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Onset of Lagrangian chaos: From fractal power spectrum
to the absolutely continuous one

Rafil V. Sagitov *

Perm State University, 614990 Perm, Russia

Igor I. Wertgeim †

Institute of Continuous Media Mechanics, 614013 Perm, Russia

Michael A. Zaks ‡

Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany

(Received 20 June 2023; accepted 20 December 2023; published 18 January 2024)

We study transition to chaotic advection in the fluid motion across a plane rectangu-
lar domain with periodic boundary conditions. The flow, induced by a combination of
time-independent force with constant pumping in both spatial directions, is equivalent
to dynamics on the surface of a 2-torus. At considered force amplitudes, the stationary
flow pattern includes the global drift and the localized vortices encircled by separatrices of
stagnation points. If the Eulerian velocity field is time-independent and rotation number
on the torus, controlled by pumping intensities, is irrational, then the power spectrum
of the Lagrangian observables is singular continuous (fractal) and the autocorrelation
function of velocity displays no ultimate decay. As the increase of the force destabilizes
the stationary flow and replaces it by periodically oscillating velocity field, singularities in
the numerically evaluated spectrum disappear, whereas temporal correlations vanish after
a certain time interval.

DOI: 10.1103/PhysRevFluids.9.014401

I. INTRODUCTION

Two observers of the same velocity field, the first one (traditionally called “the Eulerian”
observer) measuring its characteristics at a fixed spatial location, and the second (respectively,
“the Lagrangian”) one traveling on a passive particle advected by that field, can report remarkably
different pictures. The difference is seen already when the velocity field is stationary in time:
measurements of the Eulerian observer invariably return constant values whereas the Lagrangian
observer can experience regular or irregular sequences of accelerations and slowdowns. If the
stationary velocity in question is the velocity of an incompressible fluid, and molecular diffusion
is neglected, the cavity filled with this fluid turns into the phase space of a volume-preserving dy-
namical system, and paths of the Lagrangian tracers become phase trajectories. In three-dimensional
stationary flows, patterns of streamlines can be chaotic [1]; this phenomenon is known as chaotic
advection [2] or Lagrangian turbulence [3].

Below, we restrict ourselves to two-dimensional fluid motions. In a plane stationary flow confined
to a finite domain, a generic streamline is closed, hence a motion of a tracer advected along it
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FIG. 1. Mixed phase space of a conservative flow on a 2-torus in presence of stagnation points. Phase
portrait for Eq. (5) at parameter values (parameters are introduced further in the text): lx = 2, ly = 1, ν = 1,
α = 1, β = (

√
5 − 1)/2, f = 2. Gray background: global drift. White background: localized vortices. Filled

circles: elliptic stagnation points. Crosses: hyperbolic stagnation points.

is periodic. More involved temporal dynamics of advected particles arises in the case of periodic
boundary conditions: there, a stationary plane flow of incompressible fluid is equivalent to the
conservative flow on the surface of a 2-torus. If this flow has a rational rotation number, all
streamlines are closed and the motion of each advected tracer is periodic in time. For irrational
rotation numbers, the overall picture depends on the absence/presence of stagnation points in the
flow pattern. Without such points, the motion is ergodic, every streamline is dense on the whole
toroidal surface, and temporal dynamics is a quasiperiodic rotation around the torus. In the presence
of stagnation points, the phase space is mixed (Fig. 1): separated into the “localized” vortices
(regions filled with closed streamlines and encircled by separatrices of the saddle points), and the
ergodic “global” component outside the vortices where every streamline is nonclosed and dense.
Note that temporal dynamics of tracers in the global component of the flow is more complicated
than conventional quasiperiodicity: accumulated effect of slowdowns during repeated passages close
to the stagnation points manifests itself in decorrelation and weak mixing. This widespread kind of
behavior, intermediate between chaos (which is impossible in the two-dimensional phase space) and
ordered periodic or quasiperiodic motion, is known as “dynamics with singular continuous power
spectrum” [4].

II. TYPES OF POWER SPECTRA AS CLUES TO DYNAMICS

As the name suggests, the phenomenon can be traced back to the composition of the Fourier
spectra, in this case, spectra of the Lagrangian observables like velocity of advected particles.
Fourier spectra and their counterparts—the correlation functions—have a long tradition as criteria
for nontrivial dynamics. Remarkably, the first quantitative studies of the transition to turbulence in
a flow between rotating concentric cylinders [5] and in thermal convection [6] were based on the
Fourier spectra of velocity; in those experiments, measurements were performed not for fixed tracers
but at fixed locations, giving evidence for the Eulerian turbulence. Below we demonstrate how the
loss of stationarity—onset of time dependence—in the velocity field transforms the spectra of the
Lagrangian observables from the singular continuous into the more familiar absolutely continuous
ones.

In general, spectral measure is uniquely decomposable into the discrete and continuous compo-
nents; within the latter, a further dichotomy is made between absolutely continuous (with respect to
the Lebesgue measure) and singular continuous spectrum [7]. Depending on the problem, any one
or two components can be absent. Formally, the calculation of the Fourier spectrum assumes inte-
gration (summation) over the sample of infinite length; in experiments, conclusions on the spectral
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type must be drawn from finite spectral sums. Computationally, three spectral types are discernible
through different behavior of Fourier sums under growth of the sample length L. In the context of
time-dependent observables, the variable of the Fourier transform is the frequency, denoted below
by ω. For the values of ω belonging to the absolutely continuous spectral component, spectral sums
S(ω, L) converge to finite limits S(ω). In contrast, the discrete (atomic) spectral component is built
of the Dirac delta-functions; at the corresponding values of ω, spectral sums grow proportionally
to L. Finally, the singular continuous (fractal) spectral component supports the infinite set of
singularities for which the spectral sums under varying L either grow sublinearly (that is, slower
than for a delta function) or oscillate. Here, increase of L yields no convergent power spectrum;
instead, growth of the sample ensures infinite fragmentation of the spectral curve, with more and
more emerging peaks and troughs. In the context of physics, singular continuous power spectra (with
regards to the spatial Fourier transform) were reported in [8] as “intermediate between quasiperiodic
and random;” later their occurrence was detected in certain classes of deterministic dynamical
systems [4]. Conventionally, discrete spectrum is an indicator of regular dynamics whereas the
absolutely continuous one is a hallmark of chaos, turbulence, randomness. Accordingly, motions
with singular continuous spectra are neither perfectly ordered nor strongly disordered and have a
certain intermediate position; although they may seem exotic, for the considered hydrodynamical
context the set which supports them in the parameter space has a positive measure.

III. EXAMPLE: A STEADY VISCOUS FLOW WITH MEAN DRIFT IN A RECTANGLE
WITH PERIODIC BOUNDARY CONDITIONS

An example of steady viscous flow with singular continuous power spectrum was suggested in
[9]. The two-dimensional time-independent velocity field was induced on a square with periodic
boundary conditions (that is, on a 2-torus) by a force, periodic along two spatial directions; rotation
number was controlled by constant pumping in both directions. With the force strong enough to
sustain stationary eddies in the flow with irrational rotation number, autocorrelation of the velocity
for an advected particle acquired the roughly log-periodic pattern, characteristic for flows with
singular continuous power spectra. Below we demonstrate that the oscillatory hydrodynamical
instability of this flow pattern leads to the onset of chaotic advection and makes the Fourier spectrum
absolutely continuous.

Setup: incompressible fluid with kinematic viscosity ν and density ρ, obeying the Navier-Stokes
equations

∂v

∂t
+ (v · ∇ )v = −∇P

ρ
+ ν ∇2v + F, (1)

∇ · v = 0

flows over the rectangle 0 � x � 2π lx, 0 � y � 2π ly, with lx and ly being positive integers. Here
v and P are, respectively, the velocity and the pressure; the plane force F = ( f sin y, f sin x)
is periodic in space, and time independent. The structure of the forcing term reminds of the
Kolmogorov flow [10]; experimental implementation of spatially periodic force by placing arrays
of electrodes into the thin layers of conducting fluid was described in [11,12].

Spatial periodicity of the velocity field,

v(x, y) = v(x + 2π lx, y) = v(x, y + 2π ly), (2)

implies that the opposite borders of the periodicity domain can be pairwise adjusted: the domain
can be regarded as a 2-torus. Further, we prescribe the fixed nonzero mean drift in both directions
across the domain, parametrizing it by two drift rates α and β:

1

2π ly

∫ 2π ly

0
vxdy = α,

1

2π lx

∫ 2π lx

0
vydx = β. (3)
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On introducing in the standard way the stream function 	(x, y) by relations vx = ∂	/∂y, vy =
−∂	/∂x, the Navier-Stokes equations (1) are rewritten as

∂
ψ

∂t
+ ∂ψ

∂y

∂
ψ

∂x
− ∂ψ

∂x

∂
ψ

∂y
− ν

ψ = f (cos y − cos x). (4)

Conditions (3) for the flow rates turn into 	(2π lx, y) − 	(0, y) = −2πβ lx and 	(x, 2π ly) −
	(x, 0) = 2πα ly. Due to the periodicity of the velocity field along both coordinates, the stream
function can be written as 	(x, y) = αy − βx + �(x, y), where �(x, y) is 2π lx periodic with respect
to x, and 2π ly periodic with respect to y. For steady flow patterns on a torus, it makes sense
to characterize each streamline (isoline of 	) by the rotation number: the tangent of the mean
inclination of the streamline to the coordinate axis. It is straightforward to see that in the described
geometry of the flow, rotation number is the same for all streamlines winding around the torus; it
equals α/β (for closed streamlines localized inside the periodicity domain, rotation number is zero).

The steady solution of Eq. (4),

	 = αy − βx + f sin(x − φ1)√
α2 + ν2

− f sin(y − φ2)√
β2 + ν2

, (5)

with φ1 = − arctan ν
α
, φ2 = − arctan ν

β
renders the stationary velocity field [9]

ẋ = vx = α − f cos(y − φ2)√
β2 + ν2

ẏ = vy = β − f cos(x − φ1)√
α2 + ν2

. (6)

The conservative dynamical system (6) governs the motion of the particles, advected by the
stationary flow pattern (5). For the vector field (6), the entire flow domain can be viewed as a
rectangle covered by lx × ly squares with the side length 2π .

Without forcing, the streamlines are straight, and the velocity is uniform: this is the trivial flow
on the 2-torus with rotation number α/β. At nonzero f the streamlines are curved; for f < fsc =√

α2β2 + ν2 max(α2, β2) and irrational α/β every streamline is dense on the torus, and the motion
along the streamline is ergodic. At f = fsc the saddle-center bifurcation creates in each 2π × 2π

square two pairs of stagnation points. Elliptic points (centers) are surrounded by vortex-shaped
continua of closed streamlines, encircled by separatrices of hyperbolic stagnation points (saddles);
these vortices form the localized component of the flow pattern (Fig. 1).

Within the global component (i.e., outside the vortices) every streamline is dense. In the course
of time, advected particles repeatedly come arbitrarily close to the saddle points and depart again;
the cumulative effect of slowdowns and subsequent accelerations is decorrelation. The hitherto
discrete Fourier spectrum of velocity becomes singular continuous [9]. A characteristic illustration
in the top left panel of Fig. 2 can be viewed as an instantaneous snapshot of the nonconvergent
computation procedure for the fractal spectrum: every further increase of the sample length discloses
new singularities and creates new extrema on this infinitely fragmented curve.

Notably, for plane steady flows across domains with periodic boundary conditions, existence
of singular continuous spectra for Lagrangian observables is a common phenomenon. Indeed,
it requires two conditions: irrational rotation number and presence of stagnation points. Flows
fulfilling the second condition are structurally stable. As for the first one, although each separate
irrational rotation number is structurally unstable, taken together the irrationals form a set of full
measure.

In the canonical Kolmogorov flow, as well as in its generalizations, the basic stationary flow
pattern becomes unstable at high forcing amplitude and is replaced by various secondary and ternary
states (see, e.g., [13–15] and references therein). Notably, the longwave perturbations are often the
most dangerous ones [16]. Numerical analysis of Eq. (4) linearized near the stationary flow pattern
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FIG. 2. Smoothening of the shape of the power spectrum for the component vx of velocity of the La-
grangian tracer close to the onset at fo of the oscillatory instability of the stationary flow pattern. Each
curve is the average over ∼300 periodograms from the single trajectory, obtained by numerical integration
of Eq. (4) and divided into segments with 216 datapoints/segment. Parameters: lx = 2, ly = 1, ν = 1, α = 1,
β = (

√
5 − 1)/2, fo = 2.712561.

(5) has disclosed that in the square domain with the size equal to the spatial period of the force
(that is, lx = ly = 1), this pattern remains stable at all tested forcing amplitudes f ; regardless of
f , the flow regime with singular continuous Fourier spectrum of velocity is attracting. If, however,
the length of any size of the domain exceeds the period of the force, disturbances with the longer
wavelength are enabled, and there exists a critical value of the forcing amplitude f beyond which
the stationary pattern (5) loses stability. Description of various bifurcation scenarios and secondary
flows in this system is given in [15]. Below, we restrict ourselves to the region of the parameter space
of Eq. (4) in which the primary instability of (5) is oscillatory and, in terms of the Eulerian variables,
the supercritical Andronov-Hopf bifurcation occurs: birth of the limit cycle in the phase space. The
flow pattern becomes time dependent; for Lagrangian observables, in accordance with the general
formalism [3], this leads to the onset of chaotic advection. Above the destabilization, the continuum
of closed streamlines inside every localized vortex generates the set of the Kolmogorov-Arnold-
Moser (KAM) tori; in the global component, metamorphoses of trajectories depend on the rotation
number. If the latter is rational, the global component becomes filled by KAM-tori as well; if it is
irrational, separatrices of the perturbed saddle points intersect transversely and form the heteroclinic
web: a skeleton of the newborn chaotic set [17]. Just above the onset of time dependence, the
distinction between the global and the localized dynamics persists: the KAM-tori serve as barriers,
obstructing transport in the (2 + 1)-dimensional phase space. As f is further raised, more and more
tori break up, so that finally the localized component shrinks and the whole area of the domain
becomes accessible to all advected tracers. Leaving the detailed description of the transitions to the
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subsequent paper [18], we focus on changes in spectral and correlational properties of Lagrangian
observables.

IV. TRANSFORMATION OF THE FOURIER SPECTRUM

We start with the power spectrum, given for the segment of the length N from equidistant time
series ξ j by S(ω) = 〈 |∑ j0+N−1

j= j0
ξ jei jω|2〉, where averaging is performed with respect to the initial

position j0. Initial conditions are taken inside the ergodic global component.
For numerical studies we take the domain of the length 4π and width 2π ; accordingly, lx = 2 and

ly = 1. We fix viscosity at ν = 1 and impose the mean drift rates α = 1, β = (
√

5 − 1)/2 so that
on the torus the rotation number α/β equals the inverse golden mean.1 For these parameter values
the localized vortices arise on the background of the global drift at fsc = 1.17557, the oscillatory
instability of the stationary flow pattern (5) occurs at fo = 2.712561, and the last localized vortices
are flooded by ffl ≈ 3.07. Summary of dynamics:

(i) For | f | < fsc stagnation points are absent, the motion of tracers is quasiperiodic and ergodic,
the power spectrum of velocity is discrete.

(ii) For fsc < | f | < fo the phase space is separated, with velocity spectrum for nonlocalized
particles being singular continuous.

(iii) For fo < | f | < ffl the phase space stays separated, but the spectrum is absolutely continuous.
(iv) Finally, for | f | > ffl ergodicity is restored.
Figure 2 illustrates, for the frequency range 2 < ω < 4, the changes in the shape of the spectral

curve that accompany the growth of the forcing amplitude f . Panel (a) corresponds to stationary
flow pattern on the verge of instability and shows a snapshot in the successive buildup of the singular
continuous spectrum. The picture changes beyond the threshold fo of the oscillatory instability: the
Fourier spectrum becomes absolutely continuous, and the spectral sums converge to the smooth
(albeit still fragmented) curve S(ω) with finite length.

The further from the threshold, the smoother the curve S(ω). Sufficiently far beyond fo, rem-
nants of the singularities disappear, and the curve acquires the relatively uncomplicated shape,
characteristic for well-developed chaos. To quantify fragmentation of the computed spectrum,
we use the total sum of increments of spectral sums between the neighboring frequency values
�v = ∑ j0+N

j0>1 |S(ω j ) − S(ω j−1)|, at the resolution of the curve N = 216. At fsc < f � f0 the spec-
trum is singular continuous, and �v is unbounded. As the forcing decreases to fo from above, the
sum of increments diverges; numerics indicates the power law dependence: �v ( f ) ∼ ( f − fo)−0.21

[Fig. 3(a)].

V. AUTOCORRELATION OF VELOCITY AND ITS METAMORPHOSES

Obeying the Wiener-Khinchin theorem, the power spectrum of a process is interrelated with
its autocorrelation function. Accordingly, transition of the former from singular continuous to
the absolutely continuous state is reflected by changes in the pattern of the autocorrelation. The
normalized autocorrelation function of the velocity component vx is

C(τ ) = 〈vx(t )vx(t + τ )〉 − 〈vx(t )〉2〈
v2

x (t )
〉 − 〈vx(t )〉2

, (7)

where averaging is performed with respect to the initial point of the trajectory. Maxima of au-
tocorrelation are attained at the values of the argument τ at which the velocity values vx(t ) and

1Other irrational values of α/β would do as well, but the periodic representation of the golden mean
as a continuous fraction seems especially suitable for a demonstration of gradual transformations in the
autocorrelation of the velocity of tracers, see Sec. V below.
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FIG. 3. (a) Divergence of the sum of increments for the spectral curve S(ω). (b) Correlation horizon for
c0 = 0.04 beyond the threshold of oscillatory instability.

vx(t + τ ) nearly coincide; since the velocity value, in its turn, is rigidly related by Eq. (6) to the
position of the fluid particle on the torus, the maxima correspond to typical time intervals of length
τ after which the noticeable part of the tracers at t + τ returns to their positions at time t . For
an irrational rotation number, such close returns occur at the values of τ that are proportional
to the denominators of rational approximations to this number. In case of the golden mean, such
denominators form the famous sequence of Fibonacci numbers {Fn} with Fn = Fn−2 + Fn−1; several
first Fn are 1, 1, 2, 3, 5, 8, . . .; the progression grows asymptotically at a rate (

√
5 + 1)/2. Notably,

the subsequent returns occur in the alternating way: if, say, the return after five rotations around the
torus happens on the left side from the initial point, the next close return occurs on the right side
after eight rotations (and is closer than that after five rotations). Therefore, for a quasiperiodic flow
on the torus with the appropriate rotation number, we can expect the sequence of autocorrelation
maxima at the time values proportional to Fn; for the time axis shown in the logarithmic scale, the
maxima should form the approximately equidistant lattice. For the autocorrelation normalized in
accordance with (7), the height of the maxima should asymptotically tend to 1. Quasiperiodicity
requires absence of states of equilibrium (in terms of the fluid motion, of stagnation points) on the
surface of the torus. If stagnation points are present in the flow pattern, the flow is not perfectly
quasiperiodic: slowdowns of tracers during repeated passages near the stagnation points give rise
to a certain decorrelation [9], so that the autocorrelation maxima, albeit still present and visible,
become distinctly lower than 1.

Figure 4 shows changes in C(τ ) when the force amplitude f in (4) is increased.2 As expected,
the bottom panel, computed for the stationary flow, features an approximately log-periodic pat-
tern, characteristic for systems with singular continuous spectrum [4]. The sequence of moderate
(≈ 0.3) persistent peaks, with time intervals between subsequent peaks forming a growing geo-
metric progression; the rightmost shown peak at τ ≈ 25 200 corresponds to the average duration
of F19 = 4181 rotations of a tracer around the torus. Increase of f leads to the formation of
the oscillatory Eulerian component in the velocity and, hence, to disappearance of these peaks,
starting at the large values of τ and gradually eroding the whole texture. The plots demonstrate that
the original pattern of autocorrelation persists almost intact until a certain f -dependent threshold

2As already mentioned, we use here the rotation number equal to the inverse golden mean: at the true
golden mean, the Andronov-Hopf bifurcation for the Eulerian variables is subcritical, hence transition to the
Lagrangian chaos is abrupt. In contrast, in case of the inverse golden mean the bifurcation is supercritical. This
ensures the gradual growth of the oscillation amplitude for the Eulerian velocity and allows us to visualize the
fine details of the transition.
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FIG. 4. Evolution of autocorrelation of velocity beyond the destabilization of the stationary flow pattern at
fo. Parameter values: see Fig. 2.

value of τ ; beyond that value, autocorrelation rapidly decays. It is natural to call this threshold
the “correlation horizon” ch, and define it as the largest value of τ at which |C(τ )| assumes
some moderate value c0. In other words, the correlation horizon corresponds to the length of the
time interval, within which the bulk of the (now chaotically drifting) fluid particles still roughly
reproduces the ordered motion along the streamlines of (now unstable) steady flow pattern. Beyond
that time interval, denominators of the rational approximations to the rotation number of the steady
flow cease to serve as time stamps for close returns of particles to their initial positions. Once
departed from the stationary streamline, a generic chaotic tracer particle would not return to the
scheduled motion along it. Of course, returns to the streamline itself happen now and then, but
for different particles they occur at different times, and ensemble averaging effectively cancels
the correlation. The further from the threshold fo, the shorter is the correlation horizon; in our
calculations, we observe the power-law behavior ch( f ) ∼ ( f − fo)−0.4 [Fig. 3(b)].

Knowledge of the properties of the autocorrelation allows us to infer certain quantitative features
of the power spectrum. In particular, composition of the spectral measure can be characterized in
terms of the asymptotic properties of the “integrated autocorrelation” Cint (T ) = T −1

∫ T
0 C(τ )2dτ .

The asymptotic value Cint (∞) is proportional to the weight of the discrete component in the spectral
measure. Furthermore, in absence of the discrete component, the decay law of Cint (T ) at large T
provides quantitative information on the continuous part of the spectrum: Cint (T ) ∼ T −D2 where D2

is the (fractal) correlation dimension of the spectral measure [19].
Plots of Cint (T ), presented in Fig. 5, display for all values of f � fo the distinct decay by several

orders of magnitude, allowing to conjecture that the discrete spectral component is completely
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FIG. 5. Evolution of the integrated autocorrelation Cint (T ) close to the onset at fo of the oscillatory
instability of the stationary flow pattern. Parameter values: see Fig. 2.

absent. At f = fo, Cint (T ) decays as T −0.56, indicating that the continuous component of the
spectrum is fractal (singular). At higher values of the forcing amplitude f this relatively slow decay
is recognizable as an intermediate asymptotics, followed by the crossover to the faster ultimate
decay ∼1/T , as it should be expected for the absolutely continuous spectral measure.

VI. CONCLUSIONS

Summarizing, we have discussed metamorphoses in the power spectra of Lagrangian observables
on the way from well ordered flow pattern to the developed Lagrangian chaos. Whereas for a
chaotic motion the absolute continuity of the spectral measure is generally accepted, it is often
implicitly expected that this motion inherits to the state with discrete spectrum. Focusing on the
complementary case—the broad class of flows in which the Lagrangian spectra of prechaotic
states are singular continuous—we illustrate in terms of the Fourier spectrum and autocorrelation
function the transition from “nearly ordered” advection to Lagrangian chaos. We expect that similar
changes should accompany the onset of time dependence in other flow patterns in which streamlines
repeatedly return tracers into the arbitrarily small neighborhoods of stagnation points.

ACKNOWLEDGMENT

Our research has been supported by the DFG (Project No. ZA658/3-1) and RFBR (Project No.
20-51-12010).

[1] V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à
l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier 16, 319 (1966).

[2] H. Aref, Stirring by chaotic advection, J. Fluid Mech. 143, 1 (1984).
[3] T. Bohr, M. H. Jensen, G. Paladin, and A. Vulpiani, Dynamical Systems Approach to Turbulence

(Cambridge University Press, Cambridge, 1998).
[4] A. S. Pikovsky, M. A. Zaks, U. Feudel, and J. Kurths, Singular continuous spectra in dissipative dynamics,

Phys. Rev. E 52, 285 (1995).
[5] J. P. Gollub and H. L. Swinney, Onset of turbulence in a rotating fluid, Phys. Rev. Lett. 35, 927 (1975).
[6] J. P. Gollub and S. V. Benson, Many routes to turbulent convection, J. Fluid Mech. 100, 449 (1980).

014401-9

https://doi.org/10.5802/aif.233
https://doi.org/10.1017/S0022112084001233
https://doi.org/10.1103/PhysRevE.52.285
https://doi.org/10.1103/PhysRevLett.35.927
https://doi.org/10.1017/S0022112080001243


SAGITOV, WERTGEIM, AND ZAKS

[7] M. Reed and B. Simon, Modern Methods of Mathematical Physics (Academic Press, New York, London,
1972), Vol. 1.

[8] S. Aubry, C. Godrèche, and J. M. Luck, A structure intermediate between quasi-periodic and random,
Europhys. Lett. 4, 639 (1987).

[9] M. A. Zaks, A. S. Pikovsky, and J. Kurths, Steady viscous flow with fractal power spectrum, Phys. Rev.
Lett. 77, 4338 (1996).

[10] L. D. Meshalkin and Ya. G. Sinai, Investigation of the stability of the stationary solution of a system of
equations of plane viscous-fluid motion, J. Appl. Math. Mech. 25, 1700 (1961).

[11] N. F. Bondarenko, M. Z. Gak, and F. V. Dolzhansky, Laboratory and theoretical models of plane periodic
flow, Akademiia Nauk SSSR Fizika Atmosfery i Okeana 15, 1017 (1979).

[12] J. Paret, D. Marteau, O. Paireau, and P. Tabeling, Are flows electromagnetically forced in thin stratified
layers two dimensional? Phys. Fluids 9, 3102 (1997).

[13] D. Armbruster, B. Nicolaenko, N. Smaoui, and P. Chossat, Symmetries and dynamics for 2-D Navier-
Stokes flow, Physica D 95, 81 (1996).

[14] J. Tithof, B. Suri, R. K. Pallantla, R. O. Grigoriev, and M. F. Schatz, Bifurcations in a quasi-two-
dimensional Kolmogorov-like flow, J. Fluid Mech. 828, 837 (2017).

[15] I. I. Wertgeim, M. A. Zaks, R. V. Sagitov, and A. N. Sharifulin, Instabilities, bifurcations, and nonlinear
dynamics in two-dimensional generalizations of Kolmogorov flow, Fluid Dyn. 57, 430 (2022).

[16] A. A. Nepomnyashchy, On the stability of secondary flows of viscous fluid in an unbounded space,
J. Appl. Math. Mech. 40, 836 (1976).

[17] V. Rom-Kedar and S. Wiggins, Transport in two-dimensional maps, Arch. Rational Mech. Anal. 109, 239
(1990).

[18] R. V. Sagitov, I. I. Wertgeim, and M. A. Zaks (in preparation).
[19] R. Ketzmerick, G. Petschel, and T. Geisel, Slow decay of temporal correlations in quantum systems with

Cantor spectra, Phys. Rev. Lett. 69, 695 (1992).

014401-10

https://doi.org/10.1209/0295-5075/4/6/001
https://doi.org/10.1103/PhysRevLett.77.4338
https://doi.org/10.1016/0021-8928(62)90149-1
https://doi.org/10.1063/1.869419
https://doi.org/10.1016/0167-2789(96)00006-1
https://doi.org/10.1017/jfm.2017.553
https://doi.org/10.1134/S0015462822040115
https://doi.org/10.1016/0021-8928(76)90013-7
https://doi.org/10.1007/BF00375090
https://doi.org/10.1103/PhysRevLett.69.695

