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We perform linear stability calculations for a jet emerging into an ambient medium
of a different viscosity but the same density. These calculations are intended to isolate
the effects of viscosity variation alone. We conduct a systematic study of the effect of
ambient-to-jet viscosity ratio, jet Reynolds number, and velocity profile specified by the
shear layer thickness, thickness over which the viscosity change occurs, and radial shifts
in velocity profiles on the growth of axisymmetric and helical modes. Additional terms in
the disturbance kinetic energy equation that represent the coupling between the velocity
fluctuations and the viscosity field are shown to be responsible for the additional destabi-
lization. Radial shifts in velocity profile that represent real effects likely to be encountered
in experiments are shown to be strongly destabilizing. In all cases the temporal growth
rates of axisymmetric and helical mode are very close, except at low Reynolds numbers.
Spatiotemporal analysis suggests that for sufficiently large ambient viscosity, low-viscosity
jets become absolutely unstable. Over a wide range of parameters, two modes of absolute
instability exist simultaneously, with an axisymmetric mode predicted to dominate a helical
mode. Over a certain narrower space, the helical mode dominates. The transition boundary
for absolute and convective instability is compared with recent experiments, and the results
are found to be in reasonable agreement for the transition of the helical mode, when
velocity profiles are used that correspond to the similarity solution for development of
the boundary layer under a spatially variable viscosity.

DOI: 10.1103/PhysRevFluids.9.013903

I. INTRODUCTION

Mixing of two fluid streams with variable properties and velocity profiles is encountered in many
natural systems, such as the flow of estuaries into an ocean, hydrothermal vents, and atmospheric
flows. The round jet flow configuration is of significant importance in engineering applications such
as alkylation reactions in petroleum refining [1], chemical reactors, and food processing [2–4]. The
degree and spatial extent of mixing between the two streams is dependent on the strength and nature
of the instabilities that develop at the interface between the two fluid streams, which in turn depends
on the controlling parameters characterizing the system, such as the Reynolds number, density and
viscosity ratios, and profile shapes.

The near field of the round jet of a fluid issuing into an ambient of the same fluid is subject to
the inviscid Kelvin-Helmholtz instability; linear stability analysis with realistic profiles have agreed
well with observed trends [5], with further improvement when the fluid viscosity is considered in
a spatial stability analysis [6]. Several reviews have been written on the subject of such constant
property mixing layers; for instance, see [7,8]. The effects of alterations to the basic velocity profile
in such mixing layers can have dramatic effects on their stability characteristics. When a primary
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flow stream of velocity U1 encounters another stream of velocity U2 in the reverse direction, the
flow can become absolutely unstable when the parameter R = U2−U1

U2+U1
is greater than 1.315 [9]. The

presence of absolute instability implies that disturbances have zero group velocity in the laboratory
frame of reference and become more amenable to investigation [10]. Indeed, the onset of absolute
instability in countercurrent shear layers has been well correlated with the experimental observations
of discrete frequencies in the power spectrum (“global modes”) of velocity fluctuations. Wall
confinement of such shear layers may further destabilize the flow [11,12].

Turning to the effects of variable fluid properties, a significant body of literature addresses the
instabilities resulting from the presence of density gradients across a shear layer. Low-density jets
are found to be absolutely unstable when the jet-to-ambient density ratio is below 0.63 [13,14].
Compared to the case of planar variable-density mixing layers [15], the introduction of an additional
length scale (jet diameter) that is not too large relative to the interfacial thicknesses characterizing
velocity and density gradients can add significant complexity. For example, Monkewitz et al. [14]
demonstrated the existence not only of an interfacial “shear layer” mode produced by the baroclinic
torque associated with the density gradient (Mode II in their nomenclature) but also a jet “column”
mode (Mode I) in which disturbances do not decay away from the shear layer, but span the entire
diameter of the jet. Over a large parameter space determined by the density ratio, Reynolds number,
and shear layer thickness parameters, the flow is absolutely unstable. Theoretical arguments have
been advanced for the close match between the frequency calculated from local base profiles and
the experimentally observed modes [16,17]. Further, it has also been shown [18,19] that subtle
variations in the alignment of the velocity and density profiles can alter the absolute-convective
instability transition boundary significantly.

Comparatively, the effects of viscosity contrast in free shear layers, which are primarily relevant
to liquid-liquid mixing, are less well understood. While viscosity is instinctively considered a
stabilizing influence, near solid surfaces it produces velocity gradients and therefore creates the
conditions for instability. The destabilizing effects of a viscosity jump at an interface were first
studied by Yih [20], who showed that planar two-layer Couette and Poiseuille flows with immiscible
fluid layers were unstable to long waves at any Reynolds number. Hooper and Boyd [21] and
Hooper [22] showed the existence of interfacial instabilities in the short- and long-wavelength limits,
while Hinch [23] suggested a physical mechanism. Subsequently, most work on instabilities in
viscosity-stratified flows has focused on internal pressure-driven flows and is well summarized in an
exhaustive review [24]. Full linear stability analyses have been performed for two-layer immiscible
flows in planar Poiseuille and Couette configurations [25–27] as well as on core-annular flows in the
cylindrical geometry [28–31]. The mechanism driving the instability was explained as being related
to the work done at the interface due to the viscosity jump [32]. Hallberg ad Strykowski [33] note
a weak influence of viscosity on the frequency of global modes in low-density jets, but the driving
mechanism remains inviscid.

The past two decades have seen substantial attention devoted to the effects of weak diffusion
at an interface between two miscible fluids of different viscosity. For a planar channel flow with
one fluid sandwiched between two layers of another fluid, Govindarajan and co-workers [34,35]
showed that stabilization (destabilization) occurred when the more (less) viscous fluid was in the
inner region, and attributed the instability to an overlap between the mixing zone and the critical
layer, where the phase velocity of the disturbance matches the base velocity. For a core-annular
flow, Selvam et al. [36] showed that the flow becomes unstable beyond a critical viscosity ratio
that is dependent on the radial location of the interface. Further, helical modes are more unstable
when the annular fluid is more viscous, while axisymmetric modes are dominant for a viscous
core. The core-annular flow also displays a transition from convective to absolute instability for
miscible fluids, as a function of interface location, viscosity ratio, and inertia. D’Olce et al. [37]
observed pearl- and mushroom-like instabilities at low Re and associated the transition between
these modes with the absolute-convective instability transition [37]. The more complex situation of
a double-diffusive three-layer variable viscosity flow in a channel was considered by Sahu et al. [38]
and found to be strongly absolutely unstable even at low Reynolds numbers.
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Compared to wall-bounded flows discussed above, free shear flows with viscosity gradients have
received relatively little attention. The classical analyses on the breakdown of capillary jets emerging
into a medium of different viscosity or density [39] pertain to low Reynolds numbers. For the related
case of buoyant jets with density and viscosity different from the ambient medium, Chakravarthy
et al. [40,41] performed both local and global linear stability analysis using realistic temperature,
velocity, and property profiles and concluded that an axisymmetric “puffing” mode is dominant;
this mode is convectively unstable at low density ratios and Richardson numbers, and is globally
unstable at high density ratios and Richardson number. Here the Richardson number refers to the
ratio of buoyant forces to fluid inertia. Viscosity variation was incorporated but not studied as a
separate parameter. For ambient-to-jet density ratios less than 1.05, the flow is globally stable. It
must be noted that there is a large body of work on the instabilities at the sharp interface of a
mixing layer of gas and liquid streams [42–44], but the effects of viscosity alone were not isolated
due to the context bring the study of liquid atomization. To the authors’ knowledge, only Sahu and
Govindarajan [45] have studied the interaction of an inflection-point velocity profile with a region of
viscosity stratification. Such a configuration is characterized by the presence of two inflection-point
profiles and two length scales that capture the gradients in velocity and viscosity. The flow was
more unstable when the high-speed flow was in a region of low viscosity, and less unstable for the
alternate condition. Only two values, e1 and e−1, were considered for the viscosity ratios of the
two streams. The striking feature of their findings is that unlike the case of wall-bounded flows,
species diffusivity in the form of the Schmidt number Sc plays virtually no role in determining the
stability behavior. The response is governed primarily by the viscosity profile, the overlap of the
variable-viscosity layer with the momentum shear layer, and modifications to the velocity profile
induced by the viscosity profile. The viscosity gradients were shown to alter the transition from
convective to absolute instability in countercurrent shear layers, relative to the constant property
shear layer. More recently, Maharana et al. [46,47] have extended this to the more complex case of
a mixing zone of altered viscosity due to a reacting shear layer.

The corresponding configuration in a cylindrical geometry, namely, the interaction of a jet
velocity profile with an ambient medium of a different viscosity, has not been studied. As with
low-density jets, the introduction of an additional length scale (jet diameter) near a shear layer can
potentially lead to new unstable modes that are a function of the viscosity ratio, profile shapes,
and Reynolds number. Another question that arises is whether absolute instability can be triggered
in round jets which are weakly miscible with the ambient medium. Knowledge of the transition
boundary would have significant implications, including the potential for enhanced mixing in
engineering applications. Recent experiments in the authors’ laboratory have shown the transition
from axisymmetric instabilities to helical instabilities as the ambient-to-jet viscosity ratio is in-
creased beyond a critical Reynolds number-dependent value, accompanied by discrete peaks in the
frequency spectrum of velocity fluctuations [48]. Presumably, the onset of these helical modes also
depends on other parameters such as the boundary layer thickness, Schmidt number and degree of
diffusion, and Reynolds number. The experiments were performed for a single-nozzle geometry, and
therefore a fixed relationship between the jet Reynolds number and the boundary layer thickness.
However, it is not clear whether these observations can be ascribed to global modes corresponding
to absolute instability of profiles in the jet near field, or whether they are fast-growing convective
modes detected against a low level of background noise. The lack of theoretical understanding for
this configuration further precludes interpretation. Therefore, a preliminary stability analysis needs
to be performed first, before exploring the possibility of absolute instability. This is the focus of the
present study.

This paper is organized as follows: Sec. II presents the formulation of an idealized configuration
of a viscosity-stratified jet, along with assumed base profiles. Section III discusses the linearized
stability equations, elements of the numerical solution procedure, and code validation results.
Section IV presents the results of a temporal stability analysis for axisymmetric and helical modes
that are triggered by a weakly diffusive interface with sharp viscosity gradients, for both high- and
low-viscosity jets. Section V discusses additional complexities that may be encountered in practical
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FIG. 1. Sketch of the flow configuration analyzed: a jet of viscosity μ1 emerging into an ambient medium
of viscosity μ2, setting up velocity and concentration gradient of thickness θ and θμ, respectively.

applications, such as deviations from idealized base profiles, presence of walls, and entraining flow.
Finally Sec. VI presents a summary and conclusions from the results.

II. PROBLEM FORMULATION

We examine the linear stability characteristics of a round jet of one fluid emerging into an ambient
medium of the same density but a different viscosity. Both fluids are assumed to be Newtonian and
incompressible. The miscibility of the fluids causes a mixing layer to develop around the periphery
of the jet, thereby creating three layers: the jet core, the intermediate axisymmetric mixing layer,
and an outer region where the velocity profile is the result of entrainment. A schematic diagram of
the jet is shown in Fig. 1. The viscosity of the core fluid (0 < r < 1) and the annular fluid (1 < r)
are denoted by μ1 and μ2, respectively.

A. Base profiles

For the conventional case of a jet of fluid emerging into an ambient of the same fluid, the near-
field axial velocity profiles often have been modeled using tanh-type functions. For the variable
viscosity case, several effects need to be accounted for in order to develop realistic profiles. First,
we recognize that unlike the planar shear layer case (see Sahu and Govindarajan [45]) no similarity
solution exists for the near-field of a jet, and model profiles have to be assumed. A diffusive interface
develops downstream of the jet exit, leading to a gradient in concentration of fluid 1 going from a
value of unity at the center line to zero at infinity. The concentration-dependent viscosity profile in
the radial direction will also induce changes in the velocity distribution, altering it from the standard
tanh shape. Further, one can expect that when the ambient viscosity is very large, it will retard the
fluid in the jet periphery to a certain extent, creating no slip in the limit of infinite ambient viscosity.
We incorporate these ideas into our model profiles, as discussed below.

The viscosity gradient is assumed to depend on the concentration c(r) of species 2 of the
ambient fluid into the jet fluid (species 1). In specifying a constitutive relation between viscosity and
concentration, we follow earlier works [36,49,50], and assume the viscosity μ to be an exponential
function of the concentration. We write

μ(r) = μ1emc(r), (1)

where the concentration varies from a value of 0 along the jet axis (r = 0) to a value of 1 at infinity.
We further define the viscosity ratio M as

M = em = μ2

μ1
. (2)
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The radial profile of concentration can be approximated as a tanh profile:

c(r) =
1 + tanh

[
1

4θμ

(
r − 1

r

)]
2

, (3)

where θμ is a measure of the thickness of the diffusion layer. In the jet core, the velocity profile is
assumed to be unaffected by viscosity changes in the shear layer, and we employ a smooth profile
for constant viscosity jets that has been used previously [5,6,51]. The profile normalized on the
center line velocity Uc can be expressed as

U (r)

Uc
= 1 + tanh

[
b
(

1
r − r

)]
2

. (4)

The shear layer momentum thickness θ is evaluated as follows:

θ =
∫ ∞

0

U (r) − U∞
Uc − U∞

[
1 − U (r) − U∞

Uc − U∞

]
dr, (5)

which, on evaluation using Eq. (4), yields

b = 1

4θ
. (6)

Note that r = 1 in the velocity profile corresponds to the radial location at which the velocity
falls to half its center line value, and thus the length scale used for nondimensionalization is the jet
radius. Thus, the radius D/2 of the jet is used as the length scale for nondimensionalization. The jet
Reynolds number is based on this length scale and the center-line values of velocity and viscosity:

Re = ρUcD

2μ1
. (7)

The thickness of the diffusive interface is governed by the relative effects of advection and species
diffusion embodied in the Péclet number, Pe = UcD

κ
= Re Sc, where κ is the species diffusivity, and

the Schmidt number Sc is the ratio of momentum and species diffusivity ν/κ . For weak species
diffusion (large Sc), the intermediate layer with a gradient in species concentration is thin, often
smaller by an order of magnitude relative to the velocity shear layer. Without recourse to the
full solution of the Navier-Stokes equations for specific initial and boundary conditions, one has
to choose appropriate modifications to the inviscid profile of [5] that reflect the presence of the
viscosity gradient. In this study we assume that as we move radially away from the jet potential
core. the velocity profile varies such that the shear stress is preserved at locations on either side of
the concentration shear layer, defined as the region 1 − θμ/2 < r < 1 + θμ/2:

μ
dU

dr

∣∣∣∣
r=1−θμ/2

= μ
dU

dr

∣∣∣∣
r=1+θμ/2

. (8)

At the inner radial edge of the concentration layer, r = 1 − θμ/2, the velocity and its derivative
are known from the core profile enforcing the above equation, which leads to knowledge of the
derivative at the outer radial edge. These three conditions were used to generate a quadratic fit for
the velocity profile in the mixing layer. For M = 1, this results in the standard tanh profile with
a near-linear drop in velocity across the layer. For other values of M, the transmission of shear
stress across the layer leads to higher velocities at the outer edge of the concentration layer than for
M = 1, as shown in the inset in Fig. 2(a). We also tested a more stringent technique of enforcing
shear stress continuity across the concentration layer to obtain the velocity profile without any curve
fitting; this did not lead to appreciable difference for low M but led to substantially less differentiable
profiles for the velocity derivative at higher M, and this approach was discarded in favor of the curve
fits. At the outer edge of the concentration gradient region, knowledge of the axial velocity and its
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FIG. 2. (a) Velocity profiles for different values of viscosity ratio M when momentum thickness θ = 0.1
and concentration layer thickness is θμ = 0.01; (inset) a magnified view of the velocity profiles in the shear
layer. (b) Sketch of viscosity profile (dashed line) as well as unshifted (squares) and shifted (asterisks) velocity
profiles.

derivative allows us to calculate an entrained flow velocity in the outer region which satisfies an
error-function-type decay:

U (r) = A{1 − erf[B(r − R1)]}, r > 1 + θμ/2, (9)

where A and B are determined by the continuity of the velocity and its derivative at r = 1 + θμ/2.
Figure 2(a) plots velocity profiles for different values of viscosity ratio M for fixed value of θ

and θμ.
Finally, we consider that the dimensionless value of the velocity at r = 1 is dependent on the

ambient viscosity. It is likely that in experimental realizations of such a configuration, a jet emerging
into an ambient with higher viscosity (M > 1) will have an interfacial velocity that differs from
Eq. (4) and may have values lower than 0.5 at r = 1. This can be modeled by shifting the velocity
profile inwards by an amount δ in the equation, i.e., by replacing r with r − δ:

U

Uc
= 1 + tanh

[
1

4θ

(
1

r+δ
− r − δ

)]
2

. (10)

Such profiles are shown in Fig. 2(b) for θ = 0.1 and θμ = 0.01. We note that in following the
process of generating parametrized base profiles, one may end up with test cases that are physically
hard to realize and may need some discretion in interpretation. However, in Sec. IV B, we use the
velocity profiles from similarity analysis of a planar mixing layer with variable viscosity, which
would pertain to thin boundary layers in the axisymmetric case. These profiles are shown to be
consistent with the model profiles discussed above. For all results, the value of δ = 0 is used unless
explicitly stated otherwise.

To summarize, the relevant parameters governing the stability of the system are Re, M, Sc, θ , θμ,
and δ. In a real flow, the axial evolution of θ , θμ, and δ are fixed by their inlet values along with Re,
Sc, and M. However, for a local linear instability analysis of individual profiles that are not linked
to specific axial locations, we can perform a parameter sweep to address their separate effects.
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B. Linear stability equations

We employ the incompressible Navier-Stokes equations, along with a species transport equa-
tion to describe the jet flow

∇ · v = 0, ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + ∇ · τ,

∂c

∂t
+ v · ∇c = κ∇2c, (11)

where v = (vr, vθ , vz ) denotes the flow velocity, τ = μ(∇v + ∇vT ) is the viscous stress tensor, and
c is the concentration of the jet flow. We choose the radius of the jet R0 as the characteristic length,
and the viscosity and velocity in the center line of the jet as the characteristic viscosity and velocity,
respectively.

Assuming that the flow is nearly parallel, we can examine the stability of the flow to two-
dimensional disturbances, assumed to be in the form of traveling waves. Using the standard
normal mode analysis with perturbations of infinitesimal amplitude, we admit the possibility of
axisymmetric and helical modes with wave number k and β:⎛

⎜⎜⎜⎜⎜⎜⎝

vr

vθ

vz

p

c

⎞
⎟⎟⎟⎟⎟⎟⎠

(r, θ, z, t ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

0

v̄z(r)

p̄(z)

c̄(r)

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

iv̂r (r)
v̂θ (r)

v̂z(r)

p̂(r)

ĉ(r)

⎞
⎟⎟⎟⎟⎟⎠ei(kz+βθ−ωt ), (12)

where ω is the wave angular frequency.
Substituting Eq. (12) into Eqs. (11) and linearizing around the base state yields the following

perturbation governing equations:

d v̂r

dr
+ v̂r

r
+ βv̂θ

r
+ kv̂z = 0,

Re [−ωv̂r + kv̄zv̂r] = d p̂

dr
− iemc̄

[
d2v̂r

dr2
+ 1

r

d v̂r

dr
−

(
β2 + 1

r2
+ k2

)
v̂r

− 2β

r2
v̂θ + 2m

dc̄

dr

d v̂r

dr
+ mk

d v̄z

dr
ĉ

]
,

Re [−ωv̂θ + kv̄zv̂θ ] = −β p̂

r
− iemc̄

[
d2v̂θ

dr2
+ 1

r

d v̂θ

dr
−

(
β2 + 1

r2
+ k2

)
v̂θ

− 2β

r2
v̂r + m

dc̄

dr

(
d v̂θ

dr
− v̂θ

r
− βv̂r

r

)]
,

Re

[
−ωv̂z + kv̄zv̂z + d v̄z

dr
v̂r

]
= −k p̂ − iemc̄

[
d2v̂z

dr2
+ 1

r

d v̂z

dr
−

(
β2

r2
+ k2

)
v̂z

+ m
dc̄

dr

(
d v̂z

dr
− kv̂r

)
+ m

d v̄z

dr

dĉ

dr

+ mĉ

(
d2v̄z

dr2
+ 1

r

d v̄z

dr
+ m

dc̄

dr

d v̄z

dr

)]
,

Pe

[
−ωĉ + kv̄zĉ + dc̄

dr
v̂r

]
= −i

[
d2ĉ

dr2
+ 1dĉ

dr
−

(
β2

r2
+ k2

)
ĉ

]
. (13)

The boundary conditions for the above problem are as follows. For both cases we require all the
velocity and the concentration to vanish in the far field (r → ∞). At the center line of the jet,
we consider the single-valuedness of velocity, together with continuity to derive the center-line
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conditions for different values of azimuthal wave number β [52]:

β = 0:
d v̂z

dr
= 0, v̂r = 0, v̂θ = 0,

d p̂

dr
= 0,

dĉ

dr
= 0,

β = 1: v̂z = 0, v̂r + v̂θ = 0, 2
d v̂r

dr
+ d v̂θ

dr
= 0, p̂ = 0, ĉ = 0,

β � 2: v̂z = 0, v̂r = 0, v̂θ = 0, p̂ = 0, ĉ = 0. (14)

Together, the above equations constitute an eigenvalue problem, with the angular frequency rep-
resenting the eigenvalue while the velocity and concentration disturbances are the eigenfunctions.
In other words, these equations represent the dispersion relation:

D(ω, k, Re, M, Sc, θ, θμ, δ) = 0. (15)

III. NUMERICAL SOLUTION PROCEDURE AND VALIDATION

A. Chebyshev spectral method with overlapping domains

Since gas viscosity does not vary appreciably as a function of species alone, experimental
realization of viscosity contrast will rely on liquid flows, which are characterized by high values
of the Schmidt number. As a consequence, the concentration layer is likely to be much thinner
than the velocity boundary layer thickness. Chebyshev collocation techniques are often preferred
for studying shear flows due to their exponential convergence rate when approximating polynomial
functions, and a high degree of algebraic convergence when weak discontinuities are present. The
Chebyshev space [−1, 1] is intrinsically advantageous for internal flows, since the Chebyshev
modes are clustered towards the boundaries, where the steepest velocity gradients occur. Conven-
tionally, stability analyses of jet flows have been performed using Chebyshev collocation using
a suitable single mapping function (see, for example, Lesshafft and Huerre [51]) for transforming
from the physical domain to the domain [−1, 1]. This implementation is now available in MATLAB
as the chebfun set of routines [53]. However, we found that such mapping functions did not yield
a sufficient number of points in the intermediate mixing region with the largest gradient, especially
when the width of this layer was 1% of the radius. The chebfun routines offer the ability to split
domains and have exponentially convergent Chebyshev interpolation over each subdomain, but
this causes issues with smoothness of higher order derivatives, which leads to oscillations in the
solution [54]. In this study we adopt a newly introduced technique of domain overlapping [55],
which offers a compromise between the need for a very high number of grid points in the single
domain or single mapping method and the domain splitting technique of chebfun which requires
fewer points but suffers from poor convergence. For the present calculations, we typically required
200 polynomials for accurate representation of the eigenfunction solutions. Further details are given
in Appendix A.

B. Code validation

We begin the process of verifying our code for the viscosity-stratified case by first comparing
predictions of the critical Reynolds number and critical wave number and frequency for a uniform-
viscosity jet with the spatial instability results of Morris [6]. Morris studied three velocity profiles:
a self-similar profile corresponding to downstream conditions and two profiles in the near field.
Results are presented here for his “Profile III,” which corresponds to the base state in Eq. (4). For
a shear layer thickness of θ = 0.16, the critical Reynolds number Rec, the corresponding wave
number k, and the frequency ω are calculated and tabulated in Table I for the axisymmetric mode
(β = 0) and the helical mode (β = 1).

For validating the code for situations with viscosity variation due to the miscibility of fluids, we
replicate the results of Selvam et al. [36,56] for miscible core-annular flow in a circular duct. Base
profiles corresponding to the laminar quadratic velocities used in that study were employed, along
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TABLE I. Comparison of wave number and frequency of the axisymmetric and helical modes at the critical
Reynolds numbers for M = 1 with the spatial instability analysis results of [6].

β Rec k θ ω (Morris 1976) ω (Present)

0 55.3125 1.0281 0.16 0.8275 0.8277
1 21.7500 0.5713 0.16 0.2181 0.2182

with no-slip conditions at r = 1. In Fig. 3(a) the Ri denotes the location of the diffusive interface
normalized by the pipe radius. The parameter δ∗ = 0.01 denotes the thickness of the layer with a
viscosity gradient. The Schmidt number value is Sc = 7500, and the Reynolds number is Re = 48.
The dispersion relation of the axisymmetric mode agrees well with their results. Further, neutral
curves are plotted in Fig. 3(b) for M = 2.718 and both axisymmetric and helical modes and are
shown to agree well with previous results.

IV. RESULTS

A. Temporal instability analysis of low-viscosity jets (M > 1)

We start by examining the spectrum of eigenvalues for a jet that emerges into an ambient with a
viscosity not far from unity, M = 2, and compare it with the spectrum for a constant-viscosity jet
(M = 1) at critical conditions, as calculated by Morris [6]. Figure 4 shows that for θ = 0.16, the
change in viscosity from M = 1 to M = 2 does not produce any additional branches in the spectrum.
There exists only one unstable mode (ωi > 0) for both M = 1 and M = 2, suggesting that the M = 1
mode can be interpreted as a specific case of a more general viscosity-stratified mode.

Figure 5 considers the temporal stability of a family of jet profiles specified by constant mo-
mentum thickness, θ = 0.1 and constant viscosity-gradient thickness θμ = 0.01, for a Reynolds
number of 1000 and a Schmidt number of Sc = 100. Overall, for all viscosity ratios in the range
1 < M < 40, the temporal growth rates of the axisymmetric (β = 0) and helical modes (β = 1) are
surprisingly close, with the axisymmetric mode being slightly more unstable. This has been noted
previously for constant viscosity jets by other investigators [6] and offered as a possible explanation
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FIG. 3. (a) Comparison of our calculations with the core-annular pipe flow calculations in Fig. 3(a) of
Selvam et al. [56] for the axisymmetric mode. The abscissa r0 corresponds to various locations of the diffusive
interface of width δ, for the parameter matrix (M, Re, Sc, δ∗) = (25, 48, 7500, [0.02, 0.03]). (b) Comparison
with the results from Selvam in Fig. 7, considering both helical and axisymmetric modes when the ratio of
annular to core fluid viscosity is 2.718.

013903-9



JINWEI YANG AND VINOD SRINIVASAN

0 0.2 0.4 0.6 0.8 1

r

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

i

Morris (1976)
Present study, M=2

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6

r

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

i

Morris (1976)
Present study, M=2

(b)

FIG. 4. Spectra of eigenvalues for a round jet emerging into an ambient with viscosity ratio M, and with the
properties (Sc, θ, θμ) = (100, 0.16, 0.01). (a) Axisymmetric mode: (Re, β, k) = (55.312, 0, 1.028). (b) Heli-
cal mode (Re, β, k) = (21.75, 1, 0.571). The M = 1 case corresponds to the critical conditions identified by
Morris [6].

for why the breakdown of jets in laboratory experiments (see, for example, Mattingly and Chang [5])
appears to start as axisymmetric disturbances, before progressing to modes with distinct helicity far
downstream. Note that there is a distinct difference in the growth rates at lower Reynolds numbers,
as exemplified by the difference in critical Reynolds number for the two modes. We shall later
see that there is also a strong difference in growth rates of the two modes when conditions admit
absolute instability. For the present temporal instability calculations of the two modes, the case of
M = 1 appears more unstable at small wave numbers; however, the range of unstable wave numbers
is much lower for M = 1 compared to larger M. Both axisymmetric and helical modes remain
unstable at larger wave numbers (short wavelengths) as the viscosity ratio is increased. The fastest
growing modes remain those with a wavelength approximately equal to that of the jet diameter
(k ≈ 3).
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FIG. 5. Temporal growth rates for low-viscosity jets (M > 1) for a round jet with (Re, Sc, θ, θμ) =
(1000, 100, 0.1, 0.01). (a) The axisymmetric mode, β = 0, and (b) the helical mode, β = 1.
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FIG. 6. Disturbance velocity functions for low-viscosity jets with (M, Re, Sc, θ, θμ, k) = (5, 1000, 100,

0.1, 0.01, 3). (a) The axisymmetric mode, β = 0, and (b) the helical mode, β = 1.

The velocity disturbance functions for a wave number (k = 3) close to the maximum growth
rate case is shown in Fig. 6. The striking feature of the disturbance profiles is that even though the
instability arises in the shear layer, and the disturbance peaks in the shear layer, the axial disturbance
velocity does not decay to zero at the jet center line, and therefore the disturbance spans the diameter
of the jet.

To further understand the mechanisms responsible for driving the instability, we examine the
disturbance kinetic energy equation, obtained by multiplying the governing equation for each
perturbation velocity with its complex conjugate and summing all three equations. Following
Selvam et al. [36], we use the disturbance velocities (vr, vθ , vz ), and we evaluate the terms of the
disturbance kinetic energy equation:

Ė = I + P − D + A + B + C, (16)

where

Ė =
∫ ∞

0
Er dr = ωi

∫ ∞

0
(|v̂r |2 + |v̂θ |2 + |v̂z|2)r dr, (17)

I =
∫ ∞

0
Ir dr =

∫ ∞

0

d v̄z

dr
Im{v̂r v̂

∗
z }r dr, (18)

P =
∫ ∞

0
Pr dr = − 1

Re

∫ ∞

0
Im

(
d p̂

dr
v̂∗

r − β

r
p̂v̂∗

θ − k p̂v̂∗
z

)
r dr, (19)

D =
∫ ∞

0
Dr dr = 1

Re

∫ ∞

0
emc̄

[(∣∣∣∣dûr

dr

∣∣∣∣
2

+
∣∣∣∣dûθ

dr

∣∣∣∣
2

+
∣∣∣∣dûz

dr

∣∣∣∣
2
)

− 1

r
Re

(
d

dr

(
rû∗

r

dûr

dr
+ rû∗

θ

dûθ

dr
+ rû∗

z

dûz

dr

))]
r dr

+ 1

Re

∫ ∞

0
emc̄

[(
β2

r2
+ k2

)
(|v̂r |2 + |v̂θ |2 + |v̂z|2)

+ |v̂r |2 + |v̂θ |2 + 4β Re(v̂θ v̂
∗
r )

r2

]
r dr, (20)
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FIG. 7. Disturbance quantities contributing to the kinetic energy budget (before integration), for the same
conditions as in Fig. 6.

A =
∫ ∞

0
Ar dr = m

Re

∫ ∞

0
emc̄

[
dc̄

dr

{
Re

(
d v̂r

dr
v̂∗

r + d v̂θ

dr
v̂∗

θ + d v̂z

dr
v̂∗

z

)

+ 1

r

(
d (r|ûr |2)

dr
− |ûθ |2

)}]
r dr, (21)

B =
∫ ∞

0
Br dr = m

Re

[∫ ∞

0
emc̄ d v̄z

dr
Re

{
dĉ

dr
v̂∗

z

}
rdr +

∫ 1

0
emc̄ d v̄z

dr
Re{kĉv̂∗

r }rdr

]
, (22)

C =
∫ ∞

0
Cr dr = m

Re

∫ ∞

0

(
d2v̄z

dr2
+ 1

r

d v̄z

dr
+ m

dc̄

dr

d v̄z

dr

)
Re{ĉv̂∗

z }r dr. (23)

The left-hand side of the equation is the rate of change of disturbance kinetic energy; the first term
on the right-hand side is the usual kinetic energy generation term for constant property flows, while
the second term is the viscous dissipation. Additionally, the variable viscosity field gives rise to
terms that couple the mean viscosity gradient with the velocity perturbations (A), the mean velocity
gradient with the variable viscosity field (B), and the fluctuating velocity and viscosity fields (C).
Plotting the spatial distributions of the terms, Fig. 7 clearly shows that the term associated with
the viscosity gradient is responsible for the instability, peaking in the shear layer and causing an
increase in the disturbance energy production term. Integrating these terms from r = 0 to r = ∞, we
construct the budget for disturbance kinetic energy and plot as a function of M and Re in Figs. 8(a)
and 8(b). It is evident that for both axisymmetric and helical modes as M increases, the major source
of the disturbance energy is the term B, the coupling of the mean velocity gradient with the mean and
fluctuating viscosity gradients. Similar observations were made by Sahu et al. [57] when analyzing
the kinetic energy budget for a three-layer planar channel flow, with a high-viscosity fluid near the
walls and a low-viscosity fluid in the center. These physics appear to be preserved even as the free
shear flow introduces additional inflection points in the velocity profile.

1. Parametric study

We first consider the influence of velocity and viscosity profile shapes, in terms of their respective
regions of sharp variation (θ and θμ). One question that arises is regarding the relative influence
of these gradient regions and how they determine the dominant instability. Figure 9 plots growth
rates as a function of the momentum thickness, for fixed viscosity ratio M = 20, Reynolds number
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FIG. 8. Disturbance kinetic energy budget (integral) for a jet with (Re, Sc, θ, θμ, k) = (1000, 100,

0.1, 0.01, 3), as a function of M. (a) Symmetric mode; (b) helical mode.

Re = 1000, and Sc = 100. The effects of decreasing momentum thickness is to make the jet more
unstable, as expected while shifting the maximum growth rate to shorter wavelengths. Thus, the
disturbance wavelength is seen to scale on the momentum thickness, at least for constant viscosity
ratio. Similarly, when the momentum thickness is held constant and the viscosity gradient is
increased at fixed M (Fig. 10), the jet becomes more unstable, though the controlling wavelength
does not vary. Thus, the mean velocity profile seems to be the controlling parameter.

We now turn to the effects of other parameters. The Schmidt number Sc controls the diffusion
of viscosity fluctuations induced by the instability; strong diffusion would be expected to weaken
the instability. A look at the temporal growth rates for fixed velocity and viscosity profiles (Fig. 11)
shows results at variance with this expectation. For two values of a viscosity stratification thickness,
θμ = 0.01 and 0.025, the dispersion relation is nearly independent of diffusion, though some
effects are apparent at long wavelengths for the lower value. The maximum growth rate appears
independent of Sc, despite a 50-fold increase in Sc. These results differ from the channel flow
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FIG. 9. Effects of the jet momentum thickness on the temporal stability for low-viscosity jets (M = 20),
for a viscosity thickness of θμ = 0.01. (a) Axisymmetric mode, β = 0, and (b) helical mode, β = 1. Other
relevant parameters are Re = 1000, Sc = 100.
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FIG. 10. Temporal Instability of low-viscosity jets (M = 20, θ = 0.1) for different viscosity thickness.
(a) The axisymmetric mode, β = 0, and (b) the helical mode, β = 1. Other relevant parameters are set to
Re = 1000, Sc = 100.

results of [36,58,59], which all document significant changes in the maximum growth rate with
changes in Sc; notably these studies all involve essentially linear or quadratic velocity profiles. On
the other hand, these results align perfectly with those of [45], which studied the temporal instability
due to viscosity stratification near a free shear layer with inflection point profiles. This is consistent
with the findings from the disturbance kinetic energy equation. The main source of instability is the
presence of a velocity fluctuation in a variable viscosity field; viscosity fluctuations do not play a
significant role. Sahu and Govindarajan [45], studying the planar counterpart of the present study,
term this a quasi-inviscid instability, in the sense that viscosity plays a role in generating the mean
velocity profile but otherwise does not play a direct role. Also note that unlike the pipe flow studies
of [56], the helical mode is also independent of Sc and nearly matches the axisymmetric mode in
behavior.

It is worth examining whether the diffusion rate of the base state in the radial direction and
associated effects of jet broadening are significant enough to affect the assumptions of parallel
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FIG. 11. Effects of Schmidt number Sc on the temporal stability for (M, Re, θ, θμ) = (20, 1000, 0.1, 0.02).
(a) The axisymmetric mode, β = 0, and (b) the helical mode, β = 1.
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FIG. 12. Variation of wavelength 2π

k and frequency corresponding to the maximum temporal growth rate,
as a function of viscosity ratio for the axisymmetric mode, β = 0. (a) Wavelength of the fastest growing mode
and (b) frequency of this mode. Other relevant parameters are θ = 0.1, θμ = 0.01, Sc = 100, Re = 1000.

flow that are used in the analysis. Ern et al. [59] studied the temporal instability of a Couette flow
in the presence of viscosity stratification and assumed a constant shear stress over the viscosity
gradient region. They did so by assuming that momentum diffusion was negligible, along with
species diffusion. A criterion was developed to assess whether the timescale of growing disturbances
( 1
ωiL/U ) was much shorter than the timescale of species diffusion of the base state, θ2

μ/(ν/Sc). In
nondimensional terms, this leads to the criterion that species diffusion can be neglected if ωi �

1
Peθ2

μ
, or for momentum diffusion, ωi � 1

Reθ2 . Looking at the dispersion relations presented so far, it

appears that the criterion may be violated for short and long wave numbers, though the growth rate
of the most amplified mode always satisfies this criterion.

A compilation of the behavior of the wavelength and frequency of the fastest growing mode
is shown in Fig. 12 for axisymmetric and in Fig. 13 for helical modes as a function of viscosity
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FIG. 13. Variation of wavelength 2π

k and frequency corresponding to the maximum temporal growth rate,
as a function of viscosity ratio for the helical mode, β = 1. (a) Wavelength of the fastest growing mode and
(b) frequency of this mode. Other relevant parameters are θ = 0.1, θμ = 0.01, Sc = 100.
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FIG. 14. Effects of a shift in velocity profile relative to the region of viscosity gradient. (a) β = 0,
axisymmetric mode, and (b) β = 1, helical mode. The other parameters have values θ = 0.1, θμ = 0.01,
Sc = 100, Re = 1000.

ratio. For both modes, the wavelength decreases sharply as M increases, before asymptoting to a
constant Reynolds-number-dependent value. The frequency increases until M ∼ 5 before becoming
insensitive to M.

Finally, we consider the effect of a shift of velocity profiles by a distance δ in the radially
inward direction, due to the retarding effects of a high-viscosity ambient medium. From Fig. 14 it
is apparent that increasing δ destabilizes the flow. A small shift of δ = 0.05, or half the momentum
thickness, seems to cause a dramatic shift in growth rates, with little further increase for larger shifts.
This is somewhat counterintuitive since the viscosity gradient now occurs in a region of low values
of velocity and velocity gradient. In other situations where there are two inflection points, such as
low-density jets [18] or the planar miscible shear layers studied by Sahu and Govindarajan [45], the
instability is strengthened when the regions strongly overlap. To understand this better, we first veri-
fied that such radially inward shifts of velocity profile stabilized the flow for M = 1, which indicated
that this was indeed a viscosity-linked effect. On closer examination, we find that the critical layer
(the radial location where the wave speed matched the base velocity) shifts outward towards the
viscosity gradient region, when a radial shift is introduced. Such destabilization when the critical
layer overlaps the gradient region has been previously noted and explained by Ranganathan and
Govindarajan [34]. They considered the critical layer equation, and considering lowest order of
disturbances, showed that additional terms appear in the equation, which are products of the mean
viscosity gradient and the velocity perturbation that become zero in the unmixed fluid and outside
the critical layer, implying that their contributions are important only when the diffusive interface
matches the critical layer.

B. Spatiotemporal analysis

The spatiotemporal analysis of the base profiles is carried out next, for a fixed set of conditions.
The group velocity of disturbances is given by dω/dk; a saddle point (dω/dk = 0) in the contours
of the complex frequency ω in the complex wave-number plane is indicative of absolute instability,
provided that the growth rate ω0i > 0 at the saddle point location ω0, and the saddle point satisfies
the “pinching” criterion [60,61], which stipulates that the saddle point is formed by the merger of
two waves, one traveling upstream and the other traveling downstream. The presence of absolute
instability in local profiles has been strongly linked to experimental observations of global modes
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FIG. 15. Contours of frequency and growth rate on the complex wave-number plane, showing con-
vective instability of low-viscosity jet with δ = 0.05 for profile I: (a) β = 0 with the saddle point at
k0 = 2.002 − 5.0461i and ω0 = 2.0179 − 0.7750i and (b) β = 1 with the saddle point at k0 = 2.5488 −
5.4831i and ω0 = 2.0255 − 0.8573i. Other relevant parameters are set to the values (Re, M, Sc, θ, θμ) =
(1000, 40, 100, 0.05, 0.01).

in the laboratory reference frame [62]. For this reason, it becomes interesting to explore whether
certain variable viscosity jets might support absolute instability.

Figures 15(a) and 15(b) show contours of ω for a low-viscosity jet (M = 40, Re = 1000) and
a radially inward shifted velocity profile. The growth rate at the saddle point location is negative
for both axisymmetric and helical modes. A similar set of parameters used in the experiments
of Srinivasan et al. [48] yielded self-sustained oscillations with helical modes, whose origin is
tentatively assumed to lie in an initially linear perturbation. When attempting to reconcile these
disparate findings, one notes that the stability analysis presented so far assumes an arbitrary value
of δ that needs to be delineated more clearly, through either theory or experiment.

In resolving this issue, two approaches can be followed. (1) One can recognize that in an
experimental facility, the nozzle geometry controls the boundary layer at the nozzle exit plane for a
given Re. Therefore, for a laminar exit profile, the momentum thickness θ has an inverse relationship
with the square root of the Reynolds number, which can be written as D/θ = a + b

√
Re, where

a and b are experimentally derived constants, D is the nozzle diameter, and θ is dimensional
momentum boundary layer thickness [33,63]. (2) Alternatively, one can consider that for a given
thickness over which the viscosity jump occurs, the boundary layer growth is controlled by the
balance between advection and spatially varying momentum diffusion, so that the velocity profile
can be deduced by solution of a Blasius-type equation with spatially varying viscosity. In this second
case, the velocity profile is solved as a function of prescribed viscosity profile and Re, from which
the momentum thickness is calculated. The second approach is followed henceforth, though results
from the first approach are also presented in the following section:

f (η)′′′ + 1

2μ0
f (η) f (η)′′ + μ′

0

μ0
f (η)′′ = 0, η = r

x/
√

Re
. (24)

For prescribed values of the viscosity ratio, viscosity profile, and Reynolds number, this nonlinear
ordinary differential equation can be solved by imposing appropriate boundary conditions at infinity
and ensuring continuity of velocity and shear stress across the diffusive interface (see Appendix B
for details).
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FIG. 16. Similarity solution for a jet with variable viscosity.

Figure 16 shows the similarity solution for three different values of viscosity ratio. Also shown
are tanh profiles used in this study, whose parameter values (θ , δ) have been chosen to fit these
similarity profiles. The solid line is the similarity solution. and the discrete points indicate the
tanh profiles with different shift distances of δ and momentum thickness of θ . While there is a
difference between the two profiles for large radial distances, these are unlikely to affect the stability
characteristics, and we note that the shear layer region is captured accurately by a tanh profile with
the appropriate values of θ and δ (see Table II). Of course, the similarity solution is required in order
to arrive at these values of θ and δ; however, this does appear to justify the use of tanh profiles for
the preceding results of temporal and spatiotemporal analysis.

Figure 17 shows the complex wave number plane for velocity profiles obtained from the
similarity solution, for a Reynolds number of 750, M = 40, and a prescribed value of viscosity
thickness of 0.01, representative of the near field of the jet. A total of four saddle points with positive
growth rates are now found for the axisymmetric mode as well as the helical mode. Upon further
examination, it was found that the modes near the upper half of the complex plane were always
more dominant than the two interior of the negative half-plane. These more unstable modes (one
axisymmetric and one helical) are the focus of further examination. The presence of these saddle
points in the low-viscosity jet configuration appears to confirm that it is possible to trigger absolute
instability through viscosity contrast alone in a free shear layer. For the case of a planar shear
layer in the vicinity of a species concentration gradient, Sahu and Govindarajan [45] did perform
a spatiotemporal analysis, but their study presents contours of complex frequency for the case of
countercurrent shear layers with significant counterflow, which is a well-documented phenomenon
for planar constant property mixing layers [9,64]. It is possible that the low-viscosity ratio (2.718
and 0.368) may also have been a factor in not observing absolute instability without counterflow.

TABLE II. Values of θ and δ obtained for various values of M from the boundary-layer equation when
θμ = 0.01.

M 60 56 48 40 32 25 17 9

δ 0.185 0.181 0.177 0.169 0.158 0.146 0.131 0.108
θ 0.096 0.096 0.100 0.104 0.104 0.108 0.115 0.115
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FIG. 17. Contours of frequency and growth rate on the complex wave number plane, showing ab-
solute instability in ω plane for both (a) β = 0 and (b) β = 1 when (Re, M, Sc, θ, θμ, δ) = (750, 40,

100, 0.104, 0.01, 0.169). The saddle points are k0 = 3.203 − 2.096i, ω0 = 1.123 + 0.302i and k0 = 3.547 −
2.426i, ω0 = 1.107 + 0.249i.

In the rest of this article, we focus on characterizing these two absolutely unstable modes and the
parameter space delineating their transition from convective to absolute instability, with particular
emphasis on replicating the helical modes observed by Srinivasan et al. [48] in their low-viscosity
jets with a single-nozzle geometry.

In channel flows, the onset of absolute instability has been connected to an “overlap” mode that
occurs when the viscosity stratification region overlaps with the critical layer, the location in the
transverse direction where the mean velocity equals the phase velocity of a particular mode [34].
For free shear layers, the critical layer is often set by the mean shear field, and in this particular
case, it is well separated (located at r ≈ 0.76) from the viscosity stratification located at r ≈ 1. To
provide insight into the conditions and mechanism that may be responsible for triggering absolute
instability, Figs. 18(a) and 18(b) present the components of the disturbance kinetic energy. These
are evaluated for the saddle points shown in Fig. 17. Of particular interest is the dominance of the
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FIG. 18. Disturbance quantities contributing to the kinetic energy budget (before integration), for the two
saddle points shown in Fig. 17.
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FIG. 19. Variation of ω and k with viscosity for different Re by tracking the saddle points for top left
axisymmetric mode at (Sc, θμ, δ) = (100, 0.01, 0.06).

term A among the various kinetic energy terms [refer to Eqs. (21)] that represents the coupling of the
mean viscosity field with the velocity fluctuations. This term was significant but not dominant for
the convectively unstable situation shown in Fig. 7. Here it appears to dominate the overall kinetic
energy budget and may point to a possible mechanism driving the absolute instability when M is
increased sufficiently.

Figures 19 and 20 track the locus of saddle points for both axisymmetric and helical modes as
a function of M for different Reynolds numbers and a fixed value of viscosity layer thickness, and
velocity profiles based on the corresponding similarity solution. The behavior of these parameters
(wave number, spatial and temporal growth rates, and wave number) is largely the same for both
modes, though differences exist when the two modes become absolutely unstable. The growth rate is
an increasing function of M, saturating at large N , with the transition to absolute instability occurring
at lower M (∼15–22) for the axisymmetric mode relative to the helical mode (∼25–30). The real
frequency is a decreasing function of M for both modes for M > 10. From Figs. 19(b) and 20(b),
one observes that the larger the Re, the smaller the ωi, implying that at large Re, the dominance
of convective effects over diffusive transport may lead to weakening and potential suppression of
this instability. The wave number is an increasing function of M at low M and eventually saturates,
while the spatial growth rate appears to continuously increase with M.

Figures 21 and 22 explore the behavior of these modes with respect to θμ and M for fixed Re. As
expected, sharper gradients in viscosity (smaller θμ) lead to increased temporal growth rates for both
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FIG. 20. Variation of ω and k with viscosity for different Re by tracking the saddle points for top right
helical mode at (Sc, θ, θμ, δ) = (100, 0.08, 0.005, 0.06).

axisymmetric and helical modes [Figs. 21(b) and 22(b)]. Further, the wave number of the unstable
mode is strongly influenced by θμ, with higher wave numbers at smaller θμ [Figs. 21(c) and 22(c)].
Reduction in θμ also increases the spatial growth rate at fixed M [Figs. 21(d) and 22(d)].

C. Comparison with experiments

The above results strongly suggest that over a wide range of Re and viscosity ratio M, the
axisymmetric mode is more unstable than the helical mode. However, in the experiments of
Srinivasan et al. [48], injection of salt water into propylene glycol invariably produced self-sustained
helical modes oscillating at a discrete frequency, as confirmed by Fourier analysis of jet images
and hot film anemometry. Disturbance frequencies of the helical mode qualitatively followed the
trends in Fig. 20, with frequency increasing as the tank of glycol was diluted (M decreased). Once
the viscosity ratio dropped below some critical (Re-dependent) value, axisymmetric modes were
observed, though the nature of this mode (self-sustained or convective) was not examined. This
raises the question of whether the velocity profiles being considered in the present study are the
most appropriate for comparison with experiments. Despite the similarity solution yielding velocity
profiles that are dependent on M, without any a priori assumption of tanh-type behavior, it still
differs from experiment, as discussed previously. Notably, the momentum thickness at the start of
the species diffusion process is not zero and is determined by the jet Reynolds number.
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FIG. 21. Variation of saddle point ω and k of the dominant axisymmetric mode with viscosity ratio M and
three values of viscosity thickness. Velocity profiles are based on the similarity solution at each condition. The
fixed parameters are (Re, Sc, θμ) = (750, 100, 0.005).

The transition from helical to axisymmetric modes observed by Srinivasan et al. [48] is first
attempted to be predicted by assuming that the momentum thickness θ and Re are linked, and M
and θμ can be prescribed as independent parameters, while δ is taken from Table II. With this,
saddle points are sought in the complex plane with ω0i = 0, and this absolute-convective transition
boundary is mapped for helical and axisymmetric modes in the M-Re plane, corresponding to the
two control parameters in the experiment.

The results are shown in Fig. 23. Discrete symbols mark the values of Re and M where images
were acquired in the experiment. The convective-absolute stability boundary still suggests that at
high values of M, the axisymmetric mode is expected to be more unstable. Aside from this major
drawback, it is also clear that the behavior of the transition boundary does not quite match the
experiments.

Since the use of experimentally measured values of θ fails to improve agreement with theory,
we return to the similarity solution. When profiles entirely based on the similarity solution are used
in order to calculate the absolute-convective transition boundary, the results shown in Fig. 24 are
obtained. As before, a major issue that remains is the prediction of a more unstable axisymmetric
mode at large M and constant Re, which is not supported by the experiments. However, the transition
boundary of the helical mode appears to match very well that encountered in the experiments.
This leads to the possibility that the experimental facility, through some unknown combination
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FIG. 22. Variation of saddle point ω and k of the dominant helical mode with viscosity ratio M and three
values of viscosity thickness. Velocity profiles are based on the similarity solution at each condition. The fixed
parameters are (Re, Sc, θμ) = (750, 100, 0.005).

of boundary and/or inlet conditions or for other unclear reasons, somehow favors the selection of
the helical mode at the expense of the axisymmetric mode at high M.

V. SUMMARY AND DISCUSSION

A temporal stability analysis has been carried out for a round jet emerging into a medium
of higher viscosity. The temporal stability analysis suggests that the near-critical behavior of the
axisymmetric and helical modes is substantially different. However, at higher Re, for a broad range
of conditions, the two modes are nearly equally unstable, and both are more unstable than the
constant-viscosity jet. The additional destabilization is attributed to the presence of extra terms
in the kinetic energy equation, which represents the interaction of the mean velocity gradient with
the viscosity field; other source terms include the coupling of the velocity fluctuations to the mean
viscosity gradient. The base profiles used in this study reflect an assumption of retardation of mean
velocity by a more viscous ambient, leading to reduced gradients in the species diffusion layer, and
making the apparent effect of M fairly weak when considering temporal growth rates. The axial
disturbance velocity does not decay to zero at the center line and therefore communicates across the
jet diameter. The instability wavelength scales on the momentum thickness for low-viscosity jets.
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FIG. 23. Absolute and convective instability transition boundaries in the M-Re plane when (Sc, θμ) =
(100, 0.01). Velocity profiles are tanh profiles with δ based on the corresponding similarity solution, and θ

taken from experiments.

When accompanied by a radial inward shift, and sufficiently high values of M, velocity profiles
representing the extreme near field of the jet support absolute instability. The validity of the tanh-
type velocity profiles used in the temporal analysis is checked by obtaining a similarity solution from
the boundary layer equations for variable viscosity, and verifying that the resulting solution admit
tanh profiles with appropriate parameter values. Over a parameter space defined by (M, Re, θμ), two
absolutely unstable modes are predicted by the present analysis, with an axisymmetric mode being
triggered at lower M and becoming progressively more unstable as M is increased, with the helical
mode establishing itself at higher M. Both modes become more unstable as the viscosity gradients
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FIG. 24. Absolute and convective instability transition boundaries compared to the experimentally ob-
served transitions. Calculations are for velocity profiles taken from the similarity solution and (Sc, θμ) =
(100, 0.01).
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become sharper, with spatial and temporal growth rates increasing as M is increased and/or θμ is
decreased. The wavelength of the unstable modes also follows the behavior of θμ.

As far as the authors are aware, only Srinivasan et al. [48] in the same group has experimentally
investigated a similar configuration for viscosity ratios as high as 50, and at Reynolds numbers above
1000. In that study, the experiments were carried out by progressively diluting a large tank of high-
viscosity fluid, with initial measurements showing helical modes which later turned to axisymmetric
modes. Discrete frequencies were observed in the helical mode spectra, but in some cases, they were
also observed in the axisymmetric data, which were attributed to some unknown source of noise.

Attempts to resolve this discrepancy by solving a Blasius-type equation for the velocity profile
are successful in capturing the transition boundary for the helical mode. However, the use of
such profiles does not explain why axisymmetric modes are not observed at large M. Without an
experimental measurement of the velocity profiles in the real flow, this question may be hard to
answer. One possibility is that in the jet near-field, finite-thickness effects of the nozzle lip alter the
velocity profile, adding a velocity defect. The boundary layer analysis presented here also does not
consider the initial momentum thickness already established inside the nozzle, and therefore may
not be representative of the real flow. These issues require significant consideration, with further
measurements and/or high-fidelity computations, and are reserved for a future study.
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APPENDIX A: SEMIGLOBAL SHARP INTERFACE CAPTURING TECHNIQUE

In this Appendix we discuss some details of the numerical procedure used to solve the per-
turbation equations, starting with the need to go beyond the traditional collocation approach that
employs a single mapping to transform the physical domain to [−1, 1]. A mapping used in other
low-density jet studies [18,51] to transform from [0, ∞] to [−1, 1] while clustering points near
r = 1, the location of the shear layer, yields only one point in the radial region [0.99 1.01] when
N = 250 polynomials are used. This is acceptable when dealing with relatively diffusive flows with
low Sc ∼1 are examined, as was the case in the above studies. High-Sc flows produce interfaces that
are not sharp but are quite thin relative to other scales, such as the jet diameter in the present study.
In order to get at least six points, say, in this region, we need N = 8858 polynomials.

An alternative approach is to split the domain into two subdomains with their adjacent bound-
ary chosen near the point of (weak) discontinuity, and populate the subdomains with standard
Chebyshev grids and implementation, which will automatically cluster points near the common
boundary. This is a “semiglobal” method in that function values at all points in the domain are not
used to evaluate derivatives at any location; only values in the same subdomain are used. Neverthe-
less, this would be expected to preserve exponential convergence in each subdomain; however, the
jumps in higher order derivatives at the interface effectively prevents exponential convergence.

Recently, Aiton and Driscoll [55] proposed an alternative approach, which employs two over-
lapping subdomains, with the overlap region covering the region of sharp gradients. Since the
overlapped region is near the boundary of both domains, high spatial resolution in point distribution
can be achieved. Within each subdomain, a high-order representation of the function is possible.
Aiton and Driscoll [55] propose weighting the two different representations of the function in the
overlapping region to come up with an interpolated value, which is accurate to high order. This is
the scheme we follow, with equal weighting from both sides.

The matrix formulation is outlined below. Suppose D1 and D2 denote the first and second-order
derivative matrix operators for the standard Chebyshev method on domain x = [−1, 1], so that the
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velocity derivative is dU
dy = DU . Now suppose the calculation domain is [0, L], L > 1. We split the

domain [0, L] into [0, L1], [L1, L2], and [L2, L], respectively. For each domain, we can introduce
the nonlinear mappings as follows. On domain r = [0, L1], we use the following nonlinear mapping
function:

r1 = RcL1(1 − x)

2Rc + L1(1 − x2)
, (A1)

where Rc is a free parameter which can be used to adjust the node distribution on this domain. For
domain [L1, L2] and [L2, L], we use other two nonlinear mappings:

r2 = L1 − L2

2
x + L1 + L2

2
(A2)

and

r3 = L(1 − x)

b + x
+ L2, (A3)

where b is also a free parameter using the adjust the node distribution. The first-order derivative
matrix for the three domain can be derived via the chain rules as follows:

d1 = − [2Rc + L1(1 − x2)]2

RcL1(2Rc + R1(x − 1)2)
D, (A4)

d2 = 2

L1 + L2
D, (A5)

d3 = − (b + x)2

L(b + 1)
D. (A6)

From the matrices for each subdomain, we assemble the global matrix D̂. If u1, u2, and u3 are the
velocity profiles for each domain, we can write⎡

⎢⎢⎣
du1
dr
du2
dr
du3
dr

⎤
⎥⎥⎦ =

⎡
⎢⎣

d1 0 0

0 d2 0

0 0 d3

⎤
⎥⎦

⎡
⎢⎣

u1(r)

u2(r)

u3(r)

⎤
⎥⎦. (A7)

These lead to two points of overlap r = L1 and r = L2, which need to be reconciled in order to obtain
a square global matrix. We use the average values of the last row of matrix d1 and the first row of
matrix d2 to replace the row corresponding to r = L1, the same as r = L2 (shown schematically in
Fig. 25). In Fig. 26 we show the convergence comparison between a global Chebyshev spectral
method and the semiglobal Chebyshev spectral method for the boundary value problem tested by
Aiton and Driscoll [55],

y′′ + λ2y = 0, (A8)

where the eigenvalue λ = nπ and n = 1, 2, 3, . . .. It indicates that they have nearly the same order
of convergence rate.

APPENDIX B: BASE STATE VELOCITY PROFILE AND THE NUMERICAL SIMILARITY
SOLUTION FOR VARIABLE VISCOSITY JET

Here we use the nonlinear ordinary differential equation from the steady-state, boundary layer
equations given by

u
∂u

∂x
+ v

∂u

∂r
= ∂

∂r

(
ν
∂u

∂r

)
,

∂u

∂x
+ ∂v

∂r
= 0, (B1)
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FIG. 25. Nonzero nodes distribution of the semiglobal method: (1) The first-order derivative matrix and
(b) the second-order derivative matrix.

where x and r are the original horizontal and transverse directions, respectively. Then one can
transform the equations to a single-dimensionless variable, η, given by

η = r

x/
√

Rex
, (B2)

where Rex is the Reynolds number defined as μ0x
ρ0U0

. Here μ0 and ρ0 are the viscosity and density at
the center of the jet, respectively. Then once obtains

f (η)′′′ + 1

2μ0
f (η) f (η)′′ + μ′

0

μ0
f (η)′′ = 0, (B3)
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FIG. 26. Convergence rate comparison of the global and semiglobal Chebyshev spectral methods.
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where f ′ = U (r). The boundary conditions used to solve Eq. (B3) are as follows if we shift down
the coordinate system by R0:

f = 0, f ′ = 1 at η = −R0,

f ′ = 0 at η = 10R0, (B4)

where we choose a large ratio of 10 to make sure the results are independent. Then we use modified
shooting methods to get the numerical solution with the above boundary condition. We first split the
domain into two components and integrate them to get solutions for each part. Then we balance the
derivative of the velocity at the domain-splitting interface to get the numerical solutions.
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