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We provide comprehensive numerical insights into the displacement of droplets subject
to soluble surfactant-driven flows. The effects of soluble surfactants on the dynamics of
moving contact lines are introduced by the surfactant-dependent generalized Navier bound-
ary condition. We show that surfactant transport significantly influences the displacement
patterns of droplets on solid surfaces, affecting both the equilibrium state of the sliding
motion and the critical conditions for detachment. In particular, a linear increase in the
displacement velocity of a droplet with the dimensionless adsorption depth K is observed.
This rate of increase is more pronounced at higher elasticity numbers, as evidenced by
a more significant increase in the advancing contact angle. The critical condition for
droplet detachment depends on the surfactant’s ability to swiftly adsorb from the bulk
and replenish at interfaces, which is improved as the Biot number Bi or K increases.
Adsorption is enhanced by an increase in Bi, resulting in a decrease in the required time td

for droplet detachment. However, this enhancement effect becomes nonmonotonic at high
Bi values. In contrast, consistently increasing the bulk Peclet number decreases td , even-
tually approaching the convection limit where the Marangoni-induced drag force ceases
to increase. In addition, surfactant transfer near the moving contact line at a moderate
Damköhler number restricts the motion of the advancing contact lines, promoting droplet
detachment. For all detachment scenarios, we find that detachment necessitates a critical
effective capillary number, and an increase in this number results in an exponential decline
in td .

DOI: 10.1103/PhysRevFluids.9.014002

I. INTRODUCTION

Droplet displacement on solid surfaces by another continuous fluid is a ubiquitous phenomenon
observed in a wide range of applications such as coating [1], detergency [2], oil recovery [3],
aircraft anti-icing [4], and water management in fuel cells [5]. The dynamics of the moving
droplet, which may enter a steady sliding state and either partially or completely detach from
the surface, is influenced by several factors. These include the applied external forces [6,7], the
interfacial properties [8,9], the contact-line dynamics [10,11], and the properties of the surrounding
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fluid [12]. In these multiphase systems, where droplets are immersed in a liquid, surfactants are
often added at the phase interface to drastically change the droplet dynamics, either in the bulk
phases or in the droplets. These additives are often adsorbed at the phase interfaces and can
profoundly affect the interfacial flow with moving contact lines (MCLs), making it difficult to
predict the behavior of this complex multiphase system. The critical challenge is to accurately
predict how the presence of surfactant affects droplet dynamics, with a quantitative account
on surfactant adsorption−desorption kinetics, contact-line dynamics, and the fluid properties of
the surfactant solutions. This detailed study would be very advantageous for understanding the
role of surfactant in regulating interfacial flow and the mechanisms of surfactant-assisted droplet
displacement.

Numerous experimental and theoretical studies have aimed to characterize the wetting dynamics
of droplets containing surfactant solutions on different solid surfaces [13–15]. It has been observed
that surfactants can dramatically change the kinetics of wetting and spreading, which depends on
the surfactant transport and its effect on the surface tension and contact-line dynamics. In addition
to the self-assembly of surfactant at the interphase interface, possible factors contributing to this
mechanism include nonuniform surfactant distribution, Marangoni flow, and surfactant transfer
through the MCLs, which play different roles in the dynamic wetting of individual droplets. Consid-
erable experimental progress has been made in modeling MCLs in surfactant solution with moving
deformable interfaces and providing reliable parameters for the model. However, certain aspects
remain unexplored, including (i) the interplay between external field flow and soluble surfactant
transport, which determines the flow- and time-dependent surface tension; (ii) the influence of the
adsorption-desorption kinetics on the MCLs; (iii) the systematic investigation of droplet motion,
deformation, and detachment and breakup. In particular, to account for the time and length scales
of adsorption-desorption and convective-diffusive mass transfer in real experiments, it remains very
challenging to obtain precise measurements of surface surfactant concentration, dynamic surface
tension, and flow fields during the droplet displacement process. Numerical simulations can provide
a closer look at the displacement process adjacent to the moving droplet and give further insight
into how flow and surfactant-related parameters influence droplet dynamics on solid surfaces,
which contributes to the understanding of the displacement mechanism, but the problem is very
complicated to model.

To tackle the aforementioned challenges, available two-phase models have been made enabling
the modeling of surfactant-laden flows with moving deformable interfaces. The efficient and accu-
rate computational modeling of MCL dynamics with soluble surfactants still is a challenging task.
In addition to the interface tracking and capturing for two-phase models, two key issues must be
addressed, including the modeling of soluble surfactant transport and how it is incorporated into the
MCLs [10]. Numerically, surfactants, owing to their small size, are usually represented by a contin-
uous concentration field [16,17]. Typically, for the soluble case, two separate surfactant evolution
equations must be solved together with the hydrodynamic equations at deforming interfaces and in
the soluble phase [18]. To converse the surfactant mass, the surfactant evolution equations are cou-
pled via a boundary condition involving adsorption and desorption kinetics. This complicated and
nonlinear interaction with the flow field presents an additional numerical challenge. Consequently,
a higher order scheme must be used in the spatial derivatives to obtain smooth solutions of the bulk
concentration without any excessive oscillations near the interface for two-phase flows with large
solubility ratios. Two-phase models for describing surfactant transport can be broadly categorized
into two types based on the representation of the interface: front tracking (sharp interface) methods
and front capturing (diffuse interface) methods. To compute surface gradients along the interface
in a fixed Eulerian mesh, front capturing methods, such as volume of fluid (VOF) [19,20], level-set
(LS) method [21,22], and phase-field method [23], generally extrapolate the concentration from the
interface to the entire domain in the normal direction. From both the numerical and application
points of view, these methods have the advantages of handling topological changes and using the
same grid set to solve both the surfactant concentration evolution equations and the hydrodynamic
equations. In particular, achieving surfactant mass conservation and the interface condition for the
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surfactant evolution equation remain a challenge [24]. Several front tracking methods have been
proposed for modeling surfactants, including the immersed boundary method [25], the front tracking
method [26,27], and the boundary integral method [28]. Tracking a moving Lagrangian interface
explicitly is recognized for its accurate mass conservation. Consequently, this type of method has
a unique advantage for modeling interfacial mass transport, as the connectivity information of the
neighboring element is tracked as the Lagrangian interface moves. A surfactant evolution equation
can be directly discretized since interface connectivity can be effectively used to calculate the
surface gradient term. A conservative scheme is necessary to maintain conservation of the total
mass of surfactant at the deformed interface as it undergoes topological changes, i.e., breakup
and coalescence [23,29]. Recently, a simple and robust topology changing algorithm has been
presented in three dimensions in conjunction with the front tracking method [30]. This controllable
algorithm in handling the topology changing process brings an advantage in simulating droplet
dynamics with interphase interactions, which can explicitly impose the interface condition for
mass exchange and complex interfacial mechanics, compared to other numerical methods such as
the VOF and LS methods. However, for the more relevant case of soluble surfactants, there are
still difficulties, particularly in describing the surfactant dynamics in the vicinity of the contact
line.

When a droplet is displaced on a solid surface, the contact angle should vary dynami-
cally with the surfactant transport [23]. A physical description of MCLs is complicated and
remains only partially understood. From the numerical point of view, the complexity of contact-
line dynamics makes the simulations very delicate. For instance, an infinite viscous dissipation
with standard no-slip conditions induces the shear stress singularity at a moving contact line.
This singularity has been mitigated by employing a slip boundary condition, e.g., the Naiver
slip condition, or contact-line models [10]. In particular, these boundaries or semiempirical
models straightforwardly impose the velocity or contact angle conditions associated with the
initial interface configuration. Typically, these semiempirical models cannot be easily extended
for surfactants without experimental data. A generalized Naiver boundary condition (GNBC)
[31] is proposed as a complement to the Naiver slip boundary to describe the contact-line
dynamics. It directly relates the slippage-induced friction on the solid surface to the slip ve-
locity via a friction coefficient that controls the total amount of dissipation. This condition
includes an uncompensated interfacial stress arising from a deviation from the equilibrium state,
which can be influenced by the surfactant concentration via the Langmuir equation of state.
To the authors’ knowledge, only a handful numerical studies have been reported for inter-
facial flow with surfactants and MCLs [23,32]. However, most of these studies have either
not considered the effect of the surfactant on the dynamics of MCLs or are one-way cou-
pled to the external field. The integration of the surfactant-dependent condition for MCLs with
efficient algorithms for handling topological changes makes front tracking methods a straight-
forward and intuitive approach for accurately modeling soluble surfactant-driven flows with
MCLs.

In this paper, we extend our previous numerical scheme of the front tracking–finite-difference
method to include soluble surfactants with MCLs. We use a front tracking method to explicitly track
the deformed interface and the MCLs. The dynamics of the MCLs is resolved by the GNBC, leading
to a slip velocity as a boundary condition at the solid surface to close the governing equations. We
introduce the surfactant evolution equations for soluble surfactants in the bulk and at a deforming
droplet interface. The surfactant exchange between the interface and the bulk occurs within a narrow
adsorption layer adjacent to the interface and is modeled by a Langmuir adsorption-desorption
kinetics. The surfactant adsorbed at the interface is distributed over the adsorption layer, causing
the interfacial terms in the body force and GNBC to vary dynamically with the local surfactant
concentration. In Sec. II, we outline the numerical methodology and validate the approach. The
effects of the soluble surfactant on the deformation, motion, and detachment of the droplet on
a solid surface are discussed in Sec. III. Finally, conclusions of the present work are drawn in
Sec. IV.
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FIG. 1. (a) Schematic illustration of a liquid droplet adhering to a solid surface in a parabolic flow of
surfactant solution of concentration C. The surface surfactant concentrations � due to the adsorption are shown
in (b) and (c), respectively.

II. NUMERICAL METHODOLOGY

A. GNBC-based front tracking method

We introduce a surfactant-dependent contact-line model into the front tracking–finite-difference
method to track the deformed droplet with moving contact lines (Fig. 1). A “one-fluid” formulation
is used for the governing equations of two-phase flow. This approach employs a single set of
equations to govern the entire computational domain with different material properties in each
phase, and the surface tension term is included as a body force distributed in the region near the
interface. The fluids inside and outside the droplet are incompressible, immiscible, and Newtonian,
and both are governed by mass continuity and the Navier-Stokes equations,

∇ · u = 0, (1)

∂ (ρu)

∂t
+ ∇ · (ρuu) = −∇p + ∇ · μ(∇u + ∇uT ) +

∫
S
(∇sσ − 2σκn)δ(x − x f )ds. (2)

Here, u = (u, v,w)T is the velocity vector; t is the time; p is the pressure; and μ and ρ are the
discontinuous viscosity and density, respectively. The last term in Eq. (2) represents the body force
resulting from the interfacial tension force and the Marangoni stress in the presence of surfactants.
Here, κ is the mean curvature, n is the outer unit vector normal to the interface, σ denotes the
surface tension coefficient dependent on the local surfactant concentration, and s is the interface
area. S represents the droplet surface. δ is a delta function with a nonzero value where x = x f

wherein x f and x denote the points at the interface and in the surrounding fluid, respectively. ∇s =
(I − nnT ) · ∇ is the surface gradient operator, where I is the identity tensor.
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An indicator function I, which is zero in one phase and one in the other, is used to define fluid
properties such as density and viscosity of the fluid on either side of the interface,

ρ = ρs + (ρd − ρs)I, μ = μs + (μd − μs)I, (3)

where ρd and μd are the density and viscosity of the droplet, respectively, and μs and ρs are
the viscosity and density of the surfactant solution, respectively. The indicator function can be
constructed by solving a Poisson equation related to the interface normal. A nonlinear equation
of state is used to describe the relationship between the surfactant concentration and the surface
tension,

σ = max

{
σc + RgT �∞ ln

(
1 − �

�∞

)
, σmin

}
, (4)

where σc is the surface tension coefficient of the clean surface, Rg is the ideal gas constant, T is the
absolute temperature, �∞ is the maximum packing concentration, and σmin is the interfacial tension
after reaching the critical micelle concentration, i.e., �/�∞ ≈ 1. Following the previous studies
[27], we simply set σmin = 0.05σc to avoid negative values of the surface tension.

The contact-line dynamics is modeled by imposing a slip velocity according to the GNBC [31],
where the slip velocity ucl is proportional to the viscous shear stress τ vis on the solid surface and the
unbalanced Young’s stress τYoung near the contact line:

βucl = τ vis + τYoung. (5)

Here, β is the friction coefficient of fluid at the solid surface. In the present study, β is taken as
a constant without accounting for the variations in fluid properties across the contact line. As we
explicitly track the interface, it is relatively straightforward to calculate the unbalanced Young’s
stress, which depends on the surface tension and dynamic contact angles. We follow a similar
procedure to implement the unbalanced Young’s stress using a delta function, as used in the front
tracking method, but for the two-dimensional case at the contact-line surface [33]. A slip velocity
including the contact angle condition can be obtained and then used as a boundary condition to solve
the governing equations (1) and (2). Ignoring the adsorption of the surfactant on the solid surface
and the effect of surfactant on the equilibrium contact angle, the unbalanced Young’s stress can be
rewritten as

τYoung =
∫

L
ncl(σc cos θeq − σ cos θd )δ(x − xcl )dl. (6)

Here, θeq and θd are the equilibrium and dynamic contact angles, respectively, dl is the length of
a short segment of the contact line. ncl is the unit outer normal of the two-dimensional contact line,
and xcl is the point on the contact line. Once the governing equation for the flow field is solved on
the Eulerian mesh, the interface including the contact line is advanced by the following equations:

dx f

dt
= u f , (7)

where the interface velocity u f is interpolated from the Eulerian velocity, except at the contact lines
where its velocity is calculated directly using Eq. (5).

Surfactants are only soluble in the bulk fluid and can be adsorbed or desorbed at the droplet
interface. Surfactant concentration at the deforming interface is governed by the time-dependent
convection-diffusion equation:

∂�

∂t
+ ∇s · (�us) + �(∇s · n)(u · n) = Ds∇2

s � + S�, (8)

where Ds is the surface diffusion coefficient of the surfactant and us is the tangential velocity at the
interface. The source term S� represents the mass exchange of surfactant between the interface and
the adjacent bulk fluid. The surfactant exchange is assumed to occur only in a thin adsorption layer
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adjacent to the droplet interface. The net accumulation rate of surfactant on the interface is equal to
its adsorption rate minus its desorption rate,

S� = kaCS (�∞ − �) − kd�, (9)

where ka and kd are the adsorption rate and the desorption rate, respectively. CS is the bulk surfactant
concentration near to the interface.

The surfactants are only transported in the bulk phase, and at its boundaries, including the droplet
interface. Following the technique proposed by Muradoglu and Tryggvason [27], we distribute S�

over the adsorption layer and add it to the bulk concentration equation as a negative source term SC :

∂C

∂t
+ u · ∇C = ∇ · (DI∇C) + SC . (10)

Here, DI is defined as DI = Dc(1−I ), where Dc is the bulk diffusion coefficient. The addition
of surfactants is intended to modify the surface properties of the droplets and affects the material
properties of the bulk fluid. According to the previous studies [34,35], the viscosity and density of
the surfactant solution increase linearly with the concentration,

ρs = ρ0 + (ρ∞ − ρ0)C, (11)

μs = μ0 + (μ∞ − μ0)C, (12)

where μ0 and ρ0 are the viscosity and density of the bulk fluid without surfactant, i.e., C = 0, and
μ∞ and ρ∞ are the viscosity and density of the surfactant solution at C = C∞.

B. Nondimensionalization

All the quantities in the equations are solved in their dimensionless forms by scaling the
characteristic quantities as follows:

x̃ = x
R

, ũ = u
U

, t̃ = t

R/U
, p̃ = p

ρ0U 2
, κ̃ = κR, ρ̃ = ρ

ρ0
, μ̃ = μ

μ0
, σ̃ = σ

σc
,

λ̃ = λ

R
, �̃ = �

�∞
, C̃ = C

C∞
, C̃S = CS

C∞
. (13)

The dimensionless material properties can be summarized as follows:

ρd

ρ0
,

μd

μ0
,

ρ∞
ρ0

,
μ∞
μ0

. (14)

The dimensionless numbers are defined as

Re = ρ0UR

μ0
; Ca = μ0U

σc
; Peb = UR

Db
; Pes = UR

Ds
;

K = kaC∞
kd

; Bi = kd R

U
; Da = �∞

RC∞
; βs = RgT �∞

σc
, (15)

where R = (0.75V/π )1/3 is the equivalent droplet radius based on its volume V, and C∞ is the
uniform far-field concentration. Re, Ca, Pec, Pes, K, Bi, Da, and βs are the Reynolds number, the
capillary number, the Peclet number based on bulk diffusivity, the Peclet number based on interfacial
diffusivity, the dimensionless adsorption depth, Biot number, Damköhler number, and the elasticity
number, respectively.

The tildes are dropped henceforth with the understanding that hereafter all variables discussed in
the following sections are dimensionless unless otherwise stated. Thus, the dimensionless governing
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TABLE I. Parameter definitions and ranges in our simulations.

Parameter Range

Re = ρ0UR/μ0 Fixed at 0.1
Ca = μ0U/σc 0.04–0.16
βs = RgT �∞/σc 0.2, 0.5
Peb = UR/Db 0.01−104

Pes = UR/Ds 0.1, 1, 10
K = kaC∞/kd 0.1–1
Bi = kd R/U 0.01–10
Da = �∞/RC∞ 0.01–0.5
ρd/ρ∞ Fixed at 0.9
μd/μ∞ Fixed at 2
ρ∞/ρ0 Fixed at 2
μ∞/μ0 1, 2, and 4

equations become

∇ · u = 0, (16)

∂ (ρu)

∂t
+ ∇ · (ρuu) = −∇p + 1

Re
∇ · μ(∇u + ∇uT ) + 1

ReCa

∫
S

(∇sσ − 2σκn)δ(x − x f )ds,

(17)

∂C

∂t
+ u · ∇C = 1

Peb
∇ · (∇C) − Da

∫
S

Bi[KCs(1 − �) − �]δ(x − x f )ds, (18)

∂�

∂t
+ ∇s · (�us) + �(∇s · n)(u · n) = 1

Pes
∇2

s � + Bi[KCs(1 − �) − �], (19)

σ = max {1 + βs ln (1 − �), 0.05}. (20)

They are supplemented by the following velocity boundary conditions:

u|x=0 =
[

4

(
1 − z

Lz

)
z

Lz
, 0, 0

]
, u|z=Lz

= 0, (21)

u|z=0 = ucl = λ
∂u
∂n

∣∣∣∣
wall

+ 1

Ca

λ

μ

∫
L

ncl(cos θeq − σ cos θd )δ(x − xcl )dl, (22)

and the concentration boundary conditions,
∂C

∂z

∣∣∣∣
z=0

= ∂C

∂z

∣∣∣∣
z=Lz

= 0, C|x=0 = 1

Lz
(Lz − z). (23)

The computational domain size is Lx × Ly × Lz in the x, y, and z directions, respectively. The
boundary conditions are periodic in the y direction. In addition, the diffusive flux of surface
surfactants at the contact line is zero. Initially, the droplet is placed in a quiescent liquid and the
bulk surfactant concentration is C|t=0 = (Lz−z)(1−I )/Lz. A uniform concentration �|t=0 = 0.05 is
set to avoid negative values of the bulk surfactant concentration at the initial time. The ranges of the
parameters are given in Table I unless otherwise specified.

C. Numerical implementation

To track the deformed droplet with the moving contact line, a three-dimensional GNBC-based
front tracking–finite-difference method is used. This method has been used to study the dynamics
of clean droplets on the solid surface [36,37], and it has been developed to model the interfacial
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flow covered with insoluble surfactants [38]. These studies detail the numerical implementation of
the GNBC in the front tracking method. This section only provides a brief overview of the front
tracking method and elaborates on the numerical implementation for moving contact lines with
soluble surfactants. The flow governing equations are solved using the three-stage Runge-Kutta–
Crank-Nicolson four-step projection method on a stationary collocated uniform Cartesian grid [39].
A second-order central finite-difference scheme is used to approximate the spatial derivatives. The
semi-implicit Crank-Nicholson technique is employed to update the diffusion term. The three-stage
Runge-Kutta method is employed for the convective and body force terms in Eq. (2). A four-level
V-cycle multigrid algorithm and the alternating direction implicit scheme are used to solve the
pressure Poisson equation. An Adams-Bashforth scheme is employed to advance the interface by
Eq. (7) including the contact lines.

The surfactant concentration at the deforming interface is solved on the triangular Lagrangian
grid according to Muradoglu and Tryggvason [27]. The surface surfactant concentration is stored at
the center of the triangular elements, where its evolution is solved using the finite volume scheme.
Time integration is performed using an explicit Euler scheme. The three-stage Runge-Kutta method
is also applied to solve the bulk concentration equations. To significantly reduce the numerical
diffusion, we use a fifth-order weighted essentially nonoscillatory scheme to evaluate the convective
term [27]. The source term S� is first calculated on the Lagrangian mesh and is then distributed to the
adjacent Eulerian meshes in the bulk phase. Surfactant adsorption and desorption at the solid surface
is ignored and an impermeable boundary condition is imposed (see Appendix A). To satisfy the
conservation of the surfactant during the distribution from the interface front to the Eulerian meshes,
S f in Eq. (32) is reformulated as S f = ∑

i, j,k D(r) if I > 0.5. D(r) is a non-normalized distribution
function (see Appendix B). As the interface deforms, the front is restructured by dynamically adding
and deleting the element, while ensuring that the droplet volume and the surfactant absorbed on it
are strictly conserved.

D. Model validation

To ensure the accuracy of the numerical method, a convergence study was carried out to test
the effects of Eulerian and Lagrangian resolutions on the displacement of droplets with insoluble
surfactant (see Appendix C). To ensure that the final state of a moving droplet is not affected by
the grid resolutions, we have confirmed that the number of Eulerian grids per unit length R must
exceed 20. In addition, 4608 Lagrangian grids are sufficient at the initial time to track the droplet
detachment process. At this resolution, the loss of total surfactant mass adsorbed on the droplet
surface is limited to less than 0.2%. The diffusion of the bulk surfactant and the mass exchange
between the bulk and the interface are further validated in this section. Consider a clean droplet
(i.e., �|t=0 = 0) with an equilibrium contact angle of θeq = 90◦ immersed in a quiescent solution
with a uniform concentration C|t=0 = C∞. The computational domain Lx × Ly × Lz = 10 × 10 × 5
is discretized using a uniform 240 × 240 × 120 Cartesian grid. The source term in Eq. (9) is reduced
to S� = kaCs to ensure that the surfactant only adsorbs from the bulk phase to the droplet interface.
An approximate solution for the bulk concentration C was given by Muradoglu and Tryggvason
[40]:

C

C∞
= 1 − ωχ

√
t

1 + η

a

r
erfc

(
r − a

2
√

Dst

)
, (24)

where erfc(r) is the complementary error function, r is the distance to the center of the droplet, a
is the radius of the droplet, ω = ka/Ds, χ = √

πDs, and η = χ (1 + ωa)/a. The surface surfactant
concentration � is then given by

� = �|t=0 + kaC∞

(
t − ωχ

η3
(η2t − 2η

√
t + 2 ln (1 + η))

)
. (25)
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FIG. 2. The diffusion and adsorption test: Bulk surfactant concentration profiles at different times caused
by the adsorption in a quiescent fluid with an initial uniform concentration C = C∞. The desorption term in the
bulk surfactant concentration equation is switched off and the source term in Eq. (19) is reduced to S� = kaCs.
The inset shows the corresponding surface surfactant concentration at different times. Our results are compared
with the analytical results of Muradoglu and Tryggvason [40], i.e., Eqs. (24) and (25).

Length and time are made dimensionless for this test using R and R2/Db, respectively. Figure 2
demonstrates that the bulk surfactant concentration and the surface concentration agree well with
the analytical solutions of Eqs. (24) and (25), indicating the accurate modeling of the diffusion term
and the mass exchange between the bulk liquid and the interface.

The final test case involves bulk surfactant convection as the droplet is displaced by a surfactant
solution. The diffusion and source terms in Eq. (18) are switched off, as is the surface surfactant,
Eq. (19). The droplet is initially placed at x = 4. The values of Ca and λ are 0.1 and 0.05, respec-
tively. Figure 3 shows the indicator function I and the surfactant concentration C near the interface.
The droplet obstructs the incoming solution containing the surfactant, causing high convection at the
receding contact line and accumulating the surfactant near the front part of the droplet, where a high
concentration region is formed. At the droplet interface (i.e., I = 0.5), where the bulk surfactant
concentration is close to zero, a sharp boundary condition for bulk concentration is imposed. In
addition, a correction step is used to eliminate the nonzero mass flux across the droplet surface and
the surfactant mass loss is controlled to less than 0.1% over the entire domain [41].

III. RESULTS AND DISCUSSION

This section focuses primarily on the scenario where the droplet is displaced by a surfactant
solution. In addition to being influenced by the density, viscosity, surface tension, slip length,
and wettability [42,43], the behavior of a droplet can also be categorized according to the relative
importance of bulk convection, surface convection, and adsorption rate [44]. In our previous study
[38], we investigated the effect of the elasticity number βs, which is subsequently set as 0.2 and 0.5.
The range of surfactant-related parameters is chosen to ensure that the present study can represent
all the relevant physical processes associated with the surfactant, including the Marangoni effect,
convective-diffusive transport, and surface adsorption and desorption. Therefore, we investigate the
range 0.01 � Bi � 10, 0.1 � K � 1, and 0.01 � Da � 0.5. All simulations are performed in a
domain of Lx × Ly × Lz = 16 × 4 × 3 with a grid resolution of 384 × 96 × 72 and 4608 Lagrangian
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FIG. 3. Bulk convection test. A clean droplet is placed on a solid surface and then suddenly subjected to
shear flow with a surfactant solution. The diffusion and source terms in the evolution equation, i.e., Eq. (18),
are switched off. (a) The scatter represents the bulk surfactant concentrations C at the center line of the plane
z = 0 along the x axis at t = 0, 1, and 2. The dashed lines represent the indicator function, i.e., 1−I, which
implicitly indicates the location of the interface. (b) The bulk surfactant concentration at the z = 0 plane. The
white line is the contour I = 0.5 showing the contact line.

grids. The deformation parameter D and the displacement velocity Ud are used to characterize the
mobility of the displaced droplet, respectively,

D = (L − H )

(L + H )
, (26)

Ud =
∫

S ux · x · nds

V
, (27)

where L and H are the length and height of the deformed droplet, and ux and x are the interface
velocity and position along the x axis, respectively. In addition, the wetting area Aw is also a key
parameter influencing the droplet detachment and it is controlled by the contact-line dynamics
and interfacial deformation, both of which are known to have a potentially competing effect on
the critical conditions for the onset of droplet detachment [42]. When the droplet undergoes a
small deformation along the flow direction, a droplet sliding at a constant velocity and shape is
observed. Marangoni effects on the sliding, detachment, and pinching off of droplets covered with
insoluble surfactant have been studied in our previous work [38]. The effects of the dimensionless
parameters, including the dimensionless adsorption depth K, the Biot number Bi, the Damköhler
number Da, and the bulk Peclet number Peb, are of particular interest in this paper. We quantify the
critical conditions for the onset of droplet detachment, including the critical time td and the average
surfactant concentration Ms/A, where Ms is the total surfactant mass of surfactant adsorbed on the
droplet surface with area A.

As the capillary number Ca rises above a critical value, the wetting area Aw decreases contin-
uously. The contact line becomes unstable and eventually disappears. We examine the effect of
surfactant viscosity, i.e., μ∞/μ0 = 1, 2, and 4, on the droplet displacement. Consistent with the
observation for a clean droplet, Ud increases with μ∞/μ0 at each given value of Ca. Figure 4 shows
droplet snapshots and the time evolution of Ud and Aw for droplets with different values of μ∞/μ0.
The droplet is displaced until it reaches the steady-state shape at μ∞/μ0, at which point Ud and
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FIG. 4. Distribution of bulk surfactant concentration and the snapshots of the droplet displacement on a
solid surface when subjected to a shear flow with a surfactant solution for (b) μ∞/μ0 = 1, (c) μ∞/μ0 = 2,
and (d) μ∞/μ0 = 4 at t = 4, 8, and 12. For each μ∞/μ0, the droplet shape and the bulk concentration C at
t = 0 are shown in (a). The evolutions of velocity Ud and wetted area Aw enclosed by the contact line are
plotted in (e) and (f), respectively. Here, Ca, K, Da, Bi, Peb, Pes, and βs are 0.16, 0.1, 0.01, 10, 10, 10, and 0.2,
respectively.

Aw become constant. Increased viscosity of the displacing fluid increases the sweeping efficiency,
promoting contact-line movement [38]. We increase μ∞/μ0 to 2 while keeping all other parameters
constant. Following the initial sliding and interface stretching, a neck forms, which gradually
elongates with increasing Ud until the droplet finally detaches: the free droplet migrates away from
the solid surface and eventually reaches an equilibrium position. When μ∞/μ0 is increased to 4,
the stretched interface accelerates the disappearance of the wetting area and reduces td by 50%,
while the critical velocity for detachment remains unchanged. We also plot the bulk concentration
in Figs. 4(b)–4(d). The displacing fluid swept up the surfactant in the bulk and accumulates near the
advancing contact lines, which becomes more pronounced as μ∞/μ0 increases.

To gain further insight into the physical mechanisms underlying the effects of the surfactant
on droplet detachment, we present a detailed analysis of the contact-line dynamics for a capillary
number below a critical value. As shown in Fig. 5(b), with increasing μ∞/μ0, the surface surfactant
distribution becomes more nonuniform in the stretching stage. The nonuniform interfacial tension
at the advancing contact lines (ACLs) and the receding contact lines (RCLs) dramatically slows
down the movement of the contact lines. In addition, the reduced viscous resistance between the
droplet and the solid surface accelerates the interfacial deformation, resulting in a rapid disap-
pearance of the contact line. We then examine the effect of K on the contact line at different
μ∞/μ0. Although surfactant adsorption does not reach an equilibrium, the interfacial dynamics
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FIG. 5. (a) Snapshots of droplets in surfactant solution with different viscosities, i.e., μ∞/μ0 = 1, 2, and 4,
for Ca = 0.08 and K = 0.1 at t = 0, 10, 20, and 25. The dashed profiles are steady-state shapes for droplets in
surfactant solution with μ∞/μ0 = 1 and 2, respectively, whereas in the case of μ∞/μ0 = 4 the droplet finally
detaches from the solid surface after the initial sliding. (b) The corresponding snapshots and distributions of
the surface surfactant concentration � at t = 10. (c) The steady-state wetting area Aw and contact-line velocity
Ucl at different μ∞/μ0 for Ca = 0.04. Other parameter values in (a)–(c) are Da = 0.01, Bi = 10, Pes = 10,
Peb = 10, and βs = 0.2.

approach a steady state when Ca is below a critical value. As shown in Fig. 5(c), the wetted
area Aw decreases with increasing K and is inversely proportional to the net contact-line velocity
Ucl. This decrease in Aw becomes more pronounced at high μ∞/μ0. This can be explained by
the surfactant-induced nonuniform effects, especially at the interface near the RCLs and ACLs.
Consistent with the previous study for the insoluble case [38], the resulting Marangoni stress induces
a viscous drag force, thereby promoting the droplet motion. In addition, these nonuniform effects
also reduce the wetting area by slowing down the contact-line velocity, which leads to droplet
detachment.

In principle, the surface concentration is dominated by the surfactant transfer to the droplet
interface and dynamic adsorption, which is enhanced as Bi or K increases. Large K corresponds
to a surfactant that is only slightly soluble in the bulk, while small K corresponds to a surfactant
that is very soluble. Figure 6(a) shows the steady-state characteristics of the droplet velocity Ud

and deformation D for Ca = 0.04. The droplet dynamics is expected to be similar to that of a
clean droplet with uniform interfacial tension for small K. Ud increases linearly with K, with a
stepped slope at high elasticity numbers. Figure 6(b) shows that the surfactant is adsorbed and
accumulates near the ACLs with the interfacial flow. Low interfacial tension reduces the local
curvature, offsetting the ACLs advance, especially at high elasticity numbers βs. This explains the
increase in advancing contact angle θa and D. As a result, wetting area Aw decreases continuously
with increasing K.

Figure 7 presents typical droplet snapshots for four different Biot numbers, 0.01, 0.1, 1, and 10.
The promotion of soluble surfactant on detachment is enhanced by increasing the Biot number to
1. When Bi is less than 0.1, the droplet interface continuously and slowly absorbs the surfactant
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FIG. 6. (a) The displacement velocity Ud and the deformation D of the droplets are plotted as a function
of the dimensionless adsorption depth K for different elasticity numbers, i.e., βs = 0.2 and 0.5. Color contours
are plotted in (b) to show the distribution of surfactant concentration on the droplet surface. Here, Da, Bi, Peb,
Pes, and Ca are 0.01, 10, 10, 10, and 0.04, respectively.

from the surrounding solution. It causes the average surface concentration Ms/A and the difference
between the maximum concentration �max and the minimum concentration �min, i.e., �max − �min,
to increase continuously until the droplet detaches. A high Bi increases the interfacial kinetic
rate of surfactant exchange relative to the interfacial flow rate and enhances solubility transport
from the high surface concentration droplet interface into the bulk fluid where surfactant exchange
kinetics can rapidly reach equilibrium. Accordingly, the values of Ms/A, �max, and �min initially
increase rapidly and then remain constant before detachment. As Bi increases to 10, the enhanced
desorption results in a low concentration region near the RCLs. The decrease in �max − �min

before detachment contributes to the increase in td , which shows a nonmonotonic tendency with
increasing Bi.

In addition to K and Bi, the bulk Peclet number Peb controlling the bulk surfactant transport to
interface will also affect the droplet detachment. Figure 8 shows the influence of Peb on td . Other
parameters fixed at K = 1.0, Da = 0.1, Bi = 1, Pes = 10, Ca = 0.1, and βs = 0.5, respectively. It is
found that td shows a nonmonotonic change with Peb, and the evolution route can be divided into an
enhanced section (0.1 � Peb � 10) and two stable sections (Peb < 0.1 and Peb > 0, respectively).
The diffusion-controlled transport at Peb < 0.1 uniformizes surfactant concentration in the adsorp-
tion layer near the droplet surface. The interface behaves more like a clean interface with a uniform
interfacial tension. The interface adsorbs surfactant almost uniformly, making it difficult to form
a surface tension gradient. Marangoni-induced drag force is less effective in displacing droplets
and takes longer to detach. Figure 8(h) shows that at the onset of displacement, the surfactant
accumulates at the tip of the droplet, i.e., φ ≈ 0.2π , and is almost evenly distributed from ACLs
(i.e., φ = 0) to RCLs (i.e., φ = π ). As Peb exceeds 10, there is a thin transition layer adjacent to
the interface where the bulk surfactant concentration changes rapidly. In addition, the region of
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FIG. 7. Successive snapshots of a droplet for the capillary number above the critical value for different Biot
numbers, i.e., (a) Bi = 0.01, (b) Bi = 0.1, (c) Bi = 1, and (d) Bi = 10, at t = 4, 8, and 12. (e) Time evolution
of the average surfactant concentration Ms/A, the average contact-line velocity Ucl, the maximum �max, and the
minimum �min concentration on the droplet surface. The scatter in (e) shows the moment of detachment and
its corresponding critical value. Here, K = 1.0, Da = 0.1, Pes = 10, Peb = 10, Ca = 0.1, and βs = 0.5.

high surface concentration begins to move clockwise along the interface until it reaches the ACLs
(i.e., φ= 0). Meanwhile, the surface concentration at the RCLs (i.e., φ=π ) starts to decrease and
is even smaller than at the ACLs. This inverse increases the surfactant concentration gradient along
the droplet surface, as seen in Fig. 8(h), and the Marangoni-induced drag force thus promotes the
droplet detachment. As a result, td decreases by 25% as Peb increases from 0.1 to 10 in the enhanced
section. However, increasing Peb up to 104 will not increase the drag force any further, and td will
no longer decrease.

In previous work with high Pes number cases, enhanced interfacial convection is found to lower
nonmonotonically the critical capillary number for droplet detachment [45]. To fully explain the
mechanism of surfactant convection controlling the droplet displacement, we also checked the
effect of the Damköhler number. A high Da indicates a fast interfacial exchange rate, while low
values indicate that the surfactant exchange is kinetically controlled by convective transport in the
surrounding fluid (i.e., high solubility at the interface). Similarly, the enhanced convection with
decreasing Da tends to decrease td , but the effect becomes progressively weaker (i.e., below 0.05).
td increases only 6.6% (from 7.48 to 7.97) as Da increases from 0.01 to 0.05. Surprisingly, when
Da increases from 0.1 to 0.5, td increases up by 36.6%. Figure 9 shows that strong mass exchange
downstream from the droplet rapidly reduces the bulk concentration near the droplet surface at high
Da. In addition, the concentration gradient within the adsorption layer is essentially negligible due
to the low solubility at the interface, and thus the surface concentration is more evenly distributed.
The thickened surfactant boundary layer prevents more surfactant from approaching the interface
and adsorbing, resulting in a decrease in surface concentration near the ACLs [from Fig. 9(e)],
where the increased ucl hinders the reduction in the wetted area and thus slows droplet detachment.
In summary, increasing surfactant solubility on the droplet surface enhances surfactant convection
to the adsorption layer, thereby promoting the droplet detachment by accelerating the contact-line
motion of the ACLs.

The simulations show that detachment is possible when surfactant adsorption produces a surface
tension distribution (reduced surface tension and nonuniform induced viscous drag force) that
exceeds the critical values. A typical diagram showing the regimes of displacement outcomes
and their transition boundary are shown in Fig. 10. We define two dimensionless parameters
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FIG. 8. (g) The critical time td for droplet detachment as a function of the Peclet number Peb. The
corresponding snapshots of the droplet and the distribution of the surfactant concentration in the displacing
fluid for (a) Peb = 0.01, (b) Peb = 1, (c) Peb = 10, (d) Peb = 100, (e) Peb = 1000, and (f) Peb = 10000 at
t = 4, 8, and 11. (h) Surface concentration distribution in the plane of symmetry at t = 4. Here, φ is the
angle between the direction vector of the surface point relative to the wetted center and the x direction. Other
parameter values are K = 1.0, Da = 0.1, Bi = 1, Pes = 10, Ca = 0.1, and βs = 0.5.

ω = Bi×K
Da×βs

and ξ = Ca
Da×βs

to present a phase diagram with sliding and detachment conditions. We
fixed Pes = 10 and Peb = 10. Figure 10 shows that as ξ is increased, the droplet is observed to
transition from sliding to detachment. When ω was raised while ξ remained constant, significant
differences emerged. When ξ is less than 2, any droplet can reach a steady state. Increasing
ω does not destabilize the sliding droplet to detach from the solid surface. This is analogous
to the cases when ξ exceeds 30, changing ω does not affect droplet detachment. The droplet
behavior is sensitive to ω at a moderate value of ξ , i.e., 4 <ξ< 20. In this range the critical
value of ω shows a nonmonotonic change with ξ . Manipulation of the transition from the sliding
to detachment can be achieved by increasing ω, but further increases in ω instead delay the
droplet detachment. Increasing ω by increasing Bi or decreasing Da will both promote the droplet
detachment and reduce td . As Da continues to decrease, td almost ceases to decrease (see Fig. 9),
but further increases in Bi will continue to increase td (see Fig. 7) and may even inhibit droplet
detachment.

To correlate the detachment dynamics with the surfactant, we define an effective capil-
lary number as Cae = Ca/[1 + βs ln(1 − Ms/A)]. Figure 11 shows the detachment time td as a
function of the critical capillary Cae,c for droplet detachment. Obviously, td decreases sharply
and then becomes a constant value with increasing Cae,c. Surprisingly, for all given values of
Cae,c, we observe that all the data show excellent agreement with a single exponential curve,
i.e., ln(td,min − td ) ∝ Cae,c where td,min is the limit value at Cae,c → ∞. The maximum error
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FIG. 9. Distribution of surfactant concentration both in the displacing fluid (left side) and on the droplet
surface (right side) for (a) Da = 0.01, (b) Da = 0.05, (c) Da = 0.1, and (d) Da = 0.5. (e) Distributions of the
surface concentration and the velocity at the contact line for different Damköhler numbers. The positive and
negative signs of ucl mean that the contact lines are advancing and receding, respectively. Other parameters are
fixed at K = 1.0, Bi = 1, Pes = 10, Peb = 10, Ca = 0.1, and βs = 0.5.

between our data and the curve is less than 15%. The prediction of td,min from the curve is 9.71,
where the decrease in td is less than 1% as Cae,c exceeds 0.12. A sliding zone is defined as
td greater than 10td,min. In this zone, the droplet only deforms but cannot detach from the solid

FIG. 10. Effect of parameters that are relevant or specific to surfactant transport on the conditions for
droplet sliding and detachment. The fixed parameters are Pec = Peb = 10. The dotted line shows the boundary
corresponding to the onset of droplet detachment.
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FIG. 11. The detachment time td for droplets displaced by surfactant solutions for different critical effective
capillary numbers Cae,c = Ca/(1 + βs ln[1 − (Ms/A)c]), where (Ms/A)c is the critical value of the average
surfactant concentration at the interface at the time of droplet detachment. The fitted curve from our data is
represented by the red dashed line. The inset plot shows the upper and lower limits of the relative error between
the fitted curve and our numerical data. td,line is the value obtained from the fitted curve.

surface until Cae,c exceeds the upper limit (Cae,c ≈ 0.07) beyond which the droplet is likely to
detach.

IV. CONCLUSION

The primary aim of developing the numerical model described here is to improve our under-
standing of how droplet displacement on solid surfaces is affected by soluble surfactant-driven
flows. The equations for interfacial and bulk surfactant concentration evolution were fully solved by
coupling with the two-phase front tracking method to track the soluble-surfactant-laden deformed
droplet. The GNBC was adapted here to eliminate the stress singularity near the contact line
and to implement a slip boundary linked to the contact angle. We introduced adaptations of the
surfactant-dependent front tracking method and GNBC to reconstruct the interface adjacent to the
solid surface in a straightforward manner. This approach allows us to explicitly evaluate the position
of the contact line, eliminating the need to impose a geometric boundary condition. We validated
our method with tests for convection, diffusion, and adsorption cases, finding good agreements
between computational results and the analytical solutions. Numerical examples show that our
model accurately captures the surfactant transport processes in the bulk and at the droplet interface,
allowing the study of surfactant solubility on droplet displacement on the solid surface.

We also performed simulations of a droplet loaded with soluble surfactant moving on a solid
surface under shear flow. Consistent with the previous results [38], at low capillary number the
droplet eventually reaches a steady deformation and moves at a constant velocity. However, as the
viscosity increases, the reduced viscous resistance between the droplet and the solid surface leads to
a more nonuniform surfactant distribution on the droplet surface during the initial stretching stage.
This nonuniformity increases the deformation of the droplet, making it more prone to detachment,
especially at high values of μ∞/μ0. Interestingly, an increase in dimensionless adsorption depth
K significantly increases the nonuniformity of the surfactant distribution on the droplet surface,
which enhances droplet motion due to large Marangoni stresses. Conversely, due to the nonuniform
surfactant adsorption on the surface near the contact line, increased surfactant adsorption near the
advancing contact line reduces the wetted area with increasing K, resulting in decreased viscous
resistance between the droplet and the solid surface. Furthermore, we studied droplet detachment
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FIG. 12. Implementation of the boundary condition for the surface concentration equation at the contact
lines. The yellow triangular element represents the front element adjacent to the contact-line element. ne is the
unit normal of the triangular element and �li and t i are the length and tangential vector of the contact-line
element. ncl is the normal vector of the contact-line element. The red arrows represent the plane tangential
vectors at the midpoints of the three sides of the triangle. The diffusive flux along the tangential vectors (i.e.,
the dashed arrow) is forced to zero in the equation for the evolution of the surface surfactant concentration.

for varying Bi beyond the critical capillary number and identified the role of surfactants on the
critical time td for droplet detachment. With increasing Bi, td first decreases and then increases,
reaching a minimum at Bi = 1. At high Bi, rapid equilibrium of surfactant exchange leads to large
desorption near the receding contact line. The weakened Marangoni-induced drag forces delay
droplet detachment by hindering the motion of the contact line at high Bi numbers. The effect
of the bulk Peclet number shows the same trend, but the minimum td is reached at Peb = 10.
Advective surfactant accumulation induces significant Marangoni stress, which ceases to increase
with increasing Peb. The presence of surfactants always decreases the value of td , with the effect
being more pronounced at low Da values. To clarify the role of the surfactant solution on the
droplet displacement, we defined two surfactant-related dimensionless parameters ω = Bi×K

Da×βs
and

ξ = Ca
Da×βs

to identify the onset of the droplet transition from sliding to detachment. ω shows a
nonmonotonic effect on droplet detachment due to the nonmonotonic dependence of the Marangoni
stress on Bi. To simplify the problem, we defined an effective capillary number Cae and correlated it
with the critical time td for droplet detachment by fitting our numerical data. Surprisingly, td can be
uniquely described as a single exponential function of the critical value Cae,c. Under this condition,
the limits of Cae,c and td can be deduced from the fitted curve.
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APPENDIX A: BOUNDARY CONDITION ON THE SURFACE CONCENTRATION
EVOLUTION EQUATION

The diffusion of surfactant between the adjacent elements is assumed to occur at the three edges
of the triangle (see Fig. 12). The discrete form of the diffusion term in Eq. (19) is derived as follows:

1

Pes
∇s · (∇s�) = 1

Pes

(
3∑

i=1

(∇s�)i · (t i × ne) · �li

)
. (A1)

Here, �li and t i represent the length and tangent vector of the three edges of the element,
respectively. ne represents the unit normal of the element. The surface gradient(∇s�)i can be
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FIG. 13. Normalization of the distribution function. The circle shows the range of action of the distribution
function for the front element indicated by the pentagon. The squares (i.e., I < 0.5 and z > 0) indicate the
Eulerian grid points that are involved in the distribution of the source term S� .

obtained by calculating the weighted average of the gradients on the connected triangular elements,
taking into account their respective areas. The diffusion flux (∇s�)i · (t i × ne) · �li is set to zero at
the contact lines, as shown in Fig. 12.

APPENDIX B: NON-NORMALIZED DISTRIBUTION FUNCTION

To transfer the front singularities (i.e., surface tension and source term S�) to the fixed Eulerian
grid, as suggested by Lai and Peskin [46], the delta function can be approximated using a distribution
function D(r), which is a tensor product of three one-dimensional discrete forms of the delta

FIG. 14. Convergence study of the surfactant loss e(Ms f ) and wetted area Aw plotted against the dimension-
less time γ t with different Eulerian grid resolutions at Ca = 0.1, Pes = 1, and βs = 0.4. Here NR is the number
of Eulerian grids per unit length R. The insets show the color contours on the droplet surface representing the
interfacial concentration at γ t = 6.
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FIG. 15. Convergence study of the surfactant loss e(Ms f ) and interfacial concentration plotted against the
dimensionless time γ t with different Lagrangian grid resolutions at Ca = 0.1, Pes = 1, and βs = 0.4. Here
NLa is the number of Lagrangian grids. The colored contours on the droplet surface represent the interfacial
concentration at γ t = 10.

function,

δ(r) =

⎧⎪⎨
⎪⎩

1
8 (3 − 2|r| +

√
1 + 4|r| − 4r2), |r| � 1

1
8 (5 − 2|r| −

√
−7 + 12|r| − 4r2), 1 <|r| � 2

0, otherwise

. (B1)

The non-normalized distribution function can be rewritten as

D(r) = 1

�hx�hy�hz
δ(rx )δ(ry)δ(rz ), (B2)

where rx = (x − x f )/�hx, ry = (y − y f )/�hy, rz = (z − z f )/�hz, �hx, �hy, and �hz are the Eule-
rian mesh sizes along the x, y, and z axis, respectively. Due to the presence of the solid surface, the
conservation of the physical variable communication between the interface adjacent to the contact
line and the Eulerian meshes may not be exactly satisfied. A normalized distribution function is
used to ensure the conservation of the body force and continuity of velocity across the contact line
[47],

D′(r) = D(r)/S f , (B3)
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where S f is the sum of the distribution function on the Eulerian meshes above the solid surface (see
Fig. 13), and is defined as

S f =
∑
i, j,k

D(r), if z > 0. (B4)

For the interface far away from the contact line, the consistency condition of the distribution func-
tion is satisfied, i.e., S f ≈ 1. The distribution function is automatically reduced to a non-normalized
form.

APPENDIX C: CONVERGENCE STUDY FOR INSOUBLE CASES

The surfactant is absorbed onto the droplet surface and the surfactant mass exchange between the
bulk fluid and the droplet surface is switched. As NR decreases to less than 20, Aw tends to decrease,
and detachment occurs as shown in Fig. 14. The interfacial area of the sliding droplet increases
by up to 35% when NR > 20 and the total loss is less than 0.2%. In addition, as NLa decreases to
less than 4608, e(Ms f ) increases rapidly and exceeds 1.5% (see Fig. 15). After reaching the steady
sliding state, the maximum �max and minimum �min values of the interfacial surfactant concentration
fluctuate considerably. As NLa increases to 4608, the surfactant loss decreases significantly to less
than 0.2%.
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