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Similarity relations for laminar pipe flows of Bingham fluids
in friction coordinates
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We introduce similarity relations, along with their corresponding symmetry groups, for
examining the velocity profile and friction factor of laminar Bingham fluid flows using
friction coordinates. Specifically, we provide a valuable expression for calculating the
friction factor of Bingham plastic fluids when pressure gradient data are accessible. Our
findings reveal that there are no clear similarity relations for the mean velocity profile and
friction factor formulas in bulk coordinates. Consequently, friction coordinates serve as the
most suitable framework for describing this problem.
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Laminar Bingham fluid flows. Viscoplastic liquids can be found in several biological and indus-
trial systems, such as blood, mudflows, mayonnaise, paints, lava flows, and toothpaste. One defining
characteristic of these fluids is the presence of a yield stress parameter τy. The fluid will only flow
when the applied stress exceeds the yield stress, acting as a solid for lower stresses. The Bingham
constitutive equation, proposed in Ref. [1], is a simple model used for viscoplastic fluids. Unlike
more complex models, such as the Herschel-Bulkley, which displays shear-rate dependency for the
dynamic viscosity parameter, the Bingham shear stress satisfies the affine relation τrz = τy − μ( dU

dr ),
for τrz > τy, where μ is the dynamic viscosity of the fluid.

A special geometric feature of laminar Bingham fluid flows is the presence of a solid pluglike
core in the central region of the pipe, where the shear stress satisfies τrz < τy. The plug’s radius
RP is a function of the yield stress τy, the wall shear stress τw, and the pipe’s radius. Indeed,
because τrz(r) = − ∂ p

∂z
r
2 , at r = RP, the interface with the plug region, the shear stress satisfies

τy = τrz(RP ) = −∂ p
∂z

RP
2 . Because τw = τrz(R) = (− ∂ p

∂z ) R
2 , where R = D/2 is the pipe radius, it fol-

lows that τy/τw = RP/R. Figure 1 illustrates a laminar Bingham flow.
In this Letter, we consider laminar Bingham flows in pipes driven by a pressure gradient.

For a given rheological configuration (μ, τy), fluid’s density ρ, and pipe diameter D, the flow is
characterized by the imposed conditions either on pressure gradient or on the mass flow rate (this is
also true for fully developed turbulent flows). If the condition is imposed on the mass flow rate, we
say that the flow is parametrized in bulk coordinates. On the other hand, if the condition is imposed
on the pressure gradient, we say that it is parametrized on friction coordinates. The averaged bulk
velocity is defined as Ū = Q/πR2, where Q = ∫ R

0 2πrU dr is the volumetric flow rate of a pipe
flow. In the incompressible context, the mass flow rate is simply ρŪ . Similarly to Newtonian
flows, we define the friction velocity uτ = √

τw/ρ. We now define some important dimensionless
parameters. Let us start with the bulk Reynolds number Re, and the friction Reynolds number
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FIG. 1. Mean velocity profile of laminar Bingham fluids.

Reτ [2,3]:

Re = ρŪD

μ
, Reτ = ρuτ D

μ
. (1)

The Hedstrom number He and φ are respectively defined as

He = ρD2τy

μ2
, φ := RP

R
= τy

τw

= He

Re2
τ

. (2)

The Hedstrom number provides a metric to gauge the impact of yield stress relative to the
plastic viscosity in Bingham fluids. Lower Hedstrom values correspond to Newtonian-like behavior,
whereas higher values indicate a pronounced, solidlike, non-Newtonian response. Notably, a Hed-
strom number of zero, indicative of zero yield stress, corresponds to Newtonian fluid behavior.
Although the Hedstrom number depends solely on the geometric setup, rheological properties,
and density of the fluid, it is worth emphasizing that the flow conditions can still modulate the
roles of yield stress and plastic viscosity in governing the flow dynamics. In the literature, it is
common to parametrize the flow with the bulk dimensionless coordinates (He, Re), instead of
the friction dimensionless coordinates (He, Reτ ) (see, e.g., Ref. [4]). This choice is natural if one
prescribes conditions on the mass flow rate instead of using the pressure gradient. However, in many
applications, this choice is arbitrary, and the pressure gradient may be easier to determine through
the use of manometers.

From Buckingham’s � theorem, the pressure gradient satisfies a relation of the form − ∂ p
∂z =

ρŪ 2

D f , where f is the so-called friction factor, a function of either (Re, He) or (Reτ , He). The
(Fanning) friction factor is formally defined as [2,3]

f = 2
u2

τ

Ū 2
= 2τw

ρŪ 2
= D

(− ∂ p
∂z

)
2ρŪ 2

. (3)

The fact that the friction factor can be written in bulk coordinates, i.e., as f = H(Re, He), is related
to the invariance of the friction factor by the action of the following similarity group:

μ∗ = A1μ, ρ∗ = A2ρ, D∗ = A3D,

τ ∗
y = A2

1

A2A2
3

τy, Ū ∗ = A1

A2A3
Ū , f ∗ = f , (4)

where A1, A2, A3 are positive real numbers. The group depicted above is derived initially by scaling
the dimensionally independent parameters μ, ρ, and D using arbitrary positive constants A1, A2, and
A3, collectively termed as group parameters. Following this, we compute the appropriate scalings
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for the dimensionally dependent parameters f , τy, and Ū to ensure the constancy of Re, He, and
the relationship H. The importance of this similarity group emerges from the transformation (4),
which guarantees Re∗ = Re, He∗ = He, and most importantly, f ∗ = H(Re∗, He∗). Comprehensive
details on the derivation of these groups can be referenced in Ref. [5]. On the other hand, the fact
that the friction factor can also be written in friction coordinates, as f = L(Reτ , He), is related to
the invariance of the friction by the action of the following similarity group:

μ∗ = Â1μ, ρ∗ = Â2ρ, D∗ = Â3D,

τ ∗
y = Â2

1

Â2Â2
3

τy,

(
∂ p

∂z

)∗
= Â2

1

Â2Â3
3

(
∂ p

∂z

)
, f ∗ = f , (5)

where Â1, Â2, Â3 are positive real numbers, and the deriving of such a group follows a similar
reasoning as above.

An implicit equation for the friction factor involving the Reynolds number (Re) and the Hed-
strom number (He) is applicable for laminar flow of Bingham fluids. This formula, known as
the Buckingham-Reiner equation, is briefly derived here for completeness; for a more detailed
derivation, please see Ref. [4].

Given that the radial shear stress is τrz = (− ∂ p
∂z ) r

2 and the velocity is zero at the pipe wall, we
can integrate the Bingham rheological model, τrz = τy − μ( dU

dr ), with respect to the radial position
r. This leads to

U (r) =
(−∂ p

∂z

)
R2

4μ

(
1 − r2

R2

)
− τy

μ
R
(

1 − r

R

)
, (6)

in the fluidlike region, Rp � r � R. The corresponding mean velocity profile (MVP) in the plug
region can be obtained by substituting r = Rp in the equation above. This yields

Up(r) =
(−∂ p

∂z

)
R2

4μ

(
1 − Rp

R

)2

, (7)

in the plug region, 0 � r � Rp. After integrating the velocity profiles over the cross-sectional area
of the pipe, we arrive at the expression for the mean velocity Ū given by

Ū = Q

πR2
= R2

8μ

(
−∂ p

∂z

)(
1 − 4

3
φ + 1

3
φ4

)
. (8)

Because φ = τy/τw = τy/(1/2) f ρŪ 2, one can replace this expression into Eq. (8), and divide both
sides by ρŪ 2, to obtain the Buckingham-Reiner equation for the laminar friction factor of Bingham
fluids in bulk coordinates:

f = 16

Re

[
1 + 1

6

He

Re
− 1

3

He4

f 3 Re7

]
. (9)

Figure 2 shows the laminar friction curves as functions of the bulk Reynolds number for
five different values of the Hedstrom parameter. We notice that although the Buckingham-Reiner
equation is certainly useful for many engineering applications, it does not reveal any additional
symmetries of the flow, besides the one imposed by a dimensional analysis. Moreover, its implicit
nature makes it cumbersome and costly to be calculated in large engineering projects regarding the
design of piping systems. In the following sections, we argue that the use of friction coordinates
is natural in the sense that it yields a simple explicit formula, and that it is closely related to the
existence of a renormalization symmetry group of laminar Bingham pipe flows.

Similarity relations and renormalization groups: Definitions. Thus far, our conclusions from a
dimensional analysis have been derived exclusively using Buckingham’s � theorem. In line with
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FIG. 2. Friction factor of laminar Bingham fluid flows in bulk coordinates.

the notation presented in Barenblatt’s work [5], we know that any physical relation of interest,

a = f (a1, . . . , ak, b1, . . . , bm), (10)

which depends on k dimensionally independent parameters a1, . . . , ak and m dimensionally depen-
dent parameters b1, . . . , bm can be made nondimensional in the form

� = �(�1, . . . ,�m), (11)

where, for i = 1, . . . , m,

�i = bγi
i

aγ1,i

1 · · · aγk,i

k

, (12)

and

� = aγ0

aγ1,0

1 · · · aγk,0

k

. (13)

The exponents γi, γ1,i, . . . , γk,i must be chosen in order to make �i and � dimensionless pa-
rameters. This normalization introduces a class of similarity groups, which we call Buckingham’s
similarity groups. These are well exemplified in Eqs. (4) and (5), and a more thorough discussion
can be found in Refs. [5–7]. Although the � theorem is proven to be effective in both theory
and experimental design, there are extended notions of similarity relations that are very useful
in scientific literature. The first one is called complete similarity, in which the function � above
converges sufficiently fast to a a nonzero limit when some of the parameters �l+1, . . . , �m go to
zero or infinity. In such a case, we can study an idealized version of the problem while also having
a clear instance of dimensionality reduction:

� = �(0)(�1, . . . ,�l ). (14)

Regrettably, the situation described is not the most common or general instance of similarity,
since the dependence on parameters �l+1, . . . ,�m typically exists regardless of their magnitude,
whether it is small or large. Nevertheless, there exists an additional category of similarity known
as incomplete similarity, which also occurs when the aforementioned parameters exhibit extremely
small or large values. For this kind of similarity, relation (11) becomes

� = �
αl+1

l+1 · · ·�αm
m �(1)

(
�1

�
β1
l+1 · · ·�δ1

m

, . . . ,
�l

�
βl

l+1 · · · �δl
m

)
. (15)
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This formulation can also be regarded as an instance of dimensionality reduction. In the context
of Buckingham’s � theorem, this type of similarity originates from the property of generalized
homogeneity associated with the function �. As a result, it is logical that it also gives rise to an
incomplete similarity group, referred to as the renormalization group. This group contains m − l
parameters and we will briefly discuss the process of obtaining it.

First, the dimensionally independent parameters will be fixed, i.e., a∗
1 = a1, . . . , a∗

k = ak , and we
will have the freedom of scaling the last m − l dimensionally dependent parameters by arbitrary
positive constants, that is, b∗

l+1 = Bl+1bl+1, . . . , b∗
m = Bmbm. Now, in order to find the proper

scalings for b1, . . . , bl and a, we will demand that the relationship (15) remains unaltered. This
implies that, for j = 1, . . . , l , we must have

�∗
j

�∗
l+1

β j · · · �∗
m

δ j
= � j

�
β j

l+1 · · · �m
δ j

, (16)

and also
�∗

�∗
l+1

αl+1 · · ·�∗
m

αm
= �

�
αl+1

l+1 · · · �αm
m

. (17)

By solving the system of equations defined by (16) and (17), we arrive at the aforementioned
renormalization group:

a∗
1 = a1, a∗

2 = a2, . . . , a∗
k = ak,

b∗
1 = Bβ1γl+1/γ1

l+1 · · · Bδ1γm/γ1
m b1, . . . ,

b∗
l = Bβl /γl

l+1 · · · Bδl /γl
m bl ,

b∗
l+1 = Bl+1bl+1, . . . , b∗

m = Bmbm, (18)

a∗ = Bαl+1γl+1/γ0

l+1 · · · Bαmγm/γ0
m a.

The significance of this group lies in the fact that, by construction, the relationship expressed in (15)
remains unaltered under the transformation (18) for all positive scaling constants Bl+1, . . . , Bm,
which we can also call group parameters. Consequently, if incomplete similarity is identified in any
physical phenomena, it can greatly simplify the processes of modeling and experimental design for
both physicists and engineers.

Incomplete similarity relation for the friction factor. For a specific Hedstrom number and
sufficiently low Reynolds number, the Reynolds stress term can be dismissed. Consequently, the
laminar velocity profiles represented by Eqs. (6) and (7) serve as reasonable approximations for
Bingham fluid flow within their respective valid domains, as detailed in Ref. [4].

Upon integrating these velocity expressions across the flow domain, Eq. (8) emerges, providing a
representation for the bulk velocity. Utilizing the definition of Reτ , this equation can be reformulated
as follows:

Ū = uτ Reτ

[
1

8
− φ

6
+ φ4

24

]
. (19)

Inserting (19) into Eq. (3), one obtains

f = 2
u2

τ

Ū 2
= 2

Re2
τ

[
1
8 − φ

6 + φ4

24

]2 . (20)

Therefore, the friction factor satisfies an incomplete similarity relation in the sense that

f = L(Reτ , He) = Re−2
τ F

(
He

Re2
τ

)
, (21)

where F (φ) = 2

[ 1
8 − φ

6 + φ4

24 ]2
.
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FIG. 3. Friction factor of laminar Bingham fluid flows in bulk coordinates—incomplete similarity collapse
of data.

This means that if one plots the quantity f Re2
τ against φ = He/Re2

τ , one obtains a single curve
for every possible laminar flow configuration. This is illustrated in Fig. 3, which shows the collapse
of all the points shown in Fig. 2 over the graph of the function F .

By following the reasoning in the previous section, one can use our incomplete similarity relation
to arrive at the following renormalization group,

μ∗ = μ, ρ∗ = ρ, D∗ = D,

τ ∗
y = B1τy,

(
∂ p

∂z

)∗
= B1

(
∂ p

∂z

)
, f ∗ = B−1

1 f , (22)

where B1 is a positive real number. We remark that this symmetry group cannot be obtained
through pure dimensional reasoning, and that there is no similar invariance relation in purely bulk
coordinates.

Incomplete similarity relation for the laminar velocity profile. We now extend the similarity
relations to the mean velocity profile. Let r̂ = r/R. By Buckingham’s � theorem, the velocity profile
can be rewritten either in bulk coordinates, as U = U (r; D, ρ, μ, τy, Ū ) = Ū(r̂, He, Re), which is
related to the following Buckingham’s similarity group,

μ∗ = A1μ, ρ∗ = A2ρ, D∗ = A3D, r∗ = A3r,

τ ∗
y = A2

1

A2A2
3

τy, Ū ∗ = A1

A2A3
U, U ∗ = A1

A2A3
U, (23)

or in friction coordinates, as U = U (r; D, ρ, μ, τy,
∂ p
∂z ) = uτ�(r̂, He, Reτ ), which is related to the

symmetry

μ∗ = A1μ, ρ∗ = A2ρ, D∗ = A3D, r∗ = A3r,

τ ∗
y = A2

1

A2A2
3

τy,

(
∂ p

∂z

)∗
= A2

1

A2A3
3

(
∂ p

∂z

)
,

U ∗ = A1

A2A3
U . (24)
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In friction coordinates, an explicit formula can be obtained by simple manipulation of Eq. (6),

U

uτ

= Reτ

1

4
[(1 − φ)2 − (r̂ − φ)2], (25)

for φ � r̂ � 1, and

U

uτ

= Reτ

1

4
(1 − φ)2, (26)

for 0 � r̂ � φ. This is a statement of incomplete similarity in friction coordinates in the sense that

U

uτ

= �(r̂, He, Reτ ) = Reτ �(1)

(
r̂,

He

Re2
τ

)
, (27)

for φ � r̂ � 1, where

�(1)(x1, x2) = 1

4
[(1 − x2)2 − (x1 − x2)2], (28)

and

U

uτ

= �p(He, Reτ ) = Reτ �(1)
p

(
He

Re2
τ

)
, (29)

for 0 � r̂ � φ, where �(1)
p (x) = 1

4 (1 − x)2.
This is related to the scaling of the mean velocity profile by the action of the following

renormalization group,

μ∗ = μ, ρ∗ = ρ, D∗ = D, r∗ = r,

τ ∗
y = B1τy,

(
∂ p

∂z

)∗
= B1

(
∂ p

∂z

)
, U ∗ = B1U, (30)

where B1 is a positive real number.
Let us illustrate this scaling phenomenon with the following example, following Ref. [8]:

Consider a set of four different configurations of Bingham plastic fluids with μ = 0.035 Pa s
and density ρ = 1200 kg/m3. Let us also assume a pipe effective diameter D = 0.1 m. Because
Reτ = (ρD/μ)uτ , and uτ = √

(−∂ p/∂z)D/4ρ, one can choose four different values of the param-
eter ∂ p/∂z so that Reτ ∈ {10, 100, 200, 400}, as well as four different values of the parameter τy so
that φ = He/Re2

τ = 0.2. In Fig. 4, we show three level curves of the parameter φ in the Reτ × He
plane. We also show the points associated with the parameters Reτ ∈ {10, 100, 200, 400} over the
level curve φ = 0.2. In Fig. 5, we show the velocity profiles associated with this set of parameters.
In Fig. 6, we illustrate the incomplete similarity phenomenon with the collapse of all curves on the
graph of �(1)(r̂, He

Re2
τ

= 0.2).

Conclusions. We have demonstrated that the friction factor and velocity profile of Bingham fluids
adhere to an incomplete similarity relation when expressed in friction coordinates. These similarity
relations correspond to the invariance of flow under the influence of their respective symmetry
groups.

It is crucial to highlight that the presence of yield stress breaks the symmetry of the laminar
velocity profile for simple Newtonian flows, which is otherwise characterized by complete similarity
in bulk coordinates. Indeed, when the yield stress (τy) is equal to zero, the laminar profile fulfills the
similarity condition in bulk coordinates,

U

Ū
= 2(1 − r̂2), (31)
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FIG. 4. Three different level curves for the parameter φ.

which is associated with the similarity group

μ∗ = μ, ρ∗ = ρ, D∗ = D,

Ū ∗ = B1Ū , U ∗ = B1U, (32)

where B1 is a positive real number. The corresponding relation for Bingham fluids is

U

Ū
= 1

4

[(1 − φ)2 − (r̂ − φ)2][
1
8 + φ

6 + φ4

24

] , (33)

for φ � r̂ � 1, and

U

Ū
= 1

4

(1 − φ)2[
1
8 + φ

6 + φ4

24

] , (34)

for 0 � r̂ � φ. These relations mix both bulk and friction coordinates, so that the complete similar-
ity relation (31) cannot be restored for positive values of φ.

FIG. 5. Velocity profiles for φ = 0.2 and four different values of Reτ .
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FIG. 6. Collapse of the velocity profiles in Fig. 5—incomplete similarity.

Determining the appropriate definition of the Reynolds number for non-Newtonian fluids has
long been a challenging endeavor [9,10]. We believe that our results will persuade readers that,
when the pressure gradient is accessible, friction coordinates (and thus Reτ ) should be preferred for
reasons of both similarity and simplicity. Our future work will focus on exploring similarity and
coordinate choices in other non-Newtonian flow categories, such as turbulent Bingham, as well as
laminar and turbulent Herschel-Bulkley flows.

From a practical standpoint, this work’s derivation of the incomplete similarity result carries
significant implications, enabling straightforward conversion of experimental data from pressure
drop terms into flow rate terms. As outlined in the Introduction, flow rate, and pressure drop cannot
be jointly prescribed for a given fluid with fixed parameters and constant geometrical setup (for pipe
flows, this refers to the radius).

In the scenario of laminar Newtonian flows, a straightforward relationship exists. Multiplying the
pressure drop by a factor B1 results in an equivalent multiplication of the flow rate. This relationship,
however, does not hold true for laminar Bingham fluids.

As defined by the friction factor, we have Ū 2 = (D/2ρ)(∂ p/∂z) f −1. This equation indicates that
altering the flow rate of a laminar Bingham fluid is not a simple matter of multiplying by a factor
B1, since f is also dependent on τy.

The renormalization group identities, as specified in Eq. (30), illustrate an incomplete similarity
relation. This implies that if one wants to adjust the flow rate of a laminar Bingham fluid by a factor
of B1, one must proportionally scale both the pressure drop and the yield stress. Therefore, in order
to achieve this, in addition to multiplying the pressure drop by B1, the yield stress must also be
multiplied by the same factor.

In conclusion, the behavior of Bingham fluid flow is more intricate than that of Newtonian flows,
requiring adjustments to both the pressure drop and yield stress in order to modify the flow rate.

This relationship cannot be deduced from straightforward dimensional analysis, nor from the
Buckingham-Reiner equation, which is formulated in purely bulk coordinates. The findings un-
derscore the distinctive rheological characteristics of Bingham fluids in laminar flow, challenging
conventional understanding and introducing different parameters to consider in fluid dynamics
analysis.

It is important to note that the conclusions drawn from this study may not be directly applicable
to turbulent flow conditions. This is primarily due to the limitations of Eqs. (6) and (7), which are
based on the assumption of a stationary flow and were formulated through an examination of the
plug region.
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In the realm of turbulent flows, this stable plug region does not persist, as referenced in Ref. [4].
When the Reynolds number increases for a given Hedstrom number, the flow transitions into a
turbulent state. In this turbulent regime, the influence of Reynolds stresses becomes substantial and
cannot be ignored in the equations of motion, resulting in the disintegration of the plug region.

For turbulence scenarios, several semiempirical formulas have been proposed, as mentioned
in Refs. [4,11,12]. These formulas attempt to capture the complex dynamics of turbulent flows,
illustrating the nuanced nature of this flow regime compared to the laminar flow of Bingham fluids.

To conclude, in the second section, we defined the incomplete similarity based on the classical
concept introduced by Barenblatt [5]. This idea involves a relationship that emerges when one
or more nondimensional quantities are notably small or large. For Bingham fluid flows with a
specific He number, laminarity is achieved when Reτ values are sufficiently low. Semiempirical
methodologies have been proposed to represent this transition, as illustrated in Refs. [8,13]. This
finding suggests the presence of an incomplete similarity region in the Reτ × He plane, where the
laminar approximation remains valid. As a result, a more comprehensive definition of incomplete
similarity is required, potentially benefiting various applications. We plan to create and introduce
such an extension in future research.
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