PHYSICAL REVIEW FLUIDS 9, 014602 (2024)

Low-order planar pressure reconstruction of stalled airfoils using particle
image velocimetry data
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We present planar time-resolved particle image velocimetry (PIV) measurements of flow
in the streamwise surface-normal plane of a NACA 0012 airfoil at chord-based Reynolds
number Re. = 7 x 10*. The angles of attack & = 13° and 15° correspond to transient stall
and deep stall flow regimes, respectively. A Poisson solver is utilized to reconstruct the
instantaneous planar pressure fields from the PIV with satisfactory comparison in the mean
pressure compared with dynamically matched Reynolds-averaged Navier-Stokes (RANS)
simulations. Using the proper orthogonal decomposition (POD), a systematic reduced-
order reconstruction of the velocity fields and subsequent pressure fields is used to quantify
the required number of velocity modes to achieve a desired accuracy in the instantaneous
pressure. Further, a Galerkin projection of the Poisson equation onto the POD subspace
is used as a framework to identify the relative contribution of each velocity mode on the
resulting pressure field via quadratic stochastic estimation (QSE). In both cases, the zeroth
mode (corresponding to the mean) is of leading-order importance. In addition, a tendency
of the zeroth mode to interact with vortex-shedding modes is identified.

DOI: 10.1103/PhysRevFluids.9.014602

I. INTRODUCTION

Enabled by the ever evolving capabilities of image sensors and experimental methodolo-
gies, pressure reconstructions from experimental particle image velocimetry (PIV) fields have
experienced increasing popularity over the past decade [1,2], despite the challenges of such re-
constructions, such as the stringent requirements on resolution in space, time, and domain size [3].
These reconstructions offer promising insight on a multitude of engineering problems ranging from
fundamental dynamics [4-6] to imparted forces [7-9] to the estimation of far-field noise [10-12].

In parallel to these advances, the fluid mechanics community has also witnessed a rapid adoption
of data-driven techniques for both numerical and experimental data [13,14]. In addition to their
use for error mitigation and data refinement [15-18], these powerful techniques offer a frame-
work to gain a multitude of insights on the flow physics as well [19]. In particular, the proper
orthogonal decomposition [20] (POD) is a popular data-driven basis due its inherent property of
being energy-optimal and thus retaining as much flow information as possible with a low-rank
truncation [21]. Details on the meaning of “low rank” and “low order” are outlined in Sec. III.
Further, the POD itself may be used as a basis to recast the Navier-Stokes equations via a Galerkin
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projection. This framework is useful for a number of interests, such as stability analysis [22,23] or
decreasing computational costs of simulations [24,25]. Recently, Raiola (2022) [26] demonstrated
the use of the Galerkin projection to probe the relationship between velocity structures from PIV
and the reconstructed pressure fields of a flapping wing on an interaction-by-interaction basis. This
framework has the potential to elucidate the role of velocity structures on the resulting pressure
fields for a variety of flows of interest.

In the present study, we invoke both advances in pressure reconstructions and data-driven
techniques to understand the relationship between pressure fields and velocity field structures in the
flow of a statically stalled airfoil. In particular, we focus on the case of a NACA 0012 in transitional
and deep stall at chord-based Reynolds number Re. = 7 x 10*. At this Reynolds number the flow
is turbulent. As a result, pressure reconstructions are challenging and, due to the multiscale nature
of turbulence, the POD is slow to converge. More details on this flow, the data processing, and the
POD may be found in a previous publication by the authors [6].

A large body of work has been dedicated to understanding the nature of static stall for a variety
of airfoils. In most cases, these studies focus on pressure measurements to determine the nature of
the stall (i.e., thin airfoil stall, leading edge or trailing edge stall [27]) or the influence of external
conditions on stall [28]. More recently, PIV has been used for pressure reconstructions to gain
insight on the imparted forces. For example, to evaluate the influence of the unsteady pressure
on the rotating airfoils of turbine blades [9] or the forces over 2D bodies in incompressible and
compressible flows [8]. In these studies, the integral form of the momentum equation is invoked to
calculate the lift and drag on the body of interest. The Galerkin framework [26] differs in that the
interaction of velocity structures and their contribution to the pressure field (and therefore to the
imparted forces) can be evaluated directly, lending valuable insight for the flow of interest.

The goal of the present work is to directly relate the underlying structures of the PIV fields in
the stalled airfoil, captured via POD, to the pressure fields reconstructed using a Poisson solver
with appropriate boundary conditions. To achieve this, we will utilize the aforementioned Galerkin
framework. Given the widespread adoption of POD in the experimental fluid mechanics community
to mitigate noise, a secondary low-hanging fruit is to explore the impact of a simple POD truncation
in the velocity fields on the resulting pressure reconstruction. This is because the source term of
the pressure reconstruction via the Poisson equation is nonlinear in the velocity fields. The POD
truncation, which is linear, will therefore have a nontrivial impact on the source term [see Eq. (1)
and discussion in Sec. II]. This will be explored as a secondary goal in this work. Details of the data
collection and pressure reconstruction methodology are presented in Sec. II. The POD framework
used for low-order reconstructions is introduced in Sec. III. The use of a Galerkin projection to
gain insight on the underlying mode interactions is presented in Sec. IV. Finally, conclusions and
directions for future work will be discussed in Sec. V.

II. PIV MEASUREMENTS AND PLANAR PRESSURE RECONSTRUCTION

Data was collected via experiment using stitched time-resolved particle image velocimetry (PIV)
in the water flume facility at the University of Southampton. The experiments are discussed in
detail in Carter and Ganapathisubramani (2023a, 2023b)[6,12], therefore a brief summary is given
here. A vertically oriented NACA 0012 airfoil of chord length ¢ = 0.15 m and submerged span
s = 0.43 m was placed in the midspan of the flume following the contraction into the test section.
For the illumination, a high-speed Nd:YLF laser (Litron 527 nm) operating at 1 kHz was optically
directed inwards from either side of the facility and expanded into two overlapping sheets to
illuminate the stream-wise surface-normal plane without creating a shadow. Caution was exercised
to ensure close overlap between the laser sheets, with a nominal thickness at the flume midspan
of 2 mm. The laser was synchronized to three high-speed Phantom Veo 640-S cameras mounting
105 mm Nikon lenses directed upwards from beneath the facility with overlapping fields of view
(FoV). A total of three cameras were used to strike a balance between a large spatial domain but
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FIG. 1. Instantaneous velocity fields at @« = 13° (a) and o« = 15° (b) with the airfoil cross section indicated
(dashed white). The solid red, dashed blue, and dashed dotted green rectangles illustrate the overlapping fields
of view from the individual cameras. The dotted rectangle corresponds to the domain used for analysis from
each data set. One in every eight PIV vectors are shown.

with velocity-gradient-resolving spatial resolution. Both of these features are desirable for quality
pressure reconstructions [1,2] that will be explored in this study.

Two cases are presented at fixed angles of attack o = 13° and o = 15°. For both cases, the
free stream velocity of the facility was set to Uy, = 0.5 m/s corresponding to a chord-based
Reynolds number Re. = Y=¢ =7 x 10* where v is the kinematic viscosity. At this Reynolds
number, transitional and deep stall flow regimes were observed for the « = 13° and o = 15° cases,
respectively [6]. Two arbitrary snapshots for each case are presented in Fig. 1. In the figure, a dotted
rectangle is used to demarcate the region of the spatial domain that is extracted for each case from
the slightly larger stitched PIV fields. These domains are selected by inspection to avoid some edges
of the FoVs that are susceptible to weaker signal-to-noise ratio in the PIV [29]. Because the airfoil
in the experiment extends downwards towards the upward facing cameras, a small visual occlusion
was produced on the pressure side of the airfoil, preventing data collection very close to the surface.
This can be seen in Figs. 1 and 2. The pressure data reported along the surface [Fig. 2(c)] is taken
from the nearest available grid points.

The instantaneous planar pressure reconstructions were obtained using a Poisson solver ap-
proach [1,3]. It begins applying the divergence operation to the Navier-Stokes (NS) momentum
equations

V%:V[—p(?}—? +u-Vu—vV2u)], (D
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FIG. 2. Pressure coefficient fields for the « = 13° (a) and « = 15° (b) cases. The pressure coefficients at
the airfoil surface from the PIV (solid) and dynamically matched RANS simulations (dotted) are plotted for
comparison in (c).
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where, in this study, u(x, ¢) is the planar instantaneous velocity at positions x and time ¢, p(x,t)
the planar pseudopressure, and p the constant fluid density. Note that for incompressible flow
(divergence free) the first and last terms on the RHS are identically zero. As a complete recon-
struction requires three dimensional information, hereafter the planar pseudopressure is referred
to simply as the “pressure.” To reconstruct it, two integrations of Eq. (1) are necessary. The
first integration utilizes Neumann boundary conditions on the inlet, outlet, and suction (upper)
boundaries of the domain (Fig. 1). The Neumann boundary conditions are obtained by solving for
the pressure gradient terms in the NS momentum equations, with gradients calculated via second
order differences in space and time. The second integration uses Dirichlet boundary conditions
on the pressure (lower) boundary of the domain, where the flow is approximately irrotational and
Bernoulli’s equation is expected to hold.

The normalized mean pressure fields for both cases are shown in Fig. 2, where the pressure
coefficient is defined as C, = P/% pU2 where P is the ensemble-averaged pressure. To provide
comparison for the pressure reconstructions, a dynamically matched Reynolds-averaged Navier-
Stokes simulation was conducted using OpenFOAM software. A standard C-type mesh grid was
used for the simulation domain and a k- SST model for the eddy viscosity. The resulting surface
pressure coefficient is shown in Fig. 2(c) for both cases with the PIV distributions for comparison.
The planar pressure reconstructions yield good agreement in the pressure beyond x/c ~ 0.25, but
deviate heavily near the leading edge (LE). In particular, the LE peak on the suction side is difficult
to capture from PIV reconstruction due to the thin boundary layer and confined gradients near
the surface. Upon comparison, the pressure reconstructions appear satisfactory for the exploratory
purposes of the present study where we desire to probe the effect of a linear decomposition (outlined
in the next section) on the resulting nonlinear reconstruction via Eq. (1).

III. LOW-ORDER PRESSURE RECONSTRUCTION VIA PROPER ORTHOGONAL
DECOMPOSITION

A low-order representation of the velocity fields is obtained using the proper orthogonal decom-
position (POD) [20]. POD is commonly employed for data reduction due to its inherent energy
optimality [13]. This arises from an eigendecomposition of the velocity autocorrelation used to
calculate the POD modes. Using POD, the velocity fields u(x, ¢) are expressed exactly as

N
u(x, 1) =Y Y(t)oxei(x), )

k=0

where k is the mode number, 1 and ¢ are the kth orthogonal temporal and spatial modes, and oy
the kth singular value characterizing the relative contribution of each mode ranked conventionally
from highest to lowest. Note here the summation begins at k = 0 and the velocity u(x, t) is the total
velocity such that the zeroth mode corresponds to the mean. The total number of snapshots N used to
calculate the modes was selected to be N = 1075, with snapshots sampled randomly across all runs
for both cases. When all possible modes are retained, the instantaneous velocity fields via Eq. (2)
are recovered exactly. A low order representation of the velocity @ (x, ¢) can instead be produced by
truncating the summation at a selected truncation mode K such that

K
i(x, 1) =Y _ Yt )ori(x). 3)

k=0

When the singular values decreases rapidly, such as for laminar flows, most of the energy of the
velocity fields can be captured in only several modes [14] and truncated at low K. For turbulent
flows on the other hand, the singular values decrease gradually due to the inherent multiscale nature
of turbulence. This is reflected by the singular values for both cases in Fig. 3, and necessitated using
a large number of snapshots (N = 1075) to converge the POD. The inset panel reveals that for both
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FIG. 3. Singular value spectra for both cases normalized by o}, with the cumulative energy distribution
inset and a dotted line corresponding to 95% accumulated energy. For reference, the zeroth singular values are
op/oy = 10.1 and 0y /o) = 12.4 for « = 13° and o = 15°, respectively.

cases approximately 20 modes are required to capture 95% of the fluctuating energy (on the other
hand, hundreds of modes are required to capture 99%).

The structures underlying the flow from the spatial modes are plotted in Fig. 4 (left) with their
corresponding premultiplied spectra (right). The first two spatial modes (left-most and second-
from-left columns) and their corresponding spectra highlight the distinct difference between the
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FIG. 4. Three streamwise (a)—(c), (h)—(j) and cross-stream (d)—(f), (k)—(m) spatial modes ¢, and corre-
sponding premultiplied spectra of the first eight temporal modes (g), (n) for « = 13° (a)—(g) and @ = 15°
(h)—(n). The borders of the spatial spectra correspond to the solid lines and colors of panels (g) and (n). The
modes are selected based on their leading contributions to partial pressures discussed in section IV.
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two cases. For the case at @ = 13°, the first spatial mode is uniform in the separated region with a
low-frequency peak at f} = f i sin a (where f is the frequency in Hz) of O(10~2), corresponding
to a low-frequency expansion and contraction in a direction approximately normal to the suction side
of the airfoil. This is the signature of energetic separation and reattachment events in transitional
stall [30]. In contrast, the case at « = 15° shows alternation in the first spatial mode with a frequency
peak fx of O(107") corresponding to bluff body vortex shedding [31,32] in deep stall.

A natural curiosity that stems from the use of POD is the degree to which a certain truncation
impacts the resulting pressure reconstruction. This is because POD is a linear decomposition
whereas the source term on the RHS upon the integration of Eq. (1) is nonlinear. This consideration
is important for numerous experimental and numerical tools that use POD to analyze flows. For
example, POD is commonly used to truncate experimental noise [16,18] or to extend simulations at
low computational cost [33]. For the latter, it is necessary to model the pressure term [34]. As a first
step, the low-order pressure reconstruction is obtained with increasing K such that
on

v%a:v[-,;(at +a-va—uv2a)], @)
The discrepancy between the low-order pressure reconstruction and the “full” order one is
quantified as

e(x) = (|p(x) — p(x)|), (&)

where the angled brackets denote ensemble averaging across all runs. This is plotted for both cases in
Fig. 5, with similar trends between cases. Here the overbar e denotes spatial averaging. A decrease
in e with increasing retained modes is evident, however the spatial average of the discrepancy is
highly dependent on the domain size. The inset plots reveal the average discrepancy in the separated
region of the flow specifically is about 0.25 times the free-stream dynamic pressure (Py,, = % oU2)
with just one fluctuating mode and decreases to 0.1 with eight modes. As expected, the discrepancy
decreases nonmonotonically with increasing number of retained modes. The difference between the
cases is slight, with larger average discrepancy in the deep stall cases compared to the transitional
stall case.

As a first approach, the low-order pressure reconstructions quantify the required number of
velocity modes to achieve similarity to the full-order reconstruction. This analysis, however, does
not reveal the role of the modes individually on the resulting pressure. This is investigated in detail
in the following section.

IV. MODE PAIR CONTRIBUTIONS VIA GALERKIN PROJECTION

To elucidate the underlying interactions within the velocity fields giving rise to the instantaneous
pressure, a Galerkin projection of the pressure Poisson equation is performed onto the basis spanned
by the POD [21,26],

N N
Vip=—p Y 3 Ui (00i0;0: ©

i=0 j=0

where Q; ;(x) =V - (¢;(x) - V)¢p;(x) arises from the ith and jth interacting spatial modes. The
solution may be expressed in terms of the sum over the interactions as

N N
pee 1) =YY Py (0)pi (), (7)
i=0 j=0

where p; ;(x) is known as the partial pressure [34]. The partial pressure reveals the combinations
of velocity modes that give rise to a particular structure in the pressure field. To quantify the
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FIG. 5. Spatially averaged reconstruction error e between the pressure reconstructed using reduced order
velocity modes and the pressure using all modes with increasing number of retained modes. The spatial distri-
butions are shown (inset) for k = 1, k = 8, and k = 128, with contours drawn at e/%onzo =1[0.050.10.150.2].

contribution of each partial pressure we decompose them such that
pij(x) =0l pi j(x), )

where af ; 1s the magnitude of the partial pressure and p; j(x) is the spatial distribution of each
partial pressure with unit norm.

With the Galerkin framework established, all that remains is to calculate the partial pressures by
solving Eq. (6) for each velocity mode combination. This approach is problematic for two reasons.
First, since in the present study N = 1075 modes, there will be 1.16 x 10 integrations required to
include all mode combinations, a number that is prohibitively large. It is clear that only a subset of
mode combinations can be feasibly studied. The second problem is that each integration requires
restating the nonhomogeneous boundary conditions [34]. Though methods have been developed for
numerical simulations to overcome this difficulty [33,35], the influence of experimental noise adds
additional complexity.

The alternative to integrating Eq. (6) is to instead leverage the fact that the pressure fields and the
temporal velocity modes are known quantities. It is therefore possible to use a stochastic estimation
technique to recover the partial pressures [36]. In particular, following Raoila (2022), due to the
quadratic nonlinearity of the convective terms we utilize quadratic stochastic estimation (QSE) to
estimate the partial pressures [26,37]. The method consists of constructing two matrices W and V
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FIG. 6. Relative contribution of the partial pressures for velocity mode combinations for « = 13° (a) and
a = 15° (b). The combinations are symmetric about the diagonal, and only the upper triangle is plotted. A
zoom of the first four interactions is also shown (inset).

such that
(v, Yy . (YkYk, YY) D11 (P, Y1)
: : o= : , )
(v, vrvk) .. (YkYk, YrVk) | | Prx (P, Y& ¥x)
w P v

where here the angled brackets with a comma (-, -) denote the inner product, P is the matrix of
partial pressures, and K is again the truncated number of modes leading to I = K? interactions. The
solution is given simply as P = W'V, however the matrix W is poorly conditioned and therefore
a pseudoinverse is necessary to prevent the solution from diverging, i.e., P = W'V . In addition, we
select K = 16 modes (I = 256) for the QSE analysis. More details regarding the treatment of the
matrix W and the sensitivity to the number of interactions can be found in the Appendix.

The relative contribution of each partial pressure captured by the magnitude ai{’ ; is shown
in Fig. 6, normalized by the sum across all interactions. In an expected fashion, the dominant
contribution to the pressure (noting the logarithmic scale) originates from the pg interactions
corresponding to the mean velocity modes and resulting mean pressure. In addition, the subleading
interactions are consistent across cases in that interactions of low-order modes with the zeroth
mode are seen to be subleading. The reader is referred to Fig. 4 to visualize the spatial shape and
temporal characteristics of the subleading interacting modes. These leading-order linear interactions
are consistent with a linear approximation for the unresolved Galerkin expansion coefficients in
numerical simulations, e.g., from Galetti et al. (2004) [38] in a wake flow model.

The spatial contribution of each partial pressure is visualized in Fig. 7 for the leading four
interactions in both cases. Note that the sign (positive or negative) of the partial pressures is
arbitrary due to the arbitrary sign of the temporal modes [Eq. (7)]. A striking resemblance is
seen in the first three interactions across cases, both in terms of their relative contribution (where
ob = of i/ Z{(:O Zf:o af ;) as well as their structure. Examination of the velocity modes and their
spectra in Fig. 4 reveals, in both cases, the subleading modes correspond to bluff body vortex
shedding. Note, these modes are interacting with the (time constant) zeroth mode corresponding
to the mean velocity.

Beyond the first three leading interactions, the partial pressures are seen to differ between
cases. In transitional stall, the fourth leading interaction is nonlinear between the first and third
velocity modes. Recalling that the first velocity mode at « = 13° peaks at low frequencies related
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FIG. 7. Partial pressure fields of the leading four interactions for @ = 13° (a)—~(d) and o = 15° (e), (f).
Colorbars are normalized by plus or minus three standards deviations from the spatial mean of each partial
pressure.

to separation and reattachment, such an interaction is not expected to be seen in the deep stall case
as the flow never reattaches. Indeed, the fourth leading interaction in the deep stall case is a linear
interaction between the zeroth and eighth modes, corresponding to a shear layer flapping frequency
and structure.

V. CONCLUSIONS

We have presented an analysis of low-order pressure reconstructions in the flow of static stalled
NACA 0012 airfoils at angles of attack corresponding to transitional and deep stall turbulent flow
regimes. The focus of this study is twofold. First, to quantify the impact of a low-dimensional
representation of the velocity field via POD on the resulting planar pressure reconstructions. Second,
to understand the influence of interacting velocity modes on the dynamics of airfoils in transitional
and deep stall, with implications for the forces experienced by the body. Such considerations are
important as POD is often used as a tool to remove experimental noise [16—18]. To this end, a
mode-by-mode framework using a Galerkin projection onto the basis spanned by the POD was
utilized. Importantly, this is demonstrated without the need to integrate for each mode interaction,
but instead using the data-driven QSE approach [26].

We find that, despite the differences in the transitional and deep-stall cases, namely the
low-frequency separation and reattachment in the transitional case, the leading and subleading
interactions between the two cases are strikingly similar. The former is attributed to the mean
velocity modes themselves. The latter are between the mean and fluctuating structures with peak
frequencies in the bluff-body vortex shedding regime. The linear nature of the leading subinterac-
tions is consistent with Galerkin models in the computational fluid dynamics literature [34,38].

This present work has demonstrated the utility of a Galerkin framework applied to experimental
data to elucidate the nature of the underlying interactions in the velocity fields and their contribution
to the instantaneous pressure. Following Raoila (2022), this was achieved via the QSE [26] in a fully
turbulent flow obtained via experiment. Provided that the POD is satisfactorily converged, our work
indicates that, for the present advective turbulent flow, the primary contributions to the pressure are
captured by interactions in the first eight modes. These interactions account for 89% and 92% of
the instantaneous pressure fields (in terms of the relative magnitude of the partial pressures) for the
transitional and deep stalled cases, respectively.
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FIG. 8. Singular values of the matrix W central to the QSE implementation (section IV) for the case
at @ = 15° plotted against the total number of interactions (a) (similar results for o« = 13° omitted for
brevity). The dashed lines correspond to singular values using synthetic Gaussian random temporal modes.
The reconstruction discrepancy (b) is shown for both cases using all interactions (solid) and using only the
leading four interactions (dashed).

All data presented in this study has been used in previous work and is openly available from the
University of Southampton repository in Ref. [39].
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APPENDIX: TREATMENT OF THE MATRIX W

In order to recover the partial pressures, it is necessary to invert the matrix W as defined in
Eq. (9). In the present framework, every temporal mode (except the zeroth) is a fluctuating quantity
with zero mean. As a result, uncorrelated inner products are vanishingly small and inevitably
lead to a poorly conditioned W, i.e., the ratio of the maximum and minimum singular values
OW.max/Ow.min — 0©. This is demonstrated in Fig. 8(a) for both data in the deep stall case and
for a synthetic matrix constructed from Gaussian randomly distributed temporal modes (dashed).
The random distributions are provided to demonstrate that the poor conditioning is inherent to the
construction of W and not caused by experimental noise.

An important choice for constructing W is the number of modes K (and therefore number of
interactions /) to consider. As can be inferred from Fig. 8(a), as K increases W is increasingly poorly
conditioned. A secondary consideration is that increasing K corresponds to a quadratic increase
in computational expense. Finally, with increasing interactions, the role of bias error in the PIV
(due to subpixel limitations) is increasingly prevalent within each inner product of Eq. (9), and
this self-correlating noise pollutes the singular values. This can be seen in Fig. 8(b), which plots
the reconstruction discrepancy between the pressure and the QSE reconstruction via Eq. (7). The
leading four interactions (dashed lines), which are expected to plateau beyond several considered
interactions, suddenly experience massive reconstruction discrepancy beyond a certain number of
interactions. This is the signature of the self-correlating noise corrupting the singular values of W.

For the present study, we opt to consider K = 16 modes to strike a balance between a large
number of interactions (I = 256), low computational cost, and avoiding self-correlating noise
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artifacts. A pseudoinverse is employed to treat the poorly conditioned W. We note that for the
present data sets the results were similar in the range 4 < K < 32, with differences (e.g., relative
contribution and structure of the partial pressures) on the order of a few percent.
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