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Microorganisms, such as Escherichia coli, are known to display upstream behavior and
respond rheotactically to shear flows. In particular, E. coli suspensions have been shown
to display strong sensitivity to spatial constrictions, leading to an anomalous densification
past the constriction for incoming fluid velocities comparable to the microoganism’s self-
propulsion speed. We introduce a Brownian dynamics model for ellipsoidal self-propelling
particles in a confined channel subject to a constriction. The model allows us to identify the
relevant parameters that characterize the relevant dynamical regimes of the accumulation
of the active particles at the constriction, and clarify the mechanisms underlying the
experimental observations. We find that particles are trapped in butterfly-like attractors
in front of the constriction, which is the origin of the symmetry breaking in the emerging
density profiles of active particles passing the constriction. In addition, the probability
of trapping and thus the strength of asymmetry are affected by size of the particles and
geometry of the channel, as well as the ratio of fluid velocity to propulsion speed.

DOI: 10.1103/PhysRevFluids.9.013103

I. INTRODUCTION

Microorganisms can be found in a wide variety of media and complex environments [1]. Their
emergent, collective behavior is a result of the interrelated motion due to the incoming flow
features and the disturbance microorganisms generate. Such hydrodynamic coupling significantly
alters the rheological properties of active suspensions [2], modifies how microorganisms swim
and disperse, and strongly impacts the regimes of solute transport [3]. This leads to a wide and
rich variety of emerging behavior, which includes anomalous viscosity [4], mixing enhancement,
bioconvection, or anomalous dispersion [5]. In the presence of a shear flow, they show rheotactic
behavior [6], which depends on the microorganism shape and mode of locomotion [7]; e.g., for
flagellates, the interaction of the moving flagella with the shear flow is known to play a critical role.
Positive rheotaxis, i.e., upstream navigation, has been observed under confinement for a variety of
microorganisms, such as sperm cells in the reproductive tract [8], bacteria in the upper urinary tract,
and Escherichia coli in catheters [9].

In particular, when microorganisms swim close to confining walls, their behavior can be qual-
itatively altered, leading to chiral trajectories and upstream motion [10]. Microorganisms in such
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conditions show a high sensitivity to morphological variabilities of the confining substrate [11].
Such coupling and sensitivity has strong implications for the behavior of microorganisms in porous
media, how they are transported or dispersed, and how they organize and accumulate inside such
heterogeneous media [12,13].

The collective behavior of microswimmers in confined channels and in the presence of
constrictions has significant implications for the transport and dispersion of bacteria in fluid environ-
ments [14]. These tiny organisms have constitutive properties that differ significantly from passive
suspensions, leading to new and surprising effects such as activated Brownian motion, anomalous
viscosity, mixing enhancement, bioconvection, and work extraction from fluctuations.

Despite the practical implications for biocontamination in porous rocks, biological micro-
vessels, and medical catheters, the fundamental question of hydrodynamic dispersion of bacteria
suspended in a fluid remains a challenge [15]. Current methods of analysis rely on macroscopic
convection-diffusion equations with adsorption-desorption terms to describe retention effects by
surfaces [16]. However, systematic inconsistencies between experiment and modeling suggest the
need for further refinements, including the detailed interaction of individual microorganisms and the
confining substrate. Studies of simplified geometries and model pores provide systematic analysis
and understanding of the response of microorganisms under confinement. For example, recent
experiments [17] have quantified the dispersion of E. coli through a funnel, showing an anomalous
downstream densification of the microorganisms for incoming fluid velocities comparable to the
self-propulsion speed of E. coli.

In this work we will introduce a simple, general theoretical model that describes the motion of
self-propelling particles (SPPs) in a channel characterized by a constriction, subject to an incoming
fluid flow. The model allows us to identify the relevant dimensionless parameters that characterize
how SPPs accumulate around the constriction and helps to identify the physical mechanisms that
control the motion and organization of SPPs around a constriction. In Sec. II we introduce the
model and details of the geometry and the methodology to solve it. Section III identifies the
relevant dimensionless parameters that identify the relevant dynamical regimes of SPPs suspensions.
Subsequently, Sec. IV systematically presents the relevant quantities that characterize the emerging
behavior of SPPs in a confined channel in the presence of a constriction. The paper finishes by
highlighting the main results obtained and their implications in Sec. V.

II. MODEL AND SIMULATION TECHNIQUES

The model system consists of N SPPs swimming in a rectangular channel of length Lx and height
Ly, with a constriction described by a Gaussian

f (x) = h exp

(
− (x − xmid )2

2σ 2

)
, (1)

with height h = 80 µm, expanded over a length σ = 50 µm (for the lower boundary), as shown in
Fig. 1(a). In the centering point (xmid = 0), the channel reaches the minimum width of Lc = Ly − 2h,
which varies between 15–240 µm in our simulations. The suspending media in the channel is
a Newtonian fluid of density ρ = 1000 kg m−3 and dynamic viscosity η = 0.88 mPa s at tem-
perature T = 298 K. The size of SPPs is typically 1–10 µm and their self-propulsion velocity
vs ∼ O(10) µm s−1.

This velocity induces low Reynolds number flows for spherical particles of radius a [18],

Res = ρvsa

η
∼ 10−5,

in which the inertial forces are negligible compared to the viscous forces that swimming objects ex-
perience in the fluid [19]. In the following we present the details of our assumptions for suspending
fluid, swimming particles, and boundaries.
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FIG. 1. (a) Schematic of the system used in this study, displaying the relevant geometry and parameters.
(b) Velocity field and streamlines in the channel of Lx = 4 mm, Ly = 200 µm, Lc = 40 µm, incoming velocity
uin = 5 µm s−1 and average velocity in the constriction 〈ux〉c = 24.35 µm s−1.

A. Fluid

The suspending fluid enters the left side of the channel with incoming velocity uin due to a
pressure gradient and forms a laminar flow with typical average velocity 〈u〉 ∼ O(10) µm s−1, such
that the flow can also be considered as a laminar one in low Reynolds regime [20],

Re f = ρ〈u〉Lx

η
∼ 10−2.

The fluid velocity field in the channel, u(r), is obtained by solving the linear form of Navier-
Stockes equation, which reduces to the Stokes equation at vanishingly Reynolds numbers

η∇2u = ∇P. (2)

The fluid is assumed to be an incompressible Newtonian fluid, ∇ · u = 0, and ∇P denotes the
pressure gradient [20]. Equation (2) is solved numerically by the finite element method on discrete
points in space with a no-slip boundary condition on the channel walls. Figure 1(b) indicates
the velocity field [u(x, y)] and streamlines for a channel with incoming velocity uin = 5 µm s−1

and funnel width, Lc = 40 µm. The fluid velocity attains its maximum value at the center of the
constriction and goes to zero in the vicinity of the walls, as expected. Additionally, due to continuity
and incompressibility, the average velocity in the constriction, 〈ux〉c, is linearly proportional to the
incoming velocity (or equivalently the fluid velocity far from the constriction) for arbitrary channel
widths:

〈ux〉c

uin
∝ Ly

Lc
.

013103-3



MALEKI, GHODRAT, AND PAGONABARRAGA

B. Particles

The motility of spherical and/or elliptical particles, swimming in the channel, are modeled by
two-dimensional overdamped Langevin equations

ṙ = vsn̂ + u(r) +
√

2DT ξr (3)

φ̇ = �0 + � f (r) +
√

2DR ξφ, (4)

in which n̂ = (cos φ, sin φ) indicates the particle polarity and φ denotes the angle in polar coordi-
nates. In this model, which is best known as an active Brownian particle (ABP) model, DT and DR

represent the translational and rotational diffusion coefficients, respectively. For spherical particles
of radius a, the rotational diffusion is DR = kBT/8πηa3 and DT = 4a2DR/3. The corresponding
expressions for an ellipsoidal particle moving or rotating in parallel (D‖) and perpendicular (D⊥)
directions to its major axis are given in [21]. We have used the average value of these coefficients
as an approximation of the effective translational and rotational diffusion coefficients. Alternatively,
empirical values for the special SPP under study can be used.

The noise term ξ , is a zero averaged, 〈ξ 〉 = 0, uncorrelated, 〈ξα (t )ξβ (t ′)〉 = δαβδ(t − t ′), random
process described by a Gaussian distribution, which simulates the thermal fluctuations experienced
by the particles in their translational (ξr) and rotational (ξφ) motion.

The self-propelling term, v0n̂, provides a directed motion which couples the translational and
rotational degrees of freedom through the polarity vector. The term u(r) accounts for the background
fluid velocity. In the dilute regime, which is the situation to be considered in this work, it can be
assumed that the fluid velocity (as well as the fluid viscosity) is not affected in the presence of
self-propelling particles. Therefore, the fluid velocity obtained from Eq. (2) is taken as a time-
independent quantity in the Langevin equation.

On the other hand, according to Jeffery’s equation [22], the spherical and/or ellipsoidal particles
experience a torque due to the nonuniform field of the fluid velocity that applies asymmetric forces
on the upper and lower parts of the propelling objects. The resulting angular velocity, � f (r), for 2D
ellipsoidal particles reads

� f (r) = 1

2
(uyx − uxy) + β

2
(uyx + uxy) cos(2φ) − β sin(2φ), (5)

where β = (λ2 − 1)/(λ2 + 1) defines the shape eccentricity, λ = a/b, being the ratio of semimajor
to semiminor axis of ellipsoids (or aspect ratio). In the special case of spherical particles (β = 0),
the above equation reduces to

� f (r) = 1
2 (uyx − uxy), (6)

with uxy = ∂ux/∂y, which are numerically discretized as

uxy = ux(x, y + δy) − ux(x, y)

δy
.

The first term in Eq. (4) considers the intrinsic angular velocity, �0, caused by chirality, which
is zero for the symmetric spherical or ellipsoidal particles used in this study. We have neglected the
interparticle interactions since we consider dilute suspensions. The system is not subject to external
forces.

C. Boundaries

The upper and lower boundaries are solid walls which return the colliding particle back to the
channel, based on a mirror reflection from the tangential line at the colliding point, which acts only
on a particle’s position while leaving its angle unchanged [23]. As a result, SPPs will experience
successive collisions with the wall, typically on a timescale τ = D−1

R , before a significant change
in their propulsion direction detaches them from the wall; see, e.g., the typical trajectories in
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Fig. 10 below. We disregard the finite size of the particles when colliding with a wall and apply
the reflection rule when the particle’s center of mass crosses the wall. This minimal model avoids
the computational cost of determining the colliding point of an ellipsoid with the wall. On the side
walls, we consider periodic boundary conditions; a particle that exits one side of the channel enters
the opposite side while its vertical position and propelling direction are kept unchanged. Hence, we
conserve particle number and minimize system size effects.

III. DIMENSIONLESS EQUATIONS

Using the inverse of the rotational diffusion constant τp = D−1
R , at timescale t̂ = t/τp, and the

characteristic size of the SPPs a as reference length scale (r̂ = r/a), we can rewrite Eqs. (3) and (4)
in dimensionless form:

ˆ̇r = Pesn̂ + Pe f û(r̂) +
√

2D̂T ξ̂r, (7)

ˆ̇φ = �̂0 + �̂ f (r) +
√

2 ξ̂φ, (8)

where we have chosen the incoming fluid velocity, uin, as the characteristic velocity of the fluid
flow [24], such that û(r̂) = u(r)/uin, �̂(r̂) = D−1

R �(r), ξ̂ = D−1/2
R ξ , and the dimensionless param-

eter

D̂T = DT

a2DR

is the ratio of the rotational diffusion timescale, D−1
R , to that of translational diffusion, a2/DT . Other

relevant dimensionless parameters are the SPP Péclet number,

Pes = vs

aDR
,

and the fluid Péclet number,

Pe f = uin

aDR
= uin

vs
Pes.

The latter compares the ratio of diffusive time D−1
R , to convection time a/uin or equivalently the

ratio of convective length uin/DR to the characteristic length scale, a.
Equations (7) and (8) show that the system is determined by eight dimensionless parameters:

the active particle Péclet number, Pes, the fluid Péclet number Pe f , the active vorticity �̂0 and
dimensionless fluid vorticity �̂ f , the relative magnitude of the translational diffusion, D̂T , the SPP
number density, ρ, the relative size of the channel constriction, Lc/Ly, and the relative channel
width with respect to the size of microswimmer, L̂y ≡ Ly/a. The persistent length, lp = vsD

−1
R , is

also a relevant length scale in active systems. We will use the dimensionless parameter X̃ ≡ X/lp

whenever a length scale is compared with persistent length.
We will consider achiral SPPs, hence �̂0 = 0, and disregard the interactions among SPPs, hence

ρ is not relevant (except for being related to the number of particles simulated, which determine
the statistics of the numerical simulations). We will also fix the ratio between the translational and
rotational diffusion coefficient. Therefore, we are left with five relevant parameters: two determine
the active regime of the SPPs under an incoming fluid flow, and three geometric ones, related to the
degree of confinement of the SPPs and the particle asymmetry: Pes, Pe f , Ly/a, Lc/Ly, and λ.

IV. RESULTS

Unless otherwise stated, SPPs are ellipsoids of semiminor axis, b = 0.5 µm, and aspect ratio,
λ = a/b = 6, which propel in the channel described in Fig. 1 with constant speed vs = 20 µm s−1

and rotational diffusion τp = D−1
R = 6.85 s. which corresponds to a persistent length lp = vsτp =
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FIG. 2. Trajectories of 50 ellipsoidal particles of aspect ratio λ = 6 and Pes = 45.7 (vs = 20 µm s−1) within
a time interval of t ∼ 30τp. Panels (a)–(d) display the trajectories at four different relative strengths of incoming
flow, ũin = 0, 1/4, 1/2, 1, corresponding to incoming velocities uin = 0, 5, 10, 20 µm s−1, respectively. In
(a) and (d), particles’ trajectories distribute uniformly in the right and left sides of the channel, while for
intermediate Pe f (b, c), the trajectories are more concentrated on the right side of the constriction, resulting in
asymmetric density profiles.

137 µm, and Pes = 45.7. We will also fix the channel width, a/Ly = 3/200 and the constriction
size, Lc/Ly = 40/200. We will hence analyze the relevant regimes varying the relative strength of
the incoming flow, Pe f /Pes = uin/vs ≡ ũin, and the SPP asymmetry, λ, and will also consider the
impact of the microswimmer persistent length varying lp/Ly.

A. Trajectories

In order to analyze the qualitative behavior of the system, we first consider SPPs trajectories
in the channel as a function of the incoming fluid flow. Figure 2 displays the results of 50
independent (noninteracting) particles for different values of relative incoming flow strengths,
ũin = 0, 1/4, 1/2, 1, corresponding to incoming fluid velocities uin = 0, 5, 10, 20 µm s−1.

For a static fluid, Fig. 2(a), SPPs are uniformly distributed throughout the channel, while
for nonzero incoming fluid velocities [Figs. 2(b) and 2(c)], the right side of the constriction is
more crowded. By increasing ũin, the asymmetry in the particle population diminishes and finally
disappears, as can be seen in Fig. 2(d). This nonmonotonic behavior, which was first observed
and reported for dispersion of E. coli bacteria through a funnel [17], is a consequence of the
interplay between bacteria self-propulsion, fluid flow, and channel confinement. In the following
sections we study the time evolution of the SPP probability distribution function, their streamlines,
and mean-square displacement to reveal the underlying dynamics of this phenomenon. We will also
discuss the controlling parameters which strengthen or weaken the observed symmetry breaking in
population density before and after the constriction.

B. Symmetry breaking in probability distribution

In this section we study the time evolution of the probability distribution function (PDF), p(x),
starting from a uniform distribution with mean value p0 = 1/Lx in the channel depicted in Fig. 1.
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FIG. 3. Time evolution of p(x) for N = 4 × 104 ellipsoidal particles of aspect ratio λ = 6 in the same
channel as described in Fig 1, averaged over 10 realizations. Starting from a uniformly distributed state (gray
dotted line), the PDF evolves to an asymmetric distribution, for t̂ � 200, with a sharp long-ranged peak just on
the right side of the constriction (orange solid line).

The results for a system with N = 4 × 104 noninteracting ellipsoidal particles of aspect ratio, λ = 6,
Pes = 45.7, and ũin = 1/4, are shown in Fig. 3, where the dimensionless PDF, p(x)/p0, is averaged
over 10 realizations. The initial, uniform configuration (gray dotted line) evolves to a stationary
asymmetric distribution for t � 200τp (orange solid line). In this stationary state, an abrupt decrease
in density before the constriction is followed by a sharp rise just after it, showing that particles are
accumulated in the right side of the channel. This is in agreement with the dense trajectory lines
observed in Fig. 2(b).

Figure 3 also shows a long-range asymmetric decay of the PDF, which extends through the
channel far beyond the constriction, consistent with experimental observations [17]. It is also worth
pointing out that ts � 200τp is a safe enough choice to ensure that the stationary state has been
reached and time-averaged quantities are well defined as is observed in other simulations with
different parameters (data not shown here).

We may now use the symmetry-breaking parameter,

SB = NR − NL

NR + NL
,

introduced in [17] to quantify the observed unbalance between the population of particles in the
left [NL = N

∫ 0
−Lx/2 p(x) dx] and right [NR = N

∫ +Lx/2
0 p(x) dx] sides of the channel. Figure 4 shows

SB as a function of the relative incoming flow strength. Each point is obtained by averaging over
300 snapshots. The previous expression assumes that the system reaches its stationary state at
t = 200τp. The time interval between two successive snapshots is ∼0.07τp. In agreement with
particle trajectories, SB displays a nonmonotonic behavior in response to the increase of ũin. We
can distinguish three regimes: (1) zero symmetry breaking or homogeneous distribution for ũin � 0,
(2) nonzero finite symmetry breaking for middle relative flow strength (0.2 � ũin � 0.6), and (3)
reduction to zero symmetry breaking (or uniform distribution) for large relative flow strengths
ũin � 0.75. Therefore there exists a critical relative incoming flow strength, ũ∗

in, for which the system
experiences the maximum symmetry breaking, SB∗ [17].

The SB profile as well as the critical values (ũ∗
in and SB∗) are influenced by various factors,

including particle asymmetry, relative strength of the incoming flow with respect to self-propulsion
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FIG. 4. SB as a function of relative incoming flow strength, ũin, for SPPs of aspect ratio λ = 6. Symbols
show simulated results; the line is a guide to the eye. Insets show dimensionless PDF (p(x)/p0) for three special
cases, corresponding to ũin = 1/10, 1/4, 3/4.

speed, and channel confinement. Figure 5 indicates that both SB and ũ∗
in (inset) generically grow

with particle elongation, λ.
Figure 6 provides a more comprehensive view of the impact that SPP geometry and incoming

flow has on the asymmetric organization of SPPs around the channel constriction. Such a global
view is insightful in view of the large disparity of size and shape of artificial and natural SPPs,
which range from sphere to needle-like, as well as the different velocities at which they self-
propel. Specifically, Fig. 6(a) shows that not only the aspect ratio but also the particle geometry
(combination of radii) could influence the value of SB. In the right lower corner of this figure, for
instance, we find needle-like particles with large aspect ratio and small SB (almost zero), in contrast
to the general trend.

FIG. 5. SB as a function of ũin for ellipsoidal particles of various aspect ratios and fixed semiminor axis
b = 0.5 µm. In the insets, critical relative incoming flow strength, ũ∗

in is plotted as a function of λ, indicating
that the peak position increases linearly with particle asymmetry.
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FIG. 6. SB (a) as a function of SPP size and asymmetry for ũin = 1/4, Pes = 45.7 and (b) as a function of
SPPs’ and fluid’s Péclet numbers for a fixed particle shape, λ = 6. The rest of the parameters are the same as
in Fig. 1.

Figure 6(b) shows the relevant role played by the relative magnitudes of the self-propelling and
incoming fluid velocities. For a fixed Pes, SB increases from zero to its maximum value and back
to zero by increasing Pe f , in agreement with Fig. 4. For larger propulsion speeds (e.g., Pes � 70),
symmetry breaking occurs for a wider range of flow velocities, such that the system goes sharply
from zero to its maximum value and form a plateau rather than a single maximum point [this is
similar to the situation observed for high persistent length (or low L̃y) in Fig. 7]. The other way
around, for a fixed value of Pe f , SB increases to its maximum value by increasing Pes, and returns
back to symmetric state when Pes becomes large enough.

It is worth noting that the states with equal SB lie on two crossing lines in velocity phase space,
which first confirms the existence of a maximum point in SB profile by changing either the fluid
or propulsion velocities, and second indicates that there is a unique linear relation between the two
velocities for all peak points of SB profile; i.e., all the peak points for various propulsion speeds
lie on the same line in velocity phase space, here indicated by a white dashed line: Pe∗

s = 1.5Pe∗
f +

9.7/(aDR).

FIG. 7. Symmetry breaking versus relative incoming flow strength for various confinement parameters
(l p/Ly = L̃−1

y ). Inset shows how the maximum value of the SB profile decreases by decreasing confinement
parameter (or increasing L̃y).
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FIG. 8. Streamlines of passive particles (vs = 0) moving in the channel of width L̃y = 1.46, L̃c = 0.29,
for incoming fluid velocity uin = 0, 5 µm s−1. The velocity vector field, v(x, y), is the local average velocity
of particles found in surface element δxδy around each point, (x, y), in the channel. The color of streamlines
changes by the absolute value of average velocity from zero (blue) to its maximum value (red) as shown in the
color bar. The triangles on the streamlines show the direction of average velocity field.

The impact of confinement, on the other hand, is characterized by confinement parameter,
lp/Ly = L̃−1

y . The distribution of particles in the channel becomes more asymmetric by decreasing
L̃y, as is indicated in Fig. 7. Note that the single maximum point in the low confinement regime
(L̃y > 1) changes to a plateau in highly confined (L̃y < 1) cases.

The negative SB region, observed in Figs. 5 and 7 for weak relative fluid strength (ũin � 1/10), is
due to the fact that particles are blocked behind the constriction, then begin to pass it, and aggregate
on the right side by increasing the flow velocity.

C. Particle streamlines and upstream flow

In order to understand the types of motion that lead to symmetry breaking, we analyze the SPP
streamlines (i.e., local direction of their velocity field). The velocity field, v(x, y), is obtained by
measuring the local average velocity of particles found in surface element δxδy around the point
(x, y), in the channel. In the stream plots, the value and direction of average velocity are shown by
colored vectors which, according to the color code given in the side bars, changes from zero velocity
(blue) to their maximum magnitude (red). We first analyze the special case of passive particles and
then discuss activity-induced effects.

1. Passive particles

Figure 8 displays passive particles (vs = 0) moving in the channel of Fig. 1 with incoming fluid
velocity uin = 0, 5 µm s−1. As expected, for a fluid at rest [Fig. 8(a)], particles move uniformly in
all directions and do not show any preferred direction in their motion. For a net incoming fluid
flow [Fig. 8(b)], particles are advected along the flow direction throughout the channel (downstream
flow). The local velocity equals the incoming velocity on the left and right walls and is zero on
the upper and lower walls as is set by the boundary conditions. Comparing to Fig. 1(b), the local
average value of particles’ velocity is the same as that of the fluid, indicating that, in agreement
with analytical results, the Brownian term in the equations of motion of passive particles is averaged
out and the leading term is the fluid velocity. Therefore, passive particles either display Brownian
motion, at uin = 0, or statistically follow the fluid flow.
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FIG. 9. Streamlines of SPPs of aspect ratio λ = 6 moving in the same channel as described in Fig. 8 for
ũin = 0, 1/10, 1/4, 3/10, 3/4. Vertical and horizontal axes are rescaled by łp.

2. Active particles

Figure 9 displays the streamlines for SPPs of constant Péclet, Pes = 45.7, for a fixed channel
geometry and increasing incoming fluid flows, ũin = 0, 1/10, 1/4, 3/10, 3/4. For a quiescent liquid
[Fig. 9(a)] the streamlines do not show a preferred direction and the average velocity essentially
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FIG. 10. Typical trajectories of SPPs (λ = 6) moving upstream in the same channel as described in Fig. 8,
for Pe f = 0.3, corresponding to maximum symmetry breaking. Starting from the right side of the channel
(filled circles), particles experience an up-and-down motion between the walls and finally are trapped in a
butterfly-like trajectory in front of the constriction. Arrows show the direction of particles’ velocity at the
ending point of their trajectories.

vanishes, except in the vicinity of the constriction where the velocity is above average and particle
self-propulsion forms a symmetric butterfly pattern with its wings extended around the constriction.
By comparing with the streamlines of passive particles [Fig. 8(a)], it is apparent that the butterfly
pattern is a consequence of the particle self-propulsion in the presence of a constriction.

For nonzero incoming fluid velocities [Figs. 9(b)–9(e)], we observe aligned streamlines in the
center of the channel as expected. For intermediate incoming fluid velocities [Fig. 9(b)–9(d)], the
butterfly wings observed for a quiescent liquid become progressively more asymmetric, such that
for the critical flow velocity where SB is maximized [Fig. 9(d)], the butterfly left wings completely
disappear. By further increasing the fluid velocity [Fig. 9(e)] the butterfly pattern is replaced by
aligned streamlines indicating that advective motion is dominant.

Comparing the streamline patterns in Fig. 9 with the trajectories in Fig. 2, it can be concluded
that the right wings of the butterfly pattern are actually the region where particles are trapped in
front of the constriction. This type of attractor is also reported in the motion of sperm cells passing a
funnel [25] and magnetotactic bacteria directed upstream through pores subject to external magnetic
fields [26]. The extra time spent in the right side of the channel, for net incoming flow, is actually
the origin of the observed asymmetric distribution of particles [17]. For low fluid Péclet numbers,
ũin � 1/5, asymmetric butterfly wings do not develop, while for high Péclet numbers, ũin � 3/4,
the downstream convective motion is dominant; hence trapping is not possible in these two limiting
regimes. The maximum symmetry breaking is therefore observed for intermediate incoming fluid
velocities (1/5 � ũin � 3/5) where the strength of these opposing effects is balanced.

Upstream flow, i.e., moving in the opposite direction of the flow, is another characteristic feature
of SPPs that can reinforce or support symmetry breaking. In contrast to downstream flow, which is
the expected motion in the direction of the flow, upstream flow provides the chance for particles that
have passed the constriction to move back towards the center of the channel and be trapped in the
wings of the butterfly pattern. Figure 10 displays typical particle trajectories starting on the right side
of the channel, moving upstream, finally trapped in front of the constriction. Therefore, the trapping
probability and thus the value of SB as well as the value of critical velocity are correlated with the
ability of particles to perform upstream flow, which itself is affected by the ratio of self-propulsion
speed to fluid velocity, the size and shape of particles, or geometry of boundaries.

Particles’ streamlines also develop vortices near the upper and lower walls, in which one can
easily distinguish the upstream flow in the very first layers close to the walls. The emergence of
vortices is due to the interplay of self-propulsion and fluid flow; they disappear for both passive
particles moving in a nonzero fluid flow (Fig. 8) and active particles in stationary flow [Fig. 9(a)].

D. Mean-square displacement

The mean-square displacement (MSD) of SPPs provides additional insight into their effective
dynamics. The MSD is affected by background fluid flows and/or complexities of the environment,
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FIG. 11. Mean-square horizontal displacement (MSD) divided by time for (a) ellipsoidal particles of aspect
ratio λ = 6 for different incoming flow ũin and (b) spherical particles of different L̃y (corresponding to radii
a = 1, 1.2, 1.3, 1.5, 2.0 µm, respectively) and ũin = 1/4.

such that multiple transitions from ballistic to diffusive and sub- (or super-) diffusive regimes might
be observed.

In the absence of an incoming flow, the MSD of SPPs is characterized by a ballistic and
an asymptotic diffusive regimes with a crossover timescale determined by rotational diffusion.
Typically, τD = 1/DR � 1–10 s for microorganisms and self-propelling colloids, is much larger than
the timescales in which passive colloidal particles of mass m and friction coefficient, γ , enter the
diffusive regime, tD = m/γ � 10−9 s.

Figure 11 displays the MSD divided by time in dimensionless units for various [Fig. 11(a)] ũin

and [Fig. 11(b)] L̃y.
In the absence of an incoming flow [Fig. 11(a)] the MSD crosses over from ballistic to normal dif-

fusive regime at τD � 10 s (black dashed line). For nonzero incoming fluid velocities, the diffusive
regime lasts for a finite time, and, asymptotically, the MSD shows another crossing to an asymptotic
ballistic regime, which is now a consequence of particle advection by the fluid flow. These three
regimes are clearly distinguished for low (ũin = 3/20) and high (ũin = 1) incoming fluid strengths;
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while for intermediate values (ũin = 1/4, 6.5/20), we observe an extra subdiffusive regime from
t̂ � 40 to 4000, followed by a ballistic regime, which in this case is a very weak advection even
compared to the lowest velocity (ũin = 3/20). This characteristic feature of intermediate velocities
confirms the trapping of particles in the channel (i.e., butterfly trajectories), which is the origin of
the observed symmetry breaking.

By increasing the persistent length (or decreasing L̃y), as displayed in Fig. 11(b), the duration of
the subdiffusive regime increases, and the final advective motion becomes weaker (note the region
with negative slope), in agreement with the increase of symmetry breaking indicated in Fig. 7.
The MSD for large persistent lengths (e.g., L̃y = 0.23) goes asymptotically to a constant value.
It eventually becomes ballistic but at much longer times (not shown here), meaning that a high
percentage of particles are almost motionless, leading to high symmetry breaking (SB � 1) for a
wide range of velocities as is also seen in Fig. 7.

V. CONCLUSIONS

We have performed Brownian dynamics simulations to investigate the underlying dynamics
that lead to the observed densification of self-propelled particles in confined microchannels with
a constriction [17]. The model system considers the general case of self-propelling particles of
arbitrary shape and size whose motion are simulated as active Brownian particles. The propelling
objects in this model perform an overdamped motion under the action of an internal driving force
directed along its orientation, which itself undergoes Brownian fluctuations. In addition, both the
translational and rotational degrees of freedom are affected by the nonlinear fluid velocity field in
the channel, which is obtained by solving the Stokes equation and assumed to be independent of the
propelling objects.

The simulation results indicate that in the stationary state, the particle probability distribution
in the channel can be either symmetric or asymmetric with respect to the constriction depending
on the value of fluid Péclet number (or the ratio of fluid velocity to self-propulsion speed). The
symmetry-breaking parameter (SB), which quantifies the degree of asymmetry, is maximized for
intermediate incoming flows, Pe f = 3/10, while it goes to zero asymptotically for both low and
high fluid Péclet numbers, in agreement with experimental evidence [17].

The critical average fluid velocity (with maximum SB) is linearly proportional to the propelling
speed of active particles, such that all peak points of SB profile lie on the same line in velocity phase
space as shown in Fig. 6. For constant propulsion and fluid velocities, the peak position (Pe∗

f ) scales
with particle size, and its height (peak value) increases by increasing the size of particles and/or
confinement.

A closer analysis of the particle’ streamlines has revealed that for intermediate fluid veloci-
ties, 1/5 < Pe f < 3/5, particles are trapped in butterfly-like trajectories at the constriction. This
pattern traps the self-propelling particles preferentially when they meet the constriction through
upstreaming leading to the observed symmetry breaking. The butterfly pattern develops due to the
competition between the incoming flow and particle self-propulsion. The attractor, the butterfly
pattern, is sustained for intermediate strengths of the incoming flow and depends on, among other
parameters, the ratio of propulsion to flow speed and persistent length. The trace of the attractors
in MSD plots appears as subdiffusive regimes, whose duration increases for larger particles, in
agreement with the larger symmetry breaking observed for larger particles.

The model we have introduced is versatile and can be applied to more complex boundary
conditions, different channel geometries, and/or other models of propulsion such as run-and-tumble
motion. Building on the reported analogous dynamical behavior of ABP and run and tumble [27],
the good agreement with experimental results for E. coli suggest that the ABP model for an
ellipsoidal particle is able to capture the essential features of the response of E. coli in constricted
channels. The results reported show that symmetry breaking in confined channels with constriction
is a generic property of self-propelling particles, not restricted to special species, or sizes.
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