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The asymptotic energy dissipation is connected to the third-order scaling of the longi-
tudinal velocity increment magnitude in three-dimensional turbulence via the Kolmogorov
4/5 law. It is shown that the third-order longitudinal absolute velocity increment scaling
should not exceed unity for anomalous dissipation to occur, that is for nonvanishing
average dissipation in the inviscid limit—also known as the “zeroth law” of turbulence.
Conversely, if the third-order longitudinal absolute velocity increment scaling exceeds
unity, then the average dissipation must asymptotically vanish and the velocity increment
field will becomes symmetric at least at the level of its skewness. This Letter highlights the
importance of the third-order absolute velocity increment scaling in assessing the status of
the zeroth law of turbulence.
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A surprising phenomenon in three-dimensional incompressible turbulence is that the average
energy dissipation does not seem to decay with increasing Reynolds number. To account for this
enhanced dissipation, Onsager asserted that if the spatial Hölder exponents of the velocity field are
at most one-third, then the average dissipation can be nonzero in the inviscid limit [1]. Following a
result by Eyink [2], Onsager’s theorem was fully proved by Constantin et al. [3]. In particular, it was
shown that if the spatial Hölder exponents exceeded one-third, then the average energy dissipation
must vanish and energy will be conserved in the inviscid limit [3]. The Besov space formulation
of Ref. [3] also meant that if the third-order exponent of the velocity increment magnitude moment
exceeded unity, then the average dissipation must vanish asymptotically in the inviscid limit. Almost
all such theoretical studies on the asymptotic dissipation starting from that of Onsager until now
have related the energy dissipation to the scaling properties of the total velocity increment magnitude
field [1–4]. However, due to practical considerations, it is the projections of the total velocity
increments along the separation distances, known as the longitudinal velocity increments, that are
routinely measured in experiments and simulations [5,6].

The purpose of this Letter is to connect the average energy dissipation to the third-order scaling
exponent of the longitudinal velocity increment magnitude moment. This third-order connection
between energy dissipation and the longitudinal absolute velocity increment scaling is contrasted to
the already known connection between energy dissipation and the total absolute velocity increment
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scaling [3,4]. The implications of this result for the asymmetry of the small-scale velocity field in
the inviscid limit are also discussed.

Consider the three-dimensional divergence-free velocity uν := uν (x, t ) in a boundaryless domain
such as the 3-torus T 3. Here, ν is the kinematic viscosity of the fluid, x denotes position, and t
denotes time. Define the Reynolds number Re := u′�0/ν, where �0 is a (fixed) large length scale,
u′ := 〈|uν |3〉1/3 is the root mean cube of the velocity magnitude |uν |, and 〈·〉 denote space-time
averages. The average energy dissipation rate is given by

εν := ν
〈|∇uν |2〉 � 0. (1)

Consider the total velocity increment δ�uν and its longitudinal component δ�uν
‖ between two

distinct points separated by vector � ∈ R3 at distance � = |�| > 0 ∈ R, at given time t ,

δ�uν := uν (x + �, t ) − uν (x, t ), (2)

δ�uν
‖ := δ�uν · �/|�|. (3)

At order three, the longitudinal velocity increment moment and the longitudinal absolute velocity
increment moment, also known as the longitudinal structure function and the longitudinal absolute
structure function, respectively, are defined for any separation � as

S‖
3 (�) := 〈

(δ�uν
‖ )3

〉
, A‖

3(�) := 〈|δ�uν
‖|3

〉
. (4)

We note for later use that at any scale � the two structure functions are related by the triangle
inequality as

S‖
3 (�) � |S‖

3 (�)| � A‖
3(�). (5)

In what follows, we nondimensionalize all physical quantities using �0, u′, and �0/u′ as the
relevant length scales, velocity scales, and timescales, respectively. The dimensionless viscosity
becomes the inverse Reynolds number ν = 1/Re, and the asymptotic limit Re → ∞ is equivalent
to the inviscid limit ν → 0. We note that, in the following analysis, 〈|uν |3〉 = 1 due to the above
nondimensionalization.

For � > 0 we start with the trivial identity

4

5
εν = −S‖

3 (�)

�
+ 4

5
εν + S‖

3 (�)

�
. (6)

Using the triangle inequality and (5) we can bound the left-hand side of (6) as

4

5
εν � A‖

3(�)

�
+

∣∣∣∣∣
4

5
εν + S‖

3 (�)

�

∣∣∣∣∣. (7)

Since it follows from (3) that the longitudinal velocity increment magnitude cannot exceed the
total velocity increment magnitude at any �, i.e., |δ�uν

‖| � |δ�uν |, their corresponding third-order
moments are related as

A‖
3(�) �

〈|δ�uν |3〉 � 8, (8)

where the last inequality follows from Minkowski’s inequality. We now assume the following
power-law bound,

A‖
3(�) � 8�ξ3,‖ , (9)

where ξ3,‖ > 0 is the third-order longitudinal absolute scaling exponent, A‖
3(�) ∝ �ξ3,‖ . Our principal

assumption here is that bound (9) holds uniformly in viscosity ν ∈ (0, 1]. Substituting the upper
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bound (9) into right-hand side of (7), we get

4

5
εν � 8�(ξ3,‖−1) +

∣∣∣∣∣
4

5
εν + S‖

3 (�)

�

∣∣∣∣∣. (10)

In order to obtain the asymptotic dissipation, we first send ν → 0 and then send � → 0 in (10).
Since the left-hand side in (10) is � independent and ξ3,‖ is assumed to be ν independent, we get

4

5
lim sup

ν→0
εν � 8 lim

�→0
�(ξ3,‖−1) + lim

�→0
lim
ν→0

∣∣∣∣∣
4

5
εν + S‖

3 (�)

�

∣∣∣∣∣. (11)

Since the precise formulation of the Kolmogorov 4/5 law is given as [7–11]

lim
�→0

lim
ν→0

S‖
3 (�)

�
= −4

5
lim
ν→0

εν, (12)

the second term on the right-hand side in (11) vanishes to give

lim sup
ν→0

εν � 10 lim
�→0

�(ξ3,‖−1). (13)

Denoting the limit superior of the normalized dissipation as follows,

lim sup
ν→0

εν := ε∗, (14)

we can finally write (13) as

ε∗ � 10 lim
�→0

�(ξ3,‖−1). (15)

From (15) it follows that if ξ3,‖ > 1, then ε∗ = 0 and so the limit of the nondimensional dissipation
exists and is zero. That is,

If ξ3,‖ > 1 ⇒ ε∗ = lim
ν→0

εν = 0. (16)

In this case, the normalized dissipation vanishes and energy is conserved in the asymptotic limit
ν → 0. It follows from (16) that a necessary (but not sufficient) condition for ε∗ to be nonzero is
that ξ3,‖ � 1. We note that although (15) clarifies the fate of the asymptotic dissipation ε∗, it does
not provide a conditional decay rate for dissipation. Such a conditional dissipation decay rate is
provided in Ref. [4] in terms of the third-order total absolute structure function exponent ξ3, where
〈|δ�uν |3〉 ∝ �ξ3 .

Furthermore, in isotropic turbulence the integral scale �int is typically defined as [12]

�int := 3

2

π

〈|uν |2〉
∫ ∞

0

E (κ )

κ
dκ � 1, (17)

where κ is the wave-number magnitude and E (κ ) is the three-dimensional energy spectrum. If the
asymptotic dissipation ε∗ vanishes, that is, if (16) holds, then the asymptotic normalized dissipation
defined using �int must also vanish, since (17) implies

lim
ν→0

εν�int � ε∗. (18)

The upper bound (18) is especially useful in direct numerical simulations (DNS), where the
evolution of �int is often undercut by limited domain sizes (∼�3

0) [13]. In such a scenario, an
examination of εν rather than that of εν�int can be more insightful, since if the former vanishes,
then the latter must also disappear due to (18).

In the above analysis we have chosen 〈|uν |3〉1/3 as the relevant velocity scale, since 8〈|uν |3〉
is an upper bound of the third-order velocity structure functions as given in (8), hence such a
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normalization is physically relevant to the connection between the mean dissipation and the third-
order absolute velocity structure functions. Equivalently, one could choose the root-mean-square
(rms) velocity 〈|uν |2〉1/2 as the velocity scale and arrive at the same result (16) for the normalized
dissipation εν/〈|uν |3〉.

Discussion. The asymptotic behavior of turbulent dissipation is not only a problem of funda-
mental importance but it is also relevant to energy considerations in modeling turbulent drag, in
applications such as aerodynamics and fluid transport in pipelines [14–16]. Until now the asymptotic
dissipation has been connected to the third-order total absolute scaling exponent ξ3, which is seldom
measured in empirical studies. In this Letter, we have shown that under the assumption of the
Kolmogorov 4/5 law, the normalized dissipation εν/〈|uν |3〉 must vanish in the asymptotic limit
ν → 0, if the third-order longitudinal absolute exponent ξ3,‖ > 1. Such a normalization is in contrast

to the more traditional normalization of εν/〈|uν |2〉3/2, which uses the rms velocity instead [17]. A
natural question that arises here is whether the result (16) extends to dissipation normalized using
other large-scale velocity statistics as well.

In order to examine the specific choice of the normalized dissipation, we note that the prob-
ability density function (PDF) of the velocity field uν is dominated by nonuniversal large-scale
structures; hence its PDF need not be universal. However, all available data of the standardized
velocity component uν

α/〈|uν
α|2〉1/2 (with zero mean and unity variance) strongly suggest that it has a

(slightly) sub-Gaussian PDF core, which is independent of the Reynolds number [17–24]. That is,
low-amplitude velocity events |uν

α|/〈|uν
α|2〉1/2 � 4, which tend to dominate low-order normalized

moments (at least up until order four), assume a ν-independent, self-similar distribution [18–23].
This low-order, sub-Gaussian, ν-independent behavior is verified in Fig. 1, for the third-order
velocity component magnitude ratio 〈|uν

α|3〉/〈|uν
α|2〉3/2 in isotropic DNS, which appear to be tightly

bounded (from above) by the corresponding Gaussian moment [25]. Furthermore, the velocity
magnitude ratios at any order p � 1 are bounded by the corresponding component ratios in isotropic
turbulence, 〈|uν |p〉/〈|uν |2〉p/2 � 〈|uν

α|p〉/〈|uν
α|2〉p/2, and display a similar Reynolds number inde-

pendence for p = 3, as shown in Fig. 1. Also shown is the corresponding third-order moment ratio
for a divergence-free, three-dimensional, Gaussian random field (GRF) with the same two-point
velocity correlation as the DNS [26]. The ν-independent GRF third moment closely envelopes the
third-order velocity magnitude moment ratio, in a manner that is consistent with the low-order
sub-Gaussianity of uν . The upshot is that, due to observed low-order self-similarity of uν , the
normalized absolute velocity moment 〈|uν |p〉/〈|uν |2〉p/2 for p � 4 remains ν independent and hence
result (16) can be extended to other low-order normalizations of dissipation as well. Specifically,
the vanishing asymptotic limit (16) can be empirically extended to the pathologically normalized
dissipation εν/〈|uν |2〉3/2.

Having empirically reconciled the different normalization choices for dissipation, we turn to the
significance of this work in the following. At order three, the longitudinal absolute exponent ξ3,‖
is expected to be larger than the total absolute exponent, i.e., ξ3,‖ � ξ3. This is because 〈|δ�uν |3〉
includes the transverse velocity difference component, which is known to be more intermittent,
with a smaller associated exponent, even at order three [27]. It then follows from this work that
the asymptotic dissipation must vanish even if the total absolute exponent ξ3 � 1, as long as
the Kolmogorov 4/5 law is valid and ξ3,‖ > 1. Accordingly, it follows on empirical grounds that
result (16) is sharper than that of Refs. [3,4].

Another implication of this work is for the asymptotic longitudinal velocity difference field.
If ξ3,‖ > 1 and ε∗ = 0, it then follows from the exact Kolmogorov 4/5 law that asymptotically,
S‖

3 (�)/� → 0 [10,11]. Since the longitudinal velocity increment is known to scale linearly, S‖
3 (�) ∝

�1 in the inertial range [20,25], it must follow that, if ξ3,‖ > 1, then the third-order longitudinal
structure function S‖

3 (�) → 0 as ν → 0, due to cancellations in its power-law prefactor. This
implies that, if ξ3,‖ > 1, the velocity increment field will asymptotically become symmetric, at
least at the level of its skewness. In the Lagrangian context, this symmetrization will result in
the asymptotic mean-square particle displacement becoming time reversible [28]. This space-time
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FIG. 1. Third-order moments of (squares) velocity component magnitude |uν
α| and (circles) velocity vector

magnitude |uν |, normalized by the respective second-order moments, plotted against Reynolds number Re :=
〈|uν |3〉1/3�0/ν on log-lin scales, from DNS of three-dimensional, homogeneous isotropic turbulence on periodic
cubes with side length 2�0 = 2π ; ν is the kinematic viscosity [25]; statistics of uν

α are averaged over the
three Cartesian directions. Error bars correspond to the standard deviation of the temporal fluctuations of the
normalized moments in the statistically steady state. The dashed line at π1/4
(2)/
(1.5)3/2 is the normalized
third-order absolute Gaussian moment, where 
(·) is the gamma function; the solid line is the normalized
third-order velocity magnitude moment for a three-dimensional, synthetic, Gaussian random field (GRF); the
GRF is constructed on a 81923 grid with the same two-point correlation as that for the 81923 DNS at Re =
2.1 × 105 [26]. The shaded region is the statistical error bar (standard deviation) for the normalized absolute
third-order GRF moment.

recovery of reversibility, at least up to order three, in the vanishing dissipation case can have
important consequences in modeling the asymptotic limit ν → 0.

In the alternate scenario, where ξ3,‖ � 1 and ε∗ > 0, the small-scale asymmetry will persist at
all nontrivial orders. In particular, it will follow from the Kolmogorov 4/5 law that the velocity
increment field will have nonvanishing (negative) skewness in the asymptotic limit, S‖

3 (�) < 0 as
ν → 0. The nonzero asymptotic dissipation will manifest in temporal asymmetry of the kinetic
energy of particles in the asymptotic limit, ν → 0, that is different short-time particle dispersion in
forward and backward time, in the Lagrangian setting [28].

Finally, a few remarks about the Reynolds number scaling of the asymptotic dissipation from
experiments and simulations are in order. A majority of the empirical studies with few exceptions
have observed a nontrivial independence of the normalized turbulent energy dissipation on the
Reynolds number—this phenomenon, known as dissipative anomaly, has been accorded the status
of the “zeroth law” of turbulence [29–34]. A direct assessment of dissipation scaling is challenging
because of the large timescales of the quantities involved. This translates into longer statistically
steady-state run times at ever increasing Reynolds numbers for both experiments and simulations, a
prohibitively expensive proposition.

In contrast, probing the validity of the zeroth law using the third-order longitudinal absolute
scaling exponent is more favorable due to the following reasons. First, inertial range moments evolve
over shorter timescales than large-scale quantities, which means that experiments and simulations
require shorter run times to capture their temporal evolution [35]. Second, third-order moments
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have less stringent resolution requirements than higher-order moments, hence they can be measured
with greater accuracy. Lastly, longitudinal velocity differences are one-dimensional cuts from the
total velocity difference tensor, hence are more feasible to measure in experiments. Despite these
advantages, the third-order longitudinal absolute scaling exponent has largely been overlooked,
with some exceptions [20,23,36–40]. Nevertheless, almost none of the empirical studies so far have
connected the third-order absolute exponents to the phenomenon of dissipative anomaly.

Consequently, in this Letter we have highlighted the importance of the third-order absolute
exponents to the Reynolds number scaling of turbulent dissipation. Under the assumption of the
Kolmogorov 4/5 law, we have shown that, if ξ3,‖ > 1, the mean turbulent energy dissipation must
vanish in the infinite Reynolds number limit, that is, the zeroth law of turbulence will be violated.
Alternatively, if the third-order longitudinal absolute exponent ξ3,‖ � 1, then dissipative anomaly
can hold strictly. An examination of the Reynolds number evolution of the third-order scaling of
both longitudinal and total velocity increment magnitudes might be pivotal in asserting the fate of
the zeroth law of turbulence. Such a study over a wide range of Reynolds number will be reported
as future work.
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discussions. This work used Stampede2 at Texas Advanced Computing Center through allocation
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