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In this study we explore the effect of an offset between the velocity and density interfaces
on the dynamics and mixing of the Kelvin-Helmholtz (KH) instability in stratified shear
flows. Most prior studies have assumed a coincident interface-symmetric KH instability. To
investigate the asymmetric KH instability that emerges in the presence of offset interfaces,
we conduct a linear stability analysis and direct numerical simulations, comparing results
with the well-known symmetric KH instability. We find that the asymmetric KH instability
is a hybrid mode of symmetric KH and Holmboe instabilities, with features of both over-
turning and scouring flows and a nonzero propagation speed. In contrast to the symmetric
KH instability, the asymmetric KH instability does not generate a large-scale overturning
of the central isopycnal but scours fluid of intermediate density from the upper portions of
the interface, resulting in a significant interface deepening and sharpening of the density
interface during mixing events. We observe that the dynamics and amount of mixing are
strongly influenced by the degree of asymmetry (i.e., the offset distance between density
and velocity interfaces) in the flow. With a larger asymmetry, the kinetic energy of the
instability is larger but the cumulative mixing and mixing efficiency increase to a maximum
then decrease. We find a similar transition of the gradient Richardson number distribution
after the instabilities become turbulent, which has important implications for interpreting
oceanographic data. Our study suggests that asymmetry should be taken into account in
future studies of the KH instability.

DOI: 10.1103/PhysRevFluids.9.014501

I. INTRODUCTION

Stably stratified shear flows play an important role in various contexts, such as estuaries [1],
oceans [2], coastal inlets [3], ship canals [4], and lakes [5]. They are settings for stratified turbulent
mixing, which transports tracers such as heat, salt, momentum, and biogeochemical substances.
Understanding this mixing has broad applicability, ranging from predicting saltwater intrusion into
estuaries to subgrid-scale parametrizations of property fluxes in general circulation models.

In a stably stratified system of layers separated by density interfaces, turbulent mixing occurs
in intermittent and spatially inhomogeneous events driven by horizontal shear flow across the
layers [6–8]. Studies have predominantly focused on the symmetric case in which the center of
a velocity interface and a density interface coincide (a∗ = 0, where a∗ is the offset distance between
the centers of the density and velocity interfaces; Fig. 1) and mixing events are modeled as the
Kelvin-Helmholtz (KH) instability [9,10] or the Holmboe instability [11,12]. The KH instability
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FIG. 1. Schematic illustrating the background fields of velocity (black) and density (red) of an asymmetric
stratified shear layer. In the present study, the thickness of the velocity interface is the same as that of the
density, R = 1.

occurs in flows where the velocity and density interface thicknesses are similar (R ≈ 1, where R
is the ratio of velocity to density interface thicknesses; Fig. 1) and is characterized by stationary
overturns (or billows). The Holmboe instability occurs in flows where the density interface is thinner
than the velocity interface and is characterized by propagating scouring waves; Alexakis [13] found
that R > 2 is necessary for the Holmboe instability. Both types of instability have been commonly
observed in natural settings.

Asymmetric profiles in which the velocity and density interfaces are offset from one another
(a∗ �= 0; Fig. 1) are frequently encountered in geophysical flows in both laboratory experiments
(e.g., [14–18]) and field observations (e.g., [1,19–23]). This asymmetry may be due to topographic
influences and forcing at a flow boundary (e.g., wind forcing on the surface of a water body
or frictional processes at the bottom boundary). For example, Wesson and Gregg [19] observed
prominent offsets between the density and velocity profiles in the Strait of Gibraltar (e.g., their
Fig. 6). Asymmetric profiles have also been observed in the Fraser River estuary (see Fig. 5 of [1]),
the Ishikari River estuary (Figs. 5 and 6 of [20]), and the Saint John River estuary (Fig. 9 of [21]).
Therefore, it is natural to question how asymmetry affects the nonlinear evolution of instabilities
and mixing in stratified shear flows.

Lawrence et al. [14] and Carpenter et al. [24] have demonstrated that introducing a vertical offset
between the velocity and density interfaces when R > 2 (Fig. 1) results in an asymmetric Holmboe
instability, which exhibits a mixture of KH and Holmboe instability characteristics in the linear
normal-mode stability analysis. In laboratory experiments, velocity interfaces offset from thinner
density interfaces lead to a one-sided flow with cusped waves and asymmetric billows that entrain
fluid across the density interface [14]. This nonlinear evolution of asymmetric Holmboe instabilities
was supported by direct numerical simulations focusing on the case R = 3 [24]; the evolution of the
resultant instability depends on the degree of asymmetry in the background velocity and density
profiles.

The effect of asymmetry with similar density and velocity interface thicknesses (R = 1), which
exhibits significant differences in the results of linear stability theory and nonlinear simulations,
remains largely unexplored. Recently, Olsthoorn et al. [25] tested the instability for R = 1 consid-
ering only a single value of asymmetry where the offset between the velocity and density interfaces
is equal to half of the velocity interface thickness h∗ (a∗ = h∗/2). In this case the asymmetric KH
instability arises and presents a hybrid instability sharing characteristics of both symmetric KH and
Holmboe instabilities. However, the influence of the degree of asymmetry on the dynamics and
mixing when R = 1 remains an open question and is the focus of this study.
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In this paper we perform a set of three-dimensional direct numerical simulations with varying
degrees of asymmetry (i.e., a range of a∗). The remainder of the paper is organized as follows.
Section II describes the system setup, stability characteristics, numerical simulation methods, and
framework by which the evolution of the flow is quantified. We then present the results of the
three-dimensional simulations in Sec. III and explore the horizontally averaged flow evolution in
Sec. IV. This is followed by the quantification of the influence of the asymmetry on the volume-
averaged flow dynamics and mixing characteristics in Sec. V. Section VI presents the influence of
asymmetry on marginal instability. A summary and discussion is given in Sec. VII.

II. METHODS

A. Setup

A density-stratified shear layer consists of initial velocity and density profiles whose variation in
the vertical direction can be represented by hyperbolic tangent functions. The velocity distribution
has a jump �U ∗ over a length scale h∗ (Fig. 1). Similarly, the stable density distribution has a jump
�ρ∗ over a length scale h∗ such that the velocity and density profiles are

U
∗ = �U ∗ tanh

(
z∗ − a∗

h∗

)
, (1)

ρ∗ = −�ρ∗ tanh

(
z∗

h∗

)
. (2)

The velocity and density interface thicknesses are the same (R = 1), such that h∗ ≡
�U ∗/(dU

∗
/dz∗)max ≡ �ρ∗/(dρ∗/dz∗)max. The center of the two interfaces are vertically offset

by a∗ (Fig. 1). The idealized hyperbolic tangent profiles have been used extensively in the literature
(e.g., [8,26–29]), since they closely approximate the background profiles in many stratified flows in
nature. Nondimensionalizing velocity by �U ∗, density by �ρ∗, and depth by h∗ gives

U = tanh(z − a), (3)

ρ = −tanh(z), (4)

where dimensionless quantities are denoted without asterisks.
We define four dimensionless parameters that characterize the system: the Reynolds number

(Re), the bulk Richardson number (Rib), the Schmidt number (Sc), and the asymmetry (a),
given by

Re ≡ �U ∗h∗

ν∗ , (5)

Rib ≡ �ρ∗g∗h∗

ρ∗
0 (�U ∗)2

, (6)

Sc ≡ ν∗

D∗ , (7)

a ≡ a∗

h∗ , (8)

where g∗ is the gravitational acceleration, ρ∗
0 is a reference density, ν∗ is the kinematic viscosity, and

D∗ is the molecular diffusivity of the density field. Note that we define these dimensionless numbers
based on the shear interface half-width and half-velocity difference, while in some studies the full
scales are used (e.g., [24]). We use the same nondimensional parameters as those used by Olsthoorn
et al. [25]: Re = 1200, Rib = 0.15, Sc = 9. These values ensure that the turbulence generated by
the stratified shear instability reaches a buoyancy Reynolds number of O(100), representative of a
wide range of flows in estuaries, oceans, and lakes (e.g., [5,25,30,31]). The value of Rib = 0.15 is
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FIG. 2. (a) Profiles of Richardson number Rig(z) for the hyperbolic tangent profiles shown in Fig. 1 with
Rib = 0.15 and a variation of the degree of asymmetry a; (b) the vertical level zmin of (c) the minimum value
of Rig as function of a. The dotted vertical line in (a) indicates Rig = 1/4, and the dashed line in (b) indicates
the 1:1 reference line.

representative of conditions found in both field and laboratory studies [32]. Sc = 9 corresponds to
thermally stratified water with a temperature of approximately 12 ◦C (Sc varies from 5.5 at 30 ◦C to
13.1 at 0 ◦C [33]). We further make this choice of Rib and Sc for comparison with previous studies
that use the same (e.g., [24,25,34]). Hereafter, all quantities are dimensionless.

Variations in the degree of asymmetry, a, have significant influence on the stability of the
flow. This is seen by considering the gradient Richardson number Rig(z) = N2/S2, where N2(z) =
−Rib(dρ/dz) and S2 = (du/dz)2. By the Miles-Howard criterion, a necessary condition for in-
stability (assuming inviscid parallel flow) is that Rig(z) < 1/4 at some level z [35,36]. For the
hyperbolic tangent profiles used in this study, Rig(z) attains a minimum in the region of the density
interface [Fig. 2(a)]. For a = 0 (the symmetric case), the minimum is Rig(z = 0) = Rib. For a > 0
(asymmetry), the region where Rig(z) < 1/4 grows and shifts towards the center of the velocity
interface [Figs. 2(a) and 2(b)]. This asymmetry also results in a lower minimum value [Fig. 2(c)]
with minimum Rig = Rib sech2(zmin)/sech4(zmin − a) where zmin = {a + sinh−1[3 sinh(a)]}/2, ex-
pressing the increased instability of the region above the density interface. For R = 1, this profile
of Rig(z) exhibits a fundamental difference from that for R = 3 (the Holmboe instability profile),
which has Rig(z) < 1/4 located both above and below the center of the density interface [24].

The evolution of the velocity u and density ρ are described by the nondimensional Navier-Stokes
equations under the Boussinesq approximation:

∇ · u = 0, (9)

∂u
∂t

+ u · ∇u = −∇p − Ribρk + Re−1∇2u, (10)

∂ρ

∂t
+ u · ∇ρ = (Re Sc)−1∇2ρ, (11)

where p is the pressure and k is the unit vector in the vertical direction.

B. Linear stability analysis

It is useful to examine the growth rate and length scales of the instability that determines the
initial evolution via linear stability analysis. We solve the Navier-Stokes equations (9)–(11) based
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on the assumptions of a parallel background mean flow and two-dimensional perturbations with
normal mode forms (e.g., [16,37–39]). The velocity, pressure, and density fields are expressed in
terms of the background field (denoted by overbars) plus a small perturbation (denoted by primes),

u = U (z)i + u′(x, z, t ), p = P(z) + p′(x, z, t ), ρ = ρ(z) + ρ ′(x, z, t ), (12)

where the perturbations are much smaller than the background field (i.e., |u′/U | 	 1), and all
perturbations have normal mode form

ψ ′(x, z, t ) ≡ R{ψ̂ (z)exp(ikx + σ t )}, (13)

where R denotes the real part; σ is the complex growth rate, k is the wave number, and i is the unit
vector in the horizontal direction.

Substituting these into the governing equations (9)–(11) yields

σ

[∇2 0
0 1

] [
ŵ

ρ̂

]
=

[
Lw Lwρ

Lρw L
ρ

] [
ŵ

ρ̂

]
, (14)

where

Lw = −ikU∇2 + ik
d2U

dz2
+ Re−1∇4,

Lρ = −ikU + (Re Sc)−1∇2,

Lwρ = Rib

(
d2

dz2
− ∇2

)
, (15)

Lρw = −dρ

dz
,

and ∇2 = −k2 + d2/dz2, ∇4 = k4 + d4/dz4 − 2k2d2/dz2. The streamwise velocity eigenfunction
is then reduced to û = (i/k)∂ŵ/∂z. The eigenvalue can be decomposed as σ = σr + iσi, where σr

represents the growth rate of the instability and σi is related to the phase speed cp = −σi/k. No-flux
and free-slip boundary conditions are imposed at upper and lower boundaries.

Linear stability analysis indicates a continuous progression from the symmetric KH mode for a =
0 to an instability that appears closer to the Rayleigh instability (KH instability in a homogeneous
fluid; Rayleigh [40]) for larger values of a (Fig. 3). Through the change from the symmetric KH
instability to the Rayleigh instability, the maximum growth rate increases [Figs. 3(a) and 3(b)]. This
is consistent with the vertical broadening of the region of Rig(z) < 1/4 and decrease of the minimal
Rig(z), lending a tendency to instability [Fig. 2(a)]. The wavelength of the maximum growth rate
and its corresponding phase speed vary with a [Figs. 3(c) and 3(d)]. From a = 0 to a ≈ 1, the most
unstable wavelength decreases to reach a minimum while the phase speed increases to a maximum.
With further increases in a above 1, the most unstable wavelength increases and the phase speed
decreases. Only a = 0 exhibits zero phase speed, indicating the symmetric KH mode [41]; once a >

0, the phase speed is nonzero, indicating a hybrid mode of symmetric KH and Holmboe instabilities
[Fig. 3(d)]. The phase speed returns to zero in the limit of large a. We will examine the nonlinear
evolution including the transitional behavior in three-dimensional numerical simulations described
next.

C. Numerical simulations

We performed three-dimensional direct numerical simulations (DNS) using the spectral parallel
incompressible Navier-Stokes solver (SPINS), a parallelized pseudospectral solver [42], to solve
the Navier-Stokes equations (9)–(11). The computational domain length Lx = λx is set to the
wavelength of the most unstable mode [varying slightly with the asymmetry; Fig. 3(c)]. The
spanwise width of the domain is Ly = 9 (> Lx/2), which is sufficient for the development of

014501-5



YANG, TIMMERMANS, AND LAWRENCE

0 1 2 3

0.2

0.4

0.6

0.8

1

0 1 2 3
0

0.05

0.1

0.15

0.2

m
ax

0 1 2 3
12

12.5

13

13.5

14

0 1 2 3
0

0.05

0.1

0.15

0.2

(a) (b)

(c) (d)

FIG. 3. Linear stability properties as a function of a of the unstable mode: (a) growth rate contours with the
most unstable wave number (red dashed line); (b) maximum growth rate (thick line) and the fastest growth rate
of the Rayleigh instability of an unstratified fluid (horizontal dashed line); (c) most unstable wavelength (used
in setting the initial horizontal domain for the nonlinear numerical simulations); and (d) phase speed of the
maximum growth rate. The values were obtained for the initial profiles in Fig. 1 with Rib = 0.15, Re = 1200,
and Sc = 9.

three-dimensional secondary instabilities (e.g., [24,43]). The domain height Lz = 18 is large enough
to have a negligible influence on the development of the instability (e.g., [25,44]). Periodic boundary
conditions are imposed in the horizontal direction, and free-slip and no-flux boundary conditions are
used in the vertical direction. {Nx, Ny, Nz} = {768, 512, 1024} are the number of grid points in the
horizontal, spanwise, and vertical directions, respectively. The suggested grid spacing in DNS is
O(LK ) where LK = (ν3/ε)1/4 is the Kolmogorov length scale and ε is the viscous dissipation rate
[45,46]. However, in a stratified flow where Sc > 1, as is the case here, the required grid spacing
needs to be O(LB), where LB = LK/Sc1/2 is the Batchelor length scale. In our simulations, the
computational resolution is ∼3LB after the onset of turbulence (e.g., [24,25,47]).

Initial perturbations are applied to trigger instabilities (e.g., [25,34,47]). We use the eigenfunction
of the fastest growing linear mode from the linear stability analysis (Sec. II B) and a random noise
distribution. The amplitude of the eigenfunctions and the random noise are 1% and 0.1% of the
background velocity difference, respectively.

We perform six different numerical experiments, exploring a range of asymmetry a between the
initial velocity and density interfaces (Table I). Each of these simulations requires approximately
172 000 CPU hours. Note that in addition to the simulations with Re = 1200 and Sc = 9, we
performed additional simulations with Re = 300 and Sc = 1 (see Appendix B).

D. Characterizing the partition and transfer of energy

To investigate the evolution of the flow through its various stages of development, it is useful
to partition the energy into mean and perturbation parts. Following Caulfield and Peltier [43],
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TABLE I. Summary of parameters for the numerical simulations. All simulations have Re = 1200, Rib =
0.15, and Sc = 9. The domain size is {Lx, Ly, Lz}, and the corresponding number of grid points used in
each dimension is {Nx, Ny, Nz} = {768, 512, 1024}. The dimensionless maximum growth rate (σmax) and the
corresponding phase speed (cp) obtained from the linear stability analysis are given for each case.

Case no. 1 2 3 4 5 6

a 0 0.5 1.0 1.5 2.0 2.5
Lx 14.0 13.3 12.7 12.6 12.7 12.9
Ly 9 9 9 9 9 9
Lz 18 18 18 18 18 18
σmax 0.087 0.11 0.14 0.16 0.17 0.18
cp 0 0.081 0.088 0.07 0.051 0.036

we decompose the velocity field, u(x, y, z, t ), into the mean flow (u), the two-dimensional flow
associated with the primary instability (u2d ), and the three-dimensional flow (u3d ):

u = 〈u〉xy, (16)

u2d = 〈u〉y − u, (17)

u3d = u − u − 〈u〉2d , (18)

where the subscript 〈·〉i denotes averaging in the i direction. Similarly, we can decompose the kinetic
energy (K = 1

2 〈u · u〉xyz), into three components

K = K1d + K2d + K3d , (19)

where

K1d = 〈u · u〉z, (20)

K2d = 〈u2d · u2d〉xz, (21)

K3d = 〈u3d · u3d〉xyz. (22)

Following Lorenz [48] and Winters et al. [49], the irreversible time-dependent mixing rate is
defined as

M ≡ dPb/dt − φ, (23)

where Pb = Rib〈ρsz〉z is the background potential energy obtained through a continuous adiabatic
rearrangement of the instantaneous density field into a statically stable profile, ρs(z), and φ =
Rib(ρbottom,t − ρ top,t )/(LzReSc) is the mixing caused by molecular diffusion. Thus, M is equal to the
instantaneous rate of monotonic increase in background potential energy after excluding the mixing
caused by molecular diffusion and is always positive. The cumulative mixing is then given by

Mc =
∫ t

0
Mdt = Pb(t ) − Pb(0) − φt . (24)

We use M to define a time-dependent instantaneous mixing efficiency as

E ≡ M

M + ε
, (25)
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where ε = 2
Re 〈si jsi j〉xyz is the viscous dissipation rate of total kinetic energy and can be split

into mean and fluctuating (turbulent) components, ε = 〈ε〉 + ε′, where the mean is given by
〈ε〉 = 1

Re 〈( du
dz )2〉xyz.

Finally, we define a cumulative mixing efficiency as

Ec ≡
∫

T Mdt∫
T Mdt + ∫

T ε dt
, (26)

where T denotes some duration of interest (e.g., [50]). Here T is the total duration of a mixing event
between t = 0 and t f where t f is taken to be sufficiently long after the turbulent event (i.e., the flow
has relaminarized) such that the result is insensitive to the exact value of t f [24,25]; Ec gives the
ratio of the energy used to perform mixing to the total energy expended in the mixing event. This
gives an indication of the mixing efficiency of the entire event, rather than an instantaneous value.

III. THREE-DIMENSIONAL FLOW EVOLUTION

Our linear stability analysis indicates that the instability of the profiles, having a > 0 (R = 1),
has characteristics of both symmetric KH and Holmboe instabilities. Here we describe DNS results
showing that the mixed features of the linear stability lead to nonlinear flows that resemble both
symmetric KH and Holmboe mixing events (Fig. 4).

For a = 0 (symmetric KH instability), the flow progresses in accordance with the usual evolution
of a KH-driven mixing event [Figs. 4(a)–4(c); also see [51]). Initially, the instability leads to the
creation of the traditional billow structure with finite amplitude, overturning the stratified interface
[Fig. 4(a)]. The primary growth is essentially two-dimensional and involves the entrainment of
interfacial fluid into the core of the billow, which is stationary with respect to the mean flow and ap-
proximately symmetric vertically. Subsequently, the billow becomes unstable to three-dimensional
secondary instabilities [Fig. 4(b)], triggering a transition to turbulence that fills the entire shear
layer [Fig. 4(c)]. At the end of the simulation, the density interface is broader, with an almost equal
mixture of the top and bottom fluid layers.

For a = 1 (asymmetric KH instability), the instability leads to the formation of a large billow,
similar to the symmetric KH instability, but with some important differences [Figs. 4(d)–4(f)]. First,
the size of the billow is larger compared to that of the symmetric KH instability. Second, the billow
is positioned above the density interface and is not stationary with respect to the mean flow [i.e., has
a nonzero phase speed as predicted by the linear stability analysis; Fig. 3(d)]. Third, the propagating
billow scours fluid of intermediate density from the upper portions of the interface, which is different
from the diffusive mixing of the symmetric KH instability. Secondary instabilities lead to three-
dimensional motions in the billow, similar to the symmetric KH instability, but the resulting mixing
is vertically asymmetric. The density gradient above the initial center of the density interface is
mixed, and the density interface is sharpened while the fluid below the density interface remains
largely intact [cf. Fig. 4(c) (a = 0) and Fig. 4(f) (a = 1)].

Further increasing the asymmetry (a = 2), the asymmetric KH instability forms an even larger
billow [Fig. 4(g)]. The phase speed of the billow is smaller than for a = 1, consistent with the linear
stability analysis [Fig. 3(d)]. With increasing degree of asymmetry, the resulting instability charac-
teristics are reminiscent of the asymmetric Holmboe instability observed in laboratory experiments
[18] and numerical simulations [24] at Re = O(100); the billow behaves like a series of one-way
ejections before decaying [24]. However, in our simulations with KH profiles (R = 1) at Re = 1200
these ejections are interrupted by the rapid formation of secondary instabilities [Fig. 4(h)]. The
resulting mixing occurs primarily above the density interface, leading to an asymmetric final density
interface with a larger vertical extent [Fig. 4(i)]. Three-dimensional motions mix only part of the
initial interface, maintaining a strong density gradient on the lower side.

We next explore the details of the evolution of the interface for each of the cases (a = 0, 1 and
2) described here.
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FIG. 4. Evolution of the three-dimensional density field at representative times (a)–(c) a = 0: t =
{65, 110, 155}, (d)–(f) a = 1: t = {55, 110, 165}, and (g)–(i) a = 2: t = {50, 105, 160}.

IV. MIXING MECHANISMS

To better understand the spatio-temporal characteristics of the distinct mixing mechanisms
related to the overturning of the symmetric KH and the scouring of the asymmetric KH instabilities,
we explore the development of the horizontally averaged quantities (Fig. 5). We focus on hori-
zontally averaged density profiles, buoyancy frequency (N2), dissipation rate (ε), scalar variance
dissipation rate (χ ), and buoyancy Reynolds number (Reb):

N2(z, t ) = −Rib
dρ

∂z
, ε(z, t ) = 2

Re
si jsi j, χ (z, t ) = 2

Re Sc
|∇ρ ′|2, Reb(z, t ) = ε

νN2
, (27)

where ρ ′ denotes the perturbation from the horizontally averaged mean density field ρ.
The three-dimensional motion associated with the symmetric KH instability leads to symmetric

disruption around the core of the initial density interface [Figs. 5(a)–5(e)] (see, e.g., [47]). The
symmetry is seen in the spatial patterns of viscous and scalar dissipation [Figs. 5(c) and 5(d)]. On
the other hand, the asymmetric KH instability results in a distinct one-sidedness, with greater mixing
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FIG. 5. Evolution of the horizontally averaged fields for a = 0 (left column), a = 1 (middle column), and
a = 2 (right column). (a), (f), (k) density field, (b), (g), (l) N2, (c), (h), (m) log ε, (d), (i), (n) log χ , and
(e), (j), (o) Reb. The base of the logarithms is e (natural logarithm). Superimposed on each plot are the (−0.9,
0, 0.9) contours of the density field.

above the interface core than below [Figs. 5(f)–5(o) and 6(a)]. The dissipation and mixing due to
viscosity occur mainly above the density interface, related to the breakdown of the initial billow
structure [Figs. 5(h), 5(i), 5(m), and 5(n)]. With larger asymmetry, the strength of dissipation and
mixing is larger. The symmetric KH instability has elevated values of Reb throughout the density
interface, while the asymmetric KH instability generates Reb = O(100) above the density interface
[Figs. 5(e), 5(j), and 5(o)].

For a > 0, fluid from the lower layer is mixed into the upper layer in a scouring process [47].
Scouring results in a deepening and sharpening of the density interface defined by the position of
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FIG. 6. Mixing due to the asymmetric KH instability for a = 1: (a) initial (dashed line) and final (solid
line) density profiles with horizontal grey lines indicating the center of the density interface; (b) evolution of
N2, where the location of the maximum N2 is indicated by the red line with its magnitude given in (c).

maximum horizontally averaged buoyancy frequency, N2 [Fig. 6(b)]. Below the density interface,
the fluid layer remains unchanged. The scouring occurs immediately after the appearance of the
KH billow with a significant initial interface deepening and sharpening [Fig. 6(b)]. After the billow
breaks down (t ≈ 100), there is some diffusive mixing across the interface and the stratification
weakens (i.e., the interface broadens), while remaining more strongly stratified than its initial value.

With larger values of a (e.g., a � 2), the initial density interface is entirely below the shear
interface. As a result, the instability growth is increasingly isolated from the density interface and the
scouring becomes more intermittent. In the absence of active scouring, mixing across the interface
is diffusive. In the later stages of the simulation, for the largest asymmetry, the stratification across
the interface is weakest and its core is deepest because it is most diffusive; the diffusive mixing
dominates over scouring. With a larger value of a, the instability is confined to a homogeneous
layer with minimal cumulative mixing (and efficiency). We will quantify this next.

V. ENERGETICS AND MIXING

We quantify the volume average kinetic energy of the two-dimensional and three-dimensional
motions in Sec. V A and the volume average turbulent dissipation, mixing rate and mixing efficiency
in Sec. V B.

A. Kinetic energy

The two-dimensional kinetic energy (K2d ) increases most slowly as the instability grows for the
symmetric cases (a = 0), with the fastest rate of increase when a is largest [Fig. 7(a)], consistent
with the trend in growth rate predicted by the linear stability analysis [Fig. 3(b) and Table I]. This
two-dimensional evolution relates to the growth rate of billow-like structures until K2d reaches a
maximum value at some time t2d . After this time, K2d exhibits oscillations as the transition to
turbulence begins and the billow-like structures break down. Asymmetric cases (a > 0) have a
higher kinetic energy associated with coherent billows compared to the symmetric case, with the
most asymmetric case showing almost four times the peak energy as that of the symmetric KH insta-
bility [Fig. 7(a)]. Correspondingly, the most asymmetric case yields the strongest three-dimensional
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FIG. 7. Evolution of energy for a = 0, 1, and 2: (a) two-dimensional kinetic energy (K2d ), and (b) three-
dimensional kinetic energy (K3d ). In (a), the solid symbols indicate the time t2d when K2d is maximal for each
case, and the dashed lines indicate the predicted growth rates from the linear stability analysis (see Table I). In
(c), the solid symbols indicate t3d when K3d is maximal.

motion (K3d ) after the billow structure breaks down [Fig. 7(b)]. Interestingly, the time t3d when K3d

is maximal is latest in the most asymmetric case [Fig. 7(b)], while t2d is the earliest [Fig. 7(a)];
that is, the asymmetric KH instability is more long-lived with a larger degree of asymmetry. Note
that it has been shown that t3d could be influenced by the initial perturbation (see [52]). Therefore,
the relationship between t3d and a [Fig. 7(b)] might be qualitatively different for simulations with
different initial perturbations.

B. Mixing

The temporal evolution of the turbulent dissipation rate ε′ increases to a peak value corresponding
with t ≈ t3d and then decreases [Fig. 8(a)]. In agreement with the evolution of K3d , ε′ peaks at the
latest time with the largest value for the most asymmetric case. Again, the asymmetric instability
in this case is more long-lived and the size of billow is largest, thus the nonlinear evolution of the
instability ensures the most energetic three-dimensional motions (see Appendix A). The mixing
rate follows the same general evolution as the turbulent dissipation rate, with a stronger turbulent
dissipation rate corresponding to a larger mixing rate [Fig. 8(b)]. Of note is that the mixing rate for
asymmetric KH instabilities shows a double-peak pattern while the symmetric KH instability shows
a single peak. The additional peak in the asymmetric cases originates from the nonzero phase speed
which gives rise to an oscillation in the flow field. This is reminiscent of the oscillations in mixing
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FIG. 8. Evolution of mixing parameters for a = 0, 1, and 2: (a) turbulent dissipation rate, (b) mixing rate,
(c) cumulative mixing, and (d) instantaneous mixing efficiency.

rate (associated with the propagation of the scouring wave) observed in the symmetric Holmboe
mode before the instability breaks down (see [53]). Although all cases exhibit similar peak value in
the mixing rate, with greater asymmetry, the mixing event lasts longer with a broader distribution
of mixing over time. The three-dimensional motion is also more persistent, as shown by the larger
cumulative mixing with greater asymmetry [Fig. 8(c)]. The instantaneous mixing efficiency peaks
for asymmetric KH instabilities at E ≈ 0.4 while that for symmetric KH instability is smaller at
E ≈ 0.3 during the flow transition, indicating a more efficient mixing induced by scouring than
overturning events [i.e., t < 150; Fig. 8(d)]. After the flow becomes fully turbulent (i.e., t > 150), the
mixing efficiency also follows the trend that larger asymmetry results in greater mixing efficiency.

Although an increased intensity of instantaneous dynamics and mixing is observed in cases of
greater asymmetry, this does not necessarily lead to a greater mixing of the density field over the
entire event. The dependence of the cumulative mixing and cumulative mixing efficiency on the
degree of asymmetry is summarized in Fig. 9. For a � 2, larger values of a give rise to more
cumulative mixing. For a � 2, cumulative mixing decreases for larger a [Fig. 9(a)]. The overall
cumulative mixing increases almost four times from the symmetric KH instability case to the
asymmetric KH instabilities from a = 0 to a = 2. Although an increased billow size (thus an
increased two-dimensional and three-dimensional energy) is observed in cases of greater asymmetry
(Figs. 4 and 12), overturns do not mix fluid of different densities if they are not in contact with the
density interface. The maximum value of the cumulative mixing as a function of a is an optimization
between the size of the overturn and the area of fluid of different densities that is being mixed. When
a � 2 the initial velocity and density interfaces nearly no longer overlap, the scouring of fluid of
different densities is not effective.
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FIG. 9. Summary plots for each simulation showing the influence of the asymmetry on (a) cumulative
mixing and (b) cumulative mixing efficiency for the entire event from t = 0 to t f . The horizontal dashed line
denotes the canonical Ec = 1/6 suggested by Osborn [54] for the average mixing efficiency of steady stratified
shear flows. This value corresponds to a flux coefficient � = Ec/(1 − Ec ) = 0.2.

Similarly, for a < 2, cumulative mixing efficiency is larger when a is larger [Fig. 9(b)]. Cumu-
lative mixing efficiency peaks for values of a ≈ 1.5 and drops off for larger values of a [Fig. 9(b)].
The overall cumulative mixing efficiency increases almost 40% from a = 0 to a = 1.5. Note that
the computed cumulative mixing efficiency of the symmetric KH instability (a = 0) is close to the
canonical value of 1/6 suggested by Osborn [54] for steady stratified shear flows. This value is
commonly used for mixing parametrizations although it has been a matter of some debate (e.g.,
[8,55,56]). Finally, the cumulative mixing efficiency peaks at a smaller a compared with that of the
cumulative mixing. For larger a, although the cumulative mixing is larger, the cumulative dissipation
rate is also larger, which gives rise to the decrease in the cumulative mixing efficiency [see Eq. (26)].

VI. MARGINAL INSTABILITY

Recent research has examined the concept of marginal instability in stratified turbulent flows, that
is, the tendency for flows to evolve to a state with Rig near the critical value 1/4 under background
forcing (e.g., wind) [56–59]. Without background forcing, Salehipour et al. [60] found that marginal
instability is present in symmetric Holmboe instabilities but not in symmetric KH instabilities.
Marginal instability occurs through a continuously reinforced localization of scouring motions from
symmetric Holmboe instabilities.

The symmetric KH instability has an initial state where Rig is minimal at the center of the
velocity interface, while the asymmetric KH instabilities we study have minimal Rig above the
center of the velocity interface (Fig. 10). With a larger a, the initial minimal Rig is smaller and
the region where Rig is defined is broader in the vertical extent. After the instability grows and
transitions to turbulence, the flow quickly evolves to a state approximating marginal instability.
The asymmetric KH instability is characterized by lower values of Rig that persist for longer
compared to the symmetric case. Increasing asymmetry delays the onset of turbulence, and the most
asymmetric cases have the strongest three-dimensional motions in weakly stratified regions away
from the density interface. The turbulent shear layer also exhibits a wider vertical extent of Rig, a
manifestation of marginal instability. Throughout the scouring of asymmetric KH instabilities, both
the density and velocity interfaces move downward with the latter at a faster rate [Figs. 10(b) and
10(c)]. As a result, the degree of asymmetry decreases, consistent with [25].
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FIG. 10. Evolution of the horizontally averaged Rig for (a) a = 0, (b) a = 1, and (c) a = 2. The vertical
arrow indicates t = t3d ; the white dashed and solid lines indicate the position of the density and velocity
interfaces, respectively.

To quantify the distributions of gradient Richardson number, Rig, we computed the probability
density function (PDF) of Rig within the turbulent region after time t3d (labeled in Fig. 10).
Following Olsthoorn et al. [25] and Salehipour et al. [60], we avoid values of Rig where both shear
and stratification approach zero and include only sufficiently turbulent regions where dissipation
rates satisfy ε′ > Scφ = 2

Lz

Rib
Re . The PDF is strongly dependent on the degree of asymmetry which

governs the KH-like versus Holmboe-like nature (Fig. 11). The PDF of the symmetric KH instability
exhibits generally larger values (compared to the asymmetric case) and peaks of Rig ≈ 0.35,
consistent with the supercritical symmetric KH instability defined by Salehipour et al. [60]. Varying
the asymmetry from a = 0 to 2, the location of the PDF peak decreases and approaches marginal
instability as scouring becomes more prevalent; the PDF distribution becomes wider for larger a
since the vertical extent over which Rig is defined is wider (see Fig. 10). However, the peak of the
PDF shifts to larger Rig with further increases of a to 2.5. This transition is consistent with scouring
being less effective when a = 2.5 [Fig. 9(a)]. It is interesting to note that the transition occurs at
approximately a = 2 in the numerical simulations, while it occurs at approximately a = 0.9 in the
linear stability analysis [Fig. 3(d)]. This discrepancy is presumably due to diffusion of background
velocity and density in the nonlinear numerical simulations.

014501-15



YANG, TIMMERMANS, AND LAWRENCE

0.0 0.2 0.4 0.6 0.8 1.0
Rig

0

2

4

6

8

10

P
D

F

a = 0
a = 1
a = 2
a = 2.5

FIG. 11. Probability density function (PDF) of Rig(z, t ) for a range of asymmetries. The PDF is computed
after the flow becomes turbulent (t � t3d ) and including only turbulent regions for which ε′ > 2
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[25,60]). The vertical dotted line denotes Rig = 1/4.

VII. SUMMARY AND DISCUSSION

Most studies of the KH instability have focused on the scenario where the density and velocity
interfaces are aligned. Here we studied the influence of an offset between the two interfaces to inves-
tigate the asymmetric KH instability, comparing results with the symmetric KH instability via linear
stability analysis and DNS. Both linear stability analysis and DNS reveal that the asymmetric KH
instability is a hybrid mode of symmetric KH and Holmboe instabilities (consistent with Olsthoorn
et al. [25] with a = 0.5). The asymmetric KH instability exhibits longer maximal growth rates and
a propagation with respect to the mean flow, which is evident in both the linear stability analysis
and DNS. After the instability becomes turbulent, Rig approaches 1/4, consistent with forcing and
turbulent diffusion acting together to bring the mean flow to a state of marginal stability (e.g., [57]).

We have shown how the degree of asymmetry governs the dynamics and mixing associated with
the instability. As the degree of asymmetry increases, the instability has a longer lifespan, and the
associated two-dimensional kinetic energy is larger. Consequently, after the instability breaks, the
three-dimensional kinetic energy and turbulent dissipation rate are also larger. On the other hand,
the cumulative mixing and cumulative mixing efficiency are maximal for an asymmetry of a ≈ 2
and drop off with further increases in asymmetry. The significance of a = 2 relates to the fact that
at this asymmetry, the overlap between initial velocity and density interfaces is near minimal, and
scouring of fluid of different densities is least effective. Note that this transition near a = 2 still
holds for lower Re (i.e., for Re = 300 instead of 1200; see Appendix B 1).

The variation in mixing parameters for different degrees of asymmetry has important implica-
tions for estimating mixing in geophysical flows where asymmetry is commonly observed (e.g., see
[1,19]). For example, assuming a mixing efficiency associated with the symmetric KH instability
in a parametrization (e.g., [56]) may underestimate ocean mixing due to stratified turbulence by up
to 40% (see Fig. 9). Future study is needed to quantify the influence of asymmetry for developing
mixing parametrizations in terms of parameters such as the buoyancy Reynolds number [8]. The
asymmetric KH instability may play an important role in wind-driven mixed layer deepening. The
wind-forced Ekman layer at the ocean surface, where friction balances the Coriolis force, is often
thinner than the mixed-layer, which is defined by a strong density gradient across its base (e.g.,
[61]). This sets up conditions for either the scouring asymmetric KH instability with a deepening
density interface while the stratification remains strong, or ineffective mixing if the asymmetry is
sufficiently large. Future field studies aimed at quantifying conditions during wind-driven mixed
layer deepening are needed to explore the potential role of this mixing mechanism, and develop
parametrizations for including this effect in models.
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TABLE II. Summary of parameters for the numerical simulations (cases 7–14). All simulations have Re =
300 and Rib = 0.15. The domain size is {Lx, Ly, Lz}, and the corresponding number of grid points in each
dimension is {Nx, Ny, Nz} = {256, 192, 384} for cases 7–13. Case 14 has {Nx, Ny, Nz} = {512, 192, 384}, and
accommodates two wavelengths of the fastest-growing instability. This case is run twice (14a and 14b), where
the runs differ in their phase differences between initial perturbations (see Appendix B 2). The dimensionless
maximum growth rate (σmax) and the corresponding phase speed (cp) obtained from the linear stability analysis
are given for each case.

Case no. 7 8 9 10 11 12 13 14

a 0 0.5 1.0 1.5 2.0 2.5 1.0 1.0
Sc 9 9 9 9 9 9 1 9
Lx 14.0 13.4 12.8 12.7 12.8 13.0 12.8 25.6
Ly 9 9 9 9 9 9 9 9
Lz 18 18 18 18 18 18 18 18

σmax 0.081 0.11 0.14 0.16 0.17 0.18 0.14 0.14
cp 0 0.084 0.091 0.073 0.053 0.038 0.090 0.091

We note that while the simulations presented in this paper consider multiple values of Re and
Sc, further exploration of the parameter space (Re, Rib, Sc, and R) would be of great value in
understanding the role of asymmetry in stratified shear flows. For example, for asymmetric KH
instability, the cumulative mixing and mixing efficiency associated with Sc = 9 is smaller than that
with Sc = 1 (Appendix B 1). Understanding the mixing associated with larger Sc considering a salt
stratification (for which Sc can be two orders of magnitude larger [33]) is important. In addition, we
considered the case where the density and velocity interface thicknesses are equal (R = 1). Further
study is needed to examine how mixing changes from KH profiles (R = 1) to Holmboe profiles
(R = 3). Carpenter et al. [24] performed simulations to examine the influence of asymmetry for
the case of R = 3 and Re = 300, lower than the value of Re = 1200 in our simulations; they found
smaller cumulative mixing and mixing efficiency since the mixing was dominated by the quasilinear
preturbulent stage of the instability. Additionally, for R >

√
2, the velocity (or density) interface

core is the region of highest Rig (opposite to the case when R <
√

2, for which the core of the
interface is the most unstable region characterized by a local minimum in Rig [34]). Despite these
differences, the simulations of Carpenter et al. [24] show the same general relationships as in this
study; they show cumulative mixing efficiency increases with asymmetry until the asymmetry is
sufficiently large that the initial velocity and density interfaces are nearly no longer overlapped.
Future studies are needed to explore how the dynamics and mixing of asymmetric instabilities
change over a range of parameters Re, Rib, Sc, and R appropriate for environmental flows.

In symmetric shear instabilities, the interaction (or pairing) between adjacent vortices has been
found to increase mixing (e.g., [51,52,62]). For asymmetric KH instability, we examined this effect
via simulations with Re = 300, Rib = 0.15, Sc = 9, and a = 1; two simulations were run, each
with different phase differences between the initial primary and subharmonic mode perturbations
(see Table II). Vortex pairing is observed and the effect introduces more mixing just as in the
symmetric case. Of note is that the effect of vortex pairing in asymmetric KH is insensitive to
the phase difference between the initial perturbations, a result of the nonzero phase speed ([63]
and Appendix B 2). Vortex pairing is not the only secondary instability that arises; a variety
of three-dimensional secondary instabilities can also be present (see, for example, [64]). The
particular secondary instabilities that dominate depend on the parameter regime as well as the initial
perturbations. For Reynolds numbers of order 1000, Salehipour et al. [47] showed that increasing
Re can enhance the growth of three-dimensional secondary instabilities which inhibit vortex pairing
in the symmetric Holmboe instability. On the other hand, when asymmetry is large, the instability
resembles the Rayleigh mode, and vortex pairing may potentially play an important role in scouring.
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FIG. 12. Domain averaged kinetic energy as a function of the asymmetry on (a) the maximum 2D kinetic
energy (K2d ) and (b) the maximum three-dimensional kinetic energy and its associated turbulent dissipation
rate.

Further study is needed to examine the competition between vortex pairing and three-dimensional
secondary instabilities in asymmetric KH for a range of Re, Rib, Sc, a, and initial perturbations.
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APPENDIX A: MAXIMUM ENERGY

The dependence of the maximum two-dimensional kinetic energy (K2d ) shows that a larger
asymmetry results in a larger peak value of K2d , which relates to the size of the KH billow
[Fig. 12(a)]. The size of a billow generated by the most asymmetric KH instability is approximately
four times that of a billow generated by symmetric KH instability. When a larger billow breaks into
three-dimensional flows, it produces stronger three-dimensional motions with a higher turbulent
dissipation rate [Fig. 12(b)].

APPENDIX B: SIMULATIONS WITH Re = 300

Here we examine the mixing associated with asymmetric KH instabilities when Re = 300 (i.e., a
lower value than the Re = 1200 simulations presented in the main text), and a range of asymmetry
a (cases 7–12; Table II). We additionally examine a simulation with Sc = 1 (case 13; Table II) in
Sec. B 1, and explore the influence of vortex pairing on mixing (via a larger horizontal domain, case
14; Table II) in Sec. B 2.

1. Cumulative mixing and mixing efficiency

The dependence of the cumulative mixing and cumulative mixing efficiency on the degree of
asymmetry is summarized in Fig. 13. Similar to cases with Re = 1200 (Fig. 9), for a � 2, larger
values of a give rise to more cumulative mixing and mixing efficiency (Fig. 13); for a � 2,
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FIG. 13. Summary plots for the numerical simulations (cases 7–14). (a) Cumulative mixing and (b) cumu-
lative mixing efficiency for the entire event from t = 0 to t f . The insignificant error bar on the solid circle (case
14) indicates the negligible difference on mixing due to different phase differences between initial perturbations
(see Appendix B 2). The horizontal dashed line denotes the canonical Ec = 1/6 suggested by Osborn [54] for
the average mixing efficiency of steady stratified shear flows.

cumulative mixing and mixing efficiency decrease for larger a (Fig. 13). The overall cumulative
mixing increases almost five times between the symmetric KH instability (a = 0) and the asymmet-
ric KH instability with a = 2. When a � 2 the overlap between initial velocity and density interfaces
is near minimal, and scouring is not effective. Note that the cumulative mixing efficiency is smaller
than the canonical 1/6, since the mixing is dominated by the quasilinear preturbulent stage of the
instability [24].

For a lower Schmidt number (Sc reduced from 9 to 1), the corresponding cumulative mixing and
mixing efficiency increase (Fig. 13; case 13 has Sc = 1), consistent with results of the symmetric
case [65]. Examining a range of Sc from 64 to 1 in three-dimensional simulations, Rahmani et al.
[65] found that mixing induced by three-dimensional motions increases when Sc decreases. It is
expected that the influence of Sc on mixing is similar for both the asymmetric and symmetric KH
instabilities.

2. Influence of vortex pairing on mixing

To test the influence of vortex pairing on mixing, case 14 accommodates two wavelengths of
the fastest-growing instability. This case is run twice (14a and 14b), where the runs differ in their
phase differences between initial perturbations. Runs are initially perturbed by the eigenfunction
corresponding to the KH and subharmonic modes from the linear stability analysis and random
noise (see details in [62,63]). Similarly, we define the phase of each wave number mode in terms of
two-dimensional vertical velocity, w2d :

θk = π

2
+ arg{ŵ2d,k (z = 0)}, (B1)

where arg is the argument of a complex number and ŵ2d,k is the kth Fourier component of the
two-dimensional vertical velocity, and k = 2 corresponds to the KH mode and k = 1 corresponds
to the subharmonic mode. The phase difference between the subharmonic mode and KH mode is
denoted as

θsub = θ1 − θ2. (B2)
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FIG. 14. Definition of the relative phase of the KH and subharmonic components based on w′(z = 0):
(a) θsub = 0 (case 14a) and (b) θsub = −π/2 (case 14b).

Figure 14 illustrates the definition of the relative phase of the KH and subharmonic modes. Case
14 had initial perturbations with the relative phase θsub = 0 (case 14a) and θsub = −π/2 (case 14b).
With initial perturbations of both the KH and subharmonic modes, Dong et al. [62] has shown
that vortex pairing and the resultant mixing for the symmetric KH instability depend on θsub. When
θsub = −π/2, vortex pairing is inhibited in three-dimensional simulations and the associated mixing
and mixing efficiency are minimal. When θsub = 0, vortex pairing occurs and the associated mixing
and mixing efficiency are maximal.

Vortex pairing for the asymmetric KH instability is illustrated in Fig. 15. For θsub = 0, two
rightward propagating asymmetric KH billows are observed at t = 50 [Fig. 15(a)]. As time

FIG. 15. Evolution of the density field (x − z) at representative times: (a)–(c) case 14a: θsub = 0 and (d)–(f)
case 14b: θsub = −π/2.

014501-20



ASYMMETRIC KELVIN-HELMHOLTZ INSTABILITIES IN …

0 100 200 300 400
t

0.000

0.005

0.010

0.015

M
c

(a)

0 100 200 300 400
t

0.0

0.2

0.4

E

(b) θsub = 0
θsub = −π/2

FIG. 16. Evolution of (a) cumulative mixing and (b) instantaneous mixing efficiency for case 14a with
θsub = 0 and case 14b with θsub = −π/2.

progresses, the distance between them decreases. The vortex propagation speeds are different due
to different amplitudes, resembling the vortex pairing in the symmetric Holmboe instability [63].
The two asymmetric KH billows undergo pairing [Fig. 15(d)], resulting in a larger billow before it
breaks down [Fig. 15(c)]. The vortex pairing process for θsub = −π/2 is slightly delayed compared
with that for θsub = 0.

The evolution of the mixing is insensitive to the phase difference θsub between the initial
perturbations (Fig. 16), with the slight difference between simulations being a result of the time
difference in the vortex pairing event. The cumulative mixing and mixing efficiency are higher in
the presence of vortex pairing (Fig. 13). The insensitivity to the phase difference indicates that the
vortex pairing process for the asymmetric KH instability is closer to that of the symmetric Holmboe
instability rather than the symmetric KH instability. Due to the propagating nature of the asymmetric
KH instability, the phase difference is adjusted during its initial linear development [63]. However,
the symmetric KH instability is stationary, and thus the phase difference remains the same during
the initial linear development period. A more comprehensive investigation, for example, using the
combined effects of the initial perturbation amplitude ratio and relative phase, is the subject of a
future study.
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