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Small heavy particles in a fluid flow respond to the flow on a timescale proportional to
their inertia or Stokes number St. Their behavior has been thought to be gradually modified
as St increases. We show, on the other hand, in the steady spatially periodic laminar Taylor-
Green vortex flow, that particle dynamics, and their effective diffusivity, actually change
in an irregular, nonmonotonic, and sometimes discontinuous manner with increasing St.
At St ∼ 1, we show chaotic particle motion, contrasting with earlier conclusions for heavy
particles in the same flow [Wang et al., Phys. Fluids 4, 1789 (1992)]. Particles may display
trapped orbits, or unbounded diffusive or ballistic dispersion, with the vortices behaving
like scatterers in a soft Lorentz gas [Klages et al., Phys. Rev. Lett. 122, 064102 (2019)].
The dynamics is nonergodic.

DOI: 10.1103/PhysRevFluids.9.014302

I. INTRODUCTION

Particle-laden fluid flows are common in natural and industrial settings. While sufficiently small
particles follow fluid streamlines, finite-sized inertial particles generally do not. The dynamics of
small spherical particles of density ρp asymptotically greater than the density ρ f of the ambient
fluid is described by the Maxey-Riley equation [1] in its simplest nondimensional form:

v̇ = u(x) − v
St

with ẋ = v, (1)

where v is the Lagrangian velocity of the particle, u is the fluid velocity at the instantaneous particle
location x, and the overdot a derivative in time. The Stokes number St is a measure of the particle
inertia and is defined as the ratio of the particle relaxation timescale τp = (2a2ρp/9νρ f ) to the fluid
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timescale τ f ; where a is the radius of the particle and ν is the kinematic viscosity of the ambient
fluid.

Cellular flows—flows that consist of multiple adjoining closed vortical regions—are encountered
in various physical contexts. For example, in the case of extensional rheological studies, experiments
have been performed in four-roll mills [2,3], which generate a representative basic vortex cell
of the Taylor-Green (TG) vortex flow. Microfluidic versions of four-roll mills also be found in
recent experimental studies [4,5]. The flow field generated by the four-roll mill constitutes a
finite version of the TG flow field without periodic repetition. However, the periodic array of
TG vortex has also been used in the experiments and theoretical modeling of tiny particles like
plankton suspension in Langmuir circulation [6,7] or sedimentation of fibres in similar flowfield
[8]. Moreover, the Rayleigh-Benard convection cells resemble the infinite periodic array of TG
vortices, modeled and studied similarly [9,10]. The Taylor-Green vortex flow, providing a time-
independent spatially periodic laminar background flow, has been used to study inertial particle
dynamics, e.g., by Wang et al. [11] who find particle motion (in the absence of gravity) to be regular
when St R � 1 and chaotic when St R � 1, where R ≡ ρ f /(ρp + ρ f /2) quantifies the density ratio
between particle and ambient fluid. In particular, they report purely periodic particle dynamics in
the heavy particle limit (R = 0). Wang et al. [11] focus on particles with finite density ratios (R)
and report (1) that the large-time Lyapunov exponents of the system are distributed unimodally and,
therefore, (2) that the large-time Lyapunov exponents are independent of initial conditions (ICs) for
any St. In the limit R → 0, their limited results pertain only to large Stokes numbers St � 3, and
thus they report only periodic dynamics and open trajectories for heavy particles.

Here we study the dispersion and dynamics of heavy (R = 0) inertial particles in TG vortex
flow. We find that the behavior is highly sensitive to ICs and Stokes number (when St ∼ 1), and
remarkably, that the dependence on Stokes number is highly irregular. The transport over large
ranges of St is nonergodic, i.e., dependent on the initial particle location. Certain ranges of St support
multiple types of particle trajectories (open vs closed, and trapped vs diffusive vs ballistic), and
the fraction of initial locations from where particles display each is a sensitive function of St. We
also find small windows in St where the display of such multiple behaviors collapses abruptly and
where the sudden appearance or disappearance of certain behaviors occurs. In contrast to Wang
et al. [11], we show that heavy particles (R = 0) of St ∼ 1 can display chaotic dynamics. We show
that the periodicity of the TG vortex field is responsible for the dynamical richness observed. The
sensitivity of the dynamics to the Stokes number manifests itself in the existence of fractal “basins of
behavior,” as we shall see, whose areas are proportional to the fraction of particles that will display
a given behavior. Similar fractal basins of attraction are, for example, also observed in the context of
periodically driven nonlinear damped pendulum [12] or a magnetic pendulum [13]. These systems
are fundamentally nonlinear oscillators excited periodically in time. However, the time dependence
of the “forcing” in our system is implicit [see Eq. (2)] and arises through mutual nonlinear coupling.
Our system may be transformed into a form similar to that of the “Chirikov standard map,” where
deterministic diffusion and fractal transport coefficients have been extensively studied [14]. The
discrete Chirikov standard map shows periodic, quasiperiodic, and chaotic dynamics depending on
the initial condition [15,16].

Relevant to fluid mechanics context, Lagrangian chaos can never occur in two-dimensional
(2D) steady flows; however, fluid flow around a periodic array of obstacles or stagnation points
(SPs) is known to induce anomalous (sub-, and super-) diffusion of passive tracers [17–19], due to
singularities of passage times near the obstacles or SPs. Continuous dynamical systems, such as the
transport of tracers in deterministic time-periodic or three-dimensional flows, can be chaotic [20],
but not in 2D steady deterministic flows (like ours). Though our system contains a periodic array
of SPs, which brings similarity to the system described in [18], the finite inertia of our particles
makes the physics different here. In our system, the regular and chaotic dynamics emerge from the
interplay of particle inertia and the existence of SPs. Qualitatively diverse trajectories are known to
exist in systems unrelated to fluid mechanics as well (e.g., [21–24]). The Hamiltonian system in [21]
displays ballistic, trapped, and diffusive trajectories, where the effective diffusivity shows fractal
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FIG. 1. Typical particle trajectories exhibiting ballistic, diffusive, and trapped dynamics. The thin gray
lines are streamlines of the TG vortex flow. (a) Particles initialized at (i) (0.12,2.6) with St = 1.12 (green,
diffusive), (ii) (2.6,2.8) with St = 0.95 (orange, diagonal “square ballistic”), (iii) (2.48,1.07) with St = 1.83
(red, diagonal smooth ballistic), and (iv) (1.5,1.5) with St = 1.133 (magenta, horizontal ballistic). The (left)
zoomed inset shows the initial positions by filled circles. The other insets (right) show the ballistic (smooth)
and diffusive trajectories in compactified physical space. (b) Particles initialized at (i) (1.0,0.42) with St = 1.12
(black, limit cycle), (ii) (2.33,0.81) with St = 1.37 (blue, chaotic attractor), (iii) (0.664,0.11) with St = 0.89
(brown, trapped in square limit cycle), and (iv) (1.2,0.6) with St = 0.5 (violet, trapped at the SP shown by
the filled square). All trajectories plotted conserve the quantity Q to better than 0.1%, as shown in Fig. 12 in
Appendix A.

dependence on the control parameter (energy). In comparison, our system does not have a constant
Hamiltonian (see Sec. II). Nevertheless, we do observe such trajectories (Fig. 1) and, moreover, a
fractal dependence of effective diffusivity with control parameter Stokes number [inset in Fig. 9(a)].
The dynamics of inertial particles in a TG vortex flow resemble a soft Lorentz gas [25] with inertial
particles being “scattered” by the vortices while navigating the SPs. It is instructive to briefly discuss
the soft Lorentz gas model here, which is based on the motion of point particles in a periodic
lattice of partially overlapping Fermi potentials and is used to describe the dynamics of electrons
in graphene-like structures. Simulations suggest that the particles can have closed or open periodic
trajectories, with the latter displaying super-diffusive dynamics. Moreover, the diffusive parameter
is found to have a fractal dependence on the control parameter (spacing between scattering centers).
By analogy, the TG vortex flow has an infinite array of vortices and SPs arranged in a periodic
lattice, with the Stokes number of the particles as the control parameter. As we shall see, closed and
open periodic trajectories are observed here too.

The remainder of this paper is organized as follows. In Sec. II we set down the mathematical
formulation used in this study. Methods used to distinguish the particle dynamics are listed in
Sec. III. The central results are consolidated and discussed in Sec. IV. We conclude in Sec. V.

II. MATHEMATICAL MODEL

The dynamical equations for a heavy inertial particle in a two-dimensional, steady, Taylor-Green
(TG) vortex flow of stream function ψ = sin x sin y can be written from Eq. (1) as

ẋ = vx, v̇x = −vx + sin x cos y

St
, (2a)

ẏ = vy, v̇y = −vy − sin y cos x

St
, (2b)
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where the dynamical variables (x, y) and (vx, vy) represent the positions and velocities of the
particle, respectively, constituting a four-dimensional phase space. The system represents two
coupled damped oscillators. The coupling is nonlinear, leading to the complex dynamics discussed
in this paper. The system can be written in the simple symmetrical form in the rotated coordinates
z = x + y, w = x − y, ż = vx + vy and ẇ = vx − vy as

St z̈ + ż = sin w, (3a)

St ẅ + ẇ = sin z. (3b)

This apparently simple system, equivalent to two coupled damped oscillators with nonlinear,
periodic forcing, can nevertheless produce complicated dynamics, as we shall see. Due to the
nonlinear terms and mutual coupling, these equations are impossible to solve analytically. A formal
solution of Eqs. (2) in terms of (coupled) integral equations may be written down, as

x(t ) = x(0) +
∫ t

0

[
vx(0) + 1

St

∫ t ′

0
et ′′/St sin x(t ′′) cos y(t ′′) dt ′′

]
e−t ′/St dt ′, (4a)

y(t ) = y(0) +
∫ t

0

[
vy(0) − 1

St

∫ t ′

0
et ′′/St sin y(t ′′) cos x(t ′′) dt ′′

]
e−t ′/St dt ′. (4b)

Here (x(0), y(0)) and (vx(0), vy(0)) are initial positions and velocities of the particle respectively.
Thus, the particle dynamics is specified given its initial position, initial velocity, and the Stokes
number. From the form of Eqs. (4), one can show that both x(t ) and y(t ) are in general unbounded
quantities. However, the velocities vx(t ) and vy(t ) always will be bounded, with |vx(t )| < 1 and
|vy(t )| < 1.

The dynamical equations (2) can be obtained from a corresponding Lagrangian L = (T −
V ) et/St, where T = (ẋ2 − ẏ2) St/2 and V = cos x cos y, equivalent to the kinetic and potential
energy, respectively. Here the time dependency of Lagrangian is a result of dissipation in the
system, similar to a damped pendulum case [26]. A Legendre transformation yields the time-
dependent Hamiltonian H(t ) = e−t/St (p2

x − p2
y )/(2 St) + et/St cos x cos y = (T + V ) et/St, where

the canonical momenta are related to the velocity as px = ẋ St et/St and py = −ẏ St et/St. Since
the Hamiltonian is explicitly dependent on time, it cannot be a conserved quantity. Interestingly,
the quantity Q = T + V + 2

St

∫ t
0 T dt is a constant of our dynamics, which can be verified by

taking the time derivative and showing Q̇ = 0. We use this fact to check the accuracy of all our
numerical simulations (cf. Fig. 1 and Appendix A). We may also relate Eqs. (2) or (3) to Bateman’s
time-independent Hamiltonian for dissipative systems [27] where the dual system would correspond
to dynamics of inertial particles experiencing “negative” drag. As Bateman points out, since our
system is dissipative, we can consider a dual or complementary system all along such that the full
system now will have a time-independent Hamiltonian. If we consider Eqs. (3) along with the dual
system

St ζ̈ − ζ̇ = γ ξ cos z, (5a)

St ξ̈ − ξ̇ = γ −1 ζ cos w, (5b)

then the Lagrangian of the full system can be obtained using Bateman’s method as

L f = St ż ζ̇ + (−ż + sin w) ζ + γ [St ẇ ξ̇ + (−ẇ + sin z) ξ ], (6)

where (ζ , ξ , ζ̇ , ξ̇ ) are the dual variables to (z,w, ż, ẇ), and γ is some arbitrary nonzero number.
Note that the dual system has “negative” damping, which, along with the original system, makes
a nondissipative full system. Though the original system can be independent of the dual system,
the dual system has forcing terms which couple it back to the original system. Using a Legendre
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transformation, we can obtain the equivalent Hamiltonian of the extended system as

H f = (ζ + pz ) pζ + (ξ + γ −1 pw ) pξ

St
− (ζ sin w + γ ξ sin z), (7)

where the generalized coordinates (z,w, ζ , ξ ) and velocity (ż, ẇ, ζ̇ , ξ̇ ) of the full system are related
to the corresponding momenta (pz, pw, pζ , pξ ) as pz = (−ζ + St ζ̇ ), pw = γ (−ξ + St ξ̇ ), pζ =
St ż, and pξ = γ St ẇ.

The form of the solution, along with sinusoidal velocity components in Eqs. (4), is tedious to
track analytically. Thus, we adopt numerical methods to solve Eqs. (2) as discussed below. However,
it is possible to construct a synthetic flowfield that qualitatively mimics TG vortex flow, for which
the solutions can be obtained analytically—the discussion of which we defer until Sec. IV D.

A cloud of noninteracting particles is initialized within a “basic vortex cell” (exploiting the spatial
symmetry of the TG vortex flowfield) of dimensions π × π , consisting of a central vortex with
four SPs at its corners and bounded by separatrices x = 0, x = π , y = 0, and y = π . For each
Stokes number, we initialize 10 000 particles (unless specified otherwise) uniformly in the basic
vortex cell and track each particle in time by integrating Eqs. (2) using a Runge-Kutta scheme
of fourth-order accuracy. The size of the time step was chosen in each case so as to preserve the
constant of dynamics Q upto a maximum percentage error of 0.1%, (see Appendix A). The initial
velocity of all particles is set to zero, and we have verified that a different choice does not alter
the dynamics qualitatively (see Sec. IV C). Once a particle leaves the original basic vortex cell,
it enters an identical neighboring cell, and we continue to track it in the Lagrangian sense. We
continue this tracking even if the particle travels very far from the cell it has started in, by extending
the domain to as big a one as needed (as we see later, that is the case with certain particles like
diffusive and ballistic ones). We do not delete a particle or impose any periodicity on its leaving and
entering. Instead, particles sample an unbounded domain of identical TG vortex arrays. We classify
trajectories as trapped, diffusive, or ballistic according to their dispersion in the large time limit (i.e.,
after 103–104 time units) using, e.g., the squared displacement (SD) and mean characteristic speed
(see Secs. III A and III B). We also classify trajectories according to their dynamical nature using
tools like Lyapunov exponents, autocorrelation, and frequency spectrum (see Secs. III C, III E, and
III F). Since we are interested in both the dispersion as well as the chaotic or nonchaotic nature of
trajectories, we henceforth use “dispersion” to refer to the trapped, diffusive or ballistic nature of
particle trajectories and “dynamics” to refer to regular or chaotic dynamical nature of trajectories.

III. METHODS

For small Stokes numbers St, after the initial stage in which particles get centrifuged out of
the central vortex (e.g., [28–30]), the dynamics is primarily confined along separatrices and SPs.
Particles with St < 1/4 remain confined within the vortex cell (by the separatrices) where they
are initialized, whereas particles with higher Stokes can leak through to neighboring cells. Linear
stability analysis (e.g., [29,31,32]; see also [33]) yields the critical value St = 1/4. For 1/4 < St �
0.77, we find that particles leave their initial cell but get trapped at the SPs of neighboring cells.
Formally, SPs have stable and unstable eigenvalues (saddle type). In our simulations, however, we
see the particles getting trapped at them. This observation may be explained by noting that the
velocities of particles decrease exponentially (as they must) as they get closer to SPs along the stable
manifolds [34,35]. When St � 0.77, we find bounded and unbounded particle trajectories that may
be regular or chaotic, depending on St and initial particle position [x(0), y(0)]. We note that the
value 0.77 is numerically obtained and is not presently analytically justified. Typical unbounded
and bounded trajectories in physical space x vs y are plotted in Figs. 1(a) and 1(b), respectively. As
seen in the figure, these trajectories can be regular or chaotic. Trajectories in compactified physical
space, shown in the insets on the right in Fig. 1(a) (see also Sec. III D), highlight the difference
between regular trajectories, which are simple curves, and chaotic trajectories, which are space-
filling (especially close to SPs), indicating strange attractors.
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We note that the smoothness and the boundedness of trajectories are independent properties:
we find unbounded ballistic trajectories that are smooth (e.g., for St ∼ 2) or “square” (for St ∼ 1),
respectively, shown in red and orange in Fig. 1(a). Similar smooth “zig-zag”-type trajectories were
also observed in the ballistic settling of inertial particles under gravity in the TG vortex [36,37].
Analogously, we see different kinds of bounded trajectories in Fig. 1(b), where representative
particle trajectories asymptote to limit cycles, SPs, and strange chaotic attractors. Limit cycles
form a simple closed curve, while the chaotic trapped trajectories fill a certain region around the
separatrices without ever repeating the winding.

Figure 1(a) also shows the existence of trajectories that resemble random walks (Green curve).
The particle diffusivity along such trajectories is generally a function of the particle residence time
in the vicinity of SPs [18].

As stated in Sec. II, we classify particle trajectories based on their large-time dispersion into
trapped, diffusive, or ballistic types. We also classify them according to their large-time dynamical
behavior as regular or chaotic. The metrics used to quantify these properties are discussed next.

A. Squared displacement (SD)

The dispersion of a particular particle can be measured in terms of its squared displacement [SD,
denoted as σ 2(t )] from its initial location, defined as

σ 2(t ) = ‖x(t ) − x(0)‖2 = [x(t ) − x(0)]2 + [y(t ) − y(0)]2, (8)

where ‖ · ‖ is the Euclidean norm. The behavior of the SD is analyzed for each trajectory at its
large-time limit. If in the large-time limit, SD scales with time as σ 2(t ) ∼ tα , then depending on the
value of α, particle trajectories may be classified as ballistic (α = 2), diffusive (α = 1), or trapped
(α = 0). The typical SD curves for a St = 1.18 particles showing each of these dynamics can be
found in Fig. 8(b).

Unlike for ballistic or trapped trajectories, α is poorly defined for individual diffusive trajectories
given their (deterministic-) chaotic nature, and we find values different from 1. Usually, in stochastic
or random-walk situations, ensemble or time averages of the trajectories need to be taken to make
the data smooth enough. Then finding the scaling of SD with time will become easier. We, therefore,
use the time-averaged mean square displacement (TAMSD) (see [38]) defined as

δ2() = 1

T − 

∫ T −

0
‖x(t ′ + ) − x(t ′)‖2 dt ′, (9)

where  is the “lag time” and T is the maximum time up to which the data are available and
simulation is performed. The exponent α can then be obtained from δ2() ∼ α for individual
trajectories, as the slope of the linear fit between log(δ2) and log(). Note that 1 � max � T is
required for reliable statistics. Since T = 104 in our simulations, we restrict max = 300 to evaluate
α in, e.g., Fig. 2(a).

For illustration, the value of α for all particles with St = 1.18 initialized within the basic vortex
cell is plotted as a histogram in Fig. 2(a). The histogram shows multimodality and segregates the
trapped, diffusive, and ballistic particles. All the ballistic particles acquire a directed motion quickly
along definite directions, ensuring a narrow distribution of α around 2 in the figure. Trapped particles
also have definite motion towards particular limit cycles, which differ from case to case. The final
trajectories could be limit cycles or chaotic attractors. Moreover, the broad distribution of α around
zero in Fig. 2(a) may have contributions from the error associated with the evaluation of the slope
of log(δ2) line with log(). This error is due to the small mean value and larger oscillations of δ2 of
trapped trajectories compared to ballistic trajectories, which reduces the accuracy of the linear fit.
In the case of diffusive particles, the randomness in each of the trajectories brings a distribution of
α values around the mean 1, as seen in the figure.
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FIG. 2. Trapped, diffusive, and ballistic particle trajectories at the same Stokes number St = 1.18 have
distinct signatures. Histograms of the number of trajectories vs (a) α and (b) the mean characteristic speed
log10(vm ) defined in Secs. III A and III B are shown respectively. A total of 100 × 100 trajectories are integrated
until T = 104 and grouped using a bin size of 10−2. The standard color scheme of blue: trapped, green:
diffusive, and red: ballistic is used.

B. Mean characteristic speed

We define the mean characteristic speed of a particle as

vm = ‖v(t )‖ =
√

vx(t )
2 + vy(t )

2
, (10)

where (.) denotes the time average over the large time limit, where the dynamics is stationary

[typically in the range t ∈ (103, 104)]. Note that this is not the RMS velocity
√

v2
x + v2

y , nor is it

the mean speed
√

v2
x + v2

y , which would be nonzero for both ballistic and diffusive trajectories and
thus would not distinguish between these. Instead, our definition of vm may be used to distinguish
between ballistic and diffusive trajectories: ballistic trajectories have nonzero vm, and diffusive
trajectories have zero vm, as evidenced in Fig. 2(b).

For ballistic particles, vm will be a finite O(1) value. However, it will decay to zero for trapped
particles, and diffusive particles as the T becomes large enough. However, this decay will be faster
for trapped particles than for diffusive ones, as shown in the histogram of values in Fig. 2(b).
Distinct clusters in the histogram distinguish trapped, diffusive, and ballistic particle trajectories in
the ascending order of vm. We see that ballistic and trapped particles have narrowly distributed mean
velocities (noting that the apparent broadness of the distribution for trapped particles is an artifact
of the logarithmic scale used). By contrast, diffusive particles show a broad distribution of vm.

C. Large-time Lyapunov exponents

The mean characteristic speed and squared displacement defined above may be used to dis-
tinguish between ballistic, diffusive, and trapped trajectories. Each of these trajectories may, in
addition, be regular or chaotic, which may be identified using large-time Lyapunov exponents. A
detailed discussion on the theory of Lyapunov exponents can be found in [39–42]. For completeness,
some relevant aspects are included here as well.

In a phase space, if all points in the neighbourhood of a trajectory converge toward the same orbit,
that attractor is a fixed point or a limit cycle. However, if the attractor is strange, trajectories that
start sufficiently close separate exponentially with time. In a finite time, their separation attains the
size of the accessible phase space. This sensitivity to initial conditions can be quantified in terms of
the largest Lyapunov exponent, λ1, which thus measures the mean rate of separation of trajectories

014302-7



NATH, ROY, RAVICHANDRAN, AND GOVINDARAJAN

of the system:

δ(t ) ≈ δ(0) eλ1 t ⇒ λ1 = lim
t→∞

1

t
ln

‖δ(t )‖
‖δ(0)‖ , (11)

where the initial separation between the trajectories δ(0) and the final separation δ(t ) should be
asymptotically small. Similarly, the mean rate of growth or contraction of a small area between
three nearby trajectories in phase space is λ1 + λ2, where λ2 is the second largest Lyapunov
exponent; the mean rate of growth or contraction of small volume between four nearby trajectories
in phase space is λ1 + λ2 + λ3, where λ3 is the third largest Lyapunov exponent, and so forth.
In general, for a system with N phase space dimensions, there will be N Lyapunov exponents
forming the Lyapunov spectrum (λ1, λ2, . . . , λN−1, λN ) with λ1 � λ2 � · · · � λN−1 � λN . The
sum of all Lyapunov exponents measures the growth or contraction rate of volumes in phase space.
In dissipative systems, the sum is negative, meaning that volumes visited by generic trajectories
shrink exponentially to zero. However, in Hamiltonian systems, they sum to zero, and thus the
phase space volume is preserved by Liouville’s theorem [43].

For a general autonomous dynamical system ẋ = F(x), and a given trajectory x(t ), the defor-
mation matrix/Lyapunov matrix [M(t )] transforms an initial separation δ(0) to the separation δ(t )
as δ(t ) = M(t ) δ(0). Then the evolution of deformation matrix is governed by Jacobian J(x(t )) as
Ṁ(t ) = J(x)M(t ). Given the eigenvalues βi of the matrix MT(t )M(t ), the finite time Lyapunov
exponents are defined as

λi(t ) = ln βi(t )

2 t
. (12)

To avoid the fluctuations in λi(t ), the infinite time limit is usually taken, which will lead us to the
definition of the large-time Lyapunov exponents as

λi = lim sup
t→∞

λi(t ). (13)

The system considered here [Eqs. (2)] has four phase-space dimensions and admits four large-time
Lyapunov exponents, represented as Lyapunov spectrum (λ1, λ2, λ3, λ4). The sign of the Lyapunov
spectrum may be used to characterize the behavior of the system. A particle trajectory with a Lya-
punov spectrum with signs (+, 0,−,−) indicates chaotic, dynamics while (0,−,−,−) indicates
regular dynamics. The time evolution of the Lyapunov spectrum evaluated using the classic algo-
rithm by Benettin et al. [39] for typical ballistic, trapped (in a Limit cycle), and chaotic trajectories
for St = 1.18 particles is shown in Fig. 3(a). To account for numerical errors, Lyapunov exponents
λi < 5 × 10−3 after T = 104 are set to zero. It is evident that both ballistic and trapped trajectories
show regular dynamics, while the diffusive trajectory is chaotic. In Fig. 3(b) the Lyapunov spectrum
corresponding to a particle which will be trapped at a SP at the large time limit is shown. For fixed
point attractors, the Lyapunov exponents are the real part of the eigenvalues of linearized stability
matrix [44]. Thus, here the spectrum asymptotically approaches sign (+,−,−,−). For more details
on the relation of the sign of the Lyapunov spectrum to the behavior of a dynamical system; see
[45–47].

Since our system is dissipative, the sum of all four Lyapunov exponents for any trajectory
is negative and equal to −2/St. Also, from numerical results, we can verify the symmetry (or
conjugate pairing) of large-time Lyapunov exponents as λ1 + λ4 = λ2 + λ3 = −1/St, as seen in
Fig. 3 (this symmetry is dynamically significant; see, e.g., [48–50]). Thus, only two of the four
Lyapunov exponents are independent, say, λ1 and λ2, and are sufficient to classify the trajectories.
This can be seen as implemented in Fig. 4(a), which shows a scatterplot of the combinations of
λ1 and λ2 for all trajectories. We see that trajectories naturally cluster into groups with similar
dynamical behavior. In general, following the Lyapunov spectrum classification mentioned earlier,
a cluster on the horizontal axis would have chaotic behavior, and the cluster on the vertical axis
would have regular behavior. For the case of St = 1.18 particles shown in Fig. 4(a), the horizontal
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FIG. 3. The time evolution of Lyapunov exponents λi(t ) for (a) three St = 1.18 particles showing trapped
(regular), diffusive (chaotic), and ballistic (regular) dispersion at the large time respectively starting at positions
(1.5,0.5), (0.55,0.15), and (0.5,1.0) and (b) St = 0.5 particle starting at initial position (1.5,0.5) and getting
trapped (in a SP) at the large time. The initial velocity of the particles in all the cases is fixed to be zero.
Observe the symmetry of the Lyapunov spectrum in each case.

axis contains a single green cluster, showing chaotic particles. In the vertical axis, there are two
clusters, i.e., two kinds of particles with regular dynamics. The red group shows particles with
ballistic behavior, and the blue shows trapped (in limit cycle) behavior. We use the same color code
of trapped: blue, diffusive: green, and ballistic: red throughout this paper unless otherwise specified.
Here we distinguished the ballistic and trapped particles, both of which show regular dynamics
using the quantities α or vm in addition to the Lyapunov exponents.

Similarly, Fig. 4(b) shows the histogram of the Lyapunov exponents λ1 and −λ2 for St = 1.18
particles. Again, the multimodality of the histogram suggests that the large time dynamics of all the
particles are not identical, a hint of ergodicity breaking, which is contrary to what is observed by
Wang et al. [11]. The apparent spread in the distribution of Lyapunov exponents for the ballistic or
trapped (regular) regime [cf. the spread of α and vm in Fig. 2(a) and 2(b)] is an artifact of the binning
algorithm.

FIG. 4. (a) Distribution of large-time Lyapunov exponents of 316 × 316 trajectories with St = 1.18 (start-
ing from basic vortex cell at uniformly distributed locations, with zero initial velocity) after T = 104 plotted
in the λ1-λ2 plane. (b) Histograms, generated with 1000 bins, of the Lyapunov exponents λ1 and −λ2 of
316 × 316 St = 1.18 particles, simulated up to 105 nondimensional time units.
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FIG. 5. Trajectories in the stationary state [i.e., t ∈ (103, 104)] showing typical dynamics, for particles
initialized (a) at (1.0,0.42) with St = 1.12 (trapped-regular), (b) at (2.48,1.07) with St = 1.83 (smooth ballistic-
regular, diagonal), (c) at (1.5,1.5) with St = 1.133 (ballistic-regular, horizontal, and square type), (d) at
(2.33,0.81) with St = 1.37 (trapped-chaotic), (e) at (0.11,2.59) with St = 1.12 (diffusive-chaotic), and (f) at
(0.25,0.5) with St = 1.06 (ballistic-chaotic). The insets show zoomed-in views near SP regions. A vertical
ballistic trajectory similar to (c) also exists in rare parameter combinations, which is not shown here.

D. Trajectories in compactified (mod 2 π) physical space

Visualizing the trajectories is a simple way of distinguishing regular and chaotic trajectories.
In order to visualize both unbounded and bounded trajectories in a confined region, we plot the
compactified coordinates [x(mod 2π ), y(mod 2π )] following [11]. The large-time [t ∈ (103, 104)]
stationary dynamics for representative trajectories are shown in Fig. 5. Note that, in Fig. 5, the
ranges of ordinate and abscissa are shifted manually to ensure the continuity of the curves.

The regular trajectories are of two types: Fig. 5(a) shows the projection of a regular, periodic
simple closed curve, which is a limit cycle in the four-dimensional phase space; on the other hand,
Figs. 5(b) and 5(c) show regular, ballistic, and thus unbounded trajectories appear as isolated open
curves. Note that Fig. 5(b) is for a smooth ballistic trajectory with diagonal propagation, while
Fig. 5(c) is for a square-type ballistic trajectory with horizontal propagation. Diagonally propagating
trajectories are more common, and horizontally or vertically propagating trajectories are rare, as we
observed from numerical simulations.

For a particle with chaotic-diffusive dynamics, the phase portrait will be space filling [see
Fig. 5(e)], unlike simple curves. The space filling is mainly around the region of SPs. Though
generally, the chaotic dynamics is exhibited by diffusively dispersing particles, some exceptions
also exist. Trapped and ballistic trajectories can be chaotic as well; this is evident in Figs. 5(d)
and 5(f), respectively. This space-filling nature of trajectories indicates the existence of a fractal or
strange attractor.

E. Autocorrelation function

Yet another quantity that can be evaluated to distinguish between regular and chaotic dynamics
qualitatively is the autocorrelation function. For an observable measured along the trajectory of a
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FIG. 6. The autocorrelation function C(τ ) for representative trajectories of the different types mentioned
in the text (cf. Fig. 5). The horizontal velocity vx (t ) is used to calculate C(τ ) [see Eq. (14)]. The same color
scheme as Fig. 5 is used here.

particle f (t ), the autocorrelation function is defined (e.g., [17]) as

C(τ ) = f (t ) f (t + τ )

f (t )2
. (14)

While f (t ) can be any observable like x(t ), y(t ), vx(t ), vy(t ), z(t ), w(t ), vz(t ), and vw(t ), bounded
quantities are found to work best, especially for unbounded trajectories. The autocorrelation func-
tion, as defined, is normalized to lie between −1 and 1. Thus, if C(τ ) does not decay with time
and has repeating peaks that reach up to unity, we may infer that the trajectory is regular; on the
other hand, chaotic trajectories have decaying C(τ ). A quantitative extension for distinguishing
regular and chaotic dynamics would be the correlation dimension Dc, where the integrated squared
autocorrelation function Cint(t ) = t−1

∫ t
0 ‖C(τ )‖2 dτ for a state with purely singular continuous

spectrum should decay as ∼t−Dc [17].
The autocorrelation function, evaluated using vx(t ) as the observable, is plotted for representative

trajectories in Fig. 6. For trapped or ballistic regular trajectories, C(τ ) shows repeating peaks with
magnitude unity [see Figs. 6(a)–6(c)]. On the other hand, for chaotic trajectories, C(τ ) decays with
time [see Figs. 6(d)–6(f)].

F. Frequency spectrum

The discrete Fourier transform (DFT) is closely related to the autocorrelation function, which
provides an observable’s frequency spectrum. The process is based on Fourier decomposing the
time signal into various frequency components. Similar to the autocorrelation function, bounded
quantities are preferred in the evaluation of the frequency spectrum as well. Figure 7 shows the
frequency spectrum of representative large-time dynamics exhibited by inertial particles, showing
that the frequency spectrum peaks at discrete values for regular trajectories. In contrast, it is more
like a continuous band for chaotic (and thus aperiodic) trajectories. In Figs. 7(d) and 7(f), we see
high-amplitude distinct peaks as well as low amplitudes between the peaks, corresponding to a
definite mean shape of the trajectory with chaotic deviations from the mean.
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FIG. 7. Frequency spectrum for the representative trajectories in Figs. 5 or 6. The DFT is performed with
a sampling frequency of 0.1. We note that square-type trajectories display a larger multiplicity of frequencies
than smooth trajectories.

IV. RESULTS AND DISCUSSION

We have classified the particle trajectories as trapped, diffusive and ballistic based on their large-
time dispersive characteristics. Also, based on their large-time dynamical behavior, we classified
them as regular or chaotic. We observe that these classifications are sensitive to the initial positions
[x(0), y(0)] as well as inertia (St) of the particles. We found that the system is nonergodic, unlike
in the case of turbulent flows. The nonergodicity of our system is reflected in the multimodal
distribution of α, vm and large-time Lyapunov exponents (λ1 and λ2), as can be seen in Figs. 2 and
4(b). We represent the dispersive and dynamical classifications in the colormaps in the upcoming
subsection. We also quantify the fraction of particles exhibiting each dynamics as a function of
Stokes number in Sec. IV B. The effect of the nonzero initial velocity of particles and periodicity of
TG vortex flow is also analyzed subsequently.

A. Basin of large-time dynamics

One of our central findings is that bounded and unbounded trajectories may both occur for heavy
particles of a given Stokes number and that their initial positions determine their fate. The domain
of initial particle locations in the basic vortex cell consists of disjointed regions, each with distinct
large-time dispersion or dynamics. Thus the behavior of inertial particles in the TG vortex flow is
nonergodic.

An example is shown for St = 1.18 in Fig. 8(a), bottom, showing regions where trapped, diffu-
sive, and ballistic trajectories originate in blue, green, and red, respectively. The trajectories were
segregated by evaluating the SD, then α as mentioned in Sec. III A. The Fig. 8(a), bottom, plane is
thus a colormap of α, where σ 2(t ) ∼ tα in the limit of t → ∞. Thus we classify the particle’s initial
conditions, which will result in a particular large-time dispersion. The collection of all those initial
conditions is termed the “basin of that particular large-time dispersion.” For example, in Fig. 8(a),
bottom, the red region corresponds to the basin of ballistic dispersion, the green region corresponds
to diffusive dispersion, and the blue region corresponds to trapped dispersion. In Fig. 8(b) we
plot the corresponding SD for typical (individual) trapped, diffusive, and ballistic trajectories. The
scaling of SD with tα is evident in the figure. The SD of trapped particles fluctuates about a mean
saturated value, indicating being trapped in a periodic limit cycle, whereas the quadratic increase
of SD for the ballistic trajectory is evident. The accurate identification of α is harder for individual
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FIG. 8. (a) Colormaps, with 316 × 316 particles and St = 1.18, of (bottom) α such that σ 2(t ) ∼ tα at large
times, and (top) λ1, the largest of the “large-time Lyapunov exponents.” (b) σ 2(t ) (solid lines) for particles
starting at (1.5,0.5), (0.53,0.15), and (0.5,1.0) and displaying typical ballistic, diffusive, and trapped large-time
dispersive behavior, respectively; dashed lines show the corresponding scalings.

diffusive trajectories, e.g., to distinguish between normal (α = 1) and anomalous (α = 1) diffusion.
So we first segregated ballistic and trapped trajectories using methods in Secs. III A and III B and
collectively termed the remaining as “diffusive” (colored green). Then we used the colormap of α to
obtain the pattern in Fig. 8(a), bottom. The pattern is four-petaled, which we suppose is the result of
the square symmetry of the TG vortex flowfield. The pattern has been evaluated for the basic vortex
cell. However, it will repeat symmetrically and periodically as we evaluate it for the other vortex
cells, owing to the symmetry and periodicity of the TG vortex flowfield.

The same pattern emerges again if we use the colormap of large-time Lyapunov exponents, as
seen in Fig. 8(a), top, which we refer to the “basin of large-time dynamics.” The brown region
corresponds to regular dynamics, whereas the yellow region corresponds to chaotic dynamics. The
correlation between positive λ1 regions to diffusive regions and zero λ1 regions to trapped or ballistic
regions is clear from the figure. For example, at St = 1.18, ballistic or trapped particles show regular
dynamics and correlate strongly with a periodic Lyapunov spectrum, while diffusive particles show
chaotic dynamics and correlate strongly with a chaotic Lyapunov spectrum. This is true in general,
except for certain St cases, the ballistic or trapped trajectories can also show chaotic behavior, as
we have seen in some earlier cases [e.g., see Figs. 5(d) and 5(f)]. The exceptional cases will be
more evident when we evaluate the fraction of particles involved in each kind of dynamics in the
following subsection. Furthermore, the basin is fractal in nature. This is seen, e.g., by examining
the Lyapunov dimension or Kaplan-Yorke dimension [51] DKY, which shows qualitative features
similar to the plots in Fig. 8. For St = 1.18 particles, we find DKY ≈ 1 for the nonchaotic region
(brown) and DKY ≈ 2.11 for the chaotic region (yellow), consistent with one-dimensional attractors
(simple curves) and space-filling curves, respectively.

We also note that for very early times (t � 1), σ 2 ∼ t4 [see Fig. 8(b)]; i.e., the dynamics is
“super-ballistic” for all initial particle locations. This can be explained as follows. For particles
starting with zero initial velocity, the system of Eqs. (2) becomes St ẍ(0) = sin x(0) cos y(0)
and St ÿ(0) = − sin y(0) cos x(0) at the initial instant: i.e., initially the particles experience
acceleration due to the flow. For t � 1, the approximate solution can be then obtained as
x(t ) ≈ x(0) + sin x(0) cos y(0) t2/(2 St) and y(t ) ≈ y(0) − sin y(0) cos x(0) t2/(2 St). These solu-
tions yield σ 2(t ) ≈ [sin2 x(0) cos2 y(0) + sin2 y(0) cos2 x(0)] t4/(4 St2); i.e., σ ∼ t4 when t � 1.

B. Fraction of particles exhibiting each kind of behavior

Another central finding is the sensitivity of dynamics to inertia or Stokes number. The total
fraction of particles that exhibit each kind of behavior versus the Stokes number in the range
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FIG. 9. (a) Fraction, f , of trapped, diffusive. and ballistic particles. The inset shows effective diffusivity Deff

(black) and the average α (green) of diffusive particles. αd ≈ 1 indicates normal diffusion. (b) The fraction ( f )
of particles with regular and chaotic Lyapunov spectrum are plotted for various Stokes numbers. The fraction
of (trapped ∪ ballistic) particles and diffusive particles are shown in the background using light colors. The
one-to-one mapping between the two kinds of classification is evident (excluding certain windows of Stokes
number).

0.78 � St � 1.975 is plotted in Fig. 9. The fraction of particles exhibiting trapped, diffusive, or
ballistic dispersion is shown in Fig. 9(a), corresponding to the respective fraction of each category’s
area in the basin of large-time dispersion. In Fig. 9(b), on the contrary, we represent the fraction
of particles that exhibit regular or chaotic dynamics, which is identified from the corresponding
Lyapunov exponents. Also, in light colors, the fraction of particles exhibiting trapped or ballistic and
diffusive dispersion is superimposed in Fig. 9(b) for comparison. One can observe that the fraction
of trapped or ballistic particles matches well with the fraction of particles with regular dynamics;
similarly, the fraction of diffusive particles matches well with that of the chaotic particles. This
close correspondence between these two different kinds of plots suggests that almost all the diffusive
particles exhibit diffusive dynamics; similarly, almost all ballistic or trapped particles exhibit regular
periodic dynamics. However, this observation is not valid for all values of Stokes numbers, as can be
inferred from a close inspection of Fig. 9(b). There exist more than one small windows of St where
this correspondence fails. A typical example has been shown earlier in Figs. 5(d) and 5(f), where
particles exhibiting trapped or ballistic dispersion can also show chaotic dynamics. Nevertheless,
this behavior is rare and happens only for a few small windows of Stokes numbers, which appear as
the mismatch windows in Fig. 9(b). The main conclusion of the existence of each kind of dispersion
or dynamics with Stokes number is summarized in Table I.
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TABLE I. Different large-time dispersion characteristics and dynamical nature for various St intervals
obtained from numerical simulations. The

√
indicates existence, and ✗ indicates the absence of a particular

characteristic. The diversity in the dynamical behavior for a particular value of St is the result of the IC
dependence of the dynamical system.

Range of St Trapped Diffusive Ballistic Regular Chaotic

(1.791, ∞) ∪ (1.5688, 1.59) ∪ (1.4898, 1.4902) ✗ ✗
√ √

✗

(1.597, 1.791) ∪ (1.49116, 1.568) ∪ (1.396, 1.4898) ✗
√ √ √ √

(1.59, 1.597) ∪ (1.568, 1.5688) ∪ (1.4902, 1.49116) ✗ ✗
√ √ √

(1.36, 1.396) ∪ (1.31, 1.35) ∪ (1.137, 1.139)
√

✗
√ √ √

∪(1.04, 1.072) ∪ (1.001, 1.003) ∪ (0.96, 0.9642)
(1.35, 1.36) ∪ (1.193, 1.31) ∪ (1.1618, 1.1625)

√
✗

√ √
✗

∪(1.13, 1.137) ∪ (1.03, 1.04) ∪ (0.998, 1.001)
∪(0.9699, 0.9701)
(1.1625, 1.193) ∪ (1.1602, 1.1618) ∪ (1.003, 1.03)

√ √ √ √ √
∪(0.9701, 0.998) ∪ (0.9642, 0.9699)
(1.139, 1.1602) ∪ (1.072, 1.13)

√ √
✗

√ √
(0,0.77)

√
✗ ✗

√
✗

The general resolution in the St axis in Fig. 9 is 5 × 10−3. However, certain ranges in the St
axis are resolved further up to 4 × 10−5 to capture smaller windows of Stokes number displaying
abrupt variations. The bifurcation diagram in Fig. 13 in Appendix B shows evidence of such smaller
windows, which we have missed in Fig. 9.

All three diffusive behaviors (trapped, diffusive, and ballistic) coexist only in some intervals,
as can be seen from Table I. St = 1.18, chosen here for most figures, lies within such an interval.
Incidentally, the ballistic dispersion is absent in the interval St ∈ (1.072, 1.13) ∪ (1.139, 1.1602).
Assuming that one gradually increases the Stokes number of a heavy particle started with appropri-
ate ICs in the TG vortex, the particle is expected to show ballistic dispersion when St ∼ 1. But, when
the St ∈ (1.072, 1.13) ∪ (1.139, 1.1602), the particle will switch to nonballistic transport. As the St
again increases, the particle will revert to ballistic transport after these windows. This exact behavior
can be seen in action in the case of transport of condensing water droplets in a TG vortex [33]
(Fig. 11). The mean square displacement (MSD) of water droplets approach from super-diffusive to
ballistic dispersion through a steplike approach as their instantaneous Stokes number St(t ) � 1.
Also, as the particles’ dominant transport becomes ballistic, the droplets’ spatial distribution
changes from isotropic to diagonally dominated anisotropic distribution, consistent with our results.

The roughness as a function of Stokes number is evident in Fig. 9. The noisiness of the curves,
especially for St � 1, is intrinsic to the dynamics and not a numerical feature. We claim that this
roughness is due to an intrinsic fractal nature and cannot be eliminated by any means. A supporting
argument is as follows: For St ∈ (1.396, 1.791), we find that the SD averaged over the set of
diffusive particle trajectories, 〈σ 2

D(t )〉, scales linearly with time, indicating normal diffusion (α ≈ 1).

Thus, we may evaluate their effective diffusivity as Deff = limt→∞ 1
4

d〈σ 2
D (t )〉
dt , which is plotted as an

inset in Fig. 9(a). The variation of Deff also shows a rough trend with St. This is identical to the rough
variation of the diffusion coefficient with energy parameter in [21]. Notice that, in the windows of
Stokes number of purely ballistic motion (1.597 � St � 1.568 and 1.49116 � St � 1.4902), the
effective diffusivity diverges, indicating the absence of normal diffusion. In those intervals, instead,
super- (ballistic) diffusion happens.

Furthermore, all particles with St � 0.77 are attracted to fixed points (SPs) and thus have a
(+,−,−,−) Lyapunov spectrum, in the limit t → ∞. It is well known that for trajectories attracted
to fixed points, the large-time Lyapunov exponents are the real part of the eigenvalues of the
linearized stability matrix about those fixed points [44]. Thus, λ1 > 0 here indicates only the saddle
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FIG. 10. Colormaps of (a) α, similar to Fig. 8(a), bottom, and (b) the large-time Lyapunov exponent λ1

similar to Fig. 8(a), top, with the same parameters as in those figures except with the initial particle velocity
set equal to the local fluid velocity.

nature of the fixed point and not any chaotic nature. Otherwise, at least one of the Lyapunov
exponents must vanish in the Lyapunov spectrum [52], which does not happen here as the spectrum
is (+,−,−,−).

C. Effect of nonzero initial velocity

In all the results reported in this paper until now, the simulations are initialized with particles
uniformly distributed in the basic vortex cell with zero initial velocity, i.e., vx(0) = vy(0) = 0. Here
we examine the effect of a different choice of initial velocity, setting the initial particle velocity
equal to the local fluid velocity [i.e., vx(0) = sin x(0) cos y(0) and vy(0) = − cos x(0) sin y(0)],
no-slip. We solve Eqs. (2), with initial positions being the uniformly sampled locations in the
basic vortex cell and the initial velocities being the local fluid velocity. In contrast to the zero
initial velocity case, here, initially, particles experience no initial acceleration due to no-slip.
Thus, the solutions at the initial stages are linear in time as x(t ) ≈ x(0) + sin x(0) cos y(0) t and
y(t ) ≈ y(0) − sin y(0) cos x(0) t . The SD can then shown to vary as σ 2(t ) ≈ [sin2 x(0) cos2 y(0) +
sin2 y(0) cos2 x(0)] t2 [i.e., σ 2(t ) ∼ t2] for t � 1. In other words, particles starting with no-slip
behave ballistically at the initial time due to their nonzero initial velocity in contrast to those starting
with zero velocity (which behave super ballistically due to their initial acceleration, as explained in
Sec. IV A). However, the system behaves qualitatively the same in both cases at large times if one
plots the SD (not shown here).

The basins of large-time dispersion and large-time dynamics are shown in Fig. 10. The results
with the two choices of initial velocity are qualitatively similar can be seen by comparing Fig. 10
with Fig. 8. We find that particles with nonzero initial velocity also show diverse large-time
dispersion (trapped, diffusive, or ballistic) and diverse large-time dynamics (regular or chaotic)
when St ∼ 1, depending on their initial positions. Thus, irrespective of the initial velocity condition,
we find nonergodic behavior.

Similarly, the correspondence between trapped or ballistic dispersion with periodic dynamics
(and diffusive dispersion with chaotic dynamics) continues to exist for most Stokes numbers. This
may be seen by comparing the colourmap of the dispersion exponent α in Fig. 10(a) with the
colormap of the Lyapunov exponent λ1 in Fig. 10(b).

While the zero-velocity and zero-slip ICs lead to similar qualitative behavior at large time, we see
a clear quantitative difference. The fraction of ballistic particles in the case of zero initial velocity
is 23.56%; whereas a higher fraction, 31.88%, of particles starting with no-slip ICs have ballistic
long-term behavior with a corresponding reduction in the fraction displaying diffusive or trapped
behavior. We suspect that the initial ballistic dynamics of all particles for zero-slip ICs (in contrast
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FIG. 11. (a) Streamlines of the triangular flow field. Observe the qualitative similarity of the flowfield
with the TG vortex flow field shown in the background of Fig. 1(b). (b) Color map of α, indicative of the
large-time dynamics, of 316 × 316 inertial particles with St = 1.15 initialized uniformly in the basic vortex cell
(0, π ) × (0, π ) of triangular flow; trapped (blue), diffusive (green), and ballistic (red) trajectories are possible
at this Stokes number.

to the initial hyperballistic dynamics for zero velocity ICs) have contributed in this regard. However,
to systematically show this, one must study the dependence of all possible initial velocities and all
possible initial positions in a four-dimensional IC-space. Nevertheless, the two cases presented here,
i.e., (1) zero initial velocity and (2) initial velocity as the same as local fluid velocity (no-slip), are
most representative of particles in a turbulent flow (see, e.g., [53]).

D. Effect of periodicity of the background flow

The dynamical richness we observe in the simple system Eqs. (2) or (3) has to do with the perfect
symmetry and periodicity of the TG vortex flow. However, here we argue that a different choice of
the flowfield, which is topologically identical, can also show the same dynamical richness as long
as the symmetry and periodicity are preserved. In analogy to the conjugacy of the logistic map and
the tent map [41], we can replace the sinusoids in Eqs. (3) with triangular waves, i.e., sin z to T (z)
and sin w to T (w), where the triangular wave T is defined as

T (ξ ) =
{
η if η ∈ [−π/2, π/2)
π − η if η ∈ [π/2, 3 π/2) (15)

with η = mod(ξ + π/2, 2 π ) − π/2. The resulting flow is topologically similar to the TG vortex
flow [see the streamlines of the flowfield in Fig. 11(a)]. Thus Eqs. (3) become

St z̈ + ż = T (w), (16a)

St ẅ + ẇ = T (z), (16b)

which describe the motion of a heavy inertial particle in a flowfield given by fluid velocities ux =
[T (x − y) + T (x + y)]/2 and uy = [T (x − y) − T (x + y)]/2. We may refer to this flow as simply
the “triangular flow” to distinguish it from TG vortex flow. The system can be solved analytically
(see Appendix C), owing to the piecewise linearity and periodicity of the triangular wave. Using the
analytical results, one can verify that the dynamical richness we observed in the TG vortex flowfield
can also be observed in this new system as well. This correspondence is similar to the conjugacy
between the (quadratic) logistic map and the (piecewise-linear) tent map [41]. The analytically
tractable solution increases the believability of the results.
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The correspondence between the TG vortex flow and the triangular flow is apparent in Fig. 11(b).
The colormap of α in the figure is analogous to Fig. 8(a), bottom, and shows the existence of
three kinds of asymptotic dispersive behavior—trapped, diffusive, or ballistic—depending upon the
initial position of particles. The Stokes number chosen here, St = 1.15, is, however, different from
but close to the Stokes number St = 1.18 in Fig. 8(b). Here we chose St = 1.15 because all three
dispersive characteristics do not exist for St = 1.18 in triangular flow. From the similarity between
Figs. 11(b) and 8(a), we conclude that the richness of the dynamics is reproduced by this synthetic
flowfield.

V. CONCLUSION

We have shown that heavy inertial particles (R = 0) show a rich tapestry of dynamics even in a
very simple two-dimensional cellular flow. The governing dynamical system resembles a billiard
system—a viscous soft Lorentz gas, further confirmed by the diverse transport behaviors. The
large-time dispersion of a particle is shown to be dependent nonmonotonically, and often extremely
sensitively, on its inertia (Stokes number) and initial location. The dramatic changes in dispersion
with minor changes in St are particularly counterintuitive. When St ∼ 1, the initial positions in the
flowfield corresponding to various large-time dispersion—trapped, diffusive, and ballistic—form
disjoint groups. The trajectory of a particle starting from one such group can exhibit only one
kind of large-time dynamics, indicating ergodicity breaking. For a range of Stokes numbers, for
particles undergoing normal diffusion, the effective diffusivity depends irregularly on St, indicating
the underlying fractal nature of the dynamics. The “fraction of particles” showing each kind of
dispersion shows abrupt transitions as St varies.

We expect our findings in a TG vortex flow to be generally applicable in broad classes of flows
containing periodic arrays of vortices and stagnation points. In turbulence too, while the background
flow is highly unsteady, we expect signatures of ergodicity and irregular dependence on Stokes
number, since local stagnation points and streamlines (separatrices) can last far longer than particle
timescales. Thus, particles may have bounded and unbounded trajectories with positive Lyapunov
exponents, affecting their interaction (collisions and coalescence).
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APPENDIX A: ACCURACY OF THE NUMERICAL SIMULATIONS

As mentioned in Sec. II, Eqs. (2) are integrated using a fourth-order Runge-Kutta method.
The maximum time step for integration is 10−2, and the equations are integrated for 104 or 105

nondimensional time units to obtain information about the large-time particle dynamics. Since we
are dealing with Stokes numbers of O(1), this time step is much smaller than the particle response
timescale. However, since the dynamics involve not only regular but also chaotic nature, a further
check on the accuracy of the numerical integration is required. We evaluate the constant of motion
Q for all the trajectories shown in Fig. 1. The integral term in the definition of Q (see Sec. II)
is evaluated using the trapezoidal rule, and the results are plotted in Fig. 12. We observe that the
numerical solutions are accurate to better than 0.1% in the worst case, and the errors do not grow
with time even after t = 105.
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FIG. 12. (a) Evolution of constant of dynamics Q with time for the cases in Fig. 1 with the same color
codes. (b) The percentage relative error in the numerically evaluated value of Q with the theoretically expected
value Q0 is plotted with time and shown to be negligible and bounded for all the cases until t = 105.

APPENDIX B: BIFURCATION DIAGRAM

A “bifurcation diagram” is a plot of some attribute of the system as a parameter, called the
bifurcation parameter, is varied. In Fig. 13 we plot the local maxima of the bounded observable
vx(t ) vs the Stokes number. The trajectories are initialized from position (2.33,0.81) with zero initial
velocity. As the Stokes number is varied, the local maxima of the vx(t ) are identified and placed in
a scatter plot to obtain Fig. 13.

We see that for St � 1.792, the bifurcation plot is either a single-valued or bivalued curve
showing that the dynamics is regular. However, when St � 1.792, the bifurcation plot has three
dense bands, showing the chaotic nature of the dynamics. Similar abrupt variations in the dynamics
exist in many intervals of Stokes numbers, as shown in the insets of Fig. 13. We have also used a
resolution in St of 1.25 × 10−4 < 5 × 10−3 here, allowing sharper regular-chaotic transitions than
in Fig. 9 to be captured. It can be seen that many of the small windows of the Stokes number we
missed in Fig. 9 are captured in Fig. 13. This is due to the finer sampling of the Stokes axis, which
is effortless here since we are dealing with only one initial particle position.

FIG. 13. Bifurcation diagram plotted using local maxima of vx (t ) vs St for a particle starting at the initial
location (2.33,0.81) with zero initial velocity. The values in the St axis ranges from 0.75 to 2. The insets zoom
in on certain regions where the system transition from regular to chaotic dynamics as St is changed.
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APPENDIX C: TRIANGULAR FLOW: ANALYTICAL SOLUTION

Since the triangular wave T is piecewise linear, Eqs. (16) can be solved analytically in subdo-
mains of the flowfield, as shown below. We can then combine these solutions, using the fact that the
flowfield is periodic, to obtain the exact trajectory tracking of a particle.

1. Case 1: When z ∈ [−π/2, π/2) and w ∈ [−π/2, π/2)

In this interval, the governing equations Eqs. (16) can be simplified to

St z̈ + ż = w, (C1a)

St ẅ + ẇ = z. (C1b)

The trajectory of a particle entering this region at time t = 0 with initial conditions z0,w0, vz0, vw0

can write analytically as

z(t ) = A+ eα+ t − A− eα− t + e−t/2 St (y0 cos β t + D1 sin β t ), (C2a)

w(t ) = A+ eα+ t − A− eα− t − e−t/2 St (y0 cos β t + D1 sin β t ), (C2b)

where St > 1/4 and

A± = 2 St vx0 + (1 ± √
1 + 4 St) x0

2
√

1 + 4 St
, (C3a)

D1 = 2 St vy0 + y0√
4 St − 1

, (C3b)

α± = −1 ± √
1 + 4 St

2 St
, (C3c)

β =
√

4 St − 1

2 St
. (C3d)

Similarly, assuming the same notation for the initial conditions, as the particle enters other subdo-
mains of the flowfield, the solutions in those domains are written as follows.

2. Case 2: When z ∈ [π/2, 3 π/2) and w ∈ [−π/2, π/2)

St z̈ + ż = w, (C4a)

St ẅ + ẇ = π − z, (C4b)

z(t ) = π + e−t/2 St {cosh(p+ t ) [K+
1 sin(p− t ) − (π − z0) cos(p− t )]

+ sinh(p+ t ) [K−
1 cos(p− t ) + w0 sin(p− t )]}, (C5a)

w(t ) = e−t/2 St {sinh(p+ t ) [K+
1 cos(p− t ) + (π − z0) sin(p− t )]

+ cosh(p+ t ) [−K−
1 sin(p− t ) + w0 cos(p− t )]}, (C5b)

where

p± =
√

2 St q ± 1

2
√

2 St
, (C6a)

q =
√

1 + 16 St2

2 St
, (C6b)

K±
1 = −π p∓ + p+ C∓ ± p− C±

q
, (C6c)

C± = 2 St (vx0 ± vy0) + (x0 ± y0). (C6d)
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3. Case 3: When z ∈ [π/2, 3 π/2) and w ∈ [π/2, 3 π/2)

St z̈ + ż = π − w, (C7a)

St ẅ + ẇ = π − z, (C7b)

z(t ) = π + B+ eα+ t − B− eα− t − e−t/2 St[(π − x0) cos β t − D2 sin β t], (C8a)

w(t ) = π − B+ eα+ t + B− eα− t − e−t/2 St[(π − x0) cos β t − D2 sin β t], (C8b)

where

B± = 2 St vy0 + (1 ± √
1 + 4 St) y0

2
√

1 + 4 St
, (C9a)

D2 = 2 St vx0 + x0 − π√
4 St − 1

. (C9b)

4. Case 4: When z ∈ [−π/2, π/2) and w ∈ [π/2, 3 π/2)

St z̈ + ż = π − w, (C10a)

St ẅ + ẇ = z, (C10b)

z(t ) = e−t/2 St {cosh(p+ t ) [−K+
2 sin(p− t ) + z0 cos(p− t )]

+ sinh(p+ t )[K−
2 cos(p− t ) + (π − w0) sin(p− t )]}, (C11a)

w(t ) = π + e−t/2 St {sinh(p+ t ) [K+
2 cos(p− t ) + z0 sin(p− t )]

+ cosh(p+ t )[K−
2 sin(p− t ) − (π − w0) cos(p− t )]}, (C11b)

where

K±
2 = −π p± + p+ C∓ ∓ p− C±

q
. (C12)
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