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We analyze the linear stability of viscoelastic channel flows, with velocity pro-
files that are asymmetric about the channel centerline, belonging to the one-parameter
Couette-Poiseuille family (CPF). These flows are driven by a combination of an imposed
pressure gradient and (tangential) wall motion. A particular member of this family, cor-
responding to a zero net volumetric flux, may be experimentally realized in a shallow
lid-driven cavity flow configuration, as well as in the narrow-gap limit of the Taylor-
Couette geometry with an obstruction at a fixed azimuthal angle (a narrow gap Taylor-Dean
flow). Recent work by Khalid et al. [Phys. Rev. Lett. 127, 134502 (2021)] has shown, using
the Oldroyd-B model, that plane Poiseuille flow with a symmetric velocity profile becomes
unstable, even in the absence of inertia, to an elastic “center mode” with phase speed close
to the base-state maximum. In contrast, viscoelastic plane Couette flow is linearly stable.
The objective of this study is to determine parameter regimes where viscoelastic CPF,
whose members include the two limiting flows above, is unstable in the inertialess limit.
The dimensionless groups that govern stability are the Weissenberg number W = λUavg/L,
the parameter α characterizing the relative importance of Couette (α = 0) and Poiseuille
flow (α = 1) components, and the ratio of solvent to solution viscosities β = μs/μ. Here,
λ is the polymer relaxation time, L the channel half-width and Uavg the average speed; β ∈
[0, 1], and α ∈ (−∞,∞) with α → ±∞ representing the unidirectional flow in a shallow
lid-driven cavity. We show that, similar to plane Poiseuille flow, an elastic center-mode
instability does indeed exist for the aforesaid family in the limit of ultra-dilute polymer
solutions (β � 0.99); the instability relies on the existence of a base-state maximum,
implying its absence for CPF members with α ∈ (−0.5, 0.25). Our results point to the
potential relevance of the center-mode instability to viscoelastic Taylor-Dean flows and
other curvilinear shear flow configurations.

DOI: 10.1103/PhysRevFluids.9.013301

I. INTRODUCTION

The term “purely elastic instability” has traditionally been used to refer to a class of linear
instabilities in viscoelastic shearing flows in the absence of inertia. Such instabilities pertain to
curvilinear geometries, including the standard rheometric configurations such as the Taylor-Couette,
cone-and-plate, and parallel-plate geometries [1–5]. A recent survey of the literature in this regard
can be found in reviews by Castillo et al. [6] and Datta et al. [7]. Purely elastic linear instabilities
are driven by hoop stresses present in any curvilinear viscoelastic flow, and must therefore be
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absent in rectilinear shearing flows without a base-flow curvature [8]. Nevertheless, experiments
by Arratia and coworkers carried out for pressure-driven flow of highly elastic polymer solutions
through a straight channel with a square cross-section, demonstrated the onset of a complex flow
state even at very low Reynolds numbers (Re) [9–12], triggered by inlet disturbances in the form of
an array of tiny pillars. This transition has been proposed to be governed by a nonlinear subcritical
mechanism wherein perturbed streamlines acquire a curvature leading to hoop stresses, that then
drive an instability, albeit at a nonlinear order in the perturbation amplitude [9,13,14]. More recent
experiments by Steinberg and coworkers have used a rectangular channel with a cross-sectional
aspect ratio of about 7 : 1, and have again reported instabilities at low Re [15–18]. The experiments
involve several variants of a basic channel-flow configuration; while some of the experiments have
focused on elastic instabilities localized in the region between a pair of cylindrical obstacles along
the channel centerline [15], others have reported coherent structures triggered by an array of pillars
at the inlet [16,17], similar to the ones in the experiments quoted above. More recent experiments
have uncovered instabilities even in the absence of inlet perturbations [18]. The authors posit
[19] linear nonmodal growth, primarily involving spanwise varying perturbations, as the triggering
mechanism [20,21].

In contrast to the above scenario, in a recent study, Khalid et al. [22] reported a linear instability
in viscoelastic plane Poiseuille flow, involving a streamwise varying (that is, 2D) unstable mode,
even in the absence of inertia; the elastic stresses in this analysis were modeled using the Oldroyd-B
constitutive relation. Although the instability is predicted to occur at high Weissenberg numbers
(W ∼ 103), and for ultradilute solutions with solvent-to-solution viscosity ratio β > 0.99, the
discovery of a purely elastic linear instability in a rectilinear shearing flow is nevertheless of intrinsic
interest since it points to the existence of an alternate mechanism, unrelated to base-state hoop
stresses, that drives the growth of infinitesimal amplitude perturbations. Importantly, subsequent
work by Buza et al. [23] has used the FENE-P model to demonstrate that accounting for finite
extensibility of the underlying polymer molecules causes the said instability to continue down to
W ∼ 100, and β ≈ 0.98, making it more accessible to experimental studies. Furthermore, these
authors have shown that the instability is generally subcritical at lower W , becoming supercritical
only when W � 103, implying that the instability remains accessible to finite-amplitude perturba-
tions even for W < O(100). Another study by Morozov [24] has used direct numerical simulations
(DNS) of pressure-driven channel flow, using the linear Phan-Thien-Tanner (PTT) model with the
amplitude of the stress nonlinearity tailored to dilute solutions, to demonstrate the existence of
nonlinear elastic coherent states in the form of 2D traveling waves in the inertialess limit; these
traveling wave structures appear to be the result of a purely elastic self-sustaining process, and for
the chosen parameters, lie along the (stable) upper branch of a bifurcation-from-infinity scenario
that is assumed to govern the transition to turbulence. On a related note, Lellep et al. [25] have
recently demonstrated the existence of elastic linear instabilities in shearing flows with profiles
approximated by trigonometric functional forms, and with the symmetry of either plane Couette or
plane Poiseuille flow, but that satisfy free-slip boundary conditions. The latter conditions lead to the
wall mode in the plane Couette analog turning linearly unstable, and both wall and center modes of
the plane channel flow analog being unstable, the latter in a larger range of W and β (compared to
the predictions of Khalid et al. [22]). The authors also showed the unstable modes in the free-slip
limit to be a continuation of the least-stable modes in the no-slip limit.

The linearly unstable mode predicted by Khalid et al. [22], for viscoelastic channel flow in the
absence of inertia, belongs to a class of “center modes” with phase speeds close to the base-flow
maximum, and is henceforth termed the “elastic center mode.” The unstable center mode has
a streamwise velocity disturbance that is symmetric about the channel centerline, and from a
fundamental standpoint, it is clearly of interest to examine whether the existence of such a center
mode is exclusive to plane Poiseuille flow, with its symmetry correlated to that of the base-state flow
itself, or if it is present in more general rectilinear shearing flows devoid of this symmetry. Such
asymmetric flows may be modeled using the one-parameter Couette-Poiseuille family, driven by
the combination of an imposed pressure gradient and tangential wall motion. A particular member
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FIG. 1. Schematic of the flow geometry. The base-state flow occurs as a result of the applied pressure
gradient and the motion of the top plate with velocity Uw; the bottom plate remains stationary. The velocity
profiles shown correspond to the pressure-driven (black) and plate-driven (blue) components.

of this family, corresponding to a zero net volumetric flow rate, may be experimentally realized
in a shallow lid-driven cavity configuration. The Couette-Poiseuille family is also of relevance to
the so-called Taylor-Dean flow configuration involving a pair of curved walls, with flow driven by
both an azimuthal pressure gradient as well as motion of the wall(s) in the azimuthal direction.
The said configuration has been realized [26–28] in a Taylor-Couette setup, with the azimuthal
pressure gradient arising from a vertical obstruction in the gap at a fixed azimuthal angle; although,
the focus of these experiments was on the elastic hoop-stress-driven mode. For gap widths small
compared to the cylinder radii of curvature, the Taylor-Dean flow reduces to the lid-driven cavity
flow above. Couette-Poiseuille flows are also routinely encountered in lubrication flows between
nonparallel surfaces with their separation slowly changing along the flow direction [44]. In such a
configuration, a large streamwise pressure gradient arises in the narrow gap to satisfy momentum
conservation, while the Couette flow component arises from the relative tangential motion of the
two surfaces. Indeed, the pressure generated in the thin gap varies inversely as the gap width, and
prevents the two surfaces from coming into contact even in the presence of a large normal load.
This feature is exploited, for instance, in the so-called Kugel (or) floating-sphere fountains [45]
wherein a very large, heavy, and often rotating, granite sphere is kept afloat by a very thin liquid
film maintained via an upward water jet from the bottom.

In the present study, by considering the Couette-Poiseuille family, we address the question of
whether centerline symmetry of the base-state velocity profile is an essential ingredient for the elas-
tic center-mode instability. In Sec. II, we discuss the problem formulation and numerical methods
used. The salient results are discussed in Sec. III. Section IV summarizes the key conclusions and
possible implications of the results obtained in the present study. The Appendix provides a brief
summary of the results obtained for the limiting cavity-flow configuration.

II. PROBLEM FORMULATION and NUMERICAL METHOD

A. Governing equations

We consider the pressure-driven flow of an incompressible viscoelastic fluid in a rigid channel of
width 2L, where the top plate moves with velocity Uw while the bottom plate remains stationary, as
illustrated in Fig. 1. The viscoelastic fluid is described using the Oldroyd-B model [29], similar to
previous studies in this area [22,30–36]. Within the Oldroyd-B framework, the polymer molecule is
modeled as an elastic dumbbell with two beads connected by a Hookean spring. Despite limitations
such as the inability to capture shear-thinning behavior, the Oldroyd-B model has been shown to
provide a reasonable first-cut description of instabilities in both curvilinear [1–3] and rectilinear
[6,31–36] shearing flows.

In the governing equations, lengths are scaled by the half-width L, velocities by the average
velocity Uavg, time by Uavg/L, and the pressure and stresses by μUavg/L. The average velocity is
given by Uavg = 2

3Umax + 1
2Uw, where Umax is the maximum of the Poiseuille component and Uw is
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the top-plate velocity; note that both Umax and Uw are signed quantities. The total viscosity of the
solution is μ = μs + μp, where μs and μp are the solvent and polymer contributions, respectively.
The dimensionless mass and momentum conservation equations, the latter in the creeping-flow
limit, are

∇ · v = 0, (1)

−∇p + β∇2v + ∇ · τ = 0. (2)

Here, v = (vx, vy, vz) is the velocity field, p and τ are the dimensionless pressure and polymer stress
fields, respectively, and the parameter β = μs/μ is the ratio of solvent to solution viscosities. The
evolution of the polymer stress in Eq. (2) is given by the Oldroyd-B constitutive relation:

τ + W

(
∂τ

∂t
+ v · ∇τ − (∇v)T · τ − τ · (∇v)

)
= (1 − β )(∇v + ∇vT ), (3)

where β = 0 and 1 correspond to the upper-convected Maxwell and Newtonian fluids, respectively.
In Eq. (3), W = λUavg

L is the Weissenberg number, with λ being representative of the longest micro-
structural (polymer) relaxation time.

The specific base-state velocity profile, to be used in Eqs. (3) and (5), is a member of the
Couette-Poiseuille family (CPF), and is given by

Ux(z) = (1 − α)(1 + z) + 3
2α(1 − z2), (4)

where the aforementioned scalings imply that the volumetric flux (per unit span) 1
2

∫ 1
−1 Ux(z)dz = 1.

For the Oldroyd-B model used here, the above shearing flows are associated with a positive first
normal stress difference given by

Txx − Tzz = 2(1 − β )W [U ′
x(z)]2, (5)

and a zero second normal stress difference.
In Eq. (4), the dimensionless parameter α characterizes the relative importance of plane Couette

and plane Poiseuille flow components, being defined as

α = 1 − Uw

2Uavg
. (6)

The various members of the CPF family are obtained for α ∈ (−∞,∞). For α = 0 and 1, one
recovers the canonical plane Couette and Poiseuille profiles, respectively, along the positive x
direction, and the CPF members interpolate between these two flows for α ∈ [0, 1]. Outside of
this interval, the plane Couette and plane Poiseuille components are oppositely directed. The plane
Couette component is dominant for α < 0, with the plane Poiseuille component being dominant for
α > 1. Both of these CPF sequences asymptote to mirror-image cavity flow profiles, with a net zero
volumetric flux, for α → −∞ and α → ∞, respectively.

The maximum velocity as a function of α is given by Umax = (1+2α)2

6α
and occurs at z∗ = 1−α

3α
.

This maximum occurs within the physical domain for α < −0.5 and α > 0.25, moving outside of
it for 0 < α < 0.25 (z∗ > 1) and −0.5 < α < 0 (z∗ < −1). For α’s such that there is an interior
maximum [z∗ ∈ (−1, 1)], there is a flow reversal within the physical domain at z0 = 2+α

3α
. In Fig. 2,

we show representative velocity profiles for different values of α. The cavity flow above refers to
approximately unidirectional flow realized away from the end walls in a shallow lid-driven cavity
[44]. In this limit, it is convenient to use the top plate velocity (Uw) as the velocity scale, to yield
the velocity profile:

Uc(z) = − 1
2 (1 + z) + 3

4 (1 − z2). (7)
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FIG. 2. The nondimensional base-state velocity profiles for the CPF family for different α: α = 0 and 1
represent plane Couette and plane Poiseuille flows, respectively. For −0.5 � α < 0.25, the base flow velocity
is monotonic; for α → ±∞, the flow reduces to nonmonotonic cavity flows that are mirror images or each
other. Note that the cavity flow profile has been nondimensionalized using the top-plate velocity, since the
average speed is zero.

The above expression can also be recovered from Eq. (4) as Uc(z) = lim
α→∞

Ux(z)

2α
. The flow reversal

in Eq. (7) occurs at z = 1/3, which is the limiting value of z0 above for α → ∞.

B. Modal stability analysis

We carry out a temporal linear stability analysis of the aforementioned base states in the
creeping-flow limit. Within the modal picture, attention is restricted to 2D disturbances since they
are more unstable than three-dimensional ones according to Squire’s theorem [37]. Thus, we neglect
variations in the y direction, and consider infinitesimal amplitude perturbations restricted to the x-z
plane, where x is the flow direction and z is the wall-normal direction. All the dynamical variables,
e.g., pressure, velocities, and stresses, are perturbed about the laminar base state in Sec. II A
above, and are substituted in the nondimensional governing equations, which are further linearized
about the base state to furnish a set of linear equations in terms of the perturbed quantities. The
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perturbations are expressed in the form of Fourier modes:

f̂ (x, z; t ) = f̃ (z)e{ik(x−ct )}, (8)

where f̃ (z) is the eigenfunction, k is the (real) wave number in the flow direction, and c = cr + ici is
the complex wave speed. The system is unstable (stable) when ci > 0 (< 0). After substituting the
ansatz [Eq. (8)] in the linearized versions of Eqs. (1)–(3), we obtain the following set of equations for
the perturbation eigenfunctions (with dz = d/dz):

ikṽx + dzṽz = 0, (9)

ik p̃ − β
(
d2

z − k2
)
ṽx − ikτ̃xx − dzτ̃xz = 0, (10)

dz p̃ − β
(
d2

z − k2
)
ṽz − ikτ̃xz − dz τ̃zz = 0, (11)

[1 + ikW (U − c)]τ̃xx − 2WU ′τ̃xz − (1 − β )[2ikṽx + 4ikW 2U ′2ṽx + 2WU ′dzṽx]

+ (1 − β )[4WU ′U ′′ṽz] = 0, (12)

[1 + ikW (U − c)]τ̃xz − WU ′τ̃zz − (1 − β )[dzṽx + ikṽz + 2ikW 2U ′2ṽz − WU ′′ṽz] = 0, (13)

[1 + ikW (U − c)]τ̃zz − 2(1 − β )[dzṽz + ikWU ′ṽz] = 0. (14)

The no-slip and no-penetration boundary conditions at the top and bottom plates are given by

ṽx(±1) = 0, ṽz(±1) = 0. (15)

We used both spectral and shooting methods to solve the above set of equations. In the spectral
method, the dynamical variables are expanded as a finite sum of N Chebyshev polynomials which,
when substituted into Eqs. (9)–(15), results in a generalized eigenvalue problem. We used the
MATLAB solver “polyeig” for solving this eigenvalue problem. To capture the physically genuine
eigenvalues, we ran our code for two different N’s, e.g., 450 and 500, and the corresponding
eigenvalues are compared with some specified tolerance criterion. We further expand on this aspect
at the beginning of Sec. III A. The choice of N � 400 above is to accurately capture the most
unstable eigenvalue. The converged eigenvalues from the spectral code were subsequently verified
using a numerical shooting procedure [38,39], which involves numerically integrating the linearized
governing equations using an adaptive Runge-Kutta method. A Newton-Raphson iterative scheme is
then used to determine the eigenvalue, with the initial guess being provided by the spectral method.
Since the shooting method does not converge to a spurious eigenvalue, this procedure further ensures
that all genuine eigenvalues are obtained from the combination of spectral and shooting methods.
Our numerical procedure for computing the spectra for CPF has been benchmarked with the earlier
results of Khalid et al. [22].

III. RESULTS AND DISCUSSION

Herein, we discuss the results for Couette-Poiseuille flow (CPF) by first describing the eigen-
spectrum and eigenfunctions, followed by a description of the neutral stability curves. A shorter
discussion on the cavity-flow configuration, corresponding to the limit α → ±∞, is provided in the
Appendix.
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TABLE I. Maximum velocity of base flow (Umax) and the complex wave speed (c = cr + ici) corresponding
to the least-stable/unstable center mode for different α; data shown for k = 0.7, W = 800, and β = 0.994. For
these parameters, the CS is located at ci = −0.001785714.

α z∗ Umax cr ci

−5 −0.4 −2.7 −2.699729 −0.000431491
−3 −0.4444 −1.3889 −1.388295 −0.00014024
0.6 0.2222 1.3444 1.342496 −0.001173560
0.7 0.1429 1.3714 1.369512 −0.000530702
0.9 0.037 1.4519 1.450578 0.000025312
1.0 0 1.5 1.498996 0.0000424752
1.1 −0.0303 1.5515 1.550702 −0.0000062452
1.3 −0.0769 1.6615 1.660928 −0.0001376691

The center-mode instability [22,33] in viscoelastic plane Poiseuille flow is characterized by an
unstable mode with phase speed close to the base-state maximum. For plane Poiseuille flow (α = 1),
this maximum occurs at the centerline. However, for CPF profiles with α 	= 1, the location of the
maximum deviates from the centerline (see Fig. 2), and it might then be expected that the phase
speed of the center mode should also be a function of the parameter α. The locations of the maxima
(z∗), the maximum base flow speeds (Umax), and the phase speeds of the least-stable/unstable center
mode, given in Table I, show that, even for the asymmetric CPF profiles, the phase speed remains
very close to the base-state maximum.

A. Structure of the eigenspectrum and eigenfunctions

In the unfiltered eigenspectra shown in Fig. 3(a)(for two different N’s), for α = 2, there are
several poorly resolved modes that are part of the continuous spectrum (CS) [40–42]. For the
Oldroyd-B fluid, there are two continuous spectra, one arising for β = 0 (the upper-convected
Maxwell limit), and the other present only for β 	= 0. The eigenvalues belonging to these spectra
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(b) Zoomed-in eigenspectra near cr = 2.

FIG. 3. Unfiltered elastic eigenspectra for CPF of an Oldroyd-B fluid with α = 2; data shown for W =
900, k = 0.4, β = 0.995 and N = 450 and 500. The inset in panel (a) shows a poorly converged spurious
mode located near cr = −2, which arises in the spectral method (this mode is nonconvergent in the shooting
method.) The magnified view in panel (b) shows a (converged) discrete unstable mode with c = 2.08157 +
0.00003594 i.

013301-7



YADAV, SUBRAMANIAN, AND SHANKAR

0 0.5 1 1.5
-5

-4

-3

-2

-1

0

1
10-2

0.49 0.5 0.51
-1

0

1
10-3

(a) Zoomed-in eigenspectra near ci = 0.

1.375 1.38 1.385 1.39 1.395 1.4
-15

-10

-5

0

5
10-4
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FIG. 4. Unfiltered elastic eigenspectra for CPF of an Oldroyd-B fluid with α = 0.75; data shown for W =
2500, k = 0.4, β = 0.995, and N = 450 and 500. Both the main figure and the inset in panel (a) highlight the
spurious modes located near cr ≈ 0 and 0.5 which remain unconverged in the shooting method. The magnified
view in panel (b) shows a (converged) discrete unstable mode with c = 1.3883837 + 0.00005081 i.

have decay rates of −1/W and −1/(βW ), with phase speeds in the base-state range of velocities,
yielding a pair of horizontal lines in the cr-ci plane [41]; note that, for β → 1, the regime of interest
in the present study, these two CS’s (horizontal lines) are practically indistinguishable. In any case,
the finite numerical resolution in the spectral method implies that these horizontal lines only appear
as balloons with a width that is much greater than the theoretical inter-CS spacing. The elastic
eigenspectrum shown also contains discrete modes. To isolate the genuine discrete eigenvalues
from the spurious ones (belonging, for instance, to the ballooned-up CS), the spectra obtained for
two different N’s were compared, and only eigenvalues which exhibited convergence to a desired
accuracy of six to seven decimal points, were considered genuine. Such converged modes were
further corroborated using the shooting method, as already mentioned above. One such discrete
mode is the unstable center mode with c = 2.08157 + 0.00003594i; the magnified view is shown in
Fig. 3(b). The “center mode” terminology has its origins in the Newtonian plane Poiseuille spectrum
wherein modes with phase speeds close to the base-state maximum are localized near the channel
centerline at sufficiently high Re [39]. The base-state maximum for α = 2 is 2.083. The unstable
mode in Fig. 3(b) has a phase speed close to this value, and is indeed an analog of the center-mode
instability in plane Poiseuille flow (α = 1) [22]; we therefore continue to use this nomenclature for
α 	= 1. While Fig. 3 shows the spectrum for α > 1, Fig. 4 shows the spectrum for an α less than
unity. The overall features remain analogous to those in Fig. 3, with the unstable mode in particular
again having a phase speed close to the base-state maximum.

It has been shown [22] that the streamwise velocity eigenfunction ṽx for the unstable center
mode in plane Poiseuille flow (α = 1) is symmetric about the centerline. For CPF members with
α = 1.5 and 2, the top plate motion and the flow in its vicinity is in the −x direction, while the bulk
of the flow (due to the pressure gradient) is in the +x direction. For purposes of comparison with
the symmetric center-mode eigenfunction for the plane Poiseuille configuration, it is thus useful to
consider the subdomain z ∈ [−1, z0], where the base flow is in the +x direction (z0 = 0.7778 and
2/3 for α = 1.5 and 2, respectively), and additionally, is symmetric about the midpoint (z∗ = −1/9
and −1/6) of this reduced domain. In Fig. 5, we therefore compare the ṽx and ṽz eigenfunctions
for CPF with α = 1.5 and 2, the subdomain z ∈ [−1, z0] having been rescaled to z′ ∈ [−1, 1] in
these figures, to the corresponding eigenfunctions of plane Poiseuille flow—the comparison is for
neutral eigenmodes. Table II shows the parameter values used in the comparison shown in Fig. 5
(and in the comparison of the corresponding stress eigenfunctions shown in Fig. 6 below), and
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(a) Streamwise velocity eigenfunctions.
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(b) Wall-normal velocity eigenfunctions.

FIG. 5. Real, imaginary, and absolute values of the (a) streamwise and (b) wall-normal velocity eigenfunc-
tions for CPF of an Oldroyd-B fluid with α = 1, 1.5, and 2. The data is shown for the neutral eigenmode
at β = 0.995; the other parameter values are given in Table II. For α = 1.5 and 2, only the portion of the
eigenfunction from z = −1 to z = z0 has been plotted, the latter value being the zero-crossing of the base-state
velocity profile; further, this domain has been rescaled to z′ ∈ [−1, 1] to facilitate comparison.

TABLE II. The parameters pertaining to velocity and stress eigenfunctions shown in Figs. 5 and 6. The
data is shown at fixed value of β = 0.995.

α W k cr

1.0 691.27 0.88712 1.4986469
1.5 584.67 0.743 1.7760366
2.0 725 0.49325 2.0814925
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(a) τxx stress eigenfunctions.
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(b) τxz stress eigenfunctions.

FIG. 6. Real, imaginary, and absolute values of the stress eigenfunctions of the (a) streamwise normal stress
τ̃xx and (b) shear stress τ̃xz, for CPF of an Oldroyd-B fluid with α = 1, 1.5, and 2. The data is shown for the
neutral eigenmode at β = 0.995; the other parameter values are given in Table II. For α = 1.5 and 2, only the
portion of the eigenfunction from z = −1 to z = z0 has been plotted, the latter value being the zero-crossing of
the base-state velocity profile; further, this domain has been rescaled to z′ ∈ [−1, 1] to facilitate comparison.
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(a) vx velocity perturbation. (b) vz velocity perturbation.

FIG. 7. Contours of the real part of velocity perturbations in x − z plane: (a) the streamwise velocity (v̂x)
and (b) wall-normal (v̂z), for CPF of an Oldroyd-B fluid with α = 2 (upper subfigure) and α = 1 (lower
subfigure); data corresponding to parameters shown in Table II.

includes the phase speeds of the neutral eigenmodes. An overall resemblance in the eigenfunction
shapes is readily evident. Similar to plane Poiseuille flow, the maximum of the ṽx eigenfunction
for α = 2 occurs near the base-state maximum (z′ = 0), with the ṽz eigenfunction going to zero
at the same point. However, the resemblance breaks down near z′ = 1 for the nonunity α’s, since,
although the base flow for in these cases is symmetric over z′ ∈ [−1, 1], the eigenfunctions exhibit
a weak asymmetry owing to a lack of symmetry in the boundary conditions. Specifically, ṽz and ṽx

do not go to zero at z′ = 1, unlike the plane Poiseuille case where no-slip conditions are valid at
both boundaries (z = ±1).

The lack of symmetry of the velocity eigenfunctions above, for α = 1.5 and 2, carries over to the
stress eigenfunctions shown in Fig. 6. The τ̃xx eigenfunctions, in particular (for α 	= 1), show two
sharp peaks of differing amplitudes in the immediate neighborhood, and on either side, of z′ = 0;
this is in contrast to the symmetric twin-peaked structure for plane Poiseuille flow. The structure in
the vicinity of these peaks also appear to be a sensitive function of α. The peaks in the perturbation
stress profiles for both unity and nonunity α’s may be attributed to a pair of “critical layers,” on either
side of the maximum, where the base flow velocity equals the phase speed of the eigenmode. Since
the phase speed is very close to the base-state maximum, the critical layers are in the immediate
neighborhood of the latter location. The stress eigenfunctions become singular at these locations for
the neutral eigenmode, and exhibit near-singular behavior for small growth rates [6, see footnote on
page 5]. Figures 7 and 8 show contour plots corresponding to the velocity (v̂x, v̂z) and polymeric
stress (τ̂xx, τ̂xz) perturbations associated with the center mode. A constant x slice of these contour
plots is consistent with the eigenfunction plots shown above. In particular, the horizontal streaks in
Fig. 8 correspond to the singular peaks of the stress eigenfunctions in Fig. 6.

Khalid et al. [22] have shown that the elastic center-mode instability, for plane Poiseuille flow,
is present only for β > 0.990552; although, with the inclusion of inertia, the resulting elastoinertial
center mode remains unstable over a wider range of viscosity ratios [33]. For the inertialess case
presently under consideration, one might expect a similarly restrictive β interval even for α 	= 1. To
ascertain this, in Fig. 9, we first examined the CPF profiles with varying α for β = 0.99, and for
k = 0.1 [Fig. 9(a)] and 1.0 [Fig. 9(b)]; four different α values, namely 0.25, 0.5, 1, and 2, have been
examined. The said figures plot the variation of ci, the growth rate of the least stable center mode
in the CPF eigenspectrum, as a function of W . For the chosen β, we find that ci remains negative,
although it makes a very close approach to neutral stability for α = 1 in Fig. 9(a) (see magnified
view in the inset). Figure 10(a) explores the effect of α on the least-stable center mode, for β = 0.99
and W = 5000, for different k, and again shows that ci remains negative. A noteworthy feature in
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(a) τxx stress perturbation. (b) τxz stress perturbation.

FIG. 8. Contours of the real part of stress perturbations in x–z plane: (a) the streamwise stress (τ̂xx) and
(b) shear stress (τ̂xz) for CPF of an Oldroyd-B fluid with α = 2 (upper subfigure) and α = 1 (lower subfigure);
data corresponding to parameters shown in Table II.

this figure is that, for all the k values examined, the center-mode eigenvalue eventually merges with
the CS (kci = −1/W ), with decreasing α; see inset of Fig. 10(a). The disappearance of the center
mode at a finite α can be understood by noting that for α = 0 (plane Couette flow), the spectrum
does not have a center mode on account of the monotonic (linear) nature of the velocity profile.
As already stated in the context of Fig. 2, the base-flow velocity profile has an interior maximum
only for α > 0.25, and is monotonic for 0 � α � 0.25. The center-mode instability, in relying on
the existence of such a maximum, must necessarily be absent for α < 0.25. While α = 0.25 does
provide a lower bound for instability in this sense, the inset in Fig. 10(a) shows that the center mode
merges with the CS even for α > 0.25, especially for the lower k’s. This feature is also seen in
Table I, wherein, as α is decreased to 0.6, the ci of the center mode gradually approaches that of
the CS, and the mode soon disappears into the CS for lower α’s, with all other parameters fixed as
shown in the table.
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(a) k = 0.1.
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(b) k = 1.0.

FIG. 9. The ci of the center mode, as a function of W , for different members of the CPF family (α = 0.25,
0.5, 1 and 2) and β = 0.99; (a) k = 0.1 and (b) for k = 1. The inset in panel (a) shows a magnified view of the
region in the vicinity of ci = 0. The flow remains linearly stable in all cases.
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(a) kci vs. α.
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(b) ci vs. β.

FIG. 10. The variation of ci for the center mode as a function of (a) α for β = 0.99, k = 0.05, 0.1, 0.25,
0.5; (b) β for different values of α and k = 0.1. The inset in panel (a) shows the region near α = 0.25, where
the center mode merges into the CS. While, the inset in panel (b), shows the narrow range over which the mode
is unstable; data for W = 3200.

In summary, regardless of α, k and W , CPF remains stable for β = 0.99. In light of this,
Fig. 10(b) shows the variation of ci with β for members of the CPF family with α = 1.0, 1.1,
and 2 for a fixed k = 0.1. ci is found to cross zero for a small range of β between 0.991 and 0.993,
confirming that, even for α 	= 1, the elastic center-mode instability exists over a narrow range of
viscosity ratios above β = 0.99, analogous to the earlier results for plane Poiseuille flow [22].

B. Neutral stability curves

In Fig. 11, we present neutral stability curves demarcating stable and unstable regions in the
W -k plane, as a function of α, for different fixed β. For given values of α and β, the flow is
unstable within a tongue-shaped region. Analogous to the earlier results of Ref. [22] for plane
Poiseuille flow, the instability persists even for k 
 1, and accordingly, the unstable tongue extends
to infinity for k → 0, with W ∝ 1/k along its upper and lower branches. The unstable tongues
exhibit qualitatively different dependencies on α depending on β. For β = 0.994 in Fig. 11(a), the

10-1 100

103

104

(a) β = 0.994.

10-1 100
102

103

104

(b) β = 0.998.

FIG. 11. Neutral stability curves in the W − k plane for CPF at various α (>0). (a) Instability is present for
α ∈ (0.67, 2). (b) Instability exists ∀ α �0.25.
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FIG. 12. Variation of the (a) critical Weissenberg number (Wc) and (b) the critical wave number (kc) for
α = 0.8, 1, and 1.1.

critical Weissenberg number (Wc), corresponding to the minimum W on a given tongue, exhibits
a nonmonotonic dependence on α. It attains a minimum (Wc ≈ 580) for α ≈ 1.2, and increases in
magnitude for α varying on either side of this value. There is a concomitant decrease in the size
of the unstable tongue, with the tongue becoming vanishingly small in extent for α � 0.67 and
α � 1.95, implying that CPF is only unstable over a finite interval α ≡ (0.67, 1.95) for β = 0.994;
one finds an analogous behavior for β < 0.994, with the unstable α interval eventually becoming
vanishingly small for β → 0.99. For the higher value, β = 0.998 in Fig. 11(b), Wc decreases
monotonically with increasing α. Further, the unstable region remains finite in extent for much
smaller α ≈0.35 in Fig. 11(b), receding to infinity for α → 0.25+. This is consistent with the
transition to a monotonic base-flow profile for α < 0.25, and with Fig. 10(a) that shows the center
mode merging with the CS for α → 0.25. One might naively anticipate the threshold W for CPF
to diverge only when α → 0, corresponding to the plane Couette flow limit. However, the above
results clearly show that the divergence occurs for α = 0.25 or higher, implying that α > 0.25 is
necessary, although not sufficient, condition for the center-mode instability. In Fig. 11(a), the critical
wave number attains a maximum kc ≈ 0.783 for α ≈ 1.0, decreasing to O(0.1) as α approaches the
endpoints of the interval of existence mentioned above; in contrast, for β = 0.998, kc remains of
order unity for any α.

In Fig. 12, the critical parameters Wc and kc are plotted against (1 − β ) for different α. The
variation of Wc in Fig. 12(a) is seen to be nonmonotonic. Since a decrease in β is equivalent to
increasing the dissolved polymer concentration, one may interpret this nonmonotonic variation as
an increment in polymer concentration initially leading to a decrease in Wc up to β = 0.993—Wc

follows a scaling of (1 − β )−1 for (1 − β ) 
 1; a further increase in polymer concentration leads to
an abrupt increase, and eventually, a divergence at a critical β. Similar nonmonotonic behavior and
scaling of Wc with (1 − β) for plane Poiseuille flow is already known [22] and has been included in
Fig. 12(a) for comparison purposes. In Fig. 12(b), the critical wave number kc is seen to decrease
gradually with increasing polymer concentration (decreasing β) until β = 0.993, but decreases very
sharply thereafter; again, the kc variation mimics that known for plane Poiseuille flow (also shown).

Figure 13(a) shows the variation of Wc with α for different β. For β < 0.996, Wc rapidly increases
for both α → 0 and for α � O(1). The increase in the former limit is expected since Wc must diverge
as α → 0.25+; it appears that the instability is also absent for α > 2 owing to a divergence of Wc.
However, for β � 0.996, the divergence of Wc at an α of order unity is suppressed, and Wc instead
approaches zero as α−1 for α → ∞. This change in the large-α behavior is consistent with the
different α dependencies of the neutral stability curves already seen in Figs. 11(a) and 11(b). It also
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FIG. 13. Variation of the critical Weissenberg numbers (Wc and WPc) with α (α > 0). For β � 0.996 and
α � 2.0, Wc decreases as α−1, while WPc asymptotes to a plateau. In panel (b), the dashed straight lines are
the large-α asymptotes for cavity flow. The (β,WPc ) pairs from the cavity-flow limit are (0.996, 3499.8),
(0.997, 2373.9), (0.998, 2875), and (0.999,5278.4).

leads to a transition, from a nonmonotonic variation of Wc with α for β � 0.996, to an eventually
monotonically decreasing one for the two highest β’s in Fig. 13(a). However, the continued decrease
of Wc as α−1, for large α, is an artifact of W being defined based on Uavg, and is not to be interpreted
as a progressive lowering of the stability threshold. Owing to the Uavg-based nondimensionalization,
the magnitudes of the top plate velocity and the pressure gradient are adjusted such that the average
speed of the nondimensional base-state profile equals unity regardless of α. For large α in particular,
the top plate velocity, as well as the pressure-gradient-induced maximum (in the opposing direction),
increase as O(α). In this limit, therefore, the relevant velocity scale for defining the Weissenberg
number must be the O(α) pressure-gradient-induced maximum, and it is this Weissenberg number
that must exceed a finite threshold for instability, implying that Wc must decrease as α−1.

To avoid the aforementioned scaling-induced artifact, we define a new Weissenberg number
based on the fact the elastic center-mode instability is driven only by the Poiseuille component
of the CPF profile, with cr being nearly equal to the base-state maximum (see Table I). As a result,
the relevant velocity and length scales that dictate the instability ought to be the maximum velocity
(UmaxP) and the height LP = L(z0 + 1) of the Poiseuille component of the flow. Accordingly, the
new Weissenberg number is defined as

WP = λUmaxP

(LP/2)
, (16)

where UmaxP = Uavg
(1+2α)2

6α
denotes the α-dependent maximum velocity mentioned above. WP and

W are related as

WP = UmaxPW

(LP/2)
= W

(1 + 2α)

2
, (17)

where, in light of the aforementioned physical picture involving a near-cancellation between the
wall-driven and pressure-gradient-driven components for large α, the notion of a WP makes sense
only for α > 1 (the Poiseuille component, as defined, extends outside the physical domain for α <

1). The variation of WPc (the minimum of the WP versus k curve) as a function of (α − 1), for
different β, is plotted in Fig. 13(b). In contrast to the O(α−1)-scaling behavior of Wc for β � 0.996,
WPc asymptotes to an α-independent plateau for α � 2. In fact, WPc varies from 3

2Wc for α → 1,
to 1

2W∞ for α → ∞, where W∞ is the threshold for the cavity-flow configuration defined using
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FIG. 14. Neutral stability curves in the W − k plane and variation of the critical Weissenberg numbers
(WPc and Wc) for α < 0. Data is presented at a fixed value of β = 0.996. (a) Neutral curves shift upwards as
α → −0.5. (b) For α � −100, the value of WPc is nearly equal to the critical Weissenberg number of cavity
flow, which is represented as a black dashed line.

the top-plate velocity (see the Appendix); the prefactor 1
2 stemming from a difference in definitions.

The threshold W∞’s for the cavity-flow configuration appear as dashed horizontal lines in Fig. 13(b),
and one observes very good agreement between WPc (for α > 50) and the corresponding cavity-flow
thresholds for β � 0.996.

Finally, Fig. 14(a) shows the neutral curves for members of the CPF family with α < 0. For α <

0, the Couette component (in the positive x direction) is dominant over the Poiseuille component
(in the negative x direction); the ratio of magnitudes of the maximum velocity of the Poiseuille
component to the wall velocity is always lower for CPF members with α < −0.5 compared to
those for α > 0.25. As a result, the width of the neutral tongues in Fig. 14(a) (for β = 0.996)
is significantly narrower compared to the corresponding tongues in the W − k plane for positive
α’s—this is evident from a comparison of Figs. 11 and 14(a) (despite minor differences in β values).
An analogous trend to that in Fig. 13(a) is seen in Fig. 14(b), with Wc again exhibiting a monotonic
decrease for α → −∞. Furthermore, on defining the analog of WPc above, for negative α’s, it is
found to converge to the cavity-flow asymptote, albeit at a slower rate, approaching it only for
α < −100.

IV. CONCLUSION

We have analyzed the modal stability of the Couette-Poiseuille flow (CPF) of an Oldroyd-B
fluid in a rigid channel in the creeping-flow regime. Our study shows that the flow becomes
linearly unstable via an eigenmode belonging to the class of modes having phase speeds close
to the base-state maximum, analogous to the center-mode instability recently found for viscoelastic
plane Poiseuille flow [22]. For α → ±∞, CPF reduces to the flow occurring in a long rectangular
cavity driven by motion of the top plate, and referred to herein as the cavity-flow configuration. Our
study predicts the existence of a finite-wavelength (k ∼ 1) instability, which is affected by both the
solvent viscosity ratio β, and the Couette-Poiseuille parameter α. Similar to plane Poiseuille flow,
the instability exists only in the ultradilute polymer concentration regime (β > 0.99). Addition of a
Couette component has a stabilizing effect irrespective of the direction of the plate motion, with the
CPF profiles for α < −0.5 being generally more stable compared to the ones with α > 1.

The present study demonstrates that the elastic instability in channel flow is not restricted to the
plane Poiseuille profile, but is present in a more general class of rectilinear flows, including the
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(a) Flow schematics.
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FIG. 15. (a) Schematic of the flow in a shallow lid-driven cavity; (b) the velocity profile characterizing the
unidirectional flow away from the end walls; this profile is a limiting member of the Couette-Poiseuille family,
corresponding to α → ∞.

lid-driven shearing flow in a shallow cavity. An instability in the latter configuration is potentially
of significance to viscoelastic Taylor-Dean flow in the narrow-gap limit which has been realized in
earlier experiments. Although the threshold Weissenberg numbers have been found to be uniformly
high in the present effort that uses the Oldroyd-B constitutive relation, we expect the use of the
FENE-P model to bring down the thresholds to much lower values [23,43], thus making the present
results of relevance to experimental studies. Finally, in so far as the existence of a velocity maximum
appears to be a necessary condition for the center-mode instability, it would be worthwhile, in
future, to examine if generic base-flow profiles with velocity extrema are capable of supporting a
local version of the original center-mode instability. It is also tempting to speculate whether the
center-mode instability, identified here for the CPF family, will be of relevance to the viscoelastic
analog of Couette-Poiseuille profiles encountered in lubricating flows, similar to the ones seen in
Kugel fountains [45].
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(a) Zoomed-in eigenspectra
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FIG. 16. Panel (a) shows the zoomed-in unfiltered eigenspectra around cr = 0.333 for cavity flow of an
Oldroyd-B fluid with W∞ = 7500, k = 1, and β = 0.998. Spectra are shown at two different collocation points
(N = 550 and 600) with a discrete eigenvalue, having c = 0.3332252 + 0.0000148i. Panel (b) shows the
variation of ci with scaled Weissenberg number (kW∞) for cavity flow at various wave numbers and fixed
β = 0.996. The inset shows an expanded view of the region where ci is positive.
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FIG. 17. Neutral stability curves in the W∞ − k plane, for cavity flow of an Oldroyd-B fluid, for different β.

APPENDIX: THE CAVITY-FLOW LIMIT

Herein, we consider the shallow cavity-flow configuration shown in Fig. 15(a). The flow in such
a cavity, at distances from the end walls that are greater than O(L), becomes unidirectional, with
the associated velocity profile shown in Fig. 15(b). The appropriate Weissenberg number for this
flow is W∞ = Uwλ/L, based on the velocity of the moving top plate Uw and the cavity half-height
L; the nondimensional profile using these scalings has been defined earlier in Eq. (7). As already
mentioned in Sec. I, this unidirectional flow corresponds to the limiting CPF member for α →
∞. For α → ±∞, the two cavity flows are mirror images of each other. In these two limits, the
base-state velocity profiles and the eigenvalue spectra are also mirror images. However, the neutral
stability curves remain same in both α → ±∞ limits. In this section, we therefore present the results
of cavity flow under the limit as α → ∞.

Figure 16(a) shows a zoomed-in view of the unfiltered eigenspectrum, for the shallow cavity
flow of an Oldroyd-B fluid, in the neighborhood of cr ≈ 0.333; the spectrum corresponds to
W∞ = 7500, k = 1, and β = 0.998. Apart from the continuous spectra, the figure also shows a
discrete eigenvalue having phase speed nearly equal to the base-flow maximum (Umax = 1/3) and
with positive ci.

Figure 16(b) shows the variation of ci with the scaled Weissenberg number (kW∞) for β = 0.996;
ci is positive over a certain range of W∞ for k < 0.5, but remains negative for k � 0.5 irrespective
of W∞. Figure 17 shows the neutral stability curves in the W∞-k plane. The area enclosed by the
unstable tongue decreases in extent with decreasing β, becoming vanishingly small for β = 0.99572.
Cavity flow is thus linearly stable for β < 0.99572. The critical Weissenberg number, W∞c, exhibits
a nonmonotonic variation with β, reaching a minimum of ≈4750 for β = 0.997; some of these
threshold values appear as horizontal asymptotes in Fig. 13(b).
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