examined in this paper, fair
agreement is seen between experiments and the flux model’s predictions. The agreement deteriorates
with increasing convective time. This could be attributed to the simplified calculation of the shear
layer velocity made in the model, which only accounts for the gust vorticity. As the bound and LEV
circulations become significant, they inevitably affect the shear layer velocity.

Comparison of the circulation shed in the wake of Kiissner’s model with the circulation shed in
the wake during experiments leads to the following conclusion: Although the real viscous flow is
separated, the bound circulation in Kiissner’s inviscid model captures the combined circulation of
the bound vortex-LEV pair of the experiments, conditioned on an increasing quasisteady circulation.
This result, along with the fact that the vortex remains attached for the duration of the gust encounter,
indicates that Kiissner’s model captures the vertical impulse of the separated flow. In other words,
if the LEV is attached, its circulation can be incorporated as part of the bound circulation of the
inviscid model, resulting in an accurate model for the lift during transverse gust encounters.

The performance of Kiissner’s model deteriorates once the quasisteady circulation starts to
decrease. This is because the lift-producing mechanisms between theory and experiment are funda-
mentally different, even though they produce similar values of lift while the quasisteady circulation
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FIG. 17. Vorticity contours and velocity vector field in the reference frame of the wing at GR = 0.75 and
Re = 12000, depicting the progression of the forced LEV detachment upon gust exit.

is increasing. In the attached flow theoretical model, the positive circulation supplying the lift to the
system is bound to the wing. In the real separated flow, the positive circulation supplying the lift
is already shed and free to convect with the flow, while the bound circulation is in fact negative.
Thus, when the quasisteady circulation decreases in the model, the circulation shed into the wake
from the trailing edge is positive and upwash inducing, while in the experiments it is negative and
downwash inducing. The absence of upwash-inducing wake vorticity is the reason a much sharper
lift drop-off is observed in experiments. In other words, the lift drop-off in the model is governed
by delayed response to a (negative) change in its quasisteady circulation, while in the experiments
it is governed by the detachment of the LEV and the persistent shedding of negative circulation into
the wake.

The above discussion presents a fundamental limitation on lift modeling using unsteady potential
flow. While potential flows might be able to capture the general circulatory characteristics of
separated lifting flows, they can only do so while the quasisteady circulation is increasing. Once
the quasisteady circulation starts to decrease, the wake distribution will be of the wrong sign and
the overall flow topology will be different. To improve lift prediction during the exit of the gust, the
effect of the LEV on the bound circulation must be modeled. This can be done using a numerical
vortex model that heuristically incorporates leading-edge separation.

Further discrepancies between the unsteady potential flow model and experiments are observed
during the rise of the circulatory lift. This is attributed to the fact the bound vortex-LEV pair is not
restricted to scale with gust ratio, as is the bound vortex in Kiissner’s model. In fact, the flux model
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presented in Sec. III B shows that it is possible for the LEV growth to scale with the square of gust
ratio. Furthermore, increasing the gust ratio decreases the time to LEV onset, 75 ., thus allowing
circulatory effects to commence earlier. The culmination of these two effects cause the normalized
lift peak coefficient to be earlier and higher with increasing gust ratio.
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