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Realistic currents in seas and oceans are almost always changing in depth thus indicative
on the presence of shear in the profile of the mean ambient flow. However, analysis
methodologies interpreting directional wave data gathered by in situ measurement instru-
ments such as buoys, pressure gauges, and acoustic Doppler current profilers (ADCPs)
utilize potential irrotational flow theory which cannot account for the rotational shearing
currents. The effects of shearing currents on the wave direction estimations were studied
on numerically simulated ADCP data of waves propagating in a predetermined spread. The
numerical data was generated employing the Rayleigh boundary-value problem (BVP) and
a selected ambient current profile. The potential data processing led to significant errors in
wave directional spread estimation for common shearing currents (up to ≈10◦ in mean
wave direction for the presented example). This finding is of great importance because
it addresses the influence of an ambient current profile on wave propagation direction.
The obtained results suggest that there is an uncertainty with the confidence of any wave
directional spread ever presented by in situ wave measurement devices. Here, we developed
an approach for estimating directional wave spectra based on rotational flow physics by
acquiring terms emanating from wave-shearing current interaction governing equations.
This included a derivation of numerical transfer functions for the fluid’s physical properties
based on the Rayleigh BVP. Then, by applying classical cross- and auto-spectral analysis
on time-series data sets, the directional spread function was numerically reconstructed.
This derived data processing methodology was applied to the same numerically simulated
ADCP data sets. It was found to be capable of reconstructing the spread with great accuracy
(0.4◦ in mean wave direction for the presented example). This makes it a prominent
methodology for estimating directional wave spectra in realistic oceanic conditions.
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The wind wave directional spread function is a key parameter in characterizing a wave field. It
has many implications for oceanographic, environmental, and maritime engineering applications.
Statistics of wave heights and periods can be directly reproduced just from a single analog record
of the sea elevation. However, the estimation of the wave direction is more complex especially
for in situ measurement sensors, such as directional wave buoys, current meters, or wave gauge
arrays. There are several types of sea measurement instruments and sensors providing estimation
for the wave directional spectrum. Their records are processed according to wave potential theory,
where the random sea wave motion is described as weakly stationary, and ergodic random stochastic
process.
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Originally, wave directional spectrum estimations were carried out by deploying an array of
bottom pressure gauges. Cross-spectra products were conducted between the gauges, and the known
distances between them completed the required information. As the number of pressure gauges
increased, the wave directional spectrum resolution improved. Optimal pressure sensor array shapes
were suggested by Refs. [1,2]. Longuet-Higgins invented a pitch-roll buoy–the first in situ point
sensor instrument supplying the directional wave spectrum. This buoy provided three datasets: sea
elevation record obtained by an accelerometer mounted on a gimbal and pitch and roll records
obtained by two gyroscopes [3]. Kuik developed a model-free parameters processing method for
buoys [4], relying on the previous works of Refs. [5,6]. Nowadays, wave rider buoys equipped with
vertical and horizontal accelerometers are common and their data processing is carried out in a
similar manner [7–9].

Another technique to estimate the directional spreading function is to measure the pressure and
two components of the wave oscillatory velocities (commonly referred to as PUV). It is suitable for
measurement of wave directions in areas of finite water depth. The basic principle for estimating the
directional wave spectra by PUV is similar to that of the pitch-roll buoy. One of the frequently
employed PUV-meter instruments is acoustic Doppler current profiler (ADCP). The horizontal
oscillatory velocities are related to the sea elevation by applying transfer functions defined according
to potential wave theory similarly to buoys:

Kp(ω, z) = ρg
cosh k(z + h)

cosh kh
, (1)

Kc(ω, z) = ω
cosh k(z + h)

sinh kh
. (2)

Here, Kp(ω) is the transfer function for the pressure, Kc(ω) is the transfer function for the oscillatory
horizontal velocity measurements, ω is the wave radial frequency, z is the sensor level, and h is
the bottom depth. The wave numbers k are calculated according to potential dispersion relation
over a constant depth. In later generations of ADCPs, the sea elevation is measured directly by an
acoustic surface tracking (AST) vertical beam not requiring (1) (commonly referred to as SUV).
Statistical approaches have been studied to improve the directional spread function estimation (see
Ref. [10]) including the popular maximum likelihood method (MLM) [11–15]. Wave directional
spectra are widely employed in data assimilation in numerical meteorological forecast models.
Statistical analysis of mean wave parameters clearly shows that the use of spectral information yields
a better estimate of wave frequency, direction, and low-frequency wave height in comparison with
the results based upon assimilation of wave heights only in WAM model [16]. Recently, the Sofar
Spotter network, which is composed of over 600 globally distributed, free-drifting marine weather
buoys [17–19], were employed the first operational spectral wave data assimilation, improving
forecast accuracy of bulk parameters and spectral characteristics [20]. The conventional methods
for estimating the directional spectrum from measurements conducted by wave gauge arrays,
directional wave buoys, and ADCPs employ potential flow theory. This means that only zero or
uniform ambient currents can be accounted for. Nevertheless, in common oceanic flows the ambient
currents can change in depth (vertically shearing currents) significantly affecting the oscillatory
wave properties including the dispersion relation (see, e.g., Ref. [21] for nonviscous flows and
Ref. [22] for turbulent flows). Recent works employed rotational theory of second order and studied
the probability of rogue waves obtained from measurements and found that waves are significantly
reduced and enhanced during ebb and flood [23]. That research followed previous studies [24,25]
and led the author to conclude that shearing currents need to be accounted for in wave modeling and
prediction.

Although the theory relating the waves to shearing currents has existed for almost 50 years,
this effect has not been accounted for in data processing of directional wave spectra obtained
by wave buoys, pressure gauges, and ADCPs. The current study shows that the wave directional
spectrum processed using potential theory has significant flaws for realistic oceanic flow conditions.
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FIG. 1. Example of monochromatic wave
→
k propagating in x direction in the presence of perpendicular

linear shearing current v(0)(z). The error of the estimated wave direction θ̂ according to potential theory is

related to the simple projection caused by the actual first-order velocities u(1)(z), v(1)(z), forcing
→
k̂ to be aligned

with them.

In potential theory, shearing current effects cannot be accounted for due to the theory’s inherent
irrotationality. To demonstrate the limitation of the potential approach in wave directionality esti-
mation, a simplified case of a monochromatic wave propagating in the x direction in the presence of
a perpendicular linear current v(0)(z) applied in the y direction (see Fig. 1) is presented. The linear
current is v(0)(z) = α(h + z) + β with z varying in [−h, 0], and α and β are constant coefficients.
The wave physical oscillating parameters in the presence of shearing currents are related each to
other due to interaction terms showing their mutual dependence [26] via Rayleigh boundary-value
problem (BVP); see, e.g., Ref. [27], and also described in detail in the Supplemental Material [26].
The BVP’s solution for the oscillating horizontal velocity vector

−→
U (1)(z) = [u(1), v(1)]T is defined

via the oscillating vertical velocity w(1)(z) and the mean horizontal velocity
−→
U (0)(z) = [u(0), v(0)]T

as

−→
U (1) = i

−→
k ωd

k2

∂

∂z

(
w(1)

ωd

)
− iw(1)

ωd

∂
−→
U (0)

∂z
, (3)

where ωd is the intrinsic frequency. At first glance one may think that as the wave is perpendicular
to the ambient flow, it should not be affected, and indeed the Rayleigh equation for linear shearing
current is degenerated to the homogeneous Laplace’s equation (as in the potential case). Since the
chosen shearing flow is orthogonal to the wave propagation direction, the dispersion relation also
remains as in the potential case, and ωd (z) = ω. Nevertheless, in further inspection, the oscillatory
flow has a horizontal component in the perpendicular direction v(1) which does not appear under
irrotational assumptions (3), since ∂

−→
U (0)/∂z is zero in potential case. This means that potential

flow data analysis neglecting the wave-current interaction has an inherent problem of accurately
predicting wave directionality. According to the potential approach the estimated wave propagation
direction θ̂ will be aligned with

−→
U (1)(z) and will differ from the actual predetermined direction

θ = 0◦. The error is dependent on the shear slope magnitude and the wave period and length as
follows:

θ̂ − θ = arctan

(
v(1)|z=0

u(1)|z=0

)
= arctan

(−α tanh kh

ω

)
. (4)

For a wave of T = 10 s, h = 10 m, and a slope of α = 0.1 s−1, the error in the estimation is −5.4◦,
so the potential interpretation is that the wave is approaching from a more northern direction. This
simplified example demonstrates the necessity in accounting for the shearing current to avoid errors
in directional analysis. In this Letter we present an interpretation methodology based on rotational
flow theory instead of a potential one. It manages to more accurately estimate the directional
wave spectra and specifically the mean wave direction, while accounting for the ambient shearing
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current effects. We introduce a processing method for wave directional power density spectrum
estimation based on the Rayleigh BVP. It also provides a more accurate dispersion relation. The
linear description of the sea elevation η(x, y, t ) is

η(x, y, t ) =
∫

ω

∫
θ

η(1)(∂ω, ∂θ )P(x, y, t ), (5)

P(x, y, t ) = exp [i(k cos θx + k sin θy − ωt + φ)], (6)

where η(1)(∂ω, ∂θ ) is the wave amplitude. As stated by Refs. [7,14], from the physical point of
view, η(1)(∂ω, ∂θ ) means the amplitude which represents the energy within intervals [ω,ω + ∂ω]
and [θ, θ + ∂θ ]. These wave amplitudes are proportional to

√
∂ω∂θ . Other physical properties are

noted as ξ (x, y, z, t ),

ξ (x, y, z, t ) =
∫

ω

∫
k
ξ (1)(∂ω, ∂θ, z)P(x, y, t ), (7)

ξ (1)(∂ω, ∂θ, z) = Hξ (ω, θ, z)η(1)(∂ω, ∂θ ). (8)

Here, Hξ (∂ω, ∂θ, z) is a transfer function establishing the relation between η and any physical
property ξ , such as horizontal velocities, vertical velocity, accelerations, pressure, etc. It is computed
using

Hs
ξω,θ,z

=
∫ ω+�ω

ω

∫ θ+�θ

θ
ξ (1)(∂ω, ∂θ, z)∫ ω+�ω

ω

∫ θ+�θ

θ
η(1)(∂ω, ∂θ )

= ξ
(1)
ω,θ,z

η
(1)
ω,θ

, (9)

where ξ
(1)
ω,θ is the oscillatory amplitude of any wave physical property, and η

(1)
ω,θ is the surface

elevation amplitude. We evaluated the transfer function Hξ (∂ω, ∂θ, z) accounting for the shearing
currents in accordance to numerical solutions of the BVP substituted in (9) to replace the potential
transfer functions. The case of an ADCP employing of three data-sets of pressure and horizontal
velocities PUV is reviewed. The transfer functions Hs

iω,θ
were derived using (9) together with the

BVP solutions. After some mathematical simplifications, they take the form

Hs
pω,θ

(z) = αω,θ (z)r(θ ), (10)

Hs
uω,θ,z + 2c(3)

ω,θ,z = r(θ ) cos θ, (11)

Hs
vω,θ,z + 2c(2)

ω,θ,z = r(θ ) sin θ, (12)

r(θ ) = {
c(1)
ω,θ,z + 2

[
c(3)
ω,θ,z cos θ + c(2)

ω,θ,z sin θ
]}

, (13)

with the c(i) coefficients defined at the measurement depth z = z0 as

c(1)
ω,θ

(z0) =
∂w

(1)
ω,θ

(z0 )
∂z ωdω,θ

(0)

kω,θw
(1)
ω,θ

(0)
, (14)

c(2)
ω,θ

(z0) =
∂v(0) (z0 )

∂z w
(1)
ω,θ

(z0)ωdω,θ
(0)

2w
(1)
ω,θ

(0)ωdω,θ
(z0)

, (15)

c(3)
ω,θ

(z0) =
∂u(0) (z0 )

∂z w
(1)
ω,θ

(z0)ωdω,θ
(0)

2w
(1)
ω,θ

(0)ωdω,θ
(z0)

, (16)

αω,θ (z0) = ρωdω,θ
(z0)

kω,θ

. (17)
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c(i)
ω,θ (z0) are discrete coefficients that are calculated numerically via the solution of the BVP for each

wave radial frequency ω and direction θ .
For the simplified case without a current, c(2)

ω,θ,z0
, c(3)

ω,θ,z −→ 0, the radius r(θ ) does not depend on
θ , and the transfer functions degenerate to the potential ones Kp, Kc defined in (1) and (2). In this

case, the direction of
−→
U (1) coincides with the one of the wave

−→
k . This results in a simple polar

projection of the velocity vector on the x and y directions, i.e., cos θ and sin θ , respectively, as seen
in equations (11) and (12). When waves propagate in the presence of a shearing current, c(2)

ω,θ and

c(3)
ω,θ do not vanish and r(θ ) depends on θ . The transfer functions depend on the ambient current

−→
U (0) and its shear ∂

−→
U (0)/∂z as seen in (15) and (16). The pressure transfer function (10) depends

now on θ preventing the simple use of Kp. For the horizontal velocity transfer functions (11) and

(12), this results in a more complex projection that corrects the deviation caused by
−→
U (1) assumed

by the potential approach.
Cross-spectra of two time series ξm(t ), ξl (t ) (7) can be described as a reconstruction of a Fourier

series with unknown Fourier coefficients ân, b̂n. The cross-spectra products per frequency ω are
summed over all directions for a predetermined directional discretization step �θ in order to employ
the rotational derived transfer functions (9)

[Sml ]ω = Sω

∑
θ

Hs
mω,θ,z

Hs�

lω,θ,z

1

π

[
1

2
+

∑
n

(̂an cos(nθ ) + b̂n sin(nθ ))

]
�θ. (18)

A pair of m, l independent measurement records can yield two auto-spectra and one cross-spectrum
equations. The number of Fourier coefficients that can be solved is dependent on the number of the
independent records. The solution of the Fourier coefficients enables constructing the directional
spread function for a selected frequency

Sω(θ ) = Sω

1

π

[
1

2
+

∑
n

(̂anω
cos(nθ ) + b̂nω

sin(nθ ))

]
. (19)

An example of an application of the developed methodology is shown by employing numerically
simulated data. We generated three data-sets as ADCP records employing an AST beam providing
time-series of the surface elevation η and east and north horizontal velocities u, v (SUV). The use
of artificially simulated data for testing the methodology has a great advantage since it enables
comparison between the predefined directional wave spectrum with the reconstructed one. A similar
approach was successfully used in studies of turbulence [28,29]. The case of an ADCP was chosen
since it is capable of providing the ambient current record u(0), v(0), the oscillatory records u(1),
v(1), and η. Employing this data processing methodology for the three records would yield six
expressions (18) for any pair of m and l . The first auto-spectrum equation Sηη denotes the energy
spectrum Sω. It is employed in scaling all the other expressions. The equations are arranged in a
linear matrix form to solve ân, b̂n coefficients per frequency,

⎡⎢⎢⎢⎢⎣
a1ηu b1ηu a2ηu b2ηu

a1ηv b1ηv a2ηv b2ηv

a1uu − a1vv b1uu − b1vv a2uu − a2vv b2uu − b2vv

a1uv b1uv a2uv b2uv

⎤⎥⎥⎥⎥⎦
ω

⎡⎢⎢⎢⎢⎣
â1

b̂1

â2

b̂2

⎤⎥⎥⎥⎥⎦
ω

=

⎡⎢⎢⎢⎢⎢⎢⎣

Sηu

Sω�θ
− a0,ηu

Sηv

Sω�θ
− a0,ηv

Suu−Svv

Sω�θ
− (a0,uu − a0,vv )

Suv

Sω�θ
− a0,uv

⎤⎥⎥⎥⎥⎥⎥⎦
ω

.

(20)
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FIG. 2. Simulation setup. kω0,θ is the predetermined single-frequency wave spread according to Longuet-
Higgins-Mitsuyasu where the mean direction is θ = 0◦, and �U (0) is the ambient current direction projected on
x and y in 1 : 3 ratio as �u(0), �v(0), respectively.

Here,

a0,ml = 1

2π

∑
θ

[
Hs

m

]
ω,θ,z

[
Hs�

l

]
ω,θ,z, (21)

an,ml = 1

π

∑
θ

[
Hs

m

]
ω,θ,z

[
Hs�

l

]
ω,θ,z cos nθ, (22)

bn,ml = 1

π

∑
θ

[
Hs

m

]
ω,θ,z

[
Hs�

l

]
ω,θ,z sin nθ. (23)

There are five possible equations and only four unknowns (n = 2). The auto-spectra Suu, Svv can be
combined into one equation Suu − Svv as can be seen in the matrix third row (20). It is followed from
the derivation of â2 in the potential approximation. Without a shearing current profile, the solution
of the Fourier coefficients degenerates to the potential solution [7]. Thus, the total number of
equations is four. The estimated mean wave direction θ̂m is obtained according to the first-harmonic
Fourier coefficients,

θ̂m = arctan

(
b̂1

â1

)
. (24)

The method for deriving the wave directional spectrum was tested for the case of single fre-
quency (monochromatic) waves propagating over a constant bottom depth of h = 25 m. Waves
of T0 = 12.8 s ( f0 = 0.78 Hz) were simulated in the presence of an exponential ambient current
profile defined as |U (0)| = (u(0)2 + v(0)2

)1/2 = exp(0.25 m−1z). U (0) was inclined to the waves mean
propagation direction in 72◦ corresponding to 1 : 3 ratio of its horizontal components u(0)(z),
v(0)(z). Wave energy of 30 m2/Hz was distributed to predetermined directions according to a spread
function G(θ ) = G0 cos2s( θ−θ0

2 ) [3,30]. The wave mean direction θ0 was set to 0◦ corresponding to
waves propagating from west to east (Fig. 2). The power was set to s = 10 that leads to a relatively
narrow band corresponding to wind waves.

The simulation was carried out in two stages. The first stage provided three data sets (ηuv) as
could have been recorded by an ADCP instrument accounting for the ambient current profile. The
wave amplitudes η

(1)
ω,θ were calculated according to their relation to the directional density spectrum

via ηω,θ = (2S2
ω,θ�ω�θ )1/2. These wave amplitudes and the ambient current profile u(0), v(0) were

provided as the input for the simulation with the directional angular step given as �θ = 1◦. The
BVP was solved using the Maple mathematical software for each direction. The numerical solution
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FIG. 3. Directional dispersion relation. The solid line indicates the current direction, while the dashed line
is the opposite direction.

yielded the wave numbers kω,θ and the vertical velocity profiles w
(1)
ω,θ . The vertical profiles were

scaled according to their wave amplitudes. Then, the horizontal oscillatory velocities u(1)
ω,θ , v

(1)
ω,θ

were calculated via (3).
The second stage included the data processing of the directional spectrum from the three data

sets according to the derived methodology and the common potential methodology. Data sets of
2048 s requested to evaluate reliable spectra were sampled at a typical, for wind waves, sampling
frequency of 2 Hz. The horizontal oscillatory velocities were computed at z = z0 = −2 m (≈0.1h)
as done in realistic ADCP measurement due to the inaccurate backscatter from the uppermost layer.
The time series of the sea elevation η(t ), the east velocity u(t )|z0 , and the north velocity v(t )|z0 were
generated by employing an inverse fast Fourier transform (IFFT) with uniformly random phases
φω,θ . The number of realizations was set to N = 10 000 in order to eliminate, as much as possible,
phase influence within the calculation time and computational limit and reduce the error of the wave
spread function

Ŝ f ,θ = 1

N

N∑
i=1

(S f ,θ )i. (25)

The data processing for the generated data sets was carried out for all frequencies and all
directions as in actual ADCP data processing. The estimation of the directional spread Ŝ f ,θ was
carried out twice. The first estimation employed potential wave transfer functions, where the
Fourier coefficients were calculated according to potential theory equations. The second estimation
employed the new method while accounting for the ambient current velocity profile. The BVP was
solved again, now for all wave frequencies and directions. This determined the complete dispersion
relation cone and the rotational numerical transfer functions. The Fourier coefficients were solved
according to the relations between the cross-spectra products (20)–(23). The dispersion relation
cone for each frequency and direction is shown in Fig. 3. Figure 4 presents the spread functions
for the case study. The black line indicates the original spread, and the dashed black line shows its
reconstruction by accounting for Fourier coefficients of the input up to the second harmonics. This
line provides the most accurate spread estimation which can be expected from analyzing triplet array
of three independent records (η, u, v). The mean wave direction is determined by employing the
first-harmonic coefficients (24), in accordance with its definition. The shape of the spread function
may be improved when accounting for more harmonics (additional orders of Fourier coefficients),
but it requires more sensors like in ADCP beam array data processing or clover leaf buoys along with
an average current profile. However, the data processing with more sensors employed according
to potential theory would yet suffer from the same biased mean wave direction. On the contrary,
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FIG. 4. Processed spread functions G( f , θ ) of the single-frequency waves.

as explained in the paper, the mean direction is of utmost importance in many coastal problems,
in particular in sediment transport. The dotted green line shows the spread obtained from the
potential data processing, and the dashed blue line shows the spread obtained by the rotational data
processing method accounting for the shearing current. The vertical lines indicate the corresponding
mean direction. The difference between the original input mean direction to those obtained by the
data processing are denoted as �θ

p
m and �θ s

m for the potential and the shearing currents methods,
respectively.

It can be clearly seen that the shearing current has an important role in acquiring a correct spread
estimation. Ignoring its existence in potential data processing resulted in large errors with �θ

p
m =

10.3◦. This data processing methodology, which accounted for shearing current effects, provided a
significantly more accurate spread estimation with a �θ s

m of only 0.4◦ together with an excellent
and far superior agreement to the original reconstructed second-harmonic spread. The effect of the
exponential current inclination compared with the mean wave direction on estimating the mean wave
direction was tested for different inclinations in steps of 15◦ (Fig. 5). Note that the dispersion relation
and the transfer functions are derived only according to the mean current profile (zero-order), and

FIG. 5. Mean wave direction estimation error dependent on the exponential current inclination to the mean
wave direction. As the perpendicular current component grows so is the error in the mean wave direction
estimation. The small error variability with shear is due to the limited number of realizations and is less than
�θ for all inclinations, and is given in absolute value.
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FIG. 6. Transfer functions Hu and Hv of the monochromatic wave.

that their solution is linear for any wave amplitude. The transfer functions for the monochromatic
wave frequency are shown in Fig. 6. The significant differences between the rotational transfer
functions Hs

u , Hs
v and their potential counterparts H p

u , H p
v both in shape and in magnitude explain

the large differences between the obtained spreads.
The above findings reduce the confidence in validity of all wave data processing ever made for

field measurements of pressure gauges, wave buoys, and ADCPs. The potential approximation is
considered for many years as a reliable common practice in computing wave directional spectra
estimations and is extensively used all over the world in field and laboratory measurements, and
in calibration and validation of oceanic meteorological forecast models, and in coastal sediment
transport models [31]. The ambient current data is commonly available in ADCP measurements.
This allows us to reprocess their data with the derived method. When the ambient current conditions
are not available, they can be evaluated from circulation models. Considering the inaccuracies of
the commonly used potential methods, the reprocessing of years of historical data sets is apparently
inevitable. This method has the potential to become a leading method for sensor data processing in
maritime environment and in laboratories.
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