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This paper presents a combined stability analysis and numerical investigation of
Rayleigh-Bénard convection in a planar dielectric liquid layer subjected to the simul-
taneous action of Coulomb and buoyancy forces. For the first time, Rayleigh-Bénard
convective instability with electric conduction is considered. Fully coupled set of governing
equations for fluid flow, heat transfer, and electrostatics are solved using the finite-volume
method (FVM) framework of OpenFOAM. The fluid layer is destabilized under the com-
bined action of buoyancy and Coulomb forces. Rayleigh number (Ra) and the Conduction
number (C0) are the control parameters for fluid flow. Distributions of physical variables
in the hydrostatic state are derived. Modal stability analysis is performed to establish the
neutral stability curve in the Ra-C0 plane. Present numerical results are compared with
the results of stability analysis. The flow and heat transfer characteristics in the Ra-C0

parameter space are analyzed. The present study provides deeper insights into the electro-
thermo-convective flow mechanism due to the EHD conduction phenomenon occurring at
weak and medium electric fields. The results of this study can serve as a benchmark to
design flow systems subjected to combined gradients of thermal and electric fields.
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I. INTRODUCTION

Thermal convection flow confined in rectangular cavities or within horizontal plates is a funda-
mental problem owing to its complex flow structure, and the instability features [1–4]. A classical
phenomenon among thermal convection flows is the Rayleigh-Bénard convection (RBC), in which
the fluid is heated from below and cooled from above. It is one of the most studied problems in
the field of both fluid mechanics and heat transfer [5–9]. Various factors could influence the onset
and subsequent bifurcations of Rayleigh-Bénard convection [1,4,10–13], one of which is to apply
an electric field on the system [14]. The application of an electric field on the Rayleigh-Bénard
convection system will induce an additional volumetric Coulomb force, which will significantly
affect the flow pattern and heat transfer characteristics [15–20].

When considering the combined interactions of electric field and fluid flow [21], the subject
refers to electrohydrodynamics (EHD). EHD is a topic of academic importance to researchers
to understand classical physical phenomena such as electroconvection [22], ionic wind [23], and
electroviscosity, etc. The free charges in a dielectric fluid medium move under the influence of the
Coulomb force in the presence of an external electric field, while the movement of free charges by
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the Coulomb force transfers momentum to the surrounding fluid and results in a fluid flow. This fluid
flow is termed electroconvection and is analogous to the Rayleigh-Bénard convection induced by a
thermal field in a planar layer of liquid. Like an RBC system, an electroconvective system is a typical
nonlinear dissipative system driven by a volumetric force. However, the bifurcation phenomenon
observed in these two systems is different. RBC systems typically exhibit supercritical bifurcation,
i.e., when the driving parameter (Ra) exceeds the linear stability criterion, the system will smoothly
shift from the state of rest to the finite-amplitude state. In contrast, an electroconvective system
may exhibit sub-critical bifurcation characteristics, depending on the source of free charges. In an
electroconvective system that concerns with unipolar charge injection, once the driving parameter
(electric Rayleigh number T ) exceeds the linear critical value [24,25], the flow strength will jump
abruptly from zero to a finite value if the system is to recover back to the stationary state, the driving
parameter has to decrease to another critical value (finite amplitude stability criterion [26,27]) lower
than the linear stability criterion. Thus, a hysteresis loop is formed between these two criteria.
Theoretical works on stability analysis of EHD instability in fluids and the relevant stability criteria
are reported in the archived literature [28,29].

EHD flow motion depends on the motion of free charges due to the electric field. In a gaseous
medium, free charges are mainly generated by the ionization of gas molecules. While in a liquid di-
electric medium, the free charges can be generated by two mechanisms, namely (i) charge injection
due to electrochemical reactions taking place at the interface of electrode and dielectric liquid (in
the presence of strong electric fields) and (ii) ion conduction through dissociation-recombination
mechanism (at weak or medium electric fields) [21]. Most analytical and numerical studies on
electroconvective systems are based on charge injection-induced EHD flow [30]. Although charge
injection-induced EHD flow exhibits strong fluid motion, the electrochemical reactions at the
electrode surface lead to deterioration of the electrode surface and alters the composition of the
working fluid. Thus, injection-induced EHD flow becomes unreliable for long-term applications.
However, EHD conduction flow does not lead to electrode/working fluid deterioration and can
function at weak/medium electric fields. EHD conduction pumping fluid flow due to ion conduction
phenomenon also has several advantages, such as simple design, no moving parts, noise-free,
and higher energy efficiency, which has provided a new perspective in micro-electro-mechanical
systems and micro-gravity space applications [30]. EHD conduction pumping flow has attracted
broad interest in recent years. The theoretical model for EHD conduction flow was first proposed
by Atten et al. [31]. Seyed-Yagoobi et al. [32–34] systematically studied EHD pumping induced
flow and carried out experimental works with different electrode configurations. A study on the
EHD conduction pumping phenomenon with the Onsager-Wien effect was reported by Jeong et al.
[35]. Yazdani et al. [36] investigated the effect of charge mobility on EHD conduction phenomenon.
Recently, Vázquez et al. [37] has developed a mathematical model for EHD conduction pumping
applicable to all sizes. Selvakumar et al. [38] numerically studied EHD conduction assisted natural
convection in electric devices and reported that the heat transfer intensification obtained by EHD
conduction pumping is more prominent at lower Rayleigh numbers and higher electric Reynolds
numbers.

Establishing the stability criteria of any dynamic thermo-fluid system is essential to gain a
deeper understanding and design of practical engineering systems. Concerning the stability criteria
for electro-thermo-convective systems, Traoré et al. [14] numerically solved the whole set of the
equations associated with the two 2D electro-thermo convection for the first time, obtaining the
neutral stability curve in the Ra-T plane corresponding to the instability induced by heating and
charge injection from the bottom plate electrode in a planar dielectric liquid layer. Wu et al. [39]
numerically studied the influence of Prandtl number Pr and mobility parameter M on the finite
amplitude convection in a parallel plate configuration. Luo et al. [40] developed a unified lattice
Boltzmann method (LBM) for electro-thermo convection of dielectric liquids. The hysteresis loops
and the sub-critical bifurcations in electro-thermo-convection of a dielectric planar liquid layer
were presented. The stability diagram in the Ra-T plane for electro-thermo-convection in closed
rectangular cavities was presented by Su et al. [41]. Recently, Peng et al. [42] extended the study to
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FIG. 1. Schematic representation of the computational domain.

3D electro-thermo-convection in a cubical cavity and reported the neutral stability curve and finite
amplitude instability thresholds for three-dimensional electro-thermo-convection. Besides, Guan
et al. [43] and Mordvinov et al. [44] studied the onset of overstable motion in electro-thermo
convection when heating from above. The literature review indicates that only a few studies are
reported on electro-thermo-convective instability. Furthermore, all reported studies deal with EHD
flow motion due to unipolar charge injection. To the best of our knowledge, the stability criteria for
combined natural convection and EHD conduction-induced electroconvection is yet to be reported
in the literature. Note that, unlike unipolar injection, that is an ideal assumption for simplifying the
problem with only one species of ions. At the same time, the electric conduction model is mature
in weakly conducting liquids subjected to weak/medium electric field though with more types of
ions. In this context, combined stability and numerical analysis of 2D electro-thermo-convection
in a planar dielectric liquid layer due to the EHD conduction phenomenon (under weak/medium
electric fields) is presented herein. The problem considered herein deals with RBC under the
stabilizing effect caused by Onsager-Wien effect. First, hydrostatic numerical solutions for charge
density distributions, electric field, and electric potential are derived. Following the solutions for
the hydrostatic regime, the neutral stability curve is established by modal stability analysis. Finally,
detailed numerical simulations are performed and compared with the results of stability analysis.
The hysteresis loop and the associated flow and heat transfer characteristics are explained based on
numerical results.

II. MATHEMATICAL FORMULATION

A. Physical description of the problem and computational domain

A horizontal planar dielectric liquid layer confined between two infinitely long parallel plate
electrodes is considered, as shown in Fig. 1. The vertical gap between the plates is H , and the
horizontal length of the domain is L. The bottom plate is maintained at a constant high temperature
(T1) and connected to the high electric potential (V1). The top plate is at ambient temperature
(T0) and is grounded (V0). The applied temperature gradient across the liquid layer will induce
the gradient in permittivity, leading to dielectric force. However, under applied DC fields with
space charge creation in the fluid, dielectric force is very weak compared to the Coulomb force,
so dielectric force can be ignored [15,45,46]. Here, a Newtonian, incompressible dielectric liquid
with mass density (ρ), kinematic viscosity (ν), and dielectric permittivity (ε) is considered. The
density variation with respect to temperature is considered only in the momentum equation as per
the Boussinesq approximation. All other thermophysical and dielectric properties are considered
constant with variations in temperature and electric fields. In EHD conduction experiments, the
residual conductivity typically falls within the range from 10−11 to 10−7, while the applied electric
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field in the system commonly reaches 106 (V/m) [37]. Consequently, the electric current associated
with dielectric fluids is very small [21], so that the magnetic effects of the electric field are neglected.
In addition, the Joule heating effect due to the electric field in dielectric fluids results in very low
variation in temperature (1 × 10−4KS−1). Thus, Joule heating effects are generally neglected in
electrohydrodynamics of dielectric fluids [47].

B. Governing equations

The fully coupled numerical model for fluid flow, and heat transfer in the presence of Onsager-
Wien effect includes the Navier-Stokes equations, energy equation, Poisson’s equation for electric
potential, and charge conservation equations for ion species [31,37].

Continuity equation:

∇ · u = 0, (1)

Momentum equation:

ρ

(
∂u
∂t

+ ∇ · (uu)

)
= −∇P + μ∇2u + (Np − Nn)E + ρgβ(T − T0), (2)

Energy equation:

∂T

∂t
+ ∇ · (uT ) = ∇ · (DT ∇T ), (3)

where u = (u, v) is the fluid velocity and μ, ρ, β represent the liquid’s dynamic viscosity, density,
and thermal expansion coefficient, respectively. P and T stand for pressure and absolute tempera-
ture.

In the momentum equation, the third term on the right-hand side denotes the Coulomb force due
to the electric field. It is to be noted that only the Coulomb force is considered in this study. As a
planar dielectric fluid layer with uniform and homogeneous dielectric properties is considered, the
dielectric force (a function of gradient in dielectric permittivity) becomes zero. Np and Nn denote the
charge density of positive and negative ion species, respectively. The electric field E = (Ex, Ey) is
defined as: E = −∇V , while the electric potential (V ) is obtained based on the Maxwell’s equations:

Poisson’s equation for electric potential:

∇ · (ε∇V ) = −(Np − Nn), (4)

where ε is the permittivity of liquid.
Two-species charge conservation equations:

∂Np

∂t
+ ∇ · J+ = Sp, (5)

∂Nn

∂t
+ ∇ · J− = Sn, (6)

where the current density fluxes are given by

J+ = uNp + K+NpE − D+∇Np, (7)

J− = uNn − K−NnE − D−∇Nn. (8)

Here, K+, K−, D+, and D− represent the mobility and diffusion coefficient of positive and
negative ion species, respectively. In the present work, the mobility and diffusion coefficient of
positive ions are considered the same as the negative ions, i.e., K+ = K− = K and D+ = D− = D
[37]. Besides, Einstein’s relation is adopted, D = KkBT/e0, where kB and e0 are the Boltzmann
constant and elementary charge. The recombination rate kR is determined by Langevin’s formula as
kR = (K+ + K−)/ε = 2K/ε [48]. Sp and Sn are the source terms contributed by the generation and
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disappearance of ions, while the only source of ions is the dissociation-recombination processes of
the weak electrolytes in bulk, which is a reversible process governed by dissociation rates (kD) and
recombination rates (kR):

AB
kD�
kR

A+ + B−, (9)

when the fluid is under equilibrium, we have

kDc0 = kRNeq
p Neq

n = kR(Neq)2. (10)

AB is a simple neutral electrolyte species that can produce positive ions (A+) and negative ions (B−)
through the reversible process. c0 represents the concentration of neutral molecules. The superscript
‘eq’ means the value in equilibrium. Especially, owing to the electro-neutrality of the solution,
Neq

p = Neq
n = Neq. The source terms can be written as follows:

Sp = kDc − kRNpNn, (11)

Sn = kDc − kRNpNn. (12)

According to the model proposed by Onsager, the formula for field-enhanced dissociation is
given as

kD(|E|) = F [w(|E|)]kD0 = I1[4w(|E|)]
2w(|E|) kD0. (13)

In Eq. (13), the Onsager function F = I1[4w(|E|)]/2w(|E|) and the enhanced dissociation rate
coefficient w(|E|) = LB/LO = ( e3|E|

16πεk2
BT 2 )1/2, where LB = e2

0/8πεkBT is Bjerrum distance and LO =√
e0/4πε|E| is Onsager distance. Here, (e3/16πεk2

BT 2)1/2 is defined as γ , and the function I1() is
the modified Bessel function:

I1(x) =
∞∑

k=0

(x/2)1+2k

k!(k + 1)!
. (14)

Therefore, the Onsager function can be expressed as

F [w(|E|)] =
∞∑

k=0

(4γ |E|)k

k!(k + 1)!
= 1 + 2γ |E| + 4

3
γ 2|E|2 + ... (15)

Present study considers only the first two terms, i.e., (F [w(|E|)] = 1 + 2γ |E|) [49]. The resultant
ion transport equations for positive and negative ions are as follows:

∂Np

∂t
+ ∇ · J+ = kR

(
N2

eqF [w(|E|)] − NpNn
)
, (16)

∂Nn

∂t
+ ∇ · J− = kR

(
N2

eqF [w(|E|)] − NpNn
)
. (17)

Above set of governing equations are rendered in nondimensional form based on the following
characteristic scalings:

x∗ = x

H
; y∗ = y

H
; t∗ = tK (V1 − V0)

H2
;

u∗ = uH

K (V1 − V0)
; V ∗ = V − V0

V1 − V0
; E∗ = EH

V1 − V0
;

θ∗ = θ − θ0

θ1 − θ0
; P∗ = PH2

ρK2(V1 − V0)2
. (18)
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TABLE I. Summary of nondimensional boundary conditions used in this study.

Location Velocity (u) Temperature (θ ) Electric potential (V ) Charge density (Np, Nn)

Bottom wall (y = 0) u = 0 θ1 = 1 V1 = 1 ∂Nn
∂y = 0; Np = 0

Top wall (y = L) u = 0 θ0 = 0 V0 = 0 ∂Np

∂y = 0; Nn = 0

Lateral wallsa [ ∂u
∂x ]l = [ ∂u

∂x ]r [ ∂θ

∂x ]l = [ ∂θ

∂x ]r [ ∂V
∂x ]l = [ ∂V

∂x ]r [ ∂Np,n

∂x ]l = [ ∂Np,n

∂x ]r

aThe subscripts l and r denote the values at left and right boundaries, respectively.

The resultant dimensionless governing equations are as follows:

∇ · u = 0, (19)

∇ · (∇V ) = −C0(Np − Nn), (20)

E = −∇V, (21)

∂u
∂t

+ ∇ · (uu) = −∇p + 1

ReE
∇2u + M2C0(Np − Nn)E + Ra

Pr(ReE )2
θey, (22)

∂Np

∂t
+ ∇ · [Np · (u + E)] − α∇2Np = 2C0[F [w(|E|)] − NpNn], (23)

∂Nn

∂t
+ ∇ · [Nn · (u − E)] − α∇2Nn = 2C0[F [w(|E|)] − NpNn], (24)

∂θ

∂t
+ ∇ · (uθ ) = 1

PrReE
∇2θ. (25)

The ∗ symbol representing the nondimensional variables is neglected for the purpose of simplic-
ity. Following dimensionless parameters arise as a result of the nondimensionalization.

ReE = ρK (V1 − V0)

μ
; Pr = μ

ρDT
; Ra = ρgβH3�T

μDT
;

M = 1

K

√
ε

ρ
; α = D

K (V1 − V0)
; C0 = NeqH2

ε(V1 − V0)
. (26)

The conduction number (C0) is a key parameter to differentiate the regimes in EHD conduction:
ohmic and saturation. It represents the ratio of ionic transit time (H2/[K (V1 − V0)]) and relaxation
time (ε/σ0), where σ0 = 2KNeq is residual conductivity. Rayleigh number (Ra) is the ratio of
buoyancy force to viscous force, representing the strength of buoyancy driving force. The Prandtl
number (Pr) represents the ratio of momentum diffusivity to thermal diffusivity. In contrast, the
hydrodynamic to ionic mobility ratio is represented by the ionic mobility parameter (M), which
both depend on fluid properties. α is the nondimensional ionic diffusion coefficient, and the electric
Reynolds number (ReE ) indicates the dimensionless applied electric field.

C. Boundary and initial conditions

A summary of dimensionless boundary conditions used in this study is presented in Table I. Both
the plate electrodes are infinitely long in the x direction, impermeable, electrically and thermally
perfectly conductors. The no-slip boundary condition is applied over both the horizontal plate
electrodes. As the electrodes are infinitely long, the periodic boundary condition is considered
for all the variables along the lateral walls of the domain. The bottom and top plates are hot and
cold walls, respectively. Likewise, a high electric potential is applied over the bottom wall, and the
top wall is grounded. Neumann boundary for negative ions and Dirichlet boundary condition for
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positive ions are applied over the bottom wall. Neumann boundary for positive ions and Dirichlet
boundary condition for negative ions are applied over the top wall. Therefore, the positive and
negative charges migrate and accumulate near the top and bottom electrodes, respectively. The
accumulation of charges near the oppositely charged electrodes is termed the heterocharge layers,
as shown in Fig. 1. As for initial conditions, there are two situations in this study: (i) initiate the
simulation with zero-field values set for all variables and (ii) initialize the simulations with the
convective state that is obtained previously.

III. SOLUTION METHODOLOGY

A. Numerical simulations

The mathematical model for RBC under the influence of Onsager-Wien effect are solved using
OpenFOAM’s finite-volume method (FVM)-based framework. The governing equations for electric
potential and two-species charge conservation equations are incorporated into the existing solver for
fluid flow and heat transfer in OpenFOAM. All the simulations performed here are transient, and
standard finite-volume procedures for discretization available in OpenFOAM are utilized [50]. The
temporal derivatives in the governing equations are discretized with a backward scheme. The linear
scheme is used to discretize the gradient terms. The convection term in the momentum equation is
discretized using the (Quadratic Upwind Interpolation for Convective Kinetics) QUICK scheme
[51], while a total variation diminishing (TVD) Van Leer scheme [52] is used for the discretization
of the convection and electro-migration terms in charge transport equations. For more details, please
refer to Ref. [53].

B. Stability analysis

The linear stability of the hydrostatic state is studied in this work. The standard method of small
perturbations is adopted to determine the onset value of the system. When small perturbations
are applied to the hydrostatic state of the system, if the perturbations grow with time, then the
system is unstable. In contrast, if the perturbations decay, then the system is stable. The critical
Rayleigh numbers Rac represent the driving parameter’s smallest value, triggering the growth of
perturbations in time. There are several nondimensional parameters to control the system. The other
nondimensional parameters need to be fixed to determine the critical driving parameter Rac. This
work calculates Pr and M based on the property of a common dielectric fluid used as a working fluid
in EHD applications. Several conduction numbers C0 are chosen, then the critical Rayleigh numbers
Rac corresponding to each conduction number C0 are identified. In the present work, the buoyancy
force measured with Ra plays a destabilizing role in the system, and conduction number C0 is a key
nondimensional parameter in conduction; thus, this work focuses on the effect of C0 on the Rac.

IV. RESULTS AND DISCUSSION

This study considers Rayleigh-Bénard convection with electric field induced Onsager-Wien
effect in a planar dielectric liquid layer confined between two infinitely long parallel plate electrodes.
The Onsager-Wien effect considered here is due to the electric field enhanced dissociation of ions
taking place at weak/medium electric fields. This is a combination of classical RBC and stabilizing
effect induced by the Onsager-Wien effect. An extensive parametric study is presented using both
Rayleigh number (Ra) and conduction number (C0) as control parameters. The nondimensional
parameters denoting the working fluid’s properties are Prandtl number (Pr) and mobility parameter
(M ). In the present study, Pr and M are chosen as 157.1 and 54.1, respectively, corresponding to the
properties of transformer oil (refer to Table II). The value of ReE has been established at 2.65 based
on the parameter set used in our simulations. The results of stability and numerical analyses are
presented in this section. The system’s behavior in hydrostatic and electrohydrodynamic equilibrium
states is presented in Sec. IV A. Then, the discussions on stability analysis and the neutral stability
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TABLE II. Thermophysical and dielectric properties of transformer oil [54–56].

Property Value

Density ρ (kgm−3) 895.5
Dynamic viscosity μ (PaS) 0.011
Thermal conductivity η (Wm−1K−1) 0.13
Thermal expansion coefficient β (K−1) 0.0007
Dielectric permittivity ε (Fm−1) 18.41 × 10−12

Ionic mobility K (m2 s−1 V−1) 2.65 × 10−09

Electric conductivity σ (Sm−1) 1.20 × 10−12

curve are provided in Sec. IV B. Finally, Secs. IV C and IV D discuss the flow and heat transfer
characteristics.

A. Hydrostatic and electrohydrodynamic equilibrium state

For the configuration considered herein, the Coulomb force, due to the electric field, stabilizes
the system, and the buoyancy force strives to destabilize the system. When the Rayleigh number
Ra is below a critical value, the system has a stable state with no fluid motion. At this state, the
buoyancy force is weak to overcome the stabilizing effect of the electric forces and the viscous
dissipation. Therefore, the system remains in the state of rest, which is termed hydrostatic and
electrohydrodynamic equilibrium state. Once the parameter (Ra) is raised above the critical value
(Rac), the buoyancy forces become strong enough to destabilize the system, and the fluid motion
is observed. This state is referred to as the electrohydrodynamic state. In an electrohydrodynamic
state, the electric, flow, and thermal fields are closely coupled. The two body forces drive the flow
field, and the flow influences the body forces through thermal and electric charge transport. This
strong nonlinear coupling between the three fields results in a complex fluid motion.

The solutions to Eqs. (19) ∼ (25) when the system is in hydrostatic (no fluid motion) are derived
in this section. Owing to the periodic boundary conditions considered in the x direction and the
hydrostatic state, the expressions of physical variables are only a function of y coordinates. Thus,
Np0 = Np0(y), Nn0 = Nn0(y), V0 = V0(y), E0 = E0(y), θ0 = θ0(y). By imposing u = 0 and ∂t = 0,
the equations for the hydrostatic state are

∇ · (Np0E0) − α∇2Np0 = 2Co(1 + 2γ E0 − Np0Nn0), (27)

−∇ · (Nn0E0) − α∇2Nn0 = 2Co(1 + 2γ E0 − Np0Nn0), (28)

E0 = −∇V0, (29)

∇2V0 = Co(Np0 − Nn0), (30)

∇2θ0 = 0. (31)

The boundary conditions associated with these equations are shown in Table I. In a hydrostatic state,
there is no fluid velocity; thus, the temperature field is decoupled from other variables. Thus, the
temperature profile takes the following form in y direction:

θ0 = 1 − y (0 < y < 1). (32)

The analytical solutions for variables pertaining to electrostatic Eqs. (27) ∼ (30) cannot be
directly obtained, owing to the complexity of equations. Newton’s method is introduced here to
acquire approximate solutions of Eqs. (27) ∼ (30) [57]. Newton’s method is a way to quickly find
a good approximation for the root of a real-valued function. It uses the idea that a continuous and
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FIG. 2. Variation of the physical quantities in the hydrostatic state. (a) Positive-charge density (Np),
(b) negative-charge density (Nn), (c) electric potential (V ), and (d) electric field (E). Lines represent results
from Newton’s method and symbols represent FVM results from OpenFOAM.

differentiable function can be approximated by a straight-line tangent. The distributions of physical
variables Np, Nn, V , and E in the y direction obtained by the Newton’s method are presented in
Figs. 2(a) ∼ 2(d). The FVM-based numerical solution performed in OpenFOAM to Eqs. (27) ∼ (30)
gives the distribution of physical variables (positive-charge density Np, negative-charge density Nn,
electric potential V , and electric field E) in the computational domain (see Fig. 3). The heterocharge
layer formation is noticed in Figs. 3(a) and 3(b). For C0 = 0.1, the system is in a saturation regime.
Thus, the heterocharge layers are very thick. The electric potential varies linearly in y direction
from the highest value (V = 1) near the bottom high-voltage electrode to the lowest value (V = 0)
at the top grounded electrode. The electric field distribution is shown in Fig. 3(c). The electric
field intensity is relatively strong near the electrodes and lowest in the center of the domain. The
distribution of physical variables obtained by FVM simulations and Newton’s method perfectly
match each other (Fig. 2).
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FIG. 3. Distribution of physical variables in hydrostatic state (obtained by numerical simulations).
(a) Negative-charge distribution (Nn), (b) positive-charge distribution (Np), (c) electric potential (V ), and
(d) electric field (E) for C0 = 0.1.

B. Modal stability analysis

According to linear stability theory, the variables in the system can be decomposed as the sum of
base state and perturbation:

Np(x, y, t ) = Np0(y) + N ′
p(x, y, t ), (33)

Nn(x, y, t ) = Nn0(y) + N ′
n(x, y, t ), (34)

V (x, y, t ) = V0(y) + V ′(x, y, t ), (35)

E(x, y, t ) = E0(y) + E′(x, y, t ), (36)

θ (x, y, t ) = θ0(y) + θ ′(x, y, t ), (37)

p(x, y, t ) = p0(y) + p′(x, y, t ), (38)

u(x, y, t ) = u′(x, y, t ). (39)

Here, u′ = (u′, v′). The perturbation quantities are assumed to be much smaller than the basic
state quantities. By substituting the decompositions into dimensionless equations and ignoring the
higher-order terms in the perturbations, the stability equations read

∇ · u′ = 0, (40)

∇2V ′ + Co(N ′
p − N ′

n) = 0, (41)

∂u′

∂t
= − 1

Re2
E

∂ p′

∂x
+ 1

ReE
∇2u′ + M2Co

[
(Np0 − Nn0)

(
−V ′

∂x

)]
, (42)
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∂v′

∂t
= − 1

Re2
E

∂ p′

∂y
+ 1

ReE
∇2v′ + Ra

PrRe2
E

θ ′ + M2Co

[
(Np0 − Nn0)

(
− V ′

∂y

)
+ (N ′

p − N ′
n)E0

]
,

(43)

∂N ′
p

∂t
+ ∂Np0

∂y

(
v − ∂V ′

∂y

)
− Np0∇2V ′ + ∂E0

∂y
N ′

p + E0
∂N ′

p

∂y
− α∇2N ′

p + 2Co(Np0N ′
n + N ′

pNn0)

− 2Co[2γ (|E0 + E′| − |E0|)] = 0, (44)

∂N ′
n

∂t
+ ∂Nn0

∂y

(
v + ∂V ′

∂y

)
+ Nn0∇2V ′ − ∂E0

∂y
N ′

n − E0
∂N ′

n

∂y
− α∇2N ′

n + 2Co(Np0N ′
n + N ′

pNn0)

− 2Co[2γ (|E0 + E′| − |E0|)] = 0, (45)

∂θ ′

∂t
− v = 1

PrReE
∇2θ ′. (46)

The standard way to proceed is to write the primed equations as a product of an exponential
function depending on time and a function depending on the spatial variables alone:

u′ = u′(z)exp(σ t )exp(ikx), (47)

V ′ = V ′(y)exp(σ t )exp(ikx), (48)

N ′
p = N ′

p(y)exp(σ t )exp(ikx), (49)

N ′
n = N ′

n(y)exp(σ t )exp(ikx), (50)

θ ′ = θ ′(y)exp(σ t )exp(ikx). (51)

Here, k denotes wave number, while σ represents the growth rate. If σ > 0, then the perturbations
increase with time, which means the system is unstable, while if σ < 0, then the perturbations
decrease with time, which means the system is stable. Therefore, the onset of the system corresponds
to the situation with σ = 0. Besides, a common practice in stability analysis to eliminate the pressure
term is ∂/∂x [∂/∂y (42)–∂/∂x (43)]. If introducing Eqs. (47) ∼ (51) into Eqs. (40) ∼ (46) and
dropping ′, then the equations become

∇2V + Co(Np − Nn) = 0, (52)

σ (−∇2v) = 1

ReE
∇2(−∇2v) − Ra

PrRe2
E

∂2θ

∂x2
+ M2Co

[
∂ (Np0 − Nn0)

∂y

(
−∂2V

∂x2

)

− |E0|∂
2(Np − Nn)

∂x2

]
, (53)

−σNp = ∂Np0

∂y

(
v − ∂V

∂y

)
− Np0∇2V + 4γCo

∂V

∂y
+ ∂E0

∂y
Np + E0

∂Np

∂y
− α∇2Np

+ 2Co(Np0Nn + NpNn0), (54)

−σNn = ∂Nn0

∂y

(
v + ∂V

∂y

)
+ Nn0∇2V + 4γCo

∂V

∂y
− ∂E0

∂y
Nn − E0

∂Nn

∂y
− α∇2Nn

+ 2Co(Np0Nn + NpNn0), (55)

σθ = v + 1

PrReE
∇2θ, (56)
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with the boundary conditions for the fluctuations:

y = 0 : v = 0; V = 0; Np = 0;
∂Nn

∂y
= 0; θ = 0;

y = 1 : v = 0; V = 0;
∂Np

∂y
= 0; Nn = 0; θ = 0. (57)

Equations (52) ∼ (56) with boundary conditions (57) define a eigenvalue problem. To solve the
eigenvalue problem, the spectral method is introduced based on collocation points chosen as the
roots of Chebyshev polynomials [58]. The linear equations could be expressed by

L(σ, Ra, k) = 0. (58)

Octave [60] is a powerful open-source platform used to solve the differential equations. We tested
several N of collocation points to obtain convergent results, and a sufficient number N is chosen as
Chebyshev grids. To acquire the whole solution, we traversed the entire parameter domain (Ra,
k) to gain the value of σ , that is, σ = G(Ra, k), then we use the plane σ = 0 to intercept the
function σ = G(Ra, k). The intersection of the plane and the function σ = G(Ra, k) is the stability
curve, as shown in Fig. 4. The critical Rayleigh numbers Rac for different conduction numbers C0

represented by yellow points are summarized in Fig. 5. Figure 5 also shows the neutral stability
curve predicted by the reference corresponds to the case of C = L = N = 0 [59], depicted by the
green line. It is worth noting that a key distinction between the problem under consideration here
and the work of Pontiga et al. is that they ignored the field-enhanced dissociation effect, causing
the difference between our results and the onset value predicted by the reference. Due to the
field-enhanced dissociation effect, there will be an increase in charge density. This, in turn, will
result in a stronger electric force, leading to a higher Rac. To assess the accuracy of modal stability
analysis, it is performed on the same governing equations as Ref. [59] and the resulting onset values
are indicated by triangles in Fig. 5, which exhibits good agreement with Ref. [59] with maximum
relative error of 2.8%. Besides, the critical Rayleigh number Rac is also calculated from numerical
simulations. A simulation with a high value of Ra is first performed to reach a steady state. The
obtained steady state solution is the initial condition for the next simulation with a lower value of
Ra. This procedure is repeated with Ra decreasing in steps of 50 until the flow motion stops, and we
define the previous value of Ra with the fluid flow as Rac. The comparison of the critical Rayleigh
numbers Rac obtained by modal stability analysis and FVM numerical simulations are presented in
Table III. The results of the stability analysis and the FVM simulations agree with each other.

C. Flow features of electro-thermo-convection

With the establishment of critical Rayleigh number Rac in Sec. IV B, numerical simulations
are performed at low and moderate values of Rayleigh number (1 × 103 � Ra � 50 × 103 and
at conduction numbers C0 = 0.05, 0.1 and 0.2. It is noted that Ra and C0 vary by varying the
temperature difference and the vertical gap H between the electrodes. The horizontal length of the
domain is fixed as L = (2πH )/kc (kc being the critical wave number).

Figures 6(a) ∼ 6(c) present the variation of the maximum velocity Umax = ||u||2 in the domain
with respect to Ra at C0 = 0.05, 0.1, and 0.2, respectively. In the numerical cases, two different
initial conditions are considered, the one is initialized with the zero fields, while the other starts with
the convective state that is obtained previously. The upward arrows signify cases that begin with the
convective state corresponding to lower Ra, while the downward arrows correspond to the cases that
commence with the convective state with higher Ra. It is to be noted that all the results presented
herein correspond to the steady state values of the transient simulations. In general, Umax values grow
with the increase of Ra. In Fig. 6, the points marked with red color can be obtained by initializing
the simulations by zero-field values or the solutions from the previous convective states. In contrast,
the yellow colored points can only be obtained by simulations initialized with solution from the
preceding convective state. For C0 = 0.05 and 0.1, we observe two solution branches, S1 (upper
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FIG. 4. Variation of critical Rayleigh number (Rac ) with respect to wave number (k) at different values of
conduction number (a) C0 = 0.05, (b) C0 = 0.1, and (c) C0 = 0.2.

branch) and S2 (lower branch). The critical Rayleigh number Rac values obtained by the modal
stability analysis corresponding to C0 = 0.05, 0.1, and 0.2 are 2652, 4615, and 10 470, respectively.
It is to be understood that the symmetric equal electrodes considered in this configuration lead to
stabilization or restriction of the fluid motion [61]. With the increase of C0, the stabilization effect
of the electric field is stronger. Thus, higher values of Rac are required at higher values of C0. Dual
solutions exist for C0 = 0.05 and 0.1, i.e., the same combinations of control parameters Ra and
C0 can lead to different flow patterns depending on the initial conditions. In Figs. 6(a) and 6(b),
the upper branches (S1) marked with solid lines are characterized by a flow structure with single
pair of vortices. However, the lower solution branch (S2) marked with dotted lines exhibits a flow
structure with two pairs of vortices. The critical value of Ra at which the flow pattern shifts from
single-vortex pair to double-vortex pairs, while Ra decreases, is referred to as Ras1. Likewise, Ras2
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FIG. 5. Variation of critical Rayleigh number (Rac ) as a function of conduction number (C0). Circles denote
the onset value for current study obtained by the stability analysis, green line is from Ref. [59], and the triangles
denote the onset value obtained by stability analysis for the problem considered in Ref. [59].

marks the shift in flow pattern when Ra increases. In Figs. 6(a) and 6(b), when Ra approaches Ras1

or Ras2, the simulations are done in steps of �Ra = 10. For instance, at C0 = 0.05, the shift in flow
patterns occurs when Ra increases from 48 020 to 48 030 and 8350 to 8340. Therefore, Ras1 and Ras2

values for C0 = 0.05 correspond to 8350 and 48 020, respectively. Synonymous with C0 = 0.05,
C0 = 0.1 exhibits two solution branches. However, two flow patterns are observed in the lower
solution branch. In S2 at C0 = 0.1, the lower values of Ra correspond to a flow structure with two
pairs of symmetric vortices. Whereas, at higher values of Ra, the double-pair vortex structures are
not perfectly symmetric. The Ras1 and Ras2 values corresponding to C0 = 0.1 are 10 760 and 43 520,
respectively. Overall, the red and yellow dots are determined by the choice of initial conditions for
the simulations. The occurrence of solution branch S1 and S2 is jointly determined by the value of
the control parameters and the initial conditions. The values of Ras1 and Ras2 are determined by the
increase or decrease of Ra. Unlike the cases of C0 = 0.05 and 0.1, the case with C0 = 0.2 requires
a much higher value Rac to overcome the stabilization effect of electric field and to initiate the
fluid motion. Only one solution branch exists at C0 = 0.2, and the value of Umax increases with an
increase in Ra. Close to Ra � 22 000, the flow loses its steady-state behavior and enters an unsteady
regime.

Flow patterns and velocity fields corresponding to solution branches S1 and S2 observed at
0.05 � C0 � 0.2 and 12 × 103 � Ra � 50 × 103 are presented in Fig. 7. Irrespective of the values
of C0 and the solution branches, the flow intensity (velocity magnitude) is directly proportional to
Ra. For C0 = 0.05, the solution branch S1 is characterized by a flow structure with two perfectly

TABLE III. Comparison of onset value Rac predicted by modal stability analysis and numerical simulations.

C0 0.05 0.1 0.2

Modal stability analysis 2652 4615 10 470
Numerical simulation 2600 ∼ 2650 4550 ∼ 4600 10 300 ∼ 10 350
Maximum relative error 1.96% 1.41% 1.62%
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FIG. 6. Variation of the maximum velocity Umax as a function of Rayleigh number (Ra) at different
conduction numbers (a) C0 = 0.05, (b) C0 = 0.1, and (c) C0 = 0.2. (S1 and S2 represent the flow pattern of a
pair of vortices and two pairs of vortices, respectively.)

symmetric vortices. In S2, a shift from a bicellular flow (single pair of vortices) structure to flow
with four cells (two pairs of vortices) is noted. Both in S1 and S2, the maximum velocity distribution
is always found in the region between two vortices. At C0 = 0.1, S1 is characterized by a bicellular
flow structure with two symmetric vortices. The vortex shapes observed at lower values of Ra
favor the maximum velocity distribution in the proximity of electrodes, which is due to the more
symmetrical cell. Whereas, at higher values of Ra the peak velocity distribution is noted in between
the vortices. Same as C0 = 0.05, the S2 branch of C0 = 0.1 also shifts from a bicellular flow structure
to a flow pattern with four cells. In S2, the vortex structures favor the peak velocity distributions
in between the vortices. In C0 = 0.2, there exists only one solution branch. With increasing Ra,
the flow gets stronger. The flow structure is mainly bicellular. However, it is to be noted that the
velocity distributions are weaker by one order of magnitude as compared to C0 = 0.05 and 0.1. The
stabilization effect of the electric field due to the symmetric electrodes restricts the fluid motion.
The regions of high velocity distributions are noted near the electrodes. One peculiar observation is
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FIG. 7. Electroconvective flow patterns observed in solution branches S1 and S2 at 12 × 103 � Ra � 50 ×
103 for (a) C0 = 0.05, (b) C0 = 0.1, and (c) C0 = 0.2.

the formation of secondary vortices at Ra = 20 × 103. At this point, both the values of C0 and Ra
are high. The competition between the stabilizing electric field and the destabilizing thermal field
lead to evolution of small secondary vortices near the peripheries of the primary vortices. With a
further increase of Ra, this competition is intensified, and the flow enters an unsteady regime.

To further enunciate the flow features of RBC under the stabilizing effect of Onsager-Wien effect,
the temporal evolution of Umax at different values of Ra and at C0 = 0.05, 0.1, and 0.2 are presented
in Figs. 8(a) ∼ 8(c), respectively. In all the cases, the maximum velocity magnitude is an increasing
function of Ra. In general, the peak velocity remains zero briefly at the start of the simulations, as
the simulations are initialized with zero fields for all variables. After the initial dormant period, the
Umax curve shows a momentary spike and then slowly reaches a steady state. The initial dormant
period is longer for smaller values of Ra. The magnitude of Umax is lower at higher values C0,

013902-16



ONSET OF RAYLEIGH-BÉNARD CONVECTION IN …

FIG. 8. Temporal variations of maximum velocity Umax at different Rayleigh numbers (Ra) and different
conduction numbers (a) C0 = 0.05, (b) C0 = 0.1, and (c) C0 = 0.2.

indicating the inability of the buoyancy force to overcome the stronger electric force at higher C0. As
explained earlier, the competition between the electric and buoyancy forces leads to unsteady flow
at C0 = 0.2 with higher values of Ra. Thus, higher values of Ra at C0 = 0.2 are characterized by
periodic oscillations of Umax with respect to time. The randomness and amplitude of the oscillations
increase with increasing values of Ra. The contours of distribution of nondimensional physical
variables: negative-charge density Np, positive-charge density Nn, electric field E, and electric force
Fe are presented in Fig. 9. The contours correspond to C0 = 0.1, Ra = 20 × 103 with zero-field
initialization. The heterocharge layer formation near the plate electrodes is seen in the contours of
charge densities. The negative charges have accumulated near the bottom high-voltage electrode
and vice versa. Due to the accumulation of charges close to the oppositely charged electrodes,
the maximum intensity of electric force is observed near the electrodes. The distributions of Np,
Nn, E, and y component of Fe along a vertical line x = 0.5 are presented in Figs. 10(a) ∼ 10(d),
respectively. At all values of C0, the highest values of charge density distribution are noted near
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FIG. 9. Distribution of (a) Negative-charge distribution (Nn), (b) Positive-charge distribution (Np), (c) Elec-
tric field (E), and (d) Electric force (Fe) at C0 = 0.1 and Ra = 20 × 103 with zero-field initialization.

the oppositely charged electrodes. The positive-charge intensity is lowest near the bottom high-
voltage electrode, linearly increases in the vertical direction, and reaches the maximum value near
the top grounded electrode. Likewise, the negative-charge density is highest near the bottom high-
voltage electrode and linearly decreases toward the lowest value near the top grounded electrode.
The electric field intensity has peak values near both the electrodes and the lowest value in the
midpoint of the line x = 0.5. Both the maximum and minimum values of E are noted at C0 = 0.2.
The electric force is in the downward direction near the bottom electrode and is in the upward
direction near the top electrode. The electric force is stronger near the electrodes and weaker in the
central region.

D. Heat transfer characteristics with electro-thermo-convection

The heat transfer characteristics associated with the flow at different combinations of C0 and
Ra are presented in this section. The variation of mean Nusselt number (Nu) along the hot bottom
wall at varying Ra and C0 = 0.05, 0.1 and 0.2 are presented in Figs. 11(a) ∼ 11(c). Irrespective of
the value of C0, the mean Nusselt number Nu increases with the increase of Ra. Similar to Fig. 6,
the points marked with red color can be obtained by initializing the simulations both by zero-field
values or the solutions from the previous convective states. The yellow colored points can only be
obtained by simulations initialized with solution from the preceding convective state. For C0 = 0.05
and 0.1, we observe two solution branches, S1 (upper branch) and S2 (lower branch). As observed
in Fig. 6, the upper branches (S1) are marked with solid lines; the values of Nu correspond to a
flow structure with single pair of vortices. However, the lower solution branch (S2) marked with
dotted lines correspond to Nu values for the flow structure with two pairs of vortices. The lower
values of Nu observed in S2 can be attributed to the comparatively lower velocity distributions
observed in the S2 branch (refer Fig. 7). Unlike the cases of C0 = 0.05 and 0.1, the case with C0 =
0.2 requires a much higher value of Rac for the onset of fluid motion, and also, the resultant flow
intensity is lower when compared to that in C0 = 0.05 and 0.1. The comparatively weaker flow in
C0 = 0.2 leads to a lesser increase in heat transfer. Thus, the values of Nu noted at C0 = 0.2 are
lower than that observed in C0 = 0.05 and 0.1. The contours of temperature distribution in solution
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FIG. 10. Variation of the physical quantities in the hydrodynamic state at Rayleigh number Ra = 104 and
different conduction numbers C0 along a vertical line x = 0.5. (a) Positive-charge density (Np), (b) Negative-
charge density (Nn), (c) Electric field (E), and (d) y component of electric force (Fe).

branches S1 and S2 observed at 0.05 � C0 � 0.2 and 12 × 103 � Ra � 50 × 103 are presented in
Fig. 12. At C0 = 0.05, the solution branches S1 correspond to the bicellular flow structure. A single
mushroom-shaped vertical thermal plume at the center of the domain characterizes the thermal field.
The solution branch S2 at C0 = 0.05 marks a shift from bicellular flow to a structure with four cells
(two pairs of vortices). This flow pattern leads to a thermal field with two vertical mushroom-shaped
thermal plumes located in the region between the vortices (refer Fig. 7). The case of C0 = 0.1 also
shows two solution branches, S1 and S2, with bicellular and multicellular (four cells) flow structures,
respectively. Correspondingly, single- and two-thermal-plume structures are noted at S1 and S2.
However, the thermal plumes in S2 are not perfectly vertical owing to the asymmetric flow structure
(refer Fig. 7). The case of C0 = 0.2 has only one solution branch. In this case, the mushroom-shaped
thermal plumes are not fully developed due to the weak velocity distribution, as noted in Fig. 7.
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FIG. 11. Variation of mean Nusselt number Nu with respect to Rayleigh number Ra at different values of
conduction numbers (a) C0 = 0.05, (b) C0 = 0.1, and (c) C0 = 0.2. (S1 and S2 represent the flow pattern of a
pair of vortices and two pairs of vortices, respectively.)

V. CONCLUDING REMARKS

A combined stability and numerical analysis of Rayleigh-Bénard convection with Onsager-Wien
effect in a planar dielectric liquid layer is presented. For the first time in literature, flow instability
of of Rayleigh-Bénard convection in a dielectric liquid layer under the stabilizing effect of Onsager-
Wien effect occurring at weak and medium electric fields is studied. Combined effects of control
parameters Rayleigh number Ra and conduction number C0 are considered. At first, solutions for
the physical variables at the hydrostatic regime are derived with Newton’s method. Then, modal
stability analysis is performed to identify the critical Rayleigh number Rac concerning different
conduction numbers. In the configuration considered in this study, the electric force stabilizes the
liquid layer, while the buoyancy force attempts to destabilize the layer. A neutral stability curve in
the Ra-C0 plane is obtained, and higher conduction number C0 values correspond to higher values
of RaC . This indicates that a more potent buoyancy force is required to overcome the stabilizing
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FIG. 12. Thermal field visualization in solution branches S1 and S2 at 12 × 103 � Ra � 50 × 103 for
(a) C0 = 0.05, (b) C0 = 0.1, and (c) C0 = 0.2.

effect of electric force at higher C0. The values of RaC obtained by the numerical simulations
agree with those obtained by the modal stability analysis. Finally, extensive numerical simulations
are performed to study the flow and heat transfer characteristics with different combinations of
control parameters. At C0 = 0.05 and 0.1, the problem exhibits dual solutions depending on the
initialization method. The resultant flow morphology is characterized by two or four flow vortices
depending on zero-field or previous convective state initialization, respectively. Thus, two solution
branches exist in the bifurcation diagram depending on the initialization method. The mechanism
of destabilization of the fluid layer under the combined action of buoyancy and electric forces is
discussed. The velocity distribution and heat transfer are generally higher at lower values of C0 and
higher values of Ra. Owing to the intensified competition between the stabilizing electric field and
the destabilizing thermal field, at higher values of Ra and at C0 = 0.2, the flow exhibits an unsteady
behavior. The present study aids in understanding the flow and heat transfer behavior observed in
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a combined Rayleigh-Bénard convection and Onsager-Wien effect (under a weak/medium electric
field). Results presented herein will help in the design of engineering flow systems that are subjected
to combined gradients of thermal and electric fields.
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