
PHYSICAL REVIEW FLUIDS 9, 014202 (2024)

Self-organization of autophoretic suspensions in confined shear flows
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Janus phoretic particles exploit chemical energy stored in their environment to produce
mechanical work on the surrounding fluid and self-propel. These active particles modify
and respond to their hydrodynamic and chemical environments, thus providing them with
a sensibility to external flows and other particles. These chemical and hydrodynamic
interparticle interactions are known to lead to nontrivial collective behavior within such
biological or synthetic active suspensions (e.g., cluster formation of phoretic particles or
bacterial swarming). Recent experiments and analysis have demonstrated that the response
of active suspensions to shear flows is nontrivial and can, in fact, lead to significant
reductions in viscosity due to the energy conversion at microscopic scales. In this work
we numerically analyze using a continuum kinetic model the dynamics and response to
shear of dilute and confined suspensions of chemotactic phoretic particles that reorient
and drift toward the chemical solutes released by their neighbors. We show that a 1D
transient steady distribution driven by the effect of confinement is a common feature for
the confinement and shear rate intensities considered. This 1D state is stable for strong
confinement and thus observed in the long-term dynamics in sufficiently narrow channels.
For wider channels, the transient state becomes unstable to streamwise perturbations due
to the chemotactic instability, leading to the formation of particle aggregates along the
channel’s walls. Their relative arrangements and dynamics are determined by the relative
influence of shear intensity and chemotaxis and critically condition the suspension’s
dynamics and particle-induced flows. In a second step, the feedback effect on the flow and
effective viscosity of the self-organized suspension is considered. We show that the induced
flow and, consequently, its rheological behavior strongly depend on the self-organization
regime, and therefore on the interplay of confinement, shear, and chemotaxis.
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I. INTRODUCTION

Understanding the spontaneous self-organization of large numbers of individually powered and
mobile agents, or active matter, has recently emerged among the most active research fields in soft
matter physics [1,2], at the interface with applied mathematics, fluid mechanics, and biophysics
because of its fundamental interest and potential applications [3–5]. To self-propel, individual units
convert energy (usually chemical) into mechanical work. This definition of active systems covers a
broad range of characteristic length scales, from a few micrometers (bacterial suspensions [6,7]) to
tens or hundreds of meters (e.g., animal herds [8], fish schools [9], or bird flocks [10]).

Our focus here is on the former, where interacting agents are micron-sized and evolve in a
suspending Newtonian fluid (i.e., “wet active matter”). Such microswimmers can be broadly classi-
fied into two main categories: (1) microorganisms (i.e., living systems such as bacteria, algae, and
sperm cells) and (2) synthetic microswimmers (i.e., engineered particles such as Janus colloids [11],
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active drops [12], and Quincke rollers [13].). At such tiny scales, inertial effects are negligible, and
swimmers’ motion and interactions are dominated by viscous effects, introducing some well-known
constraints on the swimming strokes such as their nonreciprocity [14]. To achieve this, living
cells and organisms exploit irreversibility in the beating pattern of deformable flagella or cilia
[15]. Reproducing in the laboratory such complex deformations and stroke patterns at microscopic
scales is particularly challenging but possible using macroscopic forcing (e.g., magnetic field
[16,17]). Another important issue concerns the individual powering of these units: relying on a
common directional macroscopic forcing (e.g., magnetic) introduces a bias that tends to dominate
interparticle interactions and interferes with their self-organization.

A popular alternative instead converts physico-chemical energy of the local suspending fluid into
mechanical work, e.g., via catalytic reactions of suspended solute species at the chemically coated
particles’ surface [18,19]. Directional self-propulsion then relies on the phoretic drift of the particles
in self-generated solute gradients [20] produced by their front-back design asymmetry (Janus
systems [11]). Despite the impressive diversity in their chemical nature and reactivity, most phoretic
systems essentially rely on two main common properties of their surface: a physico-chemical
activity, namely, the ability to produce, consume, or alter a chemical solute, and a mobility which
enables them to convert local physico-chemical surface gradients into phoretic slip flows generated
by the local differential interactions of solute and solvent molecules with the particles’ surface [20].

Janus particles, as any other living or synthetic self-propelled swimmer, stir and perturb the sur-
rounding flow, resulting in the hydrodynamic drift and reorientation of their neighbors [15]. These
long-ranged hydrodynamic interactions among microswimmers are known to produce complex
behavior in large suspensions, including pattern formation [7,21], induced flows on length scales
much larger than individual swimmers [6,22,23], active turbulence [24], and enhanced particle
diffusion [25,26].

Additionally, their chemical activity and mobility provide them with the ability to interact
chemically over long ranges, through the gradients they create on their neighbors’ environment:
the particles thus not only swim under the effect of their own asymmetric properties, but also drift
and reorient depending on the relative positioning of the surrounding particles. These chemical
interactions open the route for biased motion of the swimmers under the influence of “external”
chemical gradients, i.e., chemotaxis [27]. Biological microswimmers exploit this ability to commu-
nicate and complete complex tasks such as targeting of inflammation/infectious sites by immune
cells [28], locating mammalian/nonmammalian eggs for fertilization [29], and migrating towards a
food source or away from a poisonous environment as a survival strategy [30]. Biased motion for
biological microswimmers is typically achieved via chemically driven changes in their stochastic
tumbling rate, which increases or decreases depending on whether the cell senses deteriorating or
improving conditions. Over long timescales, this results in a biased motion towards attractant-rich
regions. Lacking biochemical sensors and complexity, Janus particles instead exploit asymmetric
surface slip flows generated by their biased chemical environment to reorient along or against the
local chemical gradient [31,32]. Thus, Janus particles interact via both chemical and hydrodynam-
ical signatures [33] similar to some biological swimmers [34,35]. Modeling the two mechanisms
(run-and-tumble and particle reorientation) gives rise to qualitatively similar results for chemotactic
suspension behavior on timescales much larger than the swimmers’ tumbling rate [36]. When the
solute mediating the interactions is directly produced or consumed by the particles, the suspension
is termed autochemotactic: particles follow or avoid not only their neighbors’ proximity but also
their own chemical footprint. A specific tendency of these suspensions is known as the formation
of asters as a result of a generic chemotactic instability [37], similar to their biological counterparts
[35].

A large part of the early work on active suspensions has focused on their spontaneous orga-
nization in unbounded and quiescent flows, thus neglecting any potential environmental forcing
or coupling, and focusing specifically on the intrinsic suspension dynamics [38,39]. Yet, in order
to achieve targeted applications (e.g., in biomedicine [3–5]), control strategies must be obtained
in realistic environments that feature confinement (i.e., the presence of bounding walls) and/or
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nonuniform background flows, reflecting an external mechanical actuation of the system. Motivated
by this observation, this work focuses on the response of a suspension of Janus particles under
the dual influence of varying strength of confinement and externally applied shear. Response to
shear provides some further insight into the effective rheology of the suspension [40–42]. Focusing
specifically on Janus phoretic swimmers, Ref. [43] considered the dynamic response and effective
rheology of a dilute suspension in pressure-driven Poiseuille flow between two rigid walls, identi-
fying five different regimes depending on the relative strength of the flow-inducing pressure drop.

Microswimmers are able to interact with confining boundaries through their stirring of the
surrounding fluid. The constraint of a no-slip boundary condition at finite distance introduces an
additional flow perturbation that modifies their dynamics and results in nontrivial behavior, even at
an individual scale. Among other effects, previous studies report attraction and reorientation towards
a wall [44], scattering of biflagellate microswimmers from circular surfaces [45,46], microswimmer
trapping using a stationary obstacle [47], and the observation of different states depending on
catalyst coverage for Janus particles [48,49] and wall accumulation at suspension scale [50].

Wall accumulation of swimmers is well documented [50–52]: accumulating spermatozoa at
rigid walls [50] plays an important role in mammalian reproduction [53]. Interestingly, in contrast
with short-term dynamics of individual swimmers, at timescales much larger than the typical
reorientation or run-and-tumble rate of the swimmers, hydrodynamics is not even necessary to
explain such wall accumulation, which can then be seen as a result of the coupling of self-propulsion
and confinement [54,55]. The characteristic length scale of the confining boundaries further plays
an important role in controlling the collective dynamics of microswimmer suspensions [56,57]:
in the experimental results of Wioland et al. [58], the distribution of bacteria suspended in a
fluid transitions from a complex 2D structure to a streamwise independent 1D distribution as the
confinement strength is increased. This points to the critical role of the confinement intensity, whose
effect on the suspension’s self-organization is a central motivation for the present work.

The presence of a background flow also results in a distinct swimmer behavior, such as the
directional bias of Escherichia coli in pressure-driven flows [59]. Such rheotaxis can be understood
from the dual effect of steric interactions and background shear, which aligns the bacteria against the
flow due to their elongated shape [60]. Similar results were also reported for sperm cells in shear
flows [61]. Synthetic swimmers such as Janus phoretic particles also display rheotactic behavior,
which was reported for spherical and rod-shaped catalytic colloids in confined shear flows [62,63].
More recently, Traverso and Michelin [43] showed that Janus particles also polarize against the
flow, like E. coli, under strong background Poiseuille flow. For spherical particles, such rheotaxis
can be understood from the competition of wall-normal polarization and background vorticity. For
elongated particles, for which steric effects play an important role, Ref. [62] showed that rheotaxis
can also be tuned using the detailed activity and actuation patterns of the active particles.

Understanding the behavior and response of chemotactic suspensions in shear flows is critical
for their applications as fluids of nontrivial or even tunable effective viscosity [41,64]. It is now
well established that elongated pusher-type swimmers tend to decrease the effective viscosity of
the suspension [41,65], while spherical puller-type swimmers (e.g., algae) tend to increase it [42],
due to the microscopic stresses they exert on the surrounding fluid and the shear alignment of the
swimmers. The rheological response is qualitatively captured by theoretical models proposed by
Saintillan [66] and Hatwalne et al. [67] for unconfined suspensions. These models are furthermore
not applicable to a suspension of spherical Janus particles, which do not experience geometric shear
alignment. The rheology of such suspensions in Poiseuille flows was recently analyzed by Ref. [43],
which reported a net reduction in the global effective viscosity at low shear rates, consistently with
the observations on other microswimmer suspensions [65].

Two main types of models have been used to analyze the collective dynamics and macroscopic
response of microswimmer suspensions: particle-based and kinetic models. The former describe
and track each individual particle and are thus particularly well suited to describe dense suspen-
sions since they can resolve detailed interparticle modeling. Particle-based dynamic simulations
reproduce at least qualitatively the experimental behavior of such suspensions [68,69] and are
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therefore invaluable since they can provide scaling laws by statistical analysis. However, such
simulations are also computationally expensive, especially for large system sizes, making it more
difficult to perform systematic analyses of different physical effects. In contrast, kinetic models
consider directly the global evolution of the suspension via a probability density distribution of
finding particles with specific orientation at a given point [38,39]. Accurate description of particle
couplings in dense systems becomes more complex, however, and in practice, kinetic models are
mostly used in the dilute limit, when typical interparticle distances are sufficiently large [38,70].
In this approach, which is the one chosen in this work, hydrochemical coupling of the particles is
accounted for through the influence on individual particles of hydrochemical mean fields, forced by
the individual hydrodynamic and chemical footprints of the particles [71,72].

The primary goal of this work is to understand the dual effect of background shear flow and
confinement. While previous studies have explored the effect of shear on self-organization of active
suspensions, most of them focused on pressure-driven flows [43,55] with nonuniform shear profile.
As a result, the regions where background shear is most significant overlaps with the regions where
the wall influence dominates, leading to complex dynamics [43] and making it harder to decipher
the role of each effect. To avoid this, we focus in this work on a simple shear profile (Couette), such
that the effect of shear is similar in the entire domain, whether close or far from the boundaries.
In contrast, the effect of confinement is profoundly nonuniform across the channel, affecting
mostly the regions away from the centerline. Additionally, in this configuration, the asymmetric
shear flow results in a differential advection of the particles on both sides of the channel and in
horizontal interactions between the aggregates, which has not been reported earlier to the best of
our knowledge. So far existing studies have explored either the fixed confinement effect [43,55], or
varying confinement for nonchemotactic suspensions [73]; by varying the confinement strength, we
obtain here a better insight into the role of confinement on the suspension dynamics with respect to
the intrinsic chemotactic behavior and report that the confinement strength stabilizes the 1D regime
observed at short times, due to strong transverse gradients. Finally, the flow induced by the particles’
self-organization and the suspension’s rheology is discussed and a minimalistic model is proposed.

The paper is organized as follows: Sec. II describes the physical model and summarizes the
governing equations, characteristic scalings, and numerical approach for their resolution. The
self-organization behavior is then analyzed in detail in Sec. III, where three different long-term
regimes are identified based on the two control parameters of the problem, namely, the strength
of the uniform background shear and the degree of confinement. Based on this understanding,
Sec. IV then proposes an overview of the resulting effective viscosity of the suspension, focusing
specifically on the different flow patterns induced by the particle distribution and forcing in the
different dynamical regimes reported in Sec. III. This is followed by an analysis of the suspension
rheology in Sec. IV, which discusses the different induced flows observed in each regime. Section V
finally summarizes the main conclusions of our work and presents some future perspectives.

II. MODELING DILUTE SUSPENSIONS OF SHEARED PHORETIC PARTICLES

A. Physical model

1. Description

This work considers the self-organization and response to shear of a suspension of self-propelling
Janus particles of radius R̂ in a Newtonian fluid (viscosity η̂) confined between two flat walls
separated by a distance 2Ĥ ; both walls move in opposite directions at a speed ûw: in the absence
of any particle, this would establish a steady Couette shear flow with uniform shear rate γ̂ = ûw/Ĥ
as illustrated in Fig. 1, a quantity referred to in the following as background shear rate. All
dimensional quantities are represented with a “hat” (·̂) in order to distinguish them later from
their dimensionless counterparts. Particles interact with a chemical solute of concentration Ĉ(x̂, t̂ )
through two fundamental physico-chemical properties: a chemical activity Â(x̂) (namely, the ability
to produce or consume solute) and a mobility M̂(x̂) that converts surface tangential gradients of
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FIG. 1. Problem schematic. A dilute suspension of Janus particle placed between two flat walls. The walls
move opposite to each other to establish a simple shear flow.

solute into slip flows along their boundaries, the combination of which enables the particle to set up
local chemical gradients through which it can self-propel [11,19]. The particles considered in this
work have two chemically homogeneous hemispheres, and p is thus the particle orientation, while
Â± and M̂± denote the sum (+) and front-back difference (−) in activity and mobility of the two
hemispheres.

2. Kinetic model of dilute suspensions

When the suspension is sufficiently dilute (i.e., when R̂ is much smaller than Ĥ and the typical
interparticle distance), a classical approach to model its dynamics is based on the probability density
function �̂(x̂, p, t̂ ) of finding a particle at position x̂ with orientation p defined by the axis of
symmetry as shown in Fig. 1 at time t̂ [39,66].

In general, the probability density �̂ is a function of six independent variables:
the three spatial coordinates, two angular coordinates, and time. Finding the suspension dynamics in
three dimensions is therefore computationally intensive; in order to gain some physical insight while
keeping computational costs manageable, we restrict ourselves to the analysis of the 2D problem,
where �̂ depends on only two spatial and a single angular coordinate (ŷ, ẑ, θ ) (Fig. 1) and time t̂ .
Such 2D reduction has been made in previous studies and shown to be qualitatively accurate with
respect to experiments [38,56,74].

The local particle density �̂(x, t ) and polarization n(x̂, t̂ ) are defined as

�̂ =
∫

�

�̂(x̂, p, t̂ ) d p, n = 1

�̂

∫
�

�̂(x̂, p, t̂ )p d p, (1)

where � spans all possible orientations (unit circle in two dimensions); the mean particle density in
the suspension is then given by

N̂ = 1

Ŝ

∫
Ŝ

�̂ dŜ = 1

Ŝ

∫
Ŝ

∫
�

�̂(x̂, p, t̂ ) d p dŜ. (2)

The conservation of particles writes locally as a Smoluchowski equation for �̂ [75],

∂�̂

∂t
= −∇̂x · ( ˙̂x�̂ ) − ∇̂p · ( ṗ�̂ ), (3)

with ∇̂x and ∇̂p, the differential operators in space and orientation, respectively.
The translation and rotation fluxes on the right-hand side of Eq. (3) are obtained from the

translation ˙̂x and rotation velocity ṗ of an isolated particle placed in the hydrodynamic and chemical
mean fields û(x̂) and Ĉ(x̂), corrected for the diffusion contribution [43]

˙̂x = Û0 p + û + χ̂t ∇̂xĈ − D̂x∇x[ln(�̂ )], (4)

ṗ = 1
2 ω̂ × p + χ̂r (p × ∇̂xĈ) × p − D̂p∇̂p[ln(�̂ )]. (5)
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Here Û0 is the self-propulsion velocity of the Janus particle, χ̂t and χ̂r its translation and rotation
phoretic mobilities, respectively, ω̂ = ∇̂x × û the local vorticity, and D̂x, D̂p translation and orien-
tation particle diffusivities, respectively.

The specific values of Û0, χ̂t , χ̂r depend on detailed physico-chemical properties (surface ac-
tivity and surface mobility) and coating patterns. For the hemispherical particles considered here,
Û0, χ̂t , χ̂r are given by [43,72]

Û0 = Â−M̂+

8D̂c
, χ̂t = −M̂+

2
, χ̂r = 9M̂−

16R̂
· (6)

The suspension is bounded at the top and bottom by impermeable walls, so that the wall-normal
component of the probability flux �̂ ˙̂x must vanish there:

(
Û0 sin θ + χt

∂Ĉ

∂ ẑ

)
�̂ = D̂x

∂�̂

∂ ẑ
at ẑ = ±Ĥ . (7)

3. Hydrodynamic problem

Finding �̂ also requires solving for the chemical and hydrodynamic fields Ĉ and û. The small
length scales of typical experiments (Ĥ ∼ 10−4–10−3 m) [41,57,76] guarantee that inertial effects
on the flow are negligible [Re ∼ O(10−2)]. The flow velocity û(x) and pressure q̂(x) therefore
satisfy Stokes equations forced by the moving boundaries and the individual hydrodynamic active
stresses Ŝ(x̂, t̂ ) exerted by the different particles:

∇̂x · û = 0, −η̂∇̂2
x û + ∇̂xq̂ = ∇̂x · Ŝ. (8)

The no-slip boundary condition at the walls imposes

û = ±ûwey at ẑ = ±Ĥ . (9)

Here Ŝ is the local stress induced by the Janus particles, which is evaluated by taking the orientation
average of the stresslet produced by a single swimmer oriented along p as [38,43]

Ŝ(x̂, t̂ ) =
∫

�

Ŝp(x̂, p, t̂ )�̂ d p. (10)

The stresslet Ŝp produced by the slip forcing at the surface of a single Janus particle consists of two
parts: (1) the response Ŝs to self-induced chemical gradients (i.e., the particle’s own activity) and
(2) the response Ŝe to chemical gradients induced at the particle position by its surroundings and
neighbors. The strength of both parts depends on physio-chemical properties and is given for the
present 2D problem by [43,72]

Ŝs = α̂s

(
pp − I

2

)
with α̂s = −10πκη̂R̂2M̂−Â−

D̂c
, (11)

Ŝe = α̂e

[
Ĝp + pĜ + (Ĝ · p)

(
pp − 3I

2

)]
with α̂e = 15

8
πη̂R̂2M̂−, (12)

with κ ≈ 0.0872 and Ĝ = ∇xĈ|x̂ the local external solute gradient.

4. Chemical problem

Each particle’s activity perturbs the solute field, and at the scale of a single particle, the
disturbance field is classically obtained in terms of spherical harmonics [11]. However, at the scale
of the whole suspension, only the long-range term (slowest decaying term) survives and corresponds
to the net consumption/production by the particle with a rate 2π R̂2Â+. In the following, and without
any loss of generality, the considered particles are net solute producers (Â+ > 0), and the solute
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concentration Ĉ(x̂, t̂ ) satisfies an advection diffusion equation forced by the particles’ individual
solute production and a relaxation towards a background equilibrium, namely,

∂Ĉ

∂ t̂
+ û · ∇̂xĈ = D̂c∇̂2

x Ĉ − β̂Ĉ + 2π R̂2Â+�. (13)

The walls are chemically inert: Ĉ must also satisfy a no-flux boundary condition,

∂Ĉ

∂ ẑ
= 0 at ẑ = ±Ĥ . (14)

B. Dimensionless equations

In the following the channel half-width (Ĥ ) and corresponding solute diffusion time (Ĥ2/D̂c)
are chosen as characteristic length and timescales, and D̂c/Ĥ and η̂D̂c/Ĥ2 are the corresponding
velocity and pressure scales, respectively. The characteristic concentration scale Ĉch = Ĥ Â+/D̂cζ

is obtained by balancing the solute production (N̂R̂2Â+) with solute diffusion (D̂cĈch/Ĥ2) where
ζ = (ĤN̂R̂2)−1 is the ratio of the characteristic suspension scale (N̂R̂2)−1 [38] to the channel half-
width Ĥ . The parameter ζ is a relative measure of the suspension’s length scale to the channel width
and thus defines the degree of confinement. The probability density is normalized by the mean
number density N̂ . Equation (3) remains unchanged with dimensionless translation and rotation
fluxes now given by

ẋ = u0 p + u + ξt

ζ
∇xC − dx∇x[ln�], (15)

ṗ = 1

2
ω × p + ξr

ρζ
(p × ∇xC) × p − dp∇p[ln(�)], (16)

where ρ = R̂/Ĥ is the relative particle size, and dx = D̂x/D̂c and dp = D̂pĤ2/D̂c, the ratios of par-
ticle translation or rotation diffusion to solute diffusion, respectively. Meanwhile, the dimensionless
self-propulsion speed u0, phoretic drift coefficient ξt , and chemotactic reorientation coefficient ξr

are

u0 = Â−M̂+Ĥ

8D̂2
c

, ξt = −M̂+Â+Ĥ

2D̂2
c

, ξr = 9M̂−Â+Ĥ

16D̂2
c

. (17)

Using Eq. (14), the boundary condition for � can be written as

u0 sin θ� = dx
∂�

∂z
. (18)

The Stokes equations are written in nondimensional form as

∇x · u = 0, −∇2
x u + ∇xq = ∇x · S (19)

with boundary conditions

u = ±γ ey at z = ±1, (20)

and the strength of the dimensionless stresslets is now given by

αs = 640πκ

9

ξru0

ξtζ
, αe = 10π

3

ξr

ζ 2
· (21)

Note here that the dimensionless ratio γ /u0 determines the relative strength of the externally
imposed shear flow to the particles’ self-propulsion: for γ � u0 (weak shear), the background
forcing is not sufficiently strong to influence significantly the particle transport; in contrast, for
strong shear forcing (γ � u0), the particles behave as if they were passive.
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TABLE I. Dimensional parameters of the system with their typical order of magnitude in experiments and
references from which such an estimate can be drawn.

Symbol Physical parameter Magnitude estimate

R̂ Particle radius [18,33] 10−6 m
Ĥ Channel width [41] 10−4 m
Û0 Swimming speed [78] 10−6 m s−1

D̂p Rotational diffusion coefficient [80] 10−1 s−1

D̂c Solute diffusion coefficient [79] 10−9 m2 s−1

D̂x Particle diffusion coefficient [18] 10−11 m2 s−1

Finally, the advection-diffusion equation becomes in dimensionless form

∂C

∂t
+ u · ∇xC = ∇2

x C − βC + 2π�, (22)

where β−1/2 = l̂c/Ĥ with l̂c =
√

D̂c/β̂ the dimensionless screening length introduced by the relax-
ation of the concentration (essentially the range of chemical influence of individual particles). The
no-flux boundary condition for the solute remains unchanged in dimensionless form.

C. Numerical simulations

The numerical framework of Ref. [43] is adapted here to the present work’s configuration and
forcing. Following this work, Eqs. (3), (19), and (22) are solved numerically using a pseudospectral
scheme with Chebyshev discretization along the vertical direction (z, with Nz number of modes)
and Fourier decomposition in the periodic horizontal (y, with Ny number of modes) and angular
directions (θ , with Nθ number of modes). A resolution of Ny = Nz = 64 and Nθ = 32 is chosen for
the results presented here, for which a relative error of 10−3 on the effective viscosity (i.e., integrated
force on the top plate) is measured with respect to a refined discretization with Ny = Nz = 128 and
Nθ = 64. For ζ = 1, the computational box chosen for the results reported here has dimensions
Ly = 2L̂/Ĥ = 6π in the streamwise direction and Lz = 2 in the vertical direction. We observe that
doubling Ly does not change the self-organization results reported in Sec. III, which suggests that
the box size does not affect the system dynamics, at least provided Lz � Ly.

Simulations are initiated starting from a nearly uniform and isotropic state given by
�(x, p, t = 0) = 1

2π
+ ε�̃(x, p) with ε � 1, and the corresponding purely diffusive solution for

C is used initially. The full governing equations are then marched in time by treating the diffusive
terms semi-implicitly and the nonlinear terms explicitly so that we solve a set of 1D Helhmholtz
equations at each time step. The nonlinear boundary condition (18) couples all Chebyshev modes
in z for each (y, θ ) mode and is treated numerically by transforming it formally into a Neumann
boundary condition on �. The solution is then iterated until its convergence (defined when the norm
of the relative error is less than 10−4) at each time step (typically up to six iterations). The Chebyshev
Tau method decouples the odd modes with the even modes for the set of NyNθ /4 1D Helmholtz
equations that are solved at each iteration and time step, thereby greatly reducing the computational
cost. Last, at each time step, the Stokes equations (19) are solved using the influence-matrix method,
which ensures mass conservation locally to machine precision [77].

D. Selection of the physical parameter values

The problem is described by several different nondimensional parameters relating the properties
of the system and particles, and in the following we specifically focus in the following on the role
of confinement ζ and shear γ . To estimate these, dimensional parameter values are chosen so
as to be relevant to existing experiments (see Table I). Janus particles are typically micron-sized
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[18,33] (R̂ ∼ 10−6 m) and swim at a speed of a few body lengths/sec [78] (Û0 ∼ 10−6 m s−1).
Typical microfluidic channels feature submillimeter widths (Ĥ ∼ 10−4 − 10−3 m) [41,76], and the
solute diffusion coefficient for small molecules such as dissolved oxygen gas is D̂c ∼ 10−9 m2 s−2

[79]. As a result, the nondimensional swimming velocity of the particles u0 ∼ O(1), therefore
setting u0 = 0.5 in the simulation ensures physical relevancy. We consider chemotactic particles
(i.e., that reorient along local chemical gradients) and fix ξr/ρ = 1.25 and ξt = −0.5; we note
that such particles leave a pusher-like hydrodynamic footprint on the surrounding fluid [Eq. (21)].
With these values, the effects of phoretic drift, chemotactic reorientation, and self-propulsion are
of similar magnitude resulting in complex dynamics. A stronger self-propulsion velocity would
prevent the particles from forming aggregates, while a lower u0 would delay the aggregates’
formation [72]. The rotational diffusion coefficient for the particles can be estimated based on
temperature (T̂ ), radius (R̂), and viscosity (η̂) by Einstein’s relation as D̂p = k̂BT̂ /(8πη̂R̂3) ∼
10−1 m2 s−1 [80], which results in dimensionless diffusion coefficient as dp = D̂pĤ2/D̂c = 0.25.
Similarly, the effective translational diffusion coefficient for the particles can be estimated as
D̂x = k̂BT̂ /(8πη̂R̂) + Û 2

0 D̂−1
p /2 ∼ 10−11 m2 s−1 [18], so that dx = Dx/Dc = 0.025. Finally, setting

β = π/2 results in a O(1) dimensionless screening length thus ensuring that particles interact
throughout the channel.

III. SELF-ORGANIZATION DYNAMICS

The suspension’s self-organization results from different intrinsic effects (the particles’ self-
propulsion, their phoretic attraction/repulsion, and chemotactic reorientation) and their competition
with shear-induced rotation. In addition, the particles evolve in a confined setting and are transported
by the flow. To shed a better light on the results presented in the rest of the paper, and understand how
the dynamics of the present system arise from their interaction, we first describe how chemotaxis,
flow forcing, and confinement independently act on the suspension’s organization.

Self-organization of unbounded phoretic suspensions in quiescent flows is dominated by au-
tochemotaxis, i.e., the particles’ ability to sense, reorient, and migrate toward or away from a specific
chemical signal, here generated by the chemical signatures of their neighbors. Such chemically
driven interactions are also known to play an important role in the self-organization of biological
suspensions [27,28], where the microswimmers typically change their tumbling rate depending
on a specific chemical cue to create an orientation bias towards the chemical source [35]. Such
chemotactic self-organization results in a variety of complex behavior such as pattern formation
[35], swarms [81,82], bacterial turbulence [23], etc. Janus phoretic swimmers instead exploit a
front-back asymmetric coating and the resulting polarity in their interaction with suspended solutes
in order to reorient along chemical gradients [32,83]. Particle aggregation and cluster formation
may result from such chemotactic interactions. For net solute producers (Â+ > 0, as in the present
configuration), any infinitesimal inhomogeneity in the spatial distribution of phoretic colloids
triggers more solute production and local solute accumulation in specific regions [71,72]. The
associated long-ranged chemical gradients generate an orientation bias towards those regions among
the particles nearby, which cause their own swimming and accumulation in the regions of already
higher particle concentration (for positively chemotactic particles). More solute is then generated
there, which results in a positive feedback loop and extension of the process throughout the domain
[72].

The characteristic timescale for such chemotactic clustering is τc ∼ (τχ/τβ )τλ
s [72], where

τλ
s ∼ 1/(kU0) is the characteristic timescale of self-propulsion over a perturbation wavelength

λ = 2π/k, τχ ∼ (kCrefχr )−1 is the typical scale for the chemical reorientation in the concentration
gradient associated with the perturbation’s spatial inhomogeneity, and τβ ∼ 1/β the characteristic
relaxation time of the solute concentration in the bulk. Here Cref = HA+/ζDc is the characteristic
concentration scale obtained by balancing solute production of the particles and the diffusive flux.
The definition of τc with respect to the three timescales can be physically understood as follows:
chemical reorientation polarizes the suspension towards regions of excess solute toward which a
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FIG. 2. Overview of self-organization of the current system. We identify three different regimes based on
shear rate and confinement. Strong shear or strong confinement tends to stabilize the 1D state.

majority of the (polar) particles swim. Clustering of the self-propelled particles take a time τs for
fully polarized particles. Polarization, i.e., chemical reorientation, however, takes a finite amount of
time and τχ/τβ can be seen as a measure of how polarized the suspension is able to become before
the concentration perturbation triggering the reorientation relaxes under the effect of chemical
decay. This instability eventually saturates when the chemotactic flux is balanced by other processes
such as diffusion and any potential repulsive phoretic drift within the chemical gradient, thus leading
to the formation of high-density particle aggregates.

The suspension dynamics and self-organization are also influenced by the presence of back-
ground (i.e., externally imposed) flows; not only do these advect particles differentially in
nonuniform flows, but flow gradients also introduce a local reorientation/rotation of the particles
(Faxen laws). For the antisymmetric background flow imposed here (a simple shear flow), particles
in the top half are advected in the opposite direction with respect to particles present in the bottom
half, and the vorticity (and the clockwise induced rotation) is uniform throughout the channel (see
Sec. III C).

Last, the presence of walls impermeable to both particles and chemical solutes results in their
confinement and accumulation near the boundaries, a well-known feature of any (biological or
synthetic) suspension of microswimmers [51,57,76,84].

A. Overview of the suspension dynamics

Starting from an initial perturbation of the isotropic initial condition, the dynamics of the suspen-
sion can be decomposed into two successive phases occurring over two different and well-separated
timescales: a short timescale associated with self-propulsion across the channel width, and a long
timescale associated with self-organization due to chemotactic instability (Fig. 2). Its main features
are outlined here before being discussed in more detail in the next subsections.

At short times, as a result of the particles’ self-propulsion and of their lateral confinement,
the suspension quickly develops a transient 1D state (i.e., spatially invariant in the stream-
wise direction). This phase and the transient state to which it converges do not depend on the
shear rate or confinement ratio for the range of confinement and shear rates explored in this
work(Fig. 2). However, the clustering timescale suggests that the clustering time reduces with
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TABLE II. Distinctive characteristics of the long-term dynamics of the chemotactic suspension for different
level of confinement and background shear forcing.

Control parameters Long-term response

Background shear Confinement Temporal Spatial

Strong/Weak Strong Steady 1D
Weak Weak Steady 2D
Strong Weak Unsteady 2D

decreasing confinement. As a result, in the limit of unconfined suspensions, ζ → 0, the aggregation
timescale becomes shortest, resulting in clustering in the short-term itself.

On the other hand, the long-term solution results from the competition of chemotaxis, imposed
shear, and confinement; as such the long-term dynamics and three regimes are obtained, as shown in
Table II, depending on the intensity of confinement and shear. These regimes can be distinguished
by their spatial distribution (1D or 2D) and temporal nature (steady/unsteady). The “steady” nature
of the converged state was checked for such situations by a doubling of the simulation time to ensure
proper convergence.

B. Short-term dynamics

Starting from the initial nearly uniform and isotropic distribution, the suspension quickly re-
laxes to the 1D transient state shown in Fig. 3. Out of the three different effects driving the
self-organization of the suspension, namely, the external shear, the chemotactic instability, and self-
propulsion across the channel width, the third is associated with the shortest timescale τH

s ∼ H/U0

and thus drives the dynamics of this early phase.
This 1D state is characterized by high particle densities near the boundaries (Fig. 4), a rather

intuitive behavior that is also well established for suspensions of biological microswimmers [51,84]:
particles located in the vicinity of an impermeable boundary and oriented towards it are trapped there
as they can only escape due to translational and rotational diffusion; instead particles oriented away
from the boundary quickly swim away from this region. This results in a strong wall polarization n
[Eq. (3)] within a thin boundary layer of particles near the channel walls (Fig. 4), whose thickness
is proportional to rotational and translational diffusion and inversely proportional to self-propulsion
velocity [55].

The particles are net solute producers (A+ > 0), and their accumulation near the wall leads to
a locally increased solute production near the impermeable walls, resulting in an accumulation
of solute in the walls’ vicinity. Consequently, the solute distribution across the channel width is
characterized by a V-shaped profile (Fig. 4) associated with strong chemical gradients pointing

FIG. 3. Short-term particle (top) and solute distribution (bottom) obtained for ζ = 1, γ = 0.25. The black
arrows (bottom) represent the local polarization direction and magnitude of the particles.
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FIG. 4. 1D profiles of the solute and particle concentrations and streamwise and wall-normal components
of the particle polarization in the transient regime (ζ = 1, γ = 0.25).

toward the boundaries. This results in the formation of a strong solute gradient toward the boundary,
which polarizes the suspension toward the nearest wall under the effect of chemical reorientation
(ξr > 0 here). This reorientation combined with self-propulsion reinforces the particles’ polariza-
tion, accumulation, and trapping near the boundary. The chemotactic behavior of the particles and
their response to rapid spatial changes in the local solute gradient direction results in a divergent
chemotactic flux and an additional local dip in the particle concentration profile near the channel
center line, as seen in Fig. 4.

C. Long-term dynamics

Depending on the background shear and confinement levels, the transient 1D state described
in the previous section may be unstable with respect to (slower) streamwise perturbations under
the effect of chemotactic clustering. In that case the evolution of the system toward its long-term
dynamics is driven by the chemotactic instability, and the typical duration of this evolution thus
scales as τc ∼ χrCref/U0β (see Sec. III A). The relevant characteristic scale for solute concentration
remains the one used for nondimensionalization Cref = HA+/ζDc.

The long-term dynamics broadly divides into two different types of regimes, depending on the
confinement level as summarized in the phase map of Fig. 5. For strong confinement (small channel
width, ζ > 1), the behavior of the system remains that observed in the transient dynamics, namely,
the confinement-induced particle accumulation near the wall. In that case the particle and solute
distributions are independent of both y and t (steady 1D regime).

In contrast, when the channel width is large enough (i.e., low confinement, ζ < 1), the long-term
solution is characterized by the formation of aggregates along each wall, breaking the y invariance

FIG. 5. Long-term dynamics of the chemotactic suspension for varying relative shear rate γ and degree of
confinement ζ = (ĤN̂R̂2)−1. Colors indicate the nature of the particle distribution: 1D (blue) and 2D (orange).
Different symbols are used for steady (square) and unsteady (triangle) regimes.
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FIG. 6. 1D boundary layer chemotactic destabilization: a small disturbance in the particle distribution
along the wall and the particles’ activity introduce a local increase in solute concentration (green) and a small
horizontal bias of the orientation of neighboring particles that start swimming toward and accumulating in this
solute-rich region.

of the solution, as a result of the chemotactic instability. In such regimes, the influence of the
walls is weaker, and the dynamics is thus more prominently driven by the intrinsic behavior of the
chemotactic suspension, as for unconfined suspensions [74,75]. The particle and solute distributions
are now fully 2D and can be steady or unsteady depending on the shear rate forcing.

These different regimes are presented and discussed in more detail in the following.

1. Weak confinement

For weak confinement, ζ < 1 (or in the absence of any confinement), the 1D transient state
observed at short time becomes unstable with respect to 2D (i.e., y-dependent) perturbations and
evolves into the formation of 2D particles’ aggregates. For confined suspensions, the 1D state
is characterized by much higher density of particles near the walls and a strong polarization of
these particles towards the wall, as discussed in the previous section. This has two important
consequences. First, the chemotactic instability and clustering develop preferentially within and
along this concentration boundary layer. Additionally, given the strong vertical chemical gradient of
the 1D state, small disturbances in the solute concentration significantly impact only the horizontal
concentration gradient and particle polarization. These two effects result in the 1D version of the
more general chemotactic instability reported for unconfined suspensions [72] as shown schemati-
cally in Fig. 6.

In the absence of external flows, the particles form aggregates at regularly spaced positions
along each wall, determined by the dominant wavelength of the chemotactic instability. Inside each
aggregate, particles remain mostly oriented toward the wall with a slight horizontal tilt towards the
center of the aggregate to which they belong. For sufficiently wide channels (weak confinement),
aggregates along each wall only weakly influence each other, yet they introduce a small bias in the
horizontal solute gradient seen by an aggregate located close to the opposite wall.

This cross-channel chemotactic influence is unable to overcome the strong wall polarization and
strong vertical solute gradients seen by the particles, but any offset of the aggregates on opposite
walls introduces a (very weak) horizontal bias given by |∇xCi| sin α, where α is the relative position
angle of the particle aggregates (Fig. 7). The horizontal bias coupled with self propulsion results in
horizontal particle migration (Fig. 7, bottom right) along the walls, until the aggregates are placed
symmetrically. This arrangement is an equilibrium position of the system in the long term in the
absence of external flows.

Externally imposed flows (and their gradient) transport both particles and solute in the stream-
wise direction. For a symmetric flow such as Poiseullie flow, the particle aggregates on each wall
are advected in the same direction resulting in a traveling wave solution at long times [43]. For the
present Couette flow configuration (homogeneous external shear), the aggregates on either walls are
transported in opposite directions, and this antisymmetric transport competes with the chemotactic
clustering described above. For relatively weak flow forcing (γ � u0), chemotaxis is strong enough
to maintain a steady offset equilibrium of the aggregates (Fig. 7): as the background forcing is
weaker than self-propulsion, the particles’ positions remain trapped until diffusion enables them to
escape. Consequently, aggregates are slightly offset horizontally (Fig. 7) with an horizontal offset
�x increasing linearly with the shear intensity (Fig. 9): the perturbation of the solute gradient
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FIG. 7. (Left) Long-term particle distribution for ζ = 1 and in the absence of external flow (top) and for
γ = 0.025 (bottom). (Right) Schematic representation of the opposite walls aggregates in the absence of
background flow (top) and for weak shear flow (bottom). The black arrows represent the local polarization
of the particles, white arrows show the direction of background advection, and the green arrow indicates the
direction of chemotactic bias (reorientation).

magnitude seen by a given aggregate due to the counterpart on the opposite wall is negligible,
and sin α ≈ �x

2H , resulting in a linear relationship between the chemotactic attraction and �x, and
thus with the convective transport by the background shear (Fig. 7).

When the shear rate becomes large enough, the horizontal offset of the aggregates becomes
significant, and the magnitude of the perturbed concentration gradient(∇xCi) responsible of their
attraction decays as O( 1

d2 ) (aggregates are net solute sources) where d = �x/ sin α is the total dis-
tance between the two aggregates. Beyond a critical horizontal separation (Fig. 9), the chemotactic
attractive effect is not sufficient to balance the convective forcing, resulting in a continuous relative
transport of the aggregates by the flow in the streamwise direction and an unsteady but periodic
dynamics (Fig. 8).

This periodic regime is, however, characterized by an asymmetric evolution of �x over one
period (Fig. 9, center), which can be understood by considering the relative direction of the
chemotactic and convective forcings seen by the different moving aggregates, over a given period
starting when aggregates from opposite walls are at their minimum distance [�x ≈ 0, Fig. 8(i)].
During the first half-period, cross-channel chemotactic effects compete with particle and solute

FIG. 8. (Left) Evolution of the particle density in time over a period of the relative motion of aggregates
on opposite walls for γ = 0.125 and ζ = 1. (Right) Corresponding schematic representation of the position of
the particles’ aggregates.
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FIG. 9. (Left) Evolution of the steady minimum offset between aggregates on opposite walls (�x/λ) with
the shear intensity (with λ representing the wavelength of the most unstable mode), in the limit of weak shear
and ζ = 1. (Center) Time evolution of �x(t )/λ for the unsteady regime at ζ = 1 and sufficiently large shear
forcing (γ = 0.125). (Right) Evolution with the shear rate intensity of the time period of the oscillations in the
relative positioning of aggregates on the opposite walls for ζ = 1.

transport by the shear flow until they are perfectly offset from each other [i.e., maximum �x,
Fig. 8(iii)]: this results, at least at first, in a slower relative motion of the aggregates in comparison
with a purely convective transport. In contrast, during the second half of the cycle, chemotactic
attraction by the closest opposite-wall aggregate takes some time to build up (due to the large
distance of the walls) and cannot significantly enhance the transport velocity, even though it is
acting now in the same direction as the convective forcing. This suggests that once the chemotactic
attraction is reversed [Fig. 8(ii)], the aggregates are merely advected in opposite directions by the
background shear flow, and the time taken to complete this second half of the period is identical to
that for two nonchemotactic aggregates. Overall the total period of the oscillation is greater than for
nonchemotactic aggregates as the chemotactic attraction resists advection in the first half, reducing
the separation velocity (Fig. 9). This increase is most significant for low shear rate, as expected
because chemotactic coupling is able to act longer (Fig. 9, right).

2. Strong confinement

For stronger confinement, i.e., when the channel width is comparable to or smaller than the
characteristic wave length of the chemotactic instability, the influence of the confining boundary on
the distribution of particles and solutes tends to suppress the onset of the chemotactic instability of
the 1D state observed at short times (Sec. III B).

This was already reported for other microswimmer systems in previous experimental [13,58]
and numerical studies [73,85], and even in macroscopic systems [86]. Its main origin is the relative
weakening of horizontal gradients of solutes in comparison with the strong vertical gradients.
Consequently, the particles maintain a strong vertical polarization and horizontal reorientation, and
polarization is more difficult and unlikely: the net relative horizontal displacement of the particles
is then negligible. As a result, for strong confinement, the long-term dynamics is invariant in y
(1D) and t (steady), as in the short term. The exact particle distribution of this 1D state depends
on the specific value of shear rate considered and may be significantly different from the transient
regime characteristics; yet all long-term regimes share features regardless of the shear rate intensity,
including the strong polarization and accumulation of both solute and particles near the wall. The
main characteristics of these 1D regimes are illustrated in Fig. 10 for weak and strong shear,
respectively.

For low shear rates, the long-term solution is in fact essentially identical to the transient solution,
being characterized by high particle density at the walls and a strong reduction of the particle
density near the channel centerline (see Sec. III B). This should be no surprise: for weak shear,
the flow forcing is negligible, and the dominant mechanisms leading to the self-organization of the
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FIG. 10. Particle distribution (left) and solute concentration (right) observed in the strongly confined
regime (ζ = 2) for low and high shear rates.

suspension are those intervening in the short-term (namely, the impermeable wall boundaries), since
the 2D chemotactic instability and clustering are suppressed.

In contrast, for strong shear rates, background vorticity dominates the orientation dynamics,
resulting in the tumbling of particles (the particles are spherical) in the bulk of the channel where
wall polarization effects are weaker. This reduces or prevents the reorientation of particles present
in the bulk in the direction of the closest wall under chemotactic effects and maintains a larger
concentration of the particles in the channel’s bulk (Fig. 10). As a direct consequence, and due to
the presence of this increased number of solute-producing particles, the chemical concentration is
also higher, further reducing the influence of chemotaxis toward the channel walls, flattening the
solute distribution profile at high shear rates in comparison to the V-shaped profile observed at low
shear values.

D. Linear stability of the 1D equilibrium: A minimal model

In order to gain insights into the emergence of the different regimes described above as a result of
the competition of confinement and shear with the chemotactic instability, we focus in this section on
a minimalist model based on a moment expansion of the probability density function. This model
includes qualitatively the main physical features of the problem, and we show that it is able to
capture at least qualitatively some of the complex suspension dynamics, such as the long-term state
for various shear rate and degree of confinement. It follows in that regard an approach already used
in existing works on active suspensions [43,55].

Its central idea is to reduce the description of the probability distribution to its first orientational
moments [75], namely, the particle density � (zeroth moment) and its local orientation n (first
moment). We refer readers to Appendix A for more details on the governing equations and
their derivation. Such models are often applied to nonchemotactic elongated swimmers, whose
interactions depend critically on the second moment of � [38,75]. In contrast, interactions among
spherical Janus particles and with the background flow can already be included in a model involving
only the zeroth (concentration) and first moments (orientation).

We noted that a full simulation of the system systematically predicted the emergence (at least
transiently) of a 1D y-invariant state for all the simulations performed for the range of degree of
confinement (ζ ) and shear rate (γ ) considered in this work. Depending on the relative importance
of confinement, shear, and chemotaxis, this invariance along the horizontal was either maintained at
long times or evolved toward steady/unsteady 2D regimes. We interpret this long-term evolution of
the system as the result of the stability/instability of the system’s steady 1D solution of the problem.
Formulation of the regime selection as a simple eigenvalue problem is one of the main goals of the
present reduced model for which the stability analysis can be carried out more easily.

With that objective in mind, we first seek a 1D equilibrium solution by marching a 1D version
of the reduced equations (A3)–(A5) and (22) [43]. The existence of such a symmetric 1D solution

014202-16



SELF-ORGANIZATION OF AUTOPHORETIC SUSPENSIONS …

FIG. 11. Comparisson between the 1D steady states obtained by solving 1D version of the reduced order
equations to the full simulation for ζ = 1 and γ = 1.5.

(Fig. 11) and its qualitative similarity with the 1D transient state of the full simulations (Fig. 4)
is a clear indication that the present reduced model is able to qualitatively capture strong wall
polarization and high particle density near the wall.

In a second step, the full (2D) reduced equations are linearized around that 1D steady state:

� = �0(z) + ε�1(y, z, t ),

n = n0(z) + εn1(y, z, t ),

C = C0(z) + εC1(y, z, t ),

(23)

where 0 and 1 subscripts refer to the steady 1D state and unsteady 2D perturbation, respectively.
Linearizing the governing equations at O(ε), and assuming a normal mode decomposition in (y, t )
for the perturbation fields �1, n1, and C1:

�1(y, z, t ) = �̃(z, k)eiky+σ t , n(y, z, t ) = ñ(z, k)eiky+σ t , C1(y, z, t ) = C̃(z, k)eiky+σ t · (24)

The linearized set of equations can be recast into an eigenvalue problem of the form

G[x0] · x̃ = σ x̃, (25)

where x̃ is a column vector containing the perturbation amplitudes, (�̃, ñy, ñz, C̃) with G[x0] a linear
operator that depends on the 1D base state. The real and imaginary parts of the eigenvalue σ , namely,
Re(σ ) and Im(σ ) are, respectively, the growth rate and frequency of the perturbation.

This eigenvalue problem is discretized using a Gauss-Lobatto grid with N + 1 points
(z(i) )1�i�N+1 across the channel width. The eigenvector x̃ is now

x̃ = [
�̃(z(1) ), . . . , �̃(N+1), ñ(1)

y , . . . , ñ(N+1)
y , ñ(1)

z , . . . , ñ(N+1)
z , C̃(1), . . . , C̃(N+1)

]
, (26)

and the discretized linear operator G is now obtained from pseudospectral differential operators
with modifications to include the boundary conditions corresponding to Eqs. (A3)–(A4). Following
Ref. [43], this eigenvalue problem [Eq. (25)] is solved numerically using MATLAB’s algorithm
based on the principle of minimized iterations [87]. Equation (25) is solved for discrete values of
0 � k � 2 with a discrete step size of 0.01; the maximum value of Re(σ ) is reported in Fig. 12.

Figure 12 (left) shows the variation of the growth rate of the least stable or most unstable mode
[i.e., that with largest growth rate, Re(σ )] as a function of shear rate (γ ) and confinement (ζ ).
The growth rate reduces with an increase of either background shear or degree of confinement,
demonstrating the stabilizing effect of both mechanisms, already observed on the full simulation.
Above the neutral curve, which corresponds to the parameters where the least stable mode is neutral
[Re(σ ) = 0], the 1D fixed point is therefore stable (all eigenmodes have negative growth rate) with
respect to 2D perturbations, an observation that is also consistent with the results of the full model
that predict a 1D steady long-term dynamics for the larger values of γ , ζ (strong confinement or
shear).

For lower shear and/or confinement, there exists at least one unstable mode whose frequency
Im(σ ) indicates the temporal nature of the dominant mode (oscillatory or monotoneous). Figure 12
(right) shows that Im(σ ) is nonzero, so that the dominant mode is oscillatory in nature. Furthermore,
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FIG. 12. (Left) Linear growth rate [Re(σ )] as a function of background shear and degree of confinement.
(Right) Frequency [Im(σ )] of the most unstable mode as a function of background shear and degree of
confinement. The black curve is the neutral stability curve separating the stable region from the unstable region.

Im(σ ) is positive and increases with shear, for the range of shear rate and confinement considered
here. This observation is consistent with the results of the full simulations (Sec. III C 1), which
noted the oscillatory effect introduced by an increasing shear, introduced by the periodic interaction
of chemotactic aggregates located along each boundary as they are advected in opposite directions
by the background shear. Indeed, the present minimalist model includes such background advection
[u · ∇x� in Eq. (A3)]. Note, however, that the full simulations predicted a steady 2D regime at low
shear rates, when the background shear is sufficiently weak for chemotaxis to be able to compensate
the advection of opposite-wall aggregates. This discrepancy is somewhat not surprising, as it occurs
in the low shear rate regime, which we do not expect the present model to be able to reproduce or
predict properly as one of the model’s key assumption lies in its neglecting of all other contributions
to the flow field than the background shear flow itself (see Appendix A). Finally, based on Re(σ ) and
Im(σ ) we plot a phase diagram similar to Fig. 5 as shown in Fig. 13. In Fig. 13 data points shown
by red squares have a positive growth rate for the most unstable eigenmode with nonzero frequency.
The most unstable eigenmode corresponds to asymmetric wall aggregates as shown in Fig. 14, and
therefore this region corresponds to 2D [Re(σ ) > 0] and unsteady [Im(σ ) > 0] long-term dynamics,
whereas, for data points marked with blue circles, the 1D fixed point is stable, and the long-term
solution is in a 1D steady state [despite Im(σ ) > 0 as the 1D fixed point is stable]. This phase

FIG. 13. Comparison of the phase plot obtained via the linear stability analysis (SA) with the phase plot
obtained using the full simulation (FS) Red squares represent unstable 1D state, and the blue circles represent
the stable 1D state.
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FIG. 14. (Left) Steady-state particle distribution and (right) real part of the eigenmodes of the particle
density and solute distribution corresponding to the most unstable mode.

diagram qualitatively resembles the phase diagram corresponding to the full simulations (Fig. 5).
As expected, the match is particularly good in the strong shear region (γ ∼ 2) where the reduced
order model correctly predicts the transition from the 2D unsteady state and 1D steady state at
ζ ∼ 0.8.

To summarize, the reduced order equations show existence of a y-independent equilibrium state
with strong particle and solute concentration at the walls. Streamwise perturbation of this 1D
fixed point shows that asymmetric eigenmodes with aggregate formation on either wall exist for
weak confinement. The imaginary part (representing the oscillation frequency) corresponding to the
unstable eigenmode is nonzero, leading to 2D unsteady dynamics in the long term below the neutral
stability curve (Fig. 12). The linear perturbation analysis reveals that the 1D fixed point is stable
for strong background shear and strong confinement, resulting in a 1D steady-state solution in the
long term in agreement with full simulation results. Thus, this simple model is able to qualitatively
capture complex self-organization dynamics with sufficient accuracy.

IV. RHEOLOGY OF ACTIVE SUSPENSION

In this section we analyze the rheological behavior of the phoretic suspension as a result of the
previously discussed self-organization. It is now well established that microswimmer suspensions,
through the microscopic mechanical forcing they exert on their surroundings, can profoundly
modify the macroscopic behavior of the fluid and in particular its rheology [41,88,89]. We begin
the analysis by defining an “effective” viscosity of the suspension, based on the tangential stress
exerted by the fluid and particles on the plate. The particles indeed modify the velocity field from a
pure Couette flow, and we thus analyze the flow patterns induced by the particles for the different
states discussed in Sec. III C. The flow organization results from multiple tightly linked factors, and
in order to gain a better physical insight, a simplified model retaining the dominant phenomena is
discussed in detail in Sec. IV C. Finally, the temporal variation of the effective viscosity for different
states and the effect and shear and strength of confinement on effective viscosity are presented.

A. Defining an effective viscosity

Viscosity is classically introduced as the ratio of the local stress and strain rate in Newtonian
fluids; however, when the fluid or suspension shows a non-Newtonian behavior, as for active
suspensions, such an approach can become more difficult because the relative magnitude of stress
and strain rate is expected to strongly depend upon the location considered.

Alternatively, the viscosity can also be defined based on classical global results on parallel
flows. This approach is commonly employed in effective viscosity measurements in Taylor-Couette
devices for passive and active suspensions alike [41,42,90]. This is also the point of view adopted for
dilute phoretic suspensions in pressure-driven flows in Ref. [43], where the definition of an effective
viscosity is based on the classical Poiseuille law relating the imposed pressure drop and flow rate
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within the channel. The advantage of such an approach is the particular relevance of pressure-driven
pipe flows for different industrial, microfluidic, or biomedical applications, but it overlooks the
intrinsic nonuniformity of the imposed shear rate in such parabolic flow configuration.

A similar approach is followed here for the simpler Couette-like flow configuration, where
an antisymmetric translation of the top and bottom boundaries results in a uniform shear stress
distribution for Newtonian fluids. The effective viscosity can then be the ratio of the force per unit
area required to maintain the imposed translation of the boundaries and of the imposed strain rate.
It is compared to the Newtonian viscosity of the solvent obtained in the absence of the particles.
More precisely, in the absence of particles, the force to apply on the plate is measured as F̂ = η̂γ̂ Âs,
where η̂ is the viscosity of the Newtonian fluid, γ̂ = ûw/Ĥ is the imposed shear rate, and Âs is the
surface area considered. For a microswimmer suspension, we extend this definition by defining the
suspension’s effective viscosity η̂e as η̂e = F̂/γ̂ Âs, with F̂ now computed in the presence of the
phoretic particles in terms of the total fluid stress tensor �̂ as

F̂ =
∫

Âs

n̂n · �̂ · t̂ n dÂs with �̂ = −q̂I + η̂[∇̂xû + (∇̂xû)T ] + Ŝ, (27)

where n̂n = −ez and t̂ n = ey are the normal and tangential vectors to the upper plate. It should
be noted here that the phoretic particles modify F̂ (and η̂e) both directly via their active stresses,
and indirectly via the viscous stresses exerted by the modified flow fields resulting from their self-
organization and cumulated forcing. The relative viscosity can then be defined as ηr = η̂e/η̂.

Substituting the total stress field in Eq. (27) and using the no penetration boundary condition at
the plate result in

F̂ =
∫

As

n̂n · �̂ · t̂ ndÂs =
∫

As

(
η̂
∂ ûy

∂ ẑ
+ n̂n · Ŝ · t̂ n

)
dÂs. (28)

As a result, the relative effective viscosity is given by

ηr = 1 + 1

As

∫
As

(
1

γ

∂ud,y

∂y
+ nn · S · tn

γ

)
dAs, (29)

where ud and γ are the disturbance velocity field and the shear rate, respectively. It is important
to note that in this formulation the effect of the finite size of the particles and the influence
of the resulting nondeformation stress are neglected. As a result, the effective viscosity of a
passive suspension is equal to that of the pure solvent, i.e., thereby neglecting Einstein’s viscosity
contribution to the suspension stress in this dilute limit [91].

It is also noteworthy yet expected that the modification of the relative viscosity tends to zero in
the limit where the imposed shear rate is large (in comparison with the diffusion of solute): as the
externally imposed shear rate increases, the relative influence of the particles’ active stress becomes
negligible, and the particles behave similarly to passive particles as confirmed experimentally
[41,42,76].

Its definition in Eq. (29) identifies clearly two contributions to the effective viscosity, namely,
the Newtonian solvent stress resulting from the flow induced by the particles and the active stress
exerted by the particles directly on the wall. In an effort to elucidate more precisely the effect of the
former, we first discuss the induced flow field generated for different shear forcing and confinement
in Sec. III C before considering the global evolution of the effective viscosity in Sec. IV D.

B. Induced flow

The particle-driven disturbance flow is significantly influenced by the particles’ self-organization,
and we discuss here the characteristics of these induced flows for the different types of suspension
dynamics observed at long times when varying confining and forcing conditions, as discussed
in Sec. III C. Stokes’ equations are instantaneous; furthermore, the solute’s relaxation is much
faster than that of the particles: as a result, the induced flow at a given time essentially depends
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FIG. 15. Streamlines of the induced flow for 2D steady state for γ = 0 (top) and γ = 0.0167 (bottom).

on the particles’ distribution at that specific time only. In the following, we therefore discuss
the induced flow field instantaneously, i.e., without considering the steady/unsteady nature of the
self-organization dynamics: in an unsteady regime, one expects to observe successively the different
induced flows generated by the successive particles’ organization in time.

For weak confinement, and depending on the flow forcing, the active suspension self-organizes
into regularly distributed wall aggregates along each wall, either moving or stationary as discussed
in Sec. III C 1. In the absence of a background flow, the aggregates are placed symmetrically with
particles oriented mainly toward the closest wall in response to the confinement-induced solute
gradient (Fig. 7). As a result the induced flow is also top-down and left-right symmetric and is
characterized by two pairs of counter-rotating vortices (Fig. 15), driven by the particles’ aggregates
with a dominant stagnation point flow toward the wall driven by the aggregates.

The introduction of a background shear breaks the symmetry in the particle organization and
transport (see Sec. III C 1). Consequently, the induced flow also loses such top-down and left-right
symmetries: for weak shear, the induced flow still consists of four vortices with one of the two
pairs of co-rotating vortices becoming dominant over the other one, which gradually disappears as
shear is further increased (Fig. 15). The rotation direction of the dominant and surviving vortex
pair strongly depends on the relative arrangement of the staggered vortices (Fig. 16). For instance,
if the top aggregate is displaced towards the right of the bottom aggregate, the counterclockwise
vortices in the first and third quadrant (1,3) are brought closer to and counteract each other, thus
forming a weaker pair, leaving the clockwise-rotating vortices of the second and fourth quadrant
(2,4) dominant. The reverse configuration is observed when the top aggregate is located slightly to
the left of the bottom one (Fig. 16). As shear is further increased and the suspension’s organization
becomes unsteady and periodic, the vortex arrangement can be understood similarly in terms of the
successive aggregates’ relative positions during a period by exploiting the instantaneous nature of
the Stokes problem. Such vortex flows are reminiscent of flows observed for bacterial suspensions
[58,92,93] and in other active systems [94]. A more detailed explanation of the induced flow is
discussed in the next subsection, in particular the link between local polarization, the direction of
the concentration gradient, and the induced flow.

Strong confinement stabilizes the chemotactic instability resulting in a 1D particle distribution
with high particle density near the channel walls as discussed in Sec. III C 2. The particles are
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(a)

(b)

(c)

(d)

FIG. 16. Evolution in time of particle density distribution and induced flow streamlines over a period of
the unsteady regime, (a) t = 0, (b) t ∼ T/4, (c) t ∼ T/2, and (d) t ∼ 3T/4 with γ = 0.125, ζ = 1.

strongly polarized toward the wall but can be slightly tilted by the imposed shear, resulting in a
net horizontal fluid forcing near the wall regions. Such 1D induced flow closely resembles induced
flow already reported in experimental and numerical studies on microswimmer suspensions as well
[56,58,73].

C. Simplified model for the induced flows

In an effort to provide a more intuitive insight into the role of particle distribution, local polar-
ization, and solute concentration gradient in the establishment of the induced flows, a qualitative
form of the fluid forcing induced by the particles is presented in this section. To this end, qualitative
observations are made on the numerical results for the parameter values and ranges considered here.

While the magnitude of the self-induced stresslet Ss is intrinsic and fixed for each particle, that
of the stresslet Se induced by external concentration gradients depends on the local concentration
gradient, Eq. (12). Therefore depending on the local solute distribution arrangement, each particle
will behave as either a net pusher or a net puller. The no-flux condition at the wall for the solute
concentration together with solute diffusion ensures that |∇xC| ∼ O(1) everywhere and at all times
(see Fig. 24 and Appendix B). For the specific values chosen here for ξt , ξr , and u0, the strength
of the pusher contribution is therefore almost twice that of the puller contribution, which is further
confirmed by noting the similarity in flow patterns (see Fig. 25 and Appendix B) obtained for the
full forcing or using solely the pusher contribution (i.e., ignoring the externally induced stresslet).
Note that such similarity is also observed throughout the simulation. This suggests that the phoretic
particles considered here behave as net pushers with modified stress intensities σm ∼ αs + αe

(σm < 0).
Furthermore, as a result of the relatively strong concentration gradients and chemotactic behavior

of the particles, the suspension is strongly polarized (i.e., |n| roughly close to 1; see Fig. 24), in
particular close to the wall where solute and particles accumulate: locally, most particles share
the same orientation, which is close to that of the local solute concentration gradient. As a first
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FIG. 17. (Left) Induced flow field for the 1D symmetric flow for a 1D steady-state regime with γ =
0.125, ζ = 1.33; inset shows the driving force due to active stress exerted by the particles.

approximation, it is therefore possible to consider that �(x, p, t ) ∼ �(x, t )δ[p − n(x, t )] with
n ≈ ∇xC/|∇xC|, which significantly simplifies the description of the suspension. In particular, the
average active stress field is now simply given by

〈S〉 =
∫

�

�(x, p)S(p) d p ≈ S(n)
∫

�

�(x, p) d p = σm�(x)

(
nn − I

2

)
. (30)

The fluid forcing is then

f = ∇x · 〈S〉 = S(n) · ∇x� + �[∇x · S(n)]. (31)

Both terms of Eq. (31) in fact roughly provide similar forcing throughout the domain (with different
magnitudes) as seen in Fig. 26, as a result, retaining one of the two terms of Eq. (31) with a corrected
amplitude (ν > 0 in this case based on Fig. 26 in Appendix B). Thus,

f = νS · ∇x� (32)

further simplifies the problem’s description and treatment without qualitatively changing the effect
of active forcing. The exact value of ν can be determined by taking the ratio of the two components;
we note, however, that the precise chosen value does not modify the conclusion qualitatively.

We now employ the relation to quantitatively understand the induced flow for 1D and 2D regimes.

1. 1D regime

As the particle density varies only in the vertical direction, the fluid forcing simplifies to

f = νσm

(
nn − I

2

)
· d�

dz
ez. (33)

We are particularly interested in the horizontal component of this forcing, namely,
fy = νσmnzny

d�
dz , as it is responsible for the emergence of the induced flow observed in Fig. 17;

the y-independent vertical forcing simply modifies the pressure distribution across the channel.
Here ν > 0 (see Fig. 26) and σm < 0, and emergence of horizontal forcing is therefore tightly
linked to horizontal polarization, away from the local (mostly vertical) solute gradient. Such a
tilt of the particles is caused by the background shear flow, which rotates the spherical particles
in the clockwise direction throughout the channel. In a steady regime, this hydrodynamic torque
is balanced by the chemotactic one that tends to bring the particles back to a vertical orientation;
the particles thus maintain a slight clockwise tilt, i.e., ny > 0 (ny < 0) in the upper (resp. lower)
half of the channel. In that region, the concentration gradient and particles’ vertical polarization are
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FIG. 18. Illustration of the fluid flow for 2D symmetric case. The white arrows show the direction of
horizontal fluid forcing, and the black arrow shows particle polarization. The fluid forcing changes direction at
a point t equidistant from the aggregates in the same wall due to a change in horizontal polarization.

directed toward the upper (resp. lower) wall, d�/dz, nz > 0 (resp. d�/dz, nz < 0) and σm < 0, so
that fy < 0 (resp. fy > 0) and the induced forcing acts against the background flow.

The flow forcing by the particles is maximum at the walls where a no-slip condition is enforced,
and thus results in a maximum magnitude of the induced flow field slightly away from the no-slip
walls (Fig. 17).

2. 2D regimes

We now turn to the 2D suspension dynamics and first consider the symmetric and steady flow
induced in the absence of any background flow as discussed in Sec. III C 1. The particles are
positively aligned along the solute gradient, which roughly follows the gradient ∇x� in particle
density. The particles are net pushers and exert an extensile forcing along their direction, i.e.,
toward and away from the aggregates. As the particle concentration increases toward the aggregates,
the forcing by each particle toward the accumulation region is counteracted by a stronger forcing
in the opposite direction by the particles located in front of it. As a result, the net flow forcing
by the particles is oriented against their polarization and away from the chemotactic aggregates.
Consequently, particles present on the right (left) of aggregate induce a flow in positive (negative)
y direction, leading to a pair of counter-rotating vortices oriented as illustrated on Fig. 18, and
by mass conservation, a vertical flow pumping toward each aggregate and recirculation into the
four-cell structure described in Sec. IV B.

The same arguments remain applicable for nonsymmetric chemotactic aggregates. The top-down
symmetry is now broken, resulting in an asymmetry of the horizontal forcing (Fig. 19). Considering,
for example, the configuration where the top aggregate is positioned on the right of its bottom
counterpart, particle horizontal polarization around the top aggregates is now weaker on the left,
where it is perturbed by the closer presence of the bottom aggregate, than on the right side,
resulting in a stronger forcing by the latter that drives the dominant clockwise vortex below. Similar
arguments can be followed to rationalize the dominance of a pair of counterclockwise vortices when
the top aggregate is located on the left of the bottom one.

FIG. 19. Schematic showing asymmetrical horizontal forcing, which leads to two vortices with the same
direction of rotation. Green arrows show the relative dominant flow forcing resulting in the two vortex flows
shown in green. The relative increase in the flow forcing is due to the orientation bias created due to the
presence of aggregate on the opposite wall.
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FIG. 20. Time evolution of effective viscosity (ηr = ηhydro + ηact) for 2D unsteady (top) state, 2D steady
state (center), and 1D steady state (bottom) for parametric values γ = 0.125, ζ = 1 (top), γ = 0.025,

ζ = 1( center), and γ = 2, ζ = 1.

D. Time evolution of the effective viscosity

Having understood the flow field forced by the particles in the different regimes, it is now possible
to consider the modified force exerted by the suspension on the moving plate and compute the
effective viscosity of the suspension in this Couette geometry as defined in Sec. IV A. The time evo-
lution of viscosity is directly related to the suspension’s self-organization, and its steady/unsteady
evolution is a clear reflection of the steady/unsteady nature of the particle distribution.

In all simulations, ηr = 1 initially in all cases (there is no net induced flow for an isotropic and
uniform suspension). A weak reduction of the effective viscosity is observed during the transient
1D state, but the decomposition of the suspension forcing on the plate into a hydrodynamic part (the
shear force resulting from both the imposed and induced flows) and an active part (stress exerted
directly by the particles on the plate) shows that both effects are of appreciable amplitude and act
in opposite directions, with the hydrodynamic and active contributions respectively enhancing and
reducing the total force to apply on the plate and the effective viscosity. The former is the result of
the induced flow counteracting the background shear flow resulting from the rightward motion of
the plate, thus enhancing the velocity gradient at the wall and resulting shear force. The direct active
force exerted by the particles on the top wall can be written as fw = nn · S · tn ≈ −σmnynz�, with
nn = −ez and tn = ey the unit normal and tangent vectors at the wall. Here σm < 0 and nynz > 0 at
both walls as discussed previously, resulting in a net force pushing the plate in the flow direction,
thus reducing the effective viscosity. As the 1D transition state is stable for strong confinement, the
viscosity remains at a constant value throughout the simulation (Fig. 20). This corresponds to the

FIG. 21. 〈ud〉y (average disturbance velocity profile) for the 2D particle distribution with top aggregate
displaced right (left) of bottom aggregate and (right) top aggregate displaced to the left of bottom aggregate for
γ = 0.125, ζ = 1 (unsteady regime).
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FIG. 22. Net flow (averaged along the flow direction) compared to the imposed flow for (left) shear rates
0.125 (unsteady regime) and (right) 0.025 (steady regime) and ζ = 1 at viscosity minima for the 2D unsteady
state.

region marked with yellow boundaries in Fig. 23 (right) and the plateau region in Fig. 23 (left),
which corresponds to high shear.

For weak confinement and strong shear forcing, the long-term suspension’s response and effec-
tive viscosity are unsteady but periodic (Fig. 20). The oscillation of viscosity can be understood
as the result of the changing directions of rotation of the vortex cells identified in the unsteady
2D regime (see Sec. III C 1). When the top aggregate is located to the right of the bottom one,
a system of clockwise vortices is generated that tends to entrain the top plate in its direction of
motion, thus reducing the velocity gradient (Fig. 21) and shear stress at the wall, or reducing the
effective viscosity. Instead, the emergence of a counter-rotating vortex system entrains the plate in
the opposite direction, thus enhancing the viscous shear stress (Fig. 21) and effective viscosity at
the wall.

For weak shear rates (γ � u0), the suspension’s dynamics is steady, with chemotactic aggregates
on the top wall shifted to the right (see Sec. III C 1), resulting in a clockwise dominant vortex system
that is observed which reduces the shear gradient at the walls (Fig. 22). Consequently, reduction, in
fact reversal, of the hydrodynamic forcing on the plate leads to a net negative viscosity (Fig. 20).
This regime corresponds to maximum viscosity reduction due to (1) clockwise-rotating vortices and
(2) low shear, which enhances the relative contribution of active stress. This regime is represented
with the orange boundary in Fig. 23.

FIG. 23. (Left) Variation of effective viscosity with respect to background shear rate for different degrees
of confinement (ζ ). (Right) Long-term effective viscosity (ηr ) on shear rate (γ ) confinement space (ζ ).
The range of the color axis is modified such that the effective viscosity below −1 is all colored identically
as the data points are highly skewed for weak shear rates and weak confinement. Rough boundaries are drawn
for the different long-term regimes for respective shear rate and strength of confinement. Golden boundary
indicates long-term 1D steady state, orange boundary indicates long-term 2D steady state, and brown boundary
indicates long-term 2D unsteady state.
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V. CONCLUSIONS

Based on a kinetic model, this work analyzed numerically and theoretically the self-organization
dynamics of a 2D dilute suspension of autophoretic particles under the dual forcing of confinement
and of a background shear (Couette flow). In comparison with earlier studies [43], this setup allows a
more precise investigation of the relative and coupled effects of shear and confinement by releasing
the correlation of strong shear and strong confinement present in pressure-driven flows. The results
presented here further investigate the whole range of confinement intensities to bridge the gap
between confinement-driven dynamics and the spontaneous bulk one. The dynamic response of the
suspension provides some important qualitative and quantitative insights on the rheological behavior
of such chemotactic active suspensions.

Starting from a perturbed uniform and isotropic distribution of Janus phoretic particles within
the channel, a rapid development of a 1D (cross-channel) distribution is a common feature for
the range of confinement and shear rate intensities considered in this work, and results from the
swimming particles’ accumulation in the immediate vicinity of the bounding walls. At longer times,
its persistence depends on the competition of this effective wall attraction with chemotaxis. For
sufficiently strong confinement, this 1D steady state remains stable to streamwise perturbations and
thus is observed at large times for small channel widths. However, when the bounding walls are
too far apart, streamwise perturbations destabilize this 1D regime as a result of the chemotactic
instability [72], which results in the formation of particle aggregates on the walls. These aggregates
are transported by the background flow in opposite directions along each wall. When the shear rate is
low enough, the chemotactic attraction of opposite-wall aggregates is sufficient to maintain a steady
2D regime with offset positions of the particle clusters across the channel. Beyond a critical shear
rate, chemotaxis attraction cannot compete with particle and solute transport by the flow, resulting
in a periodic 2D dynamics of the system, which is asymmetric in time as a result of the retarded
chemotaxis response. A simple reduced model based on the particle density and polarization is
proposed and shown to be sufficient to capture the flow forcing and the induced flow qualitatively.

In a second step, the hydrodynamic forcing exerted by the particles on the surrounding flow is
computed to analyze the dynamical response and resistance exerted by the suspension on the moving
walls, providing insight into the effective viscosity (i.e., force response to a given shear rate). The
modification from the solvent viscosity is twofold, resulting both from the active stresses exerted by
the particles which modify the velocity gradients (and shear force) at the walls and from the direct
forcing exerted by the particles on the walls.

In agreement with now-classical rheological behavior of bacterial suspensions [41,42], this work
shows that the modification in effective viscosity is largest for weak background shear: active
stresses are then relatively stronger. In contrast for large imposed shear rates, the background forcing
dominates the flow dynamics and forces, and particle dynamics are essentially similar to that of
passive colloids. Consequently, the suspension maintains a Newtonian behavior at larger shear rates
(Fig. 23, left).

For low shear rates, the self-organization of the confined suspension is directly responsible for
the complex non-Newtonian behavior of the suspension and is characterized by significant reduction
in the effective viscosity as a result of the active forcing of the particle. This forcing results from the
competing surface-driven flows generated by the particles in response to their chemical activity and
the phoretic forcing of the suspension’s solute distribution.

The sensitivity of the particle distribution to the relative effects of convection and background
shear and the dual response of the particles to hydrodynamic and chemical forcing open the
possibility to influence the suspension’s rheological properties indirectly. The self-organization of a
dual-response suspension has indeed already been reported for other systems using magnetic [95],
electric [96], chemical [97], or optical [98,99] forcing. A similar control of the suspension would
open some particularly interesting routes for application and should be investigated in future studies.
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APPENDIX A: REDUCED ORDER EQUATIONS

We outline here the derivation of the reduced order equations, which closely follows that in
Ref. [43] to which the reader is referred to for more details.

The p-dependance of the probability density function � can be decomposed onto spherical
harmonics of successive orders, thereby decomposing � as an infinite sum of orientation moments
[75]. Each moment corresponds to a physical quantity and contributes to the characterization of the
variability in particle orientation. For instance, the zeroth-order moment corresponds to the local
particle density �, the first-order moment to the local average orientation or polarization of particles
n, the second-order moment to the nematic order, and so on. This expansion is truncated here after
the first two moments, resulting in

�(x, p, t ) = 1

2π
�(x, t ) + 1

π
p · n(x, t ). (A1)

Taking successive moments of the Smoluchowski equation (3) with respect to p provides the
equations of evolution for the particle concentration and polarization. Note that classically a closure
relationship is needed as directional self-propulsion introduces a forcing of each moment by higher
order ones; following Ref. [43] the nematic ordering is thus represented as

Q(x, t ) =
〈

pp − I
2

〉
≈ �I

2
. (A2)

As the dynamics of the suspension can be qualitatively understood without including the effect of
the induced flows on the particles’ transport, we further disregard such contributions so that the
flow field used in the evaluation of the particles’ transport is simply the background shear flow. This
essentially decouples the Stokes equations from the particle distribution dynamics and results in the
following evolution equations for � and n:

∂�

∂t
+ u · ∇x� = −u0∇x · n − ξt

ζ

[∇xC · ∇x� + �∇2
x C

] + dx∇2
x �, (A3)

∂n
∂t

+ u · ∇xn = −u0

2
∇x� − ξt

ζ

[∇xC · (∇xn)T + n∇2
x C

] + ξr�∇xC

2ρζ
+ dx∇x · (∇xn)T

− dpn + γ

2
n · (ezey − eyez ). (A4)

In Eq. (A3) the successive terms on the right-hand side correspond to self-propulsion, phoretic drift,
and translational diffusion of the particles, respectively, while in Eq. (A4) the successive forcing
terms can be identified as self-propulsion, phoretic drift, chemotaxis, translational and rotational
diffusions, and reorientation by the background vorticity, respectively.
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FIG. 24. Time evolution of spatial mean polarization magnitude and maximum |∇xC| for the weak con-
finement case. The plateau region corresponds to the 1D transient state, and the long-term periodic behavior
corresponds to the long-term unsteady 2D state. The plots are for γ = 0.125, ζ = 1.

The boundary conditions are evaluated similarly from Eq. (18) as

u0nz = dx
∂�

∂z
,

∂ny

∂z
= 0, u0� = dx

∂nz

∂z
at z = ±1. (A5)

The solute concentration evolution equation and corresponding boundary conditions remain un-
changed [Eq. (22)].

APPENDIX B: SIMPLIFICATION OF THE FLUID FORCING

In this Appendix we revisit and justify the assumptions made in Sec. IV C to simplify the flow
forcing.

First, we approximate that the particles in the system are locally aligned completely. This
assumption is supported by the observation that the spatial mean in particle polarization (〈|n|〉)
is close to 1, as depicted in Fig. 24. This suggests that the pusher (Ss) and puller contribution (Se)
directly compete, resulting in the particle behaving as a net pusher/puller. We approximate the net
behavior of the particles as pushers based on the maximum strength of the concentration gradient,
which remains of O(1) (as shown in Fig. 24), suggesting that the pusher contribution is the dominant
contribution. As a result, the fluid forcing can be approximated as a product of local particle density
and the pusher contribution Ss in Eq. (30).

The approximation of pusher behavior for each particle is further validated by observing the
close similarity in the induced flows by including both the contributions (top) and only the pusher
contribution (bottom) in Fig. 25. The background contour plot in Fig. 25 shows the domain’s particle
density distribution (�).

The next simplification is based on the observation that the two contributions in Eq. (31) act
in the same direction as shown in Fig. 26. Consequently, only one term with corrected amplitude

FIG. 25. Comparison between disturbance velocity field (top) total active stress and (bottom) only the
pusher signature of active stress for γ = 0.125, ζ = 1, t = 1325. The color bar represents the particle density
in the domain.

014202-29



PRATHMESH VINZE AND SEBASTIEN MICHELIN

FIG. 26. Horizontal and vertical fluid forcing for the two terms of Eq. (31) for γ = 0.125, ζ = 1, t =
1500. The forcing field is shown on equally spaced grid points instead of the Chebyshev-Fourier grid so that the
regions of strong forcing (very close to the walls) are visible. Both effects have the same pattern of contribution
to the driving force.

is retained in Eq. (31), which correctly describes the induced flow based on particle density (�),
polarization (n), and the sign of stress intensity (σm). Figure 26 further illustrates that the forcing
effect is negligible in the bulk region and predominantly influences the flow near the walls. To
emphasize this behavior, the figure is presented in a Chebyshev-Fourier space instead of physical
space, enabling a clearer visualization of the strong forcing in close proximity to the walls.

[1] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao, and R. A. Simha,
Hydrodynamics of soft active matter, Rev. Mod. Phys. 85, 1143 (2013).

[2] S. Ramaswamy, The mechanics and statistics of active matter, Annu. Rev. Condens. Matter Phys. 1, 323
(2010).

[3] R. W. Carlsen and M. Sitti, Bio-hybrid cell-based actuators for microsystems, Small 10, 3831 (2014).
[4] W. Gao and J. Wang, Synthetic micro/nanomotors in drug delivery, Nanoscale 6, 10486 (2014).
[5] B. J. Nelson, I. K. Kaliakatsos, and J. J. Abbott, Microrobots for minimally invasive medicine, Annu. Rev.

Biomed. Eng. 12, 55 (2010).
[6] N. H. Mendelson, A. Bourque, K. Wilkening, K. R. Anderson, and J. C. Watkins, Organized cell

swimming motions in Bacillus subtilis colonies: Patterns of short-lived whirls and jets, J. Bacteriol. 181,
600 (1999).

[7] T. J. Pedley and J. O. Kessler, Bioconvection, Sci. Progress (1933–) 76, 105 (1992).
[8] F. Ginelli, F. Peruani, M.-H. Pillot, H. Chaté, G. Theraulaz, and R. Bon, Intermittent collective dynamics

emerge from conflicting imperatives in sheep herds, Proc. Natl. Acad. Sci. USA 112, 12729 (2015).
[9] B. L. Partridge, The structure and function of fish schools, Sci. Am. 246, 114 (1982).

[10] L. M. Aplin, D. R. Farine, R. P. Mann, and B. C. Sheldon, Individual-level personality influences social
foraging and collective behaviour in wild birds, Proc. R. Soc. B 281, 20141016 (2014).

[11] R. Golestanian, T. B. Liverpool, and A. Ajdari, Designing phoretic micro-and nano-swimmers, New J.
Phys. 9, 126 (2007).

014202-30

https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1146/annurev-conmatphys-070909-104101
https://doi.org/10.1002/smll.201400384
https://doi.org/10.1039/C4NR03124E
https://doi.org/10.1146/annurev-bioeng-010510-103409
https://doi.org/10.1128/JB.181.2.600-609.1999
https://doi.org/10.1073/pnas.1503749112
https://doi.org/10.1038/scientificamerican0682-114
https://doi.org/10.1098/rspb.2014.1016
https://doi.org/10.1088/1367-2630/9/5/126


SELF-ORGANIZATION OF AUTOPHORETIC SUSPENSIONS …

[12] S. Michelin, Self-propulsion of chemically active droplets, Annu. Rev. Fluid Mech. 55, 77 (2023).
[13] A. Bricard, J.-B. Caussin, N. Desreumaux, O. Dauchot, and D. Bartolo, Emergence of macroscopic

directed motion in populations of motile colloids, Nature (London) 503, 95 (2013).
[14] E. M. Purcell, Life at low Reynolds number, Am. J. Phys. 45, 3 (1977).
[15] E. Lauga and T. R. Powers, The hydrodynamics of swimming microorganisms, Rep. Prog. Phys. 72,

096601 (2009).
[16] A. Babataheri, M. Roper, M. Fermigier, and O. Du Roure, Tethered fleximags as artificial cilia, J. Fluid

Mech. 678, 5 (2011).
[17] R. Dreyfus, J. Baudry, M. L. Roper, M. Fermigier, H. A. Stone, and J. Bibette, Microscopic artificial

swimmers, Nature (London) 437, 862 (2005).
[18] J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, and R. Golestanian, Self-motile

colloidal particles: From directed propulsion to random walk, Phys. Rev. Lett. 99, 048102 (2007).
[19] J. L. Moran and J. D. Posner, Phoretic self-propulsion, Annu. Rev. Fluid Mech. 49, 511 (2017).
[20] J. L. Anderson, Colloid transport by interfacial forces, Annu. Rev. Fluid Mech. 21, 61 (1989).
[21] A. Sokolov and I. S. Aranson, Reduction of viscosity in suspension of swimming bacteria, Phys. Rev.

Lett. 103, 148101 (2009).
[22] C. Dombrowski, L. Cisneros, S. Chatkaew, R E. Goldstein, and J. O. Kessler, Self-concentration and

large-scale coherence in bacterial dynamics, Phys. Rev. Lett. 93, 098103 (2004).
[23] J. Dunkel, S. Heidenreich, K. Drescher, H. H. Wensink, M. Bär, and R. E. Goldstein, Fluid dynamics of

bacterial turbulence, Phys. Rev. Lett. 110, 228102 (2013).
[24] R. Alert, J. Casademunt, and J.-F. Joanny, Active turbulence, Annu. Rev. Condens. Matter Phys. 13, 143

(2022).
[25] M. J. Kim and K. S. Breuer, Enhanced diffusion due to motile bacteria, Phys. Fluids 16, L78 (2004).
[26] K. C. Leptos, J. S. Guasto, J. P. Gollub, A. I. Pesci, and R. E. Goldstein, Dynamics of enhanced tracer

diffusion in suspensions of swimming eukaryotic microorganisms, Phys. Rev. Lett. 103, 198103 (2009).
[27] J. Adler, Chemotaxis in bacteria, Annu. Rev. Biochem. 44, 341 (1975).
[28] B. Petri and M. J. Sanz, Neutrophil chemotaxis, Cell Tissue Res. 371, 425 (2018).
[29] M. Eisenbach, Sperm chemotaxis, Rev. Reprod. 4, 56 (1999).
[30] V. Sourjik and N. S. Wingreen, Responding to chemical gradients: Bacterial chemotaxis, Curr. Opin. Cell

Biol. 24, 262 (2012).
[31] E. Kanso and S. Michelin, Phoretic and hydrodynamic interactions of weakly confined autophoretic

particles, J. Chem. Phys. 150, 044902 (2019).
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