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In this work, we study a pressure-driven flow of a non-Newtonian electrolyte through
a wavy microchannel whose walls are covered with an electrically charged poroelastic
layer that models the endothelial glycocalyx layer (EGL). The focus of our work is on
the analysis of the electrical and mechanical effects of pressure-driven flow and induced
streaming potential. The electrolyte is a viscoelastic fluid that obeys the Phan-Thien-Tanner
rheological model. The coupled equations that describe the dynamics of the fluid phase,
the elastic EGL, and electric fields are solved asymptotically using the domain perturbation
method for the wavy-wall microchannel. The governing equations are nondimensionalized,
which depend on dimensionless parameters that characterize the physical phenomenon:
the Weissenberg number Wi, the Hartmann number χ , the viscosity ratio μr of the fluid
in the EGL (assumed as Newtonian) and in the lumen (assumed viscoelastic), and the
dimensionless electric charge and thickness of the EGL, cs and �, respectively. The
viscoelastic fluid’s shear stresses and induced streaming potential are lower in magnitude
when compared to Newtonian fluids. According to the results, it may be possible to use
the streaming potential as a biocompatible and safe energy source for different medical
devices and biosensors.
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I. INTRODUCTION

Cardiovascular problems are the main cause of death in the world, which are not isolated
problems but are related to other conditions such as arterial hypertension, cardiac arrhythmias,
hypoxia, etc. In turn, these conditions are generally not treated on time since the symptoms only
occasionally appear in the early stages of the conditions. For this reason, new ways have been sought
to detect a disease at an early stage. There is a region that is currently of particular interest, which
covers the inner walls of the heart and blood vessels and is known as the endothelial glycocalyx
layer (EGL) and which is speculated to have a close relationship with the diseases mentioned above,
which have direct effects on it from very early stages, such as reducing its volume by half.

The structure of a blood vessel is complex, but it can be summarized in the walls of the vessel
or parenchyma, followed by the EGL and later the vascular lumen, which is the interior space of a
tubular structure. Blood vessels range in diameter from 5 to 20 µm, with a basement membrane that
supports endothelial cells. Endothelial cells are coated with the EGL, which is ∼20–500 nm thick.
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This layer comprises many biomolecules such as glycolipids, glycoproteins, and proteoglycans,
the last being a biomolecule with a negative electrical charge [1]. Among the functions that EGL is
assumed to possess are the transduction of mechanical stress and regulation of vascular permeability.
Additionally, it serves as a sieve for leukocytes and platelets, preventing them from adhering to
or penetrating the endothelium. According to studies where the EGL is visualized, it has been
appreciated that it does not have a constant thickness, and it has been shown that it is formed by
a solid structure that allows the passage of a fluid through its components. Due to these two facts,
one of the proposals when modeling its behavior is to consider EGL as a porous medium with no
regular shape, which can also deform because it does not have a rigid structure [2].

The blood that flows through the blood vessels is formed by Na+ and Cl− ions immersed in
the plasma and of different biological components (leukocytes, thrombocytes, and erythrocytes)
that give it an electrolytic and viscoelastic behavior, provided that the diameter of the channels
is sufficiently larger than the size of said biological components [3]. Since the endothelial wall is
sensitive to stress and the EGL is a mechanotransduction layer, and these signals are converted into
biochemical signals that directly relate to the individual’s health, it is essential to understand which
parameters can induce different stress configurations in the wall. The complex experimentation
in vivo of the EGL has hindered studies in this field, giving a significant step to the physical-
mathematical models that help to describe its behavior. However, some experimental studies have
been developed [1,4]; therefore, analytical and especially numerical models remain the most studied.

Some studies of the EGL have considered the EGL as a rigid material [5]. Based on the above
hypothesis, a biphasic mixing theory (BMT) can be proposed, which consists of modeling EGL as
a porous and hydrated material composed of two phases (elastic solid, and liquid), this theory being
the most widely used to describe the poroelastohydrodynamics of the EGL [3,6–9]. All these studies
consider the EGL as an electrically neutral medium.

However, the EGL is not an electroneutral medium since one of its components, the proteoglycan,
is a naturally charged macromolecule that causes EGL to be negatively charged; in addition, some
theoretical studies suggest that the fixed charge concentration of EGL is of the same order of
magnitude as the concentration of physiological neutral salt in the blood plasma (≈0.1 M) [10], so
it is essential to analyze their electrical interactions. Some works that consider the electric charge of
the EGL have used different models for the charge distribution, such as the charged surface model
[11], the volumetric charge model [12], and a Mokady model [13,14]. For instance, the triphasic
mixing theory (TMT) model can be used to describe the mechanical-electrical EGL behavior
mathematically [15]. The result is a theoretical formulation consisting of a biphasic mixture with
a complete solid matrix with fixed negative charges that interact with the electrolytic fluid that
passes through its pores. In TMT theory, the fluid and solid phases are described by the modified
Navier-Stokes equations, subject to electrical forces from the body.

Recently, Sumets et al. [16] presented a numerical study incorporating the simultaneous interac-
tion between charged ions, a charged and deformable EGL, and a viscous fluid through the lumen,
focusing on the stresses induced in the microchannel wall. On the other hand, Roy et al. [17] carried
out an investigation dividing their study into three regions—the EGL, the lumen, and a coupling
region between these two regions—using a non-Newtonian fluid for the lumen, the charged and
porous EGL, focusing on the streaming potential. Until now, several works have taken different
considerations but left aside others that may also be relevant. This work takes considerations that
have been proposed so that it offers an approach to the actual phenomenon in comparison with other
models and studies previously carried out according to the various conditions that medical studies
have reported. The objective of this work is to understand how specific parameters related to the
phenomenon affect the EGL, and a proposal from the literature is taken to consider an electrokinetic
phenomenon that develops in the EGL as a possible source of biocompatible energy for medical
devices.
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FIG. 1. Schematic of the two-dimensional physical model under study. Two regions are present, the lumen
and the EGL, the latter assumed as an electrically charged poroelastic material. The interface between the
lumen, the EGL, and the wall is wavy. Here, Hint (x) and Hp(x) represent the location of the lumen-EGL
interface and EGL-microvessel wall, respectively. The thickness of the EGL is constant and, in its dimensional
form, is represented as �H , where � is a parameter that indicates the fraction of the thickness of the EGL with
respect to the microvessel half width. The amplitude of the undulations is represented by γ H , and it is assumed
that it is very small compared to H . Vx is a representative velocity profile.

II. SETUP AND PROBLEM FORMULATION

For the analysis, and following Refs. [7,16], we model the capillary blood vessel as a two-
dimensional wavy-wall channel, as shown in Fig. 1. The physical domain is divided into two regions:
the lumen and the EGL. The origin of the Cartesian coordinate system (x, y) is located in the center
of the microchannel. The channel is considered very long with length L, with a mean width H , in
such a way that H/L � 1. The walls and the lumen-EGL interface have a sinusoidal shape of the
form

y = Hp(x) = H

[
1 + γ sin

(
4πx

L

)]
and Hint (x) = H

[
1 − � + γ sin

(
4πx

L

)]
, (1)

respectively.
For the analysis, and considering the symmetry with respect to the y axis, only half of the

microchannel is studied. The wall is considered to be fixed and impermeable. The EGL is modeled
as a poroelastic material composed of a fluid fraction φ f and a solid fraction φs, which is also
electrically charged. It is considered that the pores are interconnected, allowing the fluid to flow
through the empty spaces. These cavities are large enough to be physically analyzed as global and
average measurements as a conventional continuous medium, being also an isotropic material. This
consideration is justified by the fact that φ f � φs; that is, it is a material with very high porosity. On
the other hand, the blood that flows through the blood vessels is modeled as a viscoelastic electrolyte
that flows in the lumen and a Newtonian electrolyte in the EGL since it works as a molecular sieve
of the components that give it a non-Newtonian behavior.

The fluid flow is produced by a constant pressure gradient, which has a value necessary for the
blood to have a constant characteristic velocity vc ∼ 10−3 m/s in the center of the channel [7].
There are no other types of external fields applied. A very long channel H � L is considered,
where L is a longitudinal characteristic length of ∼10−3 M for the smallest capillaries. Due to the
physical dimensions of the phenomenon, it is considered a stationary flow, and the inertial and
gravitational effects are neglected. Blood plasma is considered to be a dilute solution of water and
ions. According to reported data [10,11], the concentration of ions in blood plasma is 0.1 mol l−1.
Under this consideration, the blood plasma fraction corresponding to ions is much smaller than
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the corresponding water fraction, so ions can be considered point charges. A constant volumetric
electric charge cs homogeneously distributed in the EGL is considered. We assume that, in the entire
domain of the physical model, the sum of the charges is electrically neutral, and each component
(anions, cations, ad EGL) generates its electric field that contributes to the total electric field. Neither
chemical reactions nor temperature variations are considered.

The displacements in the EGL are determined from the small strain theory. Any changes in the
electric field or in the shape of the interface that result from changes in the solid volume fraction are
neglected; therefore, the solid and the fluid in the EGL are considered to be incompressible.

The research focuses on two main aspects, the determination of the streaming potential induced
by the pressure gradient that originates the flow, and the shear stresses in the wall induced in the
phenomenon so that the electric potential, the velocity fields, and displacements in the entire domain
of study must be determined.

A. Governing and constitutive equations

1. Ionic distribution

Assuming that the potential due to the electrical double layer is independent of axial streaming
potential in the microchannel (which is valid for long microchannels), one can write the total
electric potential as �(x, y) = ψ (x, y) + (φ0 + xB∗

T (x)), where ψ is the electric potential due to
the electrical double layer, φ0 is the value of the potential due to streaming potential at x = 0, and
B∗

T is the streaming potential induced. The ionic distribution is assumed to behave according to the
Boltzmann distribution:

ci = Ci0 exp

(
− zieψ

kBT

)
, (2)

where ci represents the ionic concentration under the presence of an electric potential ψ , Ci0 is the
ionic concentration in the electroneutral region, which occurs when ψ = 0, zi is the ion valence,
e is the elementary charge, kB is the Boltzmann constant, T is the absolute temperature, and the
subscript i represents the ith ionic species. Our study involves two ionic species, Na+ and Cl−, for
which we have assigned the subscripts i = +,− for simplicity.

2. Electric potential

The governing equation to determine the distribution of electric potential in this study corre-
sponds to the Poisson equation, which is given by

ε∇2� = −ρ f , (3)

where ε represents a dielectric constant, ρ f is the electric charge density, and ∇2 ≡ (∂2/∂x2 +
∂2/∂y2). Regarding ionic concentrations, the electrical charge density in the lumen can be written
as ρ f = e(z+c+ + z−c−). Furthermore, the electrolyte is symmetrical, where |z+| = |z−| = z = 1.
Since it is an electroneutral electrolyte, c+0 = c−0 = c0. For a microchannel of length L � H , the
term ∂2(φ0 + xB∗

T )/∂x2 in Eq. (3) may be neglected [18]. According to the Boltzmann distribution
for the ionic concentration described in Eq. (2), Eq. (3) can be rewritten with the approximation
of Gouy-Chapman theory. Based on Refs. [11,14], we assume low surface potentials in the wall or
interface, i.e., ψs � kBT/e, allowing to linearize Eq. (3). Therefore, the induced electric potential,
ψL, for the lumen region is as follows:

ε∇2ψL = 2z2e2C0

kBT
ψL. (4)

Similarly, for the EGL, under the Gouy-Chapman theory and using the Debye-Hückel approxi-
mation, considering that in this region the charge density corresponds to ρ f = φ f e(z+c+ + z−c−) +
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φsezscs, the Gauss law for the fluid domain in the EGL is given by [16]

ε∇2ψ f = φ f
2z2e2C0

kBT
ψ f − φszsecs, (5)

where zs and cs are the valence and electric charge in the EGL, respectively. The boundary conditions
for Eqs. (4) and (5) are

∂ψL

∂y
= 0 at y = 0, (6)

ψL = ψ f ,
∂ψL

∂n
= ∂ψ f

∂n
at y = Hint (x), (7)

and

∂ψ f

∂n
= 0 at y = Hp(x), (8)

where n is the normal coordinate to the interfaces Hint (x) and Hp(x). Equation (7) represents the
continuity of electric potential under the assumption that there is only a volume charge distribution
without any surface charge concentration and that both media have the same electrical permittivity.

3. Momentum and mass conservation

The momentum and mass conservation equations for the lumen are given by

ρL
DvL

Dt
= −∇p + ∇ · τL − kBT ∇(cL+ + cL−) − ez(cL+ − cL−)∇�L, (9)

and

∇ · vL = 0, (10)

respectively. Here, vL represents the velocity vector with components vxL and vyL in the directions x
and y, respectively. ρL is the fluid density in the lumen, p is the pressure scalar field, τL is the viscous
stress tensor in the lumen, and cL+ and cL− are the ionic concentrations of the cation and anion in
the lumen, respectively. The nabla operator is ∇ ≡ (∂/∂x i, ∂/∂y j), with i and j representing the
unit vectors in the x and y directions, respectively. In addition to the inertial and viscous terms,
the momentum conservation equation considers the presence of terms for osmotic pressure and
electric force due to concentration and electric potential gradients, respectively, since the fluid is an
electrolyte and may be sensitive to such effects. For the EGL region, it is necessary to introduce
Darcy’s law model for the momentum equation [19]. The momentum and continuity conservation
equations for the fluid phase in the EGL are as follows:

φ f

(
ρL

Dv f

Dt
+ ∇p − ∇ · τ f + kBT ∇(c f + + c f −) + ez(c f + − c f −)∇� f

)
= −Kv f , (11)

and

∇ · v f = 0, (12)

where K is the hydraulic resistivity, an empirical parameter that depends on the pore configuration
and composition, and the fluid flowing through it. The subscript f refers to the fluid region, the
fluid velocity vector is denoted by v f and the corresponding stress tensor is τ f , and the ionic
concentrations are represented by c f ±. On the other hand, for the solid phase, there is also a
conservation-of-motion equation that involves elastic, electrical, and osmotic stresses and which, in
turn, is coupled to the conservation-of-momentum equation of the fluid phase through Kv f , which is
the momentum that is transferred between both phases of the porous medium according to Darcy’s
model.
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The governing equation for the solid phase is given by [16]

φs[∇p − ∇ · τs + kBT ∇(c f + + c f −) + ezscs∇� f ] = Kv f . (13)

Here, τs represents the stress tensor of the solid phase. The boundary conditions for Eqs. (9), (11),
and (13) are

∂vL

∂y
= 0 at y = 0, (14)

vL = φ f v f , τL · n = τ f · n, τL · n = τs · n at y = Hint (x), (15)

and

v f = u = 0 at y = Hp(x), (16)

where u is the vector of displacements with components ux and uy in the directions x and y,
respectively, and n represents a unit vector normal to the surface. Equation (15) represents the
continuity of velocity and stress, the latter defined by the corresponding constitutive equations of
the Phan-Thien-Tanner model [20] described in the next section.

4. Constitutive equations

The fluid in the lumen region is assumed to be viscoelastic and to obey the Phan-Thien-Tanner
rheological model. In this manner, the stress tensor is given by [20]

f
(
τkkL

)
τL + λ

{
DτL

Dt
− [(∇vL )T · τL + τL · (∇vL )]

}
= η(∇vL + (∇vL )T ), (17)

where λ is the relaxation time, and η represents the dynamic viscosity of the lumen. The function
f (τkk ) is a trace function of the stress tensor described by the following relationship:

f
(
τkkL

) = 1 + ελ

η

(
τxxL + τyyL

)
, (18)

with ε representing an elongational parameter of the fluid. For the fluid phase of the EGL, ac-
cording to what was previously mentioned, it is considered a Newtonian fluid, so the stress tensor
corresponds to

τ f = μ f [∇v f + (∇v f )T ], (19)

where μ f represents the viscosity of the blood plasma. For the solid phase, assuming the use of
elastic theory under small deformations, the stress tensor is given by

τs = μs[∇u + (∇u)T ] + λs(∇ · u)I, (20)

where μs and λs are the elastic parameters of Lamé, and I is the identity matrix.

5. Electric current in the EGL

The streaming potential, according to its definition, is the electric potential that is induced by the
movement of ions in a flow driven by a pressure gradient that connects two reservoirs with the same
concentration of ions in such a way that a net electric current does not exist longitudinally. In this
context, we need to evaluate the current density vector given by [21]

ie = ev(c+ − c−) − eD±∇c± ∓ ze2D±
kT

c±∇�. (21)

Because it is assumed that there is no current through the channel wall, the current density ie−x per
unit width of the slit channel in the x direction in the EGL, from Eq. (21), is given by

ie−x =
∫ Hp

Hint

[
evx f (c+ − c−) − eD±

∂c±
∂x

∓ ze2D±
kT

c±
∂� f

∂x

]
dy = 0. (22)
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In Eq. (22), the first, second, and third terms inside the integral correspond to the current density due
to the fluid motion, ionic diffusion, and migration affected by the potential gradient, respectively.
The streaming potential is induced to generate a streaming current (caused by the induced electric
field) that counterbalances the conduction current (caused by the fluid flow) [22].

B. Dimensionless mathematical model

To nondimensionalize the governing equations, we use the following dimensionless variables:

ȳ = y

H
, x̄ = x

L
, v̄Lx, f x = vLx, f x

V0
, v̄Ly, f y = vLy, f yL

HV0
, τ̄L, f = τL, f H

μ f V0
,

τ̄s = τs�H

μ f V0
, p̄L, f = pH2

μ f V0L
, ū = u�μs

V0μ f
, c̄L = cL

C0
, (23)

c̄ f = c f φ f

C0
, c̄s = csφs|zs|

C0
, ψ̄L, f = ψze

kBT
, GT =

(
∂ pL, f

∂x

)
H2

μ f V
,

BT = (B∗
T )

eH

kBT
, īe = ie

V0C0H
.

Here, GT and BT are the dimensionless pressure and electric potential gradients, respectively, which
are of interest to our study, and we denote them as

GT = G + G′ and BT = B + B′. (24)

The above definitions of GT and BT result from the cross-section variations of the microchannel
along the x direction, giving rise to an induced pressure gradient G′ and another perturbation
associated with the electric potential B′. G and B denote mean pressure and electric gradients.
In Eq. (23), the characteristic lengths were chosen according to the dimensions of our study
region, the longitudinal characteristic velocity V0 corresponds to the average velocity of flow in
the bloodstream, and the characteristic concentrations are scaled with C0, which corresponds to
the concentration of ions in the blood plasma, c∞. For the stresses, displacements, electric potential,
electrical current, and pressure and electric potential gradients, their characteristic values arise when
comparing the order of magnitude between different terms of the governing equations.

1. Dimensionless equations for the electric potential

In the dimensionless mathematical model shown in Eqs. (26)–(47), the following parameters
arise:

β = H

L
, Re = ρV0H

μ f
, χ = C0kBT H

μ f V0
, μr = μ f

η
, Pe± = V0H

D±
,

Wi = V0λ

H
, κ̄ =

(
2zC0e2H2

εkBT

)1/2

, ξ = KH2

ηφ f
, � = φs

φ f
. (25)

Here, β is the aspect ratio, Re denotes the Reynolds number, the Hartmann number is χ , μr is the
viscosity ratio between the Newtonian and viscoelastic fluids, Pe± is the Péclet number of each ion,
Wi is the Weissenberg number, the dimensionless inverse of the Debye length thickness is denoted
by κ̄ , the inverse of Darcy’s permeability ξ , and � is a relationship between the solid and fluid
fracture of the porous medium.

The dimensionless forms of the Poisson-Boltzmann equations, Eqs. (4) and (5), are given by

−
(

β2 ∂2ψ̄L

∂ x̄2
+ ∂2ψ̄L

∂ ȳ2

)
= κ̄2

2
(c̄L+ − c̄L−), (26)
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and

−
(

β2 ∂2ψ̄ f

∂ x̄2
+ ∂2ψ̄ f

∂ ȳ2

)
= κ̄2

2
(c̄ f + − c̄ f − − c̄s). (27)

Here, the dimensionless ionic distributions, from Eq. (2), are defined as

c̄L± = exp (∓ψ̄L ), (28)

and

c̄ f ± = exp (∓ψ̄ f ). (29)

2. Momentum and continuity dimensionless equations

The dimensionless form of the momentum and continuity equations, Eqs. (9) and (10), in the
lumen region are the following:

βRe

(
v̄xL

∂ v̄xL

∂ x̄
+ v̄yL

∂ v̄xL

∂ ȳ

)
= −GT +

(
β

∂τ̄xxL

∂ x̄
+ ∂τ̄xyL

∂ ȳ

)

− βχ

(
∂ c̄L+
∂ x̄

+ ∂ c̄L−
∂ x̄

)
− χ

[
(c̄L+ − c̄L−)

(
β

¯∂ψL

∂ x̄
+ BT

)]
, (30)

β2Re

(
v̄xL

∂ v̄yL

∂ x̄
+ v̄yL

∂ v̄yL

∂ ȳ

)
= − 1

β

∂ p̄L

∂ ȳ
+

(
β

∂τ̄xyL

∂ x̄
+ ∂τ̄yyL

∂ ȳ

)

− χ

(
∂ c̄L+
∂ ȳ

+ ∂ c̄L−
∂ ȳ

)
− χ

[
(c̄L+ − c̄L−)

∂ψ̄L

∂ ȳ

]
, (31)

and

∂ v̄xL

∂ x̄
+ ∂ v̄yL

∂ ȳ
= 0. (32)

For the EGL region, the corresponding dimensionless forms of Eqs. (11) and (12) are

βRe

(
v̄x f

∂ v̄x f

∂ x̄
+ v̄y f

∂ v̄x f

∂ ȳ

)
= −GT +

(
β

∂τ̄xx f

∂ x̄
+ ∂τ̄xy f

∂ ȳ

)

− βχ

(
∂ c̄ f +
∂ x̄

+ ∂ c̄ f −
∂ x̄

)
− χ

[
(c̄ f + − c̄ f −)

(
β

¯∂ψ f

∂ x̄
+ BT

)]
− ξ v̄x f ,

(33)

β2Re

(
v̄x f

∂ v̄y f

∂ x̄
+ v̄y f

∂ v̄y f

∂ ȳ

)
= − 1

β

∂ p̄ f

∂ ȳ
+

(
β

∂τ̄xy f

∂ x̄
+ ∂τ̄yy f

∂ ȳ

)

− χ

(
∂ c̄ f +
∂ ȳ

+ ∂ c̄ f −
∂ ȳ

)
− χ

[
(c̄ f + − c̄ f −)

∂ψ̄ f

∂ ȳ

]
− ξ v̄y f , (34)

and

∂ v̄x f

∂ x̄
+ ∂ v̄y f

∂ ȳ
= 0. (35)

Combining Eqs. (13) and (20), we obtain the the following dimensionless momentum equa-
tions for the solid region:

β
∂τ̄xxs

∂ x̄
+ ∂τ̄xys

∂ ȳ
= �GT + �βχ

(
∂ c̄ f +
∂ x̄

+ ∂ c̄ f −
∂ x̄

)
− χ c̄s

(
β

¯∂ψ f

∂ x̄
+ BT

)
− ξ v̄x f , (36)
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and

β
∂τ̄xy f

∂ x̄
+ ∂τ̄yy f

∂ ȳ
= �

1

β

∂ p̄ f

∂ ȳ
+ �χ

(
∂ c̄ f +
∂ ȳ

+ ∂ c̄ f −
∂ ȳ

)
− χ c̄s

∂ψ̄ f

∂ ȳ
− ξ v̄x f . (37)

3. Dimensionless constitutive equations

The Phan-Thien-Tanner model (17) is recast in dimensionless form as follows:

μr f
(
τ̄kkL

)
τ̄xxL + μrWi

[
βvxL

∂τ̄xxL

∂ x̄
+ βvyL

∂τ̄xxL

∂ ȳ
− 2

(
βτ̄xxL

∂ v̄xL

∂ x̄
+ τ̄xyL

∂ v̄xL

∂ ȳ

)]
= 2β

∂ v̄xL

∂ x̄
, (38)

μr f
(
τ̄kkL

)
τ̄yyL + μrWi

[
βvxL

∂τ̄yyL

∂ x̄
+ βvyL

∂τ̄yyL

∂ ȳ
− 2

(
β2τ̄xyL

∂ v̄yL

∂ x̄
+ βτ̄yyL

∂ v̄yL

∂ ȳ

)]
= 2β

∂ v̄yL

∂ ȳ
, (39)

and

μr f
(
τ̄kkL

)
τ̄xyL + μrWi

[
βvxL

∂τ̄xyL

∂ x̄
+ βvyL

∂τ̄xyL

∂ ȳ
− βτ̄xyL

(
∂ v̄xL

∂ x̄
+ ∂ v̄yL

∂ ȳ

)
− β2τ̄xxL

∂ v̄yL

∂ x̄
− τ̄yyL

∂ v̄xL

∂ ȳ

]

= β2 ∂ v̄yL

∂ x̄
+ ∂ v̄xL

∂ ȳ
, (40)

where f (τ̄kkL ) is the dimensionless form of the function of the trace of the stress tensor, given by

f
(
τ̄kkL

) = 1 + μrεWi
(
τ̄xxL + τ̄yyL

)
. (41)

The fluid phase of the EGL is considered a Newtonian fluid, so the dimensionless stress tensor
from Eq. (19) corresponds to

τ̄xx f = 2β
∂ v̄x f

∂ x̄
, (42)

τ̄yy f = 2β
∂ v̄y f

∂ ȳ
, (43)

and

τ̄xy f = ∂ v̄x f

∂ ȳ
+ β

∂ v̄y f

∂ x̄
. (44)

For the solid phase, considering the constitutive equation (20), we obtain

τ̄xxs =
(

2 + λs

μs

)
β

∂ ūx

∂ x̄
+ λs

μs

∂ ūy

∂ ȳ
, (45)

τ̄yys =
(

2 + λs

μs

)
β

∂ ūy

∂ ȳ
+ λs

μs

∂ ūx

∂ x̄
, (46)

and

τ̄xys = ∂ ūx

∂ ȳ
+ β

∂ ūy

∂ x̄
. (47)

C. Asymptotic analysis in the asymptotic limit of β � 1 and Re � 1

According to the dimensionless parameters involved in the dimensionless mathematical model,
Eqs. (26)–(47), it can be simplified based on the lubrication approximation [23]. Considering
that in the phenomenon studied in this work, β � 1 and Re � 1 (see Table II), we can neglect
O(β ), O(Re), O(βRe), and O(β2Re) terms. Therefore, the system of the dimensionless governing
equations and boundary conditions in the leading order of the lubrication approximation can be
written as follows.
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TABLE I. Values of characteristic scales and physical constants involved in the work.

Parameter Symbol Value

Boltzmann constant kB 1.38 × 10−23 J K−1

Elementary electric charge e 1.610−19 C

Temperature T 303.15 K

Electric permittivity of blood plasma [24] ε 6.78 × 10−10 C2 (N m2)−1

Plasma ionic concentration [16] C0 0.154 mol l−1 = 9.27 × 1025 m−3

Na ion diffusivity (c0 = 0.1 mol l−1 and T = 303.15 K) [16] D+ 1.62 × 10−9 m2 s−1

Cl ion diffusivity (c0 = 0.1 mol l−1 and T = 303.15 K) [16] D− 2.45 × 10−9 m2 s−1

Plasma density ρ 103 kg m−3

Blood dynamic viscosity [11] η 3.5 × 10−3 Pa s

Plasma dynamic viscosity μ f 1.2 × 10−3 Pa s

EGL shear modulus [25] μs 6 kPa

Microchannel height H 5 × 10−6 m

Microchannel length L 10−3 m

Flow velocity [7] V0 10−3 m s−1

Blood relaxation time [24] λ ∼7 × 10−3 s

Fluid fraction φ f 0.99

Fluid extensibility ε 0–1

(i) Poisson-Boltzmann equations:

−∂2ψ̄L

∂ ȳ2
= κ̄2

2
(c̄L+ − c̄L−), (48)

TABLE II. Dimensionless parameters’ definitions and order of magnitude are estimated from values shown
of physical parameters in Table I.

Parameter Symbol Value

Aspect ratio β = H
L ∼10−3

Reynolds number Re = ρ0V H
μ f

∼10−3

Hartmann number χ = c0kBT H
μ f V ∼106

Péclet number (cation) Pe+ = V H
D+ 3

Péclet number (anion) Pe− = V H
D− 2

Weissenberg number Wi = V λ

H ∼10−1

Inverse of Debye length κ̄ =
√

c0e2H2

εkBT ∼103

Darcy permeability ξ = KH2

φ f μ f
∼102

Inverse of porosity � = φs
φ f

∼10−2

Viscosity ratio μr = μ f

η
∼1/3

013101-10



ELECTRO-POROELASTOHYDRODYNAMICS OF THE …

and

−∂2ψ̄ f

∂ ȳ2
= κ̄2

2
(c̄ f + − c̄ f − − c̄s), (49)

with the boundary conditions

∂ψ̄L

∂ ȳ
= 0 at ȳ = 0, (50)

ψ̄L = ψ̄ f ,
∂ψ̄L

∂n
= ∂ψ̄ f

∂n
at ȳ = H̄int (x̄), (51)

and

∂ψ̄ f

∂n
= 0 at ȳ = H̄p(x̄), (52)

where H̄int (x̄) = Hp(x̄)
H = 1 − � + γ sin(4π x̄) and H̄p(x̄) = Hp(x̄)

H = 1 + γ sin(4π x̄) are the dimen-
sionless interface and wall locations, respectively.

(ii) Momentum and mass conservation equations of the lumen region, starting from the fact that
c̄L+ = c̄L− in this region:

GT = ∂τ̄xyL

∂ ȳ
, (53)

∂ p̄L

∂ ȳ
= 0, (54)

and

∂ v̄xL

∂ x̄
+ ∂ v̄yL

∂ ȳ
= 0. (55)

(iii) Momentum and mass conservation equations of the EGL region:

GT = ∂τ̄xy f

∂ ȳ
− χ (c̄ f + − c̄ f −)BT − ξ v̄x f , (56)

and the following boundary conditions

∂ p̄ f

∂ ȳ
= 0, (57)

∂ v̄x f

∂ x̄
+ ∂ v̄y f

∂ ȳ
= 0. (58)

(iv) Solid phase:

∂τ̄xys

∂ ȳ
= �GT − χ c̄sBT − ξ v̄x f , (59)

and

∂ p̄ f

∂ ȳ
= 0. (60)

The boundary conditions for the dimensionless momentum conservation governing equa-
tions given in Eqs. (30) and (36) are the following:

v̄xL = 1, τ̄xyL = 0 at ȳ = 0, (61)

v̄L = φ f v̄ f , τ̄L · n = τ̄ f · n, �τ̄L · n = τ̄s · n at ȳ = H̄int (x̄), (62)
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and

v̄ f = ū = 0 at ȳ = H̄p(x̄). (63)

1. Dimensionless constitutive stress equations

At the leading order of the lubrication approximation, the components of the dimensionless Phan-
Thien-Tanner rheological model, from Eqs. (38)–(40), simplify as

μr f
(
τ̄kkL

)
τ̄xxL − μr2Wiτ̄xyL

∂ v̄xL

∂ ȳ
= 0, (64)

μr f
(
τ̄kkL

)
τ̄yyL = 0, (65)

and

μr f
(
τ̄kkL

)
τ̄xyL − μrWiτ̄yyL

∂ v̄xL

∂ ȳ
= ∂ v̄xL

∂ ȳ
, (66)

From Eq. (65), τ̄yyL = 0, implying that the second term on the right-hand side of Eq. (66)
disappears. Therefore, from Eqs. (64)–(66), we obtain a relationship between normal and shear
stresses, τ̄xxL = 2μrWiτ̄ 2

xyL
. For the fluid phase of the EGL, considered as a Newtonian fluid, the

dimensionless stress tensor, based on Eq. (19), simplifies to

τ̄xy f = ∂ v̄x f

∂ ȳ
. (67)

For the solid phase, the dimensionless forms of the stresses, from Eq. (20), are given by

τ̄xxs = λs

μs

∂ ūy

∂ ȳ
, (68)

τ̄yys = λs

μs

∂ ūx

∂ x̄
, (69)

and

τ̄xys = ∂ ūx

∂ ȳ
. (70)

2. Dimensionless electric current in the EGL

The dimensionless electric longitudinal current induced by the flow of ions in the EGL region is
given by

īe−x =
∫ H̄p

H̄int

(
v̄x f (c̄+ − c̄−) ∓ 1

Pe±
c̄±B

)
dȳ. (71)

D. Asymptotic solution: Domain perturbation method

Considering that the EGL-lumen and EGL-capillary wall interfaces are wavy, whose relative
positions are placed by using Eqs. (1), and if γ � 1, we proceed to use the domain perturbation
method [23] to solve the formulated problem. Sumets et al. [16] used a dimensionless amplitude
with respect to half the width of the microchannel of 0.02, which in our work corresponds to γ .
Therefore, the following asymptotic expansion is proposed:

� = �0 + γ�1 + O(γ 2). (72)

In Eq. (72), � represents any variable of interest in this work, such as electric potential, stresses,
velocities, and displacements in the lumen region and the EGL, where the subscript 0 represents the
leading order that corresponds to the case of flat plates, and the subscript 1 represents the order γ

that models the undulation of the interface and the wall. As γ � 1, terms of O(γ 2) are neglected
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in comparison with terms of O(γ ). Additionally, due to the wall’s geometry change, the fluid must
accelerate and decelerate, so an induced pressure gradient and streaming potential depend on the
longitudinal position, to satisfy the mass and charge conservation. The pressure gradient G′ and
the streaming potential B′ induced in the x̄ direction are of O(γ ) and, in terms of the asymptotic
expansion (72), they are defined as

G′ = γ Gind(x̄) + O(γ 2), (73)

and

B′ = γ Bind(x̄) + O(γ 2). (74)

The domain perturbation method consists of transforming the boundary conditions at the wavy
interfaces located at H̄p and H̄int to asymptotically equivalent boundary conditions applied at ȳ = 1
and at ȳ = 1 − � [23]. The above is carried out by using a Taylor series for any dependent variable
� at ȳ = H̄p(x̄) and ȳ = H̄int (x̄) in terms of � and its derivatives evaluated at ȳ = 1 and at ȳ = 1 − �

as follows:

�|H̄p,H̄int
= �|ȳ=1,1−� +

(
∂�

∂ ȳ

)
ȳ=1,1−�

γ sin (4π x̄) + O(γ 2). (75)

The solutions for the leading order and the O(γ ) of the asymptotic expansion are shown below. The
leading-order solution represents the unidirectional phenomenon with flat walls. At this point it is
useful to introduce a new spatial variable in the region of the EGL given by y∗ = 1 − ȳ.

1. Ionic distribution

Typically, the largest magnitude of the electric potential is found in the EGL and is ∼c̄s/2 ≈ 1/2
[16]. From Eqs. (28), (29), and (72) and linearizing terms in the form exp (x) ∼ 1 + x + · · · based
on the Debye-Hückel approximation, the ionic distributions can be written as

c̄L±0 ≈ 1 ∓ ψ̄L0, (76)

c̄ f ±0 ≈ 1 ∓ ψ̄ f 0, (77)

c̄L±1 ≈ ∓ψ̄L1, (78)

and

c̄ f ±1 ≈ ∓ψ̄ f 1. (79)

Equations (76)–(79) will be used to determine the electric current in Sec. II D 3 [see Eq. (94)].

2. Electric potential solution at O(1)

The dimensionless Poisson equation, Eq. (48) for the leading order, combined with Eq. (28),
using the Debye-Hückel linearization, results in the following equation:

d2ψ̄L0

dȳ2
= κ̄2ψ̄L0. (80)

Similarly, in the EGL region, the Poisson equation for the dimensionless electric potential for the
leading order, combining Eqs. (49) and (29), is given by

d2ψ̄ f 0

dy∗2
= κ̄2ψ̄ f 0 + κ̄2 c̄s

2
(81)
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The dimensionless boundary conditions for Eqs. (80) and (81), according to Eqs. (50)–(52), are the
following:

dψ̄L0

dȳ
= 0 at ȳ = 0, (82)

ψ̄L0 = ψ̄ f 0,
dψ̄L0

dȳ
= dψ̄ f 0

dȳ
at ȳ = 1 − �, (83)

and

dψ̄ f 0

dȳ
= 0 at ȳ = 1. (84)

Solving Eqs. (80) and (81) yields

ψ̄L0 = CpL cosh (κ̄ ȳ), (85)

and

ψ f 0 = Cp f cosh (κ̄y∗) − c̄s

2
, (86)

whose constants are determined by applying the boundary conditions (82)–(84) and are shown in
the Appendix.

3. Fluid velocity at O(1)

In the lumen region, combining Eq. (53) with Eqs. (64)–(66), the following equation is obtained:

(1 + 2μrεWi2(Gȳ)2)μrGȳ = d v̄xL0

dȳ
. (87)

The dimensionless momentum conservation equation of the leading order in the EGL region,
according to Eqs. (28), (56), and (67), and using Debye-Hückel linearization, is given by

d2v̄x f 0

dy∗2
= ξ v̄x f 0 − 2BχCp f cosh (κ̄y∗) + G + Bχ c̄s. (88)

The dimensionless boundary conditions for the velocity, from Eqs. (61)–(63), for the leading order
are

d v̄xL0

dȳ
= 0 at ȳ = 0, (89)

v̄xL0 = φ f v̄x f 0 , τ̄xyL0 = τ̄xy f 0 , at ȳ = 1 − �, (90)

and

v̄xL0 = 0 at ȳ = 1. (91)

Solving Eqs. (87) and (88), considering the boundary condition (89), the fluid velocity solutions are
given by

v̄xL0 = μrGȳ2

2

(
1 + εWi2μ2

r G2ȳ2
) + 1, (92)

and

v̄x f 0 =
(

−G + Bχ c̄s

ξ

)
+ 2BχCp f

ξ − κ̄2
cosh (κ̄y∗) + Cf 1 exp (

√
ξy∗) + Cf 2 exp (−

√
ξy∗). (93)

Cf 1 and Cf 2 are constants of integration that will be determined together with G and B by applying
the three boundary conditions shown in Eqs. (90) and (91) and the zero electric current condition in
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the EGL. The electric current equation for the leading order, from Eq. (71), is

īe =
∫ �

0

[
v̄x f 0 (c̄ f 0+ − c̄ f 0−) − B

(
c̄ f 0+
Pe+

+ c̄ f 0−
Pe−

)]
dy∗ = 0. (94)

By applying Eqs. (76)–(79), (90), (91), and (94), a system of nonlinear equations is obtained:

A11G3 + A12G + A13B + A14Cf 1 + A15Cf 2 = −1,

A22G + A23B + A24Cf 1 + A25Cf 2 = 0,

A32G + A33B + A34Cf 1 + A35Cf 2 = 0, (95)

A42G + A43B + A44Cf 1 + A45Cf 2 = 0.

The coefficients and the solution of the system of equations (95) are described in the Appendix.

4. EGL displacements at O(1)

The dimensionless momentum conservation equation at the leading order for the solid domain,
according to Eqs. (59) and (70), is given by

d2ūx0

dy∗2
= �G − Bχcs − ξ v̄x f 0 . (96)

The dimensionless boundary conditions at the leading order, from Eqs. (61) and (63), are

�τ̄i jL0 = τ̄i js0 at ȳ = 1 − �, (97)

and

ū = 0 at ȳ = 1. (98)

Substituting Eq. (93) in Eq. (96) and integrating yields

ūx0 = − 2ξBχCp f

κ̄2(ξ − κ̄2)
cosh (κ̄y∗) − Cf 1 exp (

√
ξy∗) − Cf 2 exp (−

√
ξy∗) + (� + 1)

2
Gy∗2

+ Cu1y∗ + Cu2, (99)

where Cu1,u2 are constants of integration, determined from Eqs. (97) and (98) and shown in the
Appendix.

5. Electric potential solution at O(γ )

The Poisson-Boltzmann equation for the electric potential for the order γ , from Eq. (80), yields

∂2ψ̄L1

∂ ȳ2
= κ̄2ψ̄L1, (100)

and in the EGL region, Eq. (81) can be written as

∂2ψ̄ f 1

∂y∗2
= κ̄2ψ̄ f 1. (101)

At this order, the boundary conditions for the electric potential are

∂ψ̄L1

∂ ȳ
= 0 at ȳ = 0, (102)

∂ψ̄L1

∂ ȳ
− ∂ψ̄ f 1

∂ ȳ
=

(
d2ψ̄ f 0

d2ȳ
− d2ψ̄L0

d2ȳ

)
sin (4π x̄), ψ̄L1 = ψ̄ f 1, at ȳ = 1 − �, (103)
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and

∂ψ̄ f 1

∂ ȳ
= −d2ψ̄ f 0

d2ȳ
sin (4π x̄) at ȳ = 1. (104)

Solving Eqs. (100) and (101), the electric potential is obtained as follows:

ψ̄L1 = Cg1 cosh (κ̄ ȳ), (105)

and

ψ̄ f 1 = Cg2 cosh (κ̄y∗) + Cg3 sinh (κ̄y∗). (106)

The constants Cg1, Cg2, and Cg3 are obtained by using the boundary conditions given in Eqs. (102)–
(104), and shown in the Appendix.

6. Fluid velocity at O(γ )

The equation for conservation of momentum in the lumen for the order γ is obtained by
combining Eqs. (53), (64), and (72), yielding

(
1 + 6εWi2μ2

r (Gȳ
)2

)μrGindȳ = ∂ v̄Lx1

∂ ȳ
. (107)

Similarly, the momentum conservation equation for the fluid domain of the EGL at O(γ ) from
Eqs. (56), (67), and (72), and using the Debye-Hückel linearization, results in

∂2v̄ f x1

∂y∗2
= ξ v̄ f x1 − 2χ (BindCp f + BCg2) cosh (κ̄y∗) − 2BχCg3 sinh (κ̄y∗) + Gind + Bindχ c̄s.

(108)
The boundary conditions for the fluid velocity at O(γ ) are

v̄xL1 = τ̄xyL1 = 0 at ȳ = 0, (109)

v̄xL1 − v̄x f 1 =
(

d2v̄x f 0

dȳ2
− d2v̄xL0

dȳ2

)
sin (4π x̄), and

τ̄xyL1 − τ̄xy f 1 =
(

d τ̄xy f 0

dȳ
− d τ̄xyL0

dȳ

)
sin (4π x̄) at ȳ = 1 − �, (110)

v̄x f 1 = −d v̄x f 0

dȳ
sin(4π x̄) at ȳ = 1. (111)

Solving Eqs. (107) and (108), considering the boundary condition of Eqs. (109), the fluid velocity
solutions are given by

v̄Lx1 = μrGindȳ2

2

(
1 + 3μ2

r εWi2G2ȳ2
) + Cg4, (112)

and

v̄ f x1 =
(

−Gind + Bindχ c̄s

ξ

)
+ 2BχCg3

ξ − κ̄2
sinh (κ̄y∗) + 2χ (BindCp f + BCg2)

ξ − κ̄2

× cosh (κ̄y∗) + Cg5 exp (
√

ξy∗) + Cg6 exp (−
√

ξy∗). (113)

The constants of integration, Cg4, Cg5, and Cg6, will be determined by applying the three boundary
conditions shown in Eqs. (110) and (111). Gind and Bind are determined from the zero electric current
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condition in the EGL in the γ order given by∫ �

0

{
v̄x f 0 (c̄ f 1+ − c̄ f 1−) + v̄x f 1 (c̄ f 0+ − c̄ f 0−) − B

(
c̄ f 1+
Pe+

+ c̄ f 1−
Pe−

)
−Bind

(
c̄ f 0+
Pe+

+ c̄ f 0−
Pe−

)}
dy∗ = 0,

(114)

together with the mass conservation condition. The mass conservation is based on the constraint that
the volume flux must be independent of x̄ [23], i.e.,

∫ 1
0 vx = ∫ 1

0 (vx0 + γ vx1 + O(γ 2)) = cte, which
implies that ∫ 1−�

0
v̄xL1 dȳ +

∫ 1

1−�

v̄x f 1 dȳ = 0. (115)

Substituting Eqs. (76)–(79), (93), and (113) and the B solution of Eq. (95) into Eq. (114) and
Eqs. (112) and (113) into Eq. (115), it is possible to determine Gind and Bind solving numerically the
following system of equations:∫ 1−�

0
v̄Lx10(Bind0, Gind0, ȳ)dȳ +

∫ 1

1−�

v̄ f x10(Bind0, Gind0, ȳ)dȳ = 0, (116)

and ∫ 1

1−�

(
v̄ f 0(ȳ)(c̄ f +10(ȳ) − c̄ f −10(ȳ)) + v̄ f x10(Bind0, Gind0, ȳ)(c̄ f 0+(ȳ) − c̄ f 0−(ȳ))

−B

(
c̄ f +10(ȳ)

Pe+
+ c̄ f −10(ȳ)

Pe−

)
− Bind0

(
c̄ f 0+(ȳ)

Pe+
+ c̄ f 0−(ȳ)

Pe−

))
dȳ = 0, (117)

where the γ -order solutions that depend on ȳ and x̄ were separated in the form f (ȳ) sin 4π x̄ to fa-
cilitate numerical calculation. Hence, v̄Lx10(ȳ), v̄ f x10(ȳ), c̄ f +10(ȳ), and c̄ f −10(ȳ) are the independent
part of x̄ from v̄Lx1(ȳ, x̄), v̄ f x1(ȳ, x̄), c̄ f +1(ȳ, x̄), and c̄ f −1(ȳ, x̄), respectively, and are defined in the
Appendix. Similarly, Bind0 and Gind0 are independent of x̄. Therefore, Bind and Gind are given by

Bind = Bind0 sin (4π x̄), (118)

and

Gind = Gind0 sin (4π x̄). (119)

7. EGL displacements at O(γ )

The momentum conservation equation for the solid phase at O(γ ) from the substitution of the
expansion proposed in Eq. (72) for ūx and Eqs. (73), (74), and (113) in Eqs. (59) and (70) yields

∂2ūx1

∂y∗2
= (� + 1)Gind − 2χξ (BindCp f + BCg2)

ξ − κ̄2
cosh (κ̄y∗)

− 2BχξCg3

ξ − κ̄2
sinh (κ̄y∗) − ξCg5 exp (

√
ξy∗) − ξCg6 exp (−

√
ξy∗). (120)

The dimensionless boundary conditions at the γ order, from Eqs. (61) and (63), are

τ̄xys1 − �τ̄xyL1 =
(

�
d τ̄xyL0

dȳ
− d τ̄xys0

dȳ

)
sin (4π x̄) at ȳ = 1 − �, (121)

and

ūx1 = −dūx0

dȳ
sin (4π x̄) at ȳ = 1. (122)
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(a) (b)

FIG. 2. Comparison of velocity profiles and streaming potential obtained in this work and those obtained
by Sumets et al. [16]. With the nomenclature of this work, the results were obtained using � = 0.2, � = 0.01,
χ = 106, c̄s = 1, ξ = 250, εWi2 = 0, μr = 1, and κ̄ = 500.

Solving Eq. (120), the distribution of the displacements at O(γ ) is given by

ūx1 = (� + 1)

2
Gindy∗2 − 2χξ (BindCp f + BCg2)

κ̄2(ξ − κ̄2)
cosh (κ̄y∗)

− 2BχξCg3

κ̄2(ξ − κ̄2)
sinh (κ̄y∗) − Cg5 exp (

√
ξy∗) − Cg6 exp (−

√
ξy∗) + Cg7y∗ + Cg8. (123)

The constants Cg7 and Cg8 are obtained by applying the boundary conditions of Eqs. (121) and (122),
and are shown in the Appendix.

III. RESULTS AND DISCUSSION

In this section, we discuss the influence that the asymptotic solution of the electric potential and
velocity and displacement fields has on the stresses and the streaming potential induced. Besides,
the effect of various parameters as well as the undulations of the wall are analyzed. Table I shows the
typical values of constants and physical values used in the problem. Based on these values, Table II
shows the dimensionless parameters described in the previous section, which result from deriving
the corresponding dimensionless governing and constitutive equations.

To validate the asymptotic solution, we compare our results against those reported by Sumets
et al. [16], who analyzed numerically the stresses in the wavy wall for a triphasic mixture of a
Newtonian fluid. Their numerical solution is based on a coupled boundary element method–finite
element method scheme. They also have added the approximate solutions for a flat channel, which
are used directly to compare with ours. For this, it is necessary to consider the solution of our work
of the leading order, i.e., that obtained with flat walls and interfaces, for a same Newtonian fluid
in both regions (μr = 1, εWi2 = 0), and κ̄ → ∞, since they are part of the considerations of the
work by Sumets et al. [16]. Figure 2(a) shows the velocity profiles obtained from both studies which
offer practically identical behavior. In contrast, Fig. 2(b) shows the streaming potentials induced in
the phenomenon, which have the same behavior for values larger than c̄s = 0.1, since for lower
values, the solution of Sumets et al. [16] is indeterminate, because it assumes κ̄ → ∞. The above
means that the Debye length is very small compared to the width of the microchannel, without
resolving the boundary layer at the interface, giving a noncontinuous jump in the electric potential
of the commented region. The comparison of these works provides confidence in our results. Some
significant results that were obtained in this work are presented below.
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(a) (b)

FIG. 3. Electric potential of the leading order for different configurations of parameters, with a value of
� = 0.2: (a) several values of κ̄ with c̄s = 1 and (b) varying the values of c̄s with κ̄ = 100.

A. Electric potential

Figure 3(a) shows the variation of ψ0 as a function of the dimensionless coordinate ȳ for
three different values of κ̄ (= 50, 100, 300). It is shown that the larger value of κ̄ yields larger
potential gradients at the interface because the Debye length is smaller, generating a boundary layer
at the interface. Figure 3(b) shows the dependence of ψ0 on the coordinate ȳ for c̄s(= 0, 0.5, 1).
The condition c̄s → 0 is written in this way since the solution obtained remains indeterminate for
the particular case of c̄s = 0, which allows us to recover the case in which the electrical effects
in the phenomenon are neglected. The effect of the charge on the EGL is directly reflected in the
magnitude of the electric potential in that region, which is to be expected since if there is no electric
charge on the EGL, there are no electric fields generated by the movement of the electrolyte.

B. Flow velocity

The velocity field that develops in the phenomenon depends on different parameters: the viscosity
ratio μr , the viscoelastic effect εWi2, the electrical effect c̄s, the permeability ξ , and the amplitude
of the undulations, γ . Figure 4(a) shows the viscoelastic effect in the velocity profiles. It can be
seen that, in the region of the lumen, viscoelasticity induces more significant velocity gradients
near the EGL, which can be seen mathematically in Eq. (87), where the velocity gradients given by
μr (1 + 2εWi2(μrGȳ)2)Gȳ are larger compared to the gradients for the Newtonian case (εWi2 = 0)
given by μrGȳ, which is consistent with shear thinning exhibited by non-Newtonian fluids. The case
εWi2 → 0 is included, which corresponds to the Newtonian case. Figure 4(b) shows the viscosity
ratio effect on the velocity profiles. For lower values of μr , which mean higher viscosities in the
lumen than that of the fluid phase in the EGL, a larger velocity magnitude at the interface and a
greater magnitude of the reversed velocity in the EGL are observed. Figure 5(a) shows the effect
of the dimensionless electric charge c̄s on the EGL, which is mainly reflected in the EGL region.

(a) (b)

FIG. 4. Velocity profiles with � = 0.2, c̄s = 1, κ̄ = 100, ξ = 250, � = 0.01, and χ = 106: (a) εWi2(=
0, 0.1, 1) with μr = 1/3 and (b) μr (= 1, 1/3, 1/5) with εWi2 = 0.1.
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(a) (b)

FIG. 5. Velocity profiles with εWi2 = 0.1, � = 0.2, κ̄ = 100, μr = 1/3, � = 0.01, and χ = 106 for
(a) various values of c̄s(= 0, 0.1, 1) with ξ = 250, and (b) varying values of ξ (= 25, 250, 2500) with c̄s = 1.

An interesting phenomenon previously reported in other works [16,17] can be observed, which is
a reversed flow in the EGL, which arises so that the net electric current is zero. Equation (94) is a
null electric current condition in the EGL and it establishes that the electric current is related to the
diffusion of ions in the EGL, and is divided into two parts: a convective diffusion v̄x f 0 (c̄ f 0+ − c̄ f 0−)

and another electric diffusion B( c̄ f 0+
Pe+

+ c̄ f 0−
Pe−

), physically necessary to balance the diffusion in such
a way that the electric current is zero and reversed velocities are induced. On the other hand, for
the case c̄s → 0, which is the case where the electrical effect of the phenomenon is neglected, said
return fluxes are not present. The effect of permeability is analyzed in Fig. 5(b). The parameter ξ

represents the inverse of the permeability, and its effect is related to the velocity in the EGL since,
for low permeabilities, the fluid does not manage to flow freely, unlike what has been shown for
higher permeabilities. Velocity gradients are also affected by the permeability of the EGL since, for
lower permeabilities, these gradients are smaller.

Figure 6 shows a case of velocity contours, where the velocity variation due to the wavy geometry
can be observed. In the region where the channel narrows, the velocities obtained are higher due to
the continuity of the fluid flow. Velocity gradients are the largest in the lumen region close to the
interface. How the velocity contours are distributed has a larger amplitude in the region close to the
microchannel’s center than in the interface region.

C. Displacements in the EGL

The displacements in the EGL depend on different parameters such as the viscosity ratio μr , the
viscoelastic effect εWi2, the electrical effect c̄s, the permeability ξ , and the effect of undulations,
γ . Since ūx ∼ O(1), i.e., ux ∼ uc ∼ 10−8 M, while the thickness of the EGL is ∼10−6 M, according
to the values reported in Table I, which means, the volume changes around ∼1%, the compression

FIG. 6. Velocity contours for values of εWi2 = 0.1, � = 0.2, c̄s = 1, κ̄ = 100, ξ = 250, � = 0.01, χ =
105, μr = 1, and γ = 0.02.
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(a) (b)

FIG. 7. EGL displacements with � = 0.2, c̄s = 1, κ̄ = 100, ξ = 250, � = 0.01, and χ = 106 for (a)
εWi2(= 0, 0.1, 1) with μr = 1/3 and (b) μr (= 1, 1/3, 1/5) with εWi2 = 0.1.

effects on the fluid are negligible as originally proposed. Figure 7(a) shows the viscoelastic effect
in displacements. Unlike the effect on the velocity in the EGL, it does have a considerable impact
on the magnitude of the displacements and deformations of the solid phase of the EGL, which
can be explained physically because these displacements are a response to the shear stresses
that are transmitted by fluid in the lumen, which vary with εWi2 due to the shear thinning it presents.
The viscoelastic fluid reduces the stresses in the interface compared to the Newtonian case, and these
stresses are transmitted to the solid phase so that there are larger displacements in the interface
for the Newtonian case. Figure 7(b) shows the viscosity ratio effect on displacements. For lower
values of μr , a larger magnitude of the displacements at the interface is observed. The effect of
the dimensionless electric charge of the EGL on the displacements is shown in Fig. 8(a). When the
electrical effects are neglected (c̄s = 0), lower displacements are obtained because the electrical
stresses in Eq. (96) affect the displacements. The permeability effect is analyzed in Fig. 8(b),
which has a less significant effect on the magnitude of displacements than viscoelasticity, since
displacements are defined by stress coupling at the interface, on which permeability does not have
a significant effect. For higher permeabilities, smaller displacements are obtained at the interface.
Finally, Fig. 9 shows a case of displacement contours, where the variation of displacements due to
undulations of the interfaces can be observed. The deformations are most remarkable in the region
close to the wall.

D. Streaming potential

The induced streaming potential is independent of its transverse location in the microchannel,
but its value varies longitudinally under corrugated walls. Figure 10(a) shows the variation of B as a
function of εWi2. For the Newtonian case, the highest streaming potentials are obtained compared

(a) (b)

FIG. 8. EGL displacements using εWi2 = 0.1, � = 0.2, κ̄ = 100, and � = 0.01, χ = 106, μr = 1/3 for
(a) various values of c̄s and ξ = 250 and (b) varying the values of ξ = (25, 250, 2500) with c̄s = 1.
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FIG. 9. Displacement contours in the solid phase of the EGL for values of εWi2 = 0.1, � = 0.2, c̄s = 1,
κ̄ = 100, ξ = 250, μr = 1, � = 0.01, χ = 105, and γ = 0.02.

to those obtained when εWi2 grows. The above can be explained if we analyze Fig. 4(a) since the
magnitude of the velocities in the EGL for viscoelastic fluids is lower compared to Newtonian fluids,
which is also due to the shear thinning of the viscoelastic fluid that reduces the stresses that are
transmitted at the interface compared to a Newtonian fluid. Because B is induced to counteract the
generated convective electric current, due to the movement of ions in this region, higher velocities
induce a higher streaming potential. Figure 10(a) shows the streaming potential induced for different
values of μr . When the viscosity in the lumen is considerably higher than that of the EGL, that is,
lower values of μr , the streaming potential is more significant.

On the other hand, Fig. 10(b) shows the variation of B as a function of c̄s, and three values of
the Hartmann number χ (= 5 × 105, 106, 5 × 106). For the case c̄s → 0, the flow potential tends to
zero because, without the electrical effects of the EGL, the concentrations of anions and cations
are the same throughout the channel, and therefore there is no convective electric current and the
presence of B is not necessary to counteract it. As the value of c̄s increases, the value of B increases
until it reaches a point where its value begins to decrease again. The increase can be explained
because the electric charge of the EGL generates a reversed flow in this region, as can be seen in
Fig. 5(a), but there reaches a value of c̄s for which the magnitude of the backward velocity no longer
increases since it could be said that there is a point at which the increase in the electric charge of the
EGL in turn affects the concentration of ions and an equilibrium is reached between the convective
and diffusive terms. Increasing velocities or streaming potential is unnecessary to maintain a zero
electric current. It also shows the variation with respect to the Hartmann number, where a significant
increase of B is obtained for smaller values.

(a) (b)

FIG. 10. Variation of the streaming potential as a function of (a) εWi2 for three different values of μr with
χ = 106 and (b) c̄s varying the values of χ for μr = 1/3. In (a) and (b), we use κ̄ = 100, ξ = 250, � = 0.01,
� = 0.2, Pe+ = 3, and Pe− = 2.
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FIG. 11. Streaming potential variation with respect to
√

ξ for various values of � with εWi2 = 0.1, c̄s = 1,
κ̄ = 100, � = 0.01, μr = 1, γ = 0.02, Pe+ = 3, Pe− = 2, and χ = 106.

Figure 11 shows the behavior of B for different values against
√

ξ for different EGL � thick-
nesses. The variation of B as a function of the permeability is almost null since slightly lower values
of B are obtained for lower permeability. In general, it is possible to appreciate that, as the thickness
of the EGL decreases, the streaming potential increases.

Finally, Fig. 12 shows the longitudinal variation due to the undulations of the flow potential
BT = B + γ Bind. Bind varies sinusoidally due to wall undulations that affect the velocity and ion
distributions in the EGL.

E. Wall shear stresses

The shear stresses in the EGL are vital due to their mechanical-transductive nature, especially
the stresses in the wall. The results show the effect of four important parameters according to the
results shown previously, εWi2, c̄s, ξ , and �, on the stresses in the wall of the microchannel ȳ =
1 + γ sin (4π x̄). All the stresses shown are affected by the undulations up to O(γ ), so it is also
possible to analyze the effect of the undulations in each of them. Figure 13 shows the viscoelastic
effect on the channel wall’s fluid and solid phase stresses. The Newtonian case induces the most
significant magnitudes of stresses in the wall for both phases, while increasing εWi2 said stresses
decrease their magnitude, which has already been mentioned before that is due to the shear thinning
effect of the viscoelastic fluid that reduces the stresses that occur at the interface compared to the
Newtonian case, which are transmitted to the fluid phase and the solid phase of the EGL. Comparing
the εWi2 = 1 case with the Newtonian case, the magnitude of the stresses is almost halved for both
phases. According to Figs. 4(a) and 7(a), the viscoelastic effect in the lumen affects the EGL as they

FIG. 12. Streaming potential variation (considering Bind) with respect to x̄ for various values of γ with
� = 0.2, εWi2 = 0.1, c̄s = 1, κ̄ = 100, ξ = 250, � = 0.01, μr = 1, Pe+ = 3, Pe− = 2, and χ = 106.
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(a) (b)

FIG. 13. Shear stresses of the fluid phase and the solid phase of the EGL in the microchannel wall (ȳ =
1 + γ sin 4π x̄) for different values of εWi2, with c̄s = 1, ξ = 250, � = 0.2, χ = 106, κ̄ = 100, γ = 0.02,
� = 0.01, μr = 1, Pe+ = 3, and Pe− = 2.

are coupled at the interface, reducing the magnitude and velocity gradients and deformations and
generating less stress in the wall. Figure 14 shows the effect of the dimensionless electric charge in
the EGL on the fluid and solid phase stresses on the channel wall. In the case of no electric charge
(c̄s → 0), the stresses are smaller; however, when there is a value for the charge, these stresses
increase in magnitude due to the contribution of the electric stresses. Furthermore, the effects of
permeability on the shear stresses of the wall are shown in Fig. 15. In the cases where the EGL
has the higher permeability, the magnitudes of the larger stresses are larger than those with low
permeability. The above can be explained because the fluid that flows through the EGL is the cause
of the stresses that are induced in this region. Therefore, the fluid flows more freely in a material
with high permeability (lower ξ ), inducing higher stresses than in an impermeable limiting case
(ξ → ∞) where stresses would not exist in the EGL since the fluid could not penetrate the solid.
The effect of the thickness of the EGL is shown in Fig. 16 and it is possible to appreciate that, for
thinner EGLs, the magnitude of the stresses for the solid phase in the wall is slightly higher and for
the fluid phase slightly lower compared to a thicker EGL. Finally, the effect that undulations have
in general is more noticeable in the stresses of the fluid phase than in the stresses of the solid phase,
according to the results shown, in addition to the fact that they tend to have a behavior more similar
to the shape of the wall (sinusoidal). Some parameters can cause the stresses to be more sensitive
to undulations, as in Fig. 14 where in the fluid phase the electric charge causes the stresses to have
a larger longitudinal variation compared to the case c̄s → 0; however, for the stresses in the solid
phase the effect is the opposite.

(a) (b)

FIG. 14. Shear stresses of the fluid phase and the solid phase of the EGL in the microchannel wall (ȳ =
1 + γ sin 4π x̄) for different values of c̄s, with εWi2 = 0.1, ξ = 250, � = 0.2, χ = 106, κ̄ = 100, γ = 0.02,
� = 0.01, μr = 1, Pe+ = 3, and Pe− = 2.
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(a) (b)

FIG. 15. Shear stresses of the fluid phase and the solid phase of the EGL in the microchannel wall (ȳ =
1 + γ sin 4π x̄) for different values of ξ , with εWi2 = 0.1, c̄s = 1, � = 0.2, χ = 106, κ̄ = 100, γ = 0.02,
� = 0.01, μr = 1, Pe+ = 3, and Pe− = 2.

IV. CONCLUSIONS

The present study asymptotically analyzes the electric potential, velocity, and displacement fields
through a microchannel with wavy walls and a region that covers the wall called the EGL, which
is porous and electrically charged. Furthermore, we consider that the fluid outside the EGL is a
non-Newtonian fluid that obeys the Phan-Thien-Tanner model.

The Poisson-Boltzmann and momentum equations were used to determine the electric field and
fluid hydrodynamics all over the microchannel. During the nondimensionalization of the mathemat-
ical model, some parameters arise which characterize the studied phenomenon: the Weissenberg
number εWi2 related to the viscoelasticity of the fluid, the dimensionless electric charge of the EGL,
c̄s, that encompasses the electrical effects developed in the phenomenon, the inverse of porosity ξ

that represents the porous effect of the EGL, and the dimensionless thickness of the undulations,
γ , disturbance parameter in the domain perturbation method. Once the distribution of the electric
potential and the velocity and displacement fields are known, it is possible to analyze the induced
potential streaming, which is of particular interest to know its magnitude and behavior as a possible
source of energy and the stresses in the wall that allow us to understand the mechanical-transductive
nature of the EGL.

The viscoelastic effect reduces the streaming potential and increases significantly with the
reduction of the Hartmann number. One reason for the relationship between B and εWi2 is due to
the shear thinning that the viscoelastic fluid presents that reduces the shear stresses at the interface
compared to a Newtonian fluid that are transmitted to the fluid and solid phases of the EGL and
are related to the velocities of said region. On the other hand, the effect of c̄s is more challenging
to describe since if c̄s = 0, there is no induced potential, but for small c̄s the induced potential

(a) (b)

FIG. 16. Shear stresses of the fluid phase and the solid phase of the EGL in the microchannel wall (ȳ =
1 + γ sin 4π x̄) for different values of �, with εWi2 = 0.1, c̄s = 1, ξ = 250, χ = 106, κ̄ = 100, γ = 0.02,
� = 0.01, μr = 1, Pe+ = 3, and Pe− = 2.
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grows to a maximum point and then decreases in such a way that for higher values the induced
potential is practically constant. However, it is not possible to establish the exact value at which
these changes occur since they depend on the values of the other parameters involved. The flow
potential that is induced for different configurations is approximately of the order ∼10−4–10−5,
that in physical variables, considering ∼ kbT

eH ∼ 104 V/m, is approximately ∼O(1–10−1). With the
relevant technological development, the above means that it may be an option to be used as a
biocompatible energy source for small devices that require electric potential values around 1 V.

The shear forces in the wall were also studied, finding that the viscoelastic effect decreases
its magnitude, as previously explained, while the electric charge of the EGL and the permeability
increase them. Decreasing the thickness of the EGL increases the stresses in the solid phase but
decreases the magnitude of the stresses in the solid phase. The fluid phase stresses presented a
higher sensitivity to wall undulations than the solid phase stresses. These relationships can help
understand the relationship between certain conditions and the human body’s response to them.

It should be noted that one of the advantages obtained from this work over similar numerical
works is that the solution obtained can be replicated with any calculation processor; obtained solu-
tions involve low processing and computational time, going from weeks of computation (according
to what is reported in the state of the art) to a few seconds, obtaining the same results and behaviors,
under the assumptions made.

The asymptotic analysis has two limitations. It is valid for shallow channels, and the amplitude
of the undulations is small with respect to the width of the channel. Any analysis outside of these
two limitations is outside the solutions presented here. One of the possible future works related to
this work concerns a full numerical solution that is not limited to the assumptions made here, such
as the slenderness of the channel or the small undulations, which can help to find the limit in which
the found solution is valid.
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APPENDIX: CONSTANTS

1. Constants at the O(γ0) solution

Following are constants at the O(γ 0) solution:

CpL = − c̄s

2(coth (κ̄ (1 − �)) + coth (κ̄�)) sinh (κ̄ (1 − �))
, (A1)

Cp f = c̄s

2(coth (κ̄ (1 − �)) + coth (κ̄�)) sinh (κ̄�)
. (A2)

A11 = μ3
r

εWi2(1 − �)4

2
, A12 = μr

(1 − �)2

2
+ 1

ξ
, A13 = χ c̄s

ξ
− 2χCp f

ξ − κ̄2
cosh κ̄�, (A3)

A14 = − exp (
√

ξ�), A15 = − exp (−
√

ξ�), A22 = 1 − �, (A4)

A23 = κ̄
2χCp f

ξ − κ̄2
sinh κ̄�, A24 =

√
ξ exp (

√
ξ�), A25 = −

√
ξ exp (−

√
ξ�), (A5)

A32 = −1

ξ
, A33 = −χ c̄s

ξ
+ 2χCp f

ξ − κ̄2
, A34 = 1, A35 = 1, A42 = 2Cp f

ξ κ̄
sinh κ̄� − c̄s�

ξ
,

(A6)
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A43 = 2χ c̄sCp f

ξ κ̄
sinh (κ̄�) − χ c̄2

s �

ξ
− χC2

p f

κ̄ (ξ − κ̄2)
(sinh (2κ̄�) + 2κ̄�) + 2χ c̄sCp f

κ̄ (ξ − κ̄2)
sinh (κ̄�)

− 1

Pe+Pe−

[
�(Pe+ + Pe−) + Cp f (Pe+ − Pe−)

κ̄ sinh (κ̄�)
+ c̄s(Pem − Pe+)�

2

]
, (A7)

A44 = c̄s(exp(
√

ξ�) − 1)√
ξ

− 2Cp f
exp(

√
ξ�)(

√
ξ cosh (κ̄�) − κ̄ sinh κ̄�) − √

ξ

ξ − κ̄2
, (A8)

A45 = − c̄s(exp(−√
ξ�) − 1)√
ξ

+ 2Cp f
exp(−√

ξ�)(
√

ξ cosh (κ̄�) + κ̄ sinh κ̄�) − √
ξ

ξ − κ̄2
, (A9)

A112 = A12 − A15A42

A45
−

(
A14 − A15A44

A45

)A32 − A35A42
A45

A34 − A35A44
A45

, (A10)

A113 = A13 − A15A43

A45
−

(
A14 − A15A44

A45

)A33 − A35A43
A45

A34 − A35A44
A45

, (A11)

A122 = A22 − A25A42

A45
−

(
A24 − A25A44

A45

)A32 − A35A42
A45

A34 − A35A44
A45

, (A12)

A123 = A23 − A25A43

A45
−

(
A24 − A25A44

A45

)A33 − A35A43
A45

A34 − A35A44
A45

, (A13)

A00 = A112 − A113
A122

A123
. (A14)

G =
(√

3
√

27A4
11 + 4A3

11A3
00 − 9A2

11

)1/3

(181/3)A11
− (2/3)1/3A00(√

3
√

27A4
11 + 4A3

11A3
00 − 9A2

11

)1/3
, (A15)

B = −A122

A123
G, (A16)

Cf 1 = −(
A32 − A35A42

A45

)
G − (

A33 − A35A43
A45

)
B

A34 − A35A44
A45

, (A17)

Cf 2 = −A42

A45
G − A43

A45
B − A44

A45
Cf 1. (A18)

Cu1 = −G(� + �) + 2ξBχCp f

κ̄ (ξ − κ̄2)
sinh (κ̄�) + Cf 1

√
ξ exp (

√
ξ�) − Cf 2

√
ξ exp (−

√
ξ�), (A19)

Cu2 = 2ξBχCp f

κ̄2(ξ − κ̄2)
+ Cf 1 + Cf 2. (A20)

2. Constants at the O(γ ) solution

Following are constants at the O(γ ) solution:

Cg3 = κ̄Cp f sin (4π x̄). (A21)
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Cg1 = κ̄ (Cp f cosh (κ̄�) − CpL cosh (κ̄ (1 − �))) sin (4π x̄)

sinh (κ̄ (1 − �)) + cosh (κ̄ (1 − �)) tanh (κ̄�)

− Cg3(cosh (κ̄�) − tanh (κ̄�) sinh (κ̄�))

sinh (κ̄ (1 − �)) + cosh (κ̄ (1 − �)) tanh (κ̄�)
, (A22)

Cg2 = Cg1
cosh (κ̄ (1 − �))

cosh (κ̄�)
− Cg3 tanh (κ̄�), (A23)

C300 = κ̄Cp f , (A24)

C100 = (κ̄ (Cp f cosh (κ̄�) − CpL cosh (κ̄ (1 − �))) − C300(cosh (κ̄�) − tanh (κ̄�) sinh (κ̄�)))

sinh (κ̄ (1 − �)) + cosh (κ̄ (1 − �)) tanh κ̄�
,

(A25)

C200 = C100
cosh (κ̄ (1 − �))

cosh (κ̄�)
− C300 tanh (κ̄ )�, (A26)

C500 =
{

1

−√
ξ exp (−√

ξ�)

(
κ̄

2χBC200

ξ − κ̄2
sinh (κ̄�) + (κ̄C300 − κ̄2Cp f )

2χB

ξ − κ̄2
cosh (κ̄�)

− Cf 1ξ exp (
√

ξ�) − Cf 2ξ exp (−
√

ξ�) + G

)
− 2χBC200

ξ − κ̄2

+ (Cf 1 − Cf 2)
√

ξ

}
/(1 + exp (2

√
ξ�)), (A27)

C501 =
{

1

−√
ξ exp (−√

ξ�)

(
2χCp f

ξ − κ̄2
(κ̄ sinh (κ̄�) − 1) + χ c̄s

ξ

)}
/(1 + exp (2

√
ξ�)), (A28)

C502 =
{

1

−√
ξ exp (−√

ξ�)
(1 − �) + 1

ξ

}
/(1 + exp (2

√
ξ�)), (A29)

C600 =
{

−
√

ξ exp (
√

ξ�)C500 −
(

κ̄
2χBc200

ξ − κ̄2
sinh (κ̄�) + (κ̄C300 − κ̄2Cp f )

2Bχ

ξ − κ̄2
cosh (κ̄�)

− Cf 1ξ exp (
√

ξ�) − Cf 2ξ exp (−
√

ξ�) + G

}
/(−

√
ξ exp (−

√
ξ�)) (A30)

C601 =
{

−
√

ξ exp (
√

ξ�)C501 − κ̄
2χCp f

ξ − κ̄2
sinh (κ̄�)

}
/(−

√
ξ exp (−

√
ξ�)) (A31)

C602 = {−
√

ξ exp (
√

ξ�)C502 − (1 − �)}/(−
√

ξ exp (−
√

ξ�)), (A32)

C400 = C500 exp (
√

ξ�) + C600 exp (−
√

ξ�) + (C300 − κ̄Cp f )
2χB

ξ − κ̄2
sinh (κ̄�)

+ 2χBC200

ξ − κ̄2
cosh (κ̄�) − Cf 1

√
ξ exp (

√
ξ�) + Cf 2

√
ξ exp (−

√
ξ�)

− (
1 + 2εWi2μ2

r G2(1 − �)2
)
μrG(1 − �), (A33)

C401 = C501 exp (
√

ξ�) + C601 exp (−
√

ξ�) − χ c̄s

ξ
+ 2χCp f

ξ − κ̄2
cosh (κ̄�), (A34)
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C402 = C502 exp (
√

ξ�) + C602 exp (−
√

ξ�) − μr (1 − �)2

2
(1 + 3εWi2μrG2(1 − �)2) − 1

ξ
,

(A35)

α1 = 3εWi2μ2
r G2, α2 = 2χBC200

ξ − κ̄2
, α3 = 2χCp f

ξ − κ̄2
, (A36)

α4 = 2χBC300

ξ − κ̄2
, α5 = −χ c̄s

ξ
, α6 = −1

ξ
, (A37)

ψ f 10(ȳ) = C200 cosh (κ̄ (1 − ȳ)) + Cg300 sinh (κ̄ (1 − ȳ)), (A38)

c̄ f ±10(ȳ) ≈ ∓ψ̄ f 10(ȳ), (A39)

c̄ f ±10(ȳ) ≈ ∓ψ̄ f 10(ȳ), (A40)

v̄Lx10(Bind0, Gind0, ȳ) = μrGind0ȳ2

2
(1 + α1ȳ2) + C400 + Bind0C401 + Gind0C402, (A41)

v̄ f x10(Bind0, Gind0, ȳ) = (α2 + Bind0α3) cosh (κ̄ (1 − ȳ)) + α4 sinh (κ̄ (1 − �))

+ Bind0α5 + Gind0α6 + (C500 + Bind0C501 + Gind0C502) exp (
√

ξ ȳ)

+ (C600 + Bind0C601 + Gind0C602) exp (−
√

ξ ȳ), (A42)

Cg4 = C400 sin (4π x̄) + C401Bind + C402Gind, (A43)

Cg5 = C500 sin (4π x̄) + C501Bind + C502Gind, (A44)

Cg6 = C600 sin (4π x̄) + C601Bind + C602Gind. (A45)

Cg7 = 2χξ (BindCp f + BCg2)

κ̄ (ξ − κ̄2)
sinh (κ̄�) + 2BχξCg3

κ̄ (ξ − κ̄2)
cosh (κ̄�) + Cg5

√
ξ exp (

√
ξ�)

− Cg6

√
ξ exp (−

√
ξy∗) − Gind(� + �) −

(
− G + 2ξBχCp f

ξ − κ̄2
cosh (κ̄�)

+ ξCf 1 exp (
√

ξy∗) + ξCf 2 exp (−
√

ξy∗)

)
sin (4π x̄), (A46)

Cg8 = 2χξ (BindCp f + BCg2)

κ̄2(ξ − κ̄2)
+ Cg5 + Cg6 + (

√
ξ (Cf 2 − Cf 1) + Cu1) sin (4π x̄). (A47)
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