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Viscosity ratio across interfaces controls the stability and
self-assembly of microrollers
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We investigate the individual and collective dynamics of torque-driven particles, called
microrollers, near fluid-fluid interfaces. We find that the viscosity ratio across the interface
controls the speed and direction of the particles, their relative motion, the growth of a
fingering instability, and the self-assembled motile structures that emerge from it. By
combining theory and large scale numerical simulations, we show how the viscosity ratio
across the interface governs the long-range hydrodynamic interactions between particles
and thus their collective behavior.
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The motion of small driven particles near interfaces is observed in numerous biological and
artificial systems [1–3]. Examples include droplets filled with self-propelled particles, where
hydrodynamic couplings between the particles and the surrounding fluid-fluid interface induce
collective motion and translation of the droplet [4–9]. Navigation near interfaces also happens in
natural environments with air-water interfaces, such as marine foams [10] or films [11–13], and in
biomedical environments where microswimmers move near soft vessel walls, viscoelastic media
(biofilms, gels, tissues), or mucus layers [14–16].

Among them, spinning particles, such as torque-driven colloids (also called microrollers), use
rotation-translation couplings near surfaces to self-propel. Synthetic microrollers are actuated by an
external magnetic field rotating about an axis parallel to the interface. The orientation of the mag-
netic field can be varied over time to guide these particles in a variety of environments. Thanks to
their steerability and to the strong long-range flows they generate, they offer promising perspectives
for particle micromanipulation, fluid pumping, and drug delivery in microfluidic and biological
systems [17–24]. Above a rigid wall, hydrodynamic interactions between microrollers induce a
variety of collective motions such as periodic leapfrog orbits [25,26], the formation of fast moving
layers [27–29], the emergence of dense fronts [30], and the growth of a fingering instability that
releases stable motile clusters [31–33]. However, despite the rich and well documented dynamics
observed above rigid boundaries, little is known about their collective behavior near interfaces.

In this Letter, we combine theory and simulations to investigate the dynamics of microrollers
near fluid-fluid interfaces. We show how the viscosity ratio across the interface, denoted ξ , modifies
the flow around the spinning particles, with amazing consequences on their individual and collective
motion. At the individual level, we find that ξ controls the direction and speed of a single microroller.
At the pair level, ξ acts as an order parameter on their relative motion that determines the existence
of periodic orbits. At the collective level, ξ controls both the growth rate of the fingering instability
initially observed above a no-slip surface, and the self-assembly process that leads to the emergence
of motile clusters. As discussed in the conclusions, the ability to control the macroscopic response
of these active suspensions opens promising perspectives for microfluidics applications.
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FIG. 1. (a) Schematic of a torque-driven particle above a fluid-fluid interface. (b) Self-induced velocity of
the particle v0 in response to a constant torque τ as a function of ξ = ηout/ηin and normalized height h/a.

We consider the motion of small torque-driven spherical particles with radius a suspended in
a fluid with dynamic viscosity ηin above a fluid-fluid interface [Fig. 1(a)]. The outer fluid on the
other side of the interface has dynamic viscosity ηout which can vary from zero (e.g., air) to +∞ (a
rigid wall). We denote ξ = ηout/ηin the viscosity ratio between the two fluids across the interface.
In this work we consider particles with large contact angles that are not adsorbed to the surface
(such as paramagnetic beads above air/water surfaces [27]). In typical experiments the particles are
micron-sized [a = O(1)μm] and suspended in water (ηin = 10−3 Pa s). They rotate in synchrony
with an external magnetic field with frequency f = O(10)Hz thanks to a magnetic torque aligned
with the y axis denoted τ . The corresponding capillary number is Ca = ηinu/γ ≈ 10−6–10−5, where
u = ωa = 2π f a is the maximal fluid velocity, reached on the particle surface due to the no-slip con-
dition, and γ = O(10−2)N/m is the typical surface tension between the two phases. Owing to the
very small value of Ca and to the small size of the particles, the interface can be approximated as flat
and nondeformable for all values of ξ [34]. In this limit, one can compute the flow field around the
particles using the Green’s function G of the Stokes equations which, by linearity, is given by [35]

G = 1/(ξ + 1)GFS + ξ/(ξ + 1)GW , (1)

where GFS is the Green’s function of a domain bounded by a flat free surface and GW a domain
bounded by a flat no-slip wall, both of which have known analytical expressions based on image
systems [34,36].1 Changing ξ from 0 to +∞ in Eq. (1) transitions smoothly from a free surface to
a no-slip wall.

Single particle motion. Using the Faxen formulas for the motion of a spherical particle in a
nonuniform flow [38], the far-field approximation of the self-induced velocity of a single microroller
above the interface, is given by, see Supplemental Material [39],

v0(ξ, h/a) = 1
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where the velocity has been normalized by τ/8πηa2. Interestingly, the sign of the velocity in Eq. (2)
depends both on the viscosity ratio and the particle height [Fig. 1(b)]. Below a critical value ξc = 2
the velocity is always negative, even though the applied torque is clockwise, and decays as (a/h)2

for ξ = 0. This surprising backward motion has already been observed experimentally [27] and is
due to the fact there is no velocity gradient on the free-surface underneath. The particle therefore
experiences more viscous stress on its upper side, where velocity gradients are larger, than on
the lower side. As a result, the particle “rolls” on the liquid above, which resists more against
rotational motion, and thus moves backwards. When ξ � ξc, there is a critical height hc = √

ξ/2a

1Note that if the interface is not flat, e.g., near a small droplet, Eq. (1) involves additional terms that cannot
be written as simple linear combinations of GFS and GW [37].
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FIG. 2. (a) Effect of ξ on the periodicity of trajectories of two rotlets (blue and black disks) with identical
initial separation: x0

12 = 4. Red disk and dashed line: position and trajectory of the center of mass (xC, zC).
Black arrow: direction of motion of xC . (b) Phase diagram of rotlet orbits near the critical points as a function
of ξ and x12. Black line: critical distance x�

12. (c) Effect of ξ on the direction of motion of a pair with x0
12 = 2.

(d) Streamlines and flow field around a rotlet in the (x, z) plane for various ξ . Cyan solid line: isovalue uz = 0.
Cyan dotted line: z = 1. Cyan circles: position of the critical horizontal separation x�

12, reported below each
panel.

at which viscous stresses balance between both sides such that the particle rotates in place, i.e.,
v0(ξ > ξc, hc) = 0. v0 is positive below hc and negative above. In the limit of a no-slip wall,
ξ → +∞, v0 is always positive and decays as (a/h)4. These results show that both the direction
and speed of a rotating particle can be controlled with the viscosity ratio.

Pair dynamics. When adding another particle in the system, the trajectories exhibit a richer
dynamics than the individual motion described above: particles can follow a variety of periodic
orbits, change direction or end up translating at a steady speed [Figs. 2(a)–2(c)]. We consider
two torque-driven particles, lying in the (x, z) plane vertical to the floor and separated by a
distance r12 =

√
x2

12 + z2
12, where x12 = x1 − x2 and z12 = z1 − z2. For simplicity, we focus on the

limit a � min(r12, z1, z2), where the particles are considered as point-torques (rotlets) so that the
equations of motion can be written compactly as a simple dynamical system with three degrees of
freedom [39]:
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where zC = (z1 + z2)/2, and R12 =
√

x2
12 + 4z2

C . δv0 = − 1
4

1
ξ+1 ((zC + z12/2)−2 − (zC − z12/2)−2) is

the difference between the self-induced velocities in the point-particle limit. Here, lengths have
been rescaled by the initial height of the system lc = z0

C = zC (t = 0) and time by tc = 8πηl3
c /τ .

The dynamical system (3) has two critical saddle points with coordinates x�
± = (x12 = ±x�

12, z12 =
0, zC = 1), where x�

12 �= 0 is a zero of ż12(x12, 0, 1, ξ ) [39]. These critical points separate peri-
odic (leapfrog) and nonperiodic orbits, as shown in Fig. 2(b). Interestingly, their position, x�

12, is
controlled by the viscosity ratio ξ . To visualize this dependency, we examine the changes in the
topology of the flow field around a spinning particle as a function of ξ [Fig. 2(d)]. When ξ = 0
all the streamlines in the domain are closed and circular. As ξ increases, the region of closed
streamlines contracts in the vicinity of the particle, while open streamlines, which push the fluid
forward, occupy more space. To understand the effect of the flow on the periodicity of the orbits we
place the particles at the critical point x12 = x�

12, where z1 = z2 = 1 and we assume x1 > x2. At this
position their relative, and thus absolute, vertical velocity vanishes ż12 = 0 ⇒ ż1 = ż2 = żC = 0. x�

12
therefore corresponds to the intersection between the contour of zero vertical fluid velocity induced
by a particle, uz = 0, and the line z = 1 as shown on Fig. 2(d). If x12 > x�

12 then ż12 > 0 and the
particles cannot perform the leapfrog motion, as can be intuited by superimposing the flow of two
rotlets side by side [Figs. 2(a) and 2(d)]. Below a critical value ξc = 1, ż12 is always negative at
z = 1, which implies that there is no critical point x�

12 (uz = 0 and z = 1 never meet) and thus that
all the trajectories are periodic regardless of the initial separation [Figs. 2(b)–2(d)]. The viscosity
ratio therefore controls the existence of periodic orbits. The viscosity ratio also sets the speed and
direction of these periodic motions. In the limit ξ = 0 the backward motion is fastest and the height
of the system remains constant (żC = 0) [Fig. 2(c), left panel]. Otherwise the direction of motion
depends on the relative position of the particles so that, given an initial configuration, there is always
a threshold value for which the pair orbits in place [e.g., ξ = 3.66 for x0

12 = 4 in Fig. 2(c), middle
panel]. In the limit ξ = +∞, the pair always moves forward: ẋC = 6zCx2

12/R5
12 > 0 [Fig. 2(c), right

panel].
Collective dynamics. We further explore the dynamics at the collective level where large col-

lections of particles interact. In the rigid-wall limit (ξ → ∞) the suspension exhibits a cascade of
events: an initially uniform strip of particles forms a dense front which is subject to a transverse
fingering instability, from which the fingertips then detach to generate dense motile structures. As
shown in previous work, the wavelength at the onset of the instability is set by the mean height of
the front [31,32]. We investigate the effect of the viscosity ratio on this rich collective dynamics
using three-dimensional Stokesian dynamics simulations that include both hydrodynamic and steric
interactions between tens of thousands of microrollers above the interface [39]. Figure 3 a shows
the time evolution of 104 microrollers initially lying on a monolayer with area fraction φ = 0.65, at
a given height z0

C/a = 1.2, for various viscosity ratios ξ ∈ {0, 0.5, 1.5, 5,+∞} (see Supplemental
Material Movies 1–2). In the case of a no-slip wall, ξ = +∞, the strips evolves as described above.
The rollers inside the fingertips perform a treadmill motion that follows the clockwise rotation of
the torque. A few particles are occasionally shed from the front and lifted up by flow of the rotating
structures. When ξ = 5 the suspension behaves similarly with a slower forward motion. At a critical
value ξ ≈ 1.5, the suspension treadmills without translating, but the transverse instability still
occurs in place, leading to a lateral separation of the particles. Below that threshold, the suspension
self-assembles into a long roll treadmilling clockwise but moving backwards. When ξ = 0.5 the roll
is wavy due to the transverse instability, but evolves at a significantly slower rate, and sporadically
sheds particles from the rear. In the free-surface limit (ξ = 0), the transverse instability is suppressed
and the roll remains straight and stable. It does not shed any particle because, as shown in the
previous section, the streamlines of the flow induced by the microrollers are closed regardless of the
separation distance [Fig. 2(b), bottom panel]. Finally, we note that the mean height of the particles
in the fingertips slightly increases with ξ [Fig. 3(a), bottom panel], which in turn increases the
wavelength of the transverse instability. This is due to the upward advective flows ahead of the
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FIG. 3. (a) Time-evolution of 10,000 microrollers initially uniformly distributed in a monolayer (de-
limited by the black dotted lines) above the interface. Each color corresponds to a different value of
ξ ∈ {0, 0.5, 1.5, 5, +∞} simulated independently. Bottom panel: side view at t = 87.9. Arrows: direction of
motion. (b) Growth rate of the two line model Eqs. (4)–(5) for various ξ . Dashed line: fastest growing mode
kmax. (c) Maximum growth rate (solid cyan line) as a function of ξ . Dashed black line: prefactor ∼ξ/(ξ + 1)
due to the transverse flows generated above a no-slip boundary (inset).

particles that get stronger with ξ [see Fig. 2(b)] and allow the particles behind to lift the leading
front where the instability occurs.

In order to better understand the effect of ξ on the transverse instability, we use a simple model
consisting of two continuous lines of rotlets separated by a distance d in a plane parallel to the
interface at a constant height h. The lines are aligned along the y axis with rotlet density ρi(y, t ) and
position xi(y, t ), i = 1, 2. The model is governed by the equations of motion of each line together
with the conservation of rotlets along their length:

∂xi(y, t )

∂t
= ux(xi(y, t ), y)

∂ρi(y, t )

∂t
= −∂[ρi(y, t )uy(xi(y, t ), y)]

∂y

, i = 1, 2, (4)

where length and time have been rescaled with lc = h and tc defined above. The velocity (ux, uy) in
the right-hand side arises from the long-ranged hydrodynamic interactions between the microrollers
of each line, e.g.,

ux(xi, y︸︷︷︸
x

) =
2∑

j=1

∫ +∞

−∞
μuτ

x (xi − x j, y − y′︸ ︷︷ ︸
x−x′

)ρ j (y
′)dy′, (5)

where μuτ
x (x − x′) is the x component of the operator μuτ (x − x′) = 1/2(∇x′ × G(x − x′)) · ey that

computes the fluid velocity at position x induced by a rotlet, directed along ey, at position x′ [39]. As
shown in previous work, this model contains all the essential ingredients to faithfully reproduce the
fingering instability above a no-slip wall [31] and naturally extends to fluid-fluid interfaces by using
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the linear combination of Green’s functions in Eq. (1). The base state of this system corresponds
to two straight lines with uniform rotlet densities [ρi(y, t ) = ρ0] translating at a steady speed, so
that their position are constant in the moving frame (x1(y, t ) = 0, x2(y, t ) = d). After carrying a
linear stability analysis of the system around the base state, we obtain an analytical expression for
the growth rate σ (k, ξ ) [39], plotted in Fig. 3(b). First, we notice that an identical fastest growing
mode is selected for all values of ξ , as seen by the clear bump at λmax = 2π/kmax = 23, except for
ξ = 0 for which there is no clear selection. The existence of a plateau at large k is specific to the
two-lines model, and its dependence on ξ is explained in the Supplemental Material [39]. Second
the corresponding growth rate, σmax, increases with ξ . The increase of σmax is quantified on Fig. 3(c),
and shows a plateau at large ξ . A detailed analysis of the two-line model shows that the growth rate
of the transverse instability is proportional to the transverse flow uy in Eq. (4). Since the microrollers
do not induce transverse flows above a free surface (uFS

y = 0 [39]), σmax scales as ξ/(ξ + 1), which
is the prefactor of the no-slip wall contribution GW in Eq. (1) [see inset of Fig. 3(c)]. Overall the
two-line model highlights the crucial role of these transverse flows and exhibits a good agreement
with the simulations in the sense that, for a given particle height, ξ only changes the growth rate
of the instability without affecting much the dominant wavelength. However since the height of the
particles is kept constant in the model, it cannot capture the slight increase of the wavelength with
ξ that is observed on Fig. 3(a).

The nature of the interface does not only affect the direction of motion of the suspension and the
growth of the transverse instability, but also the shape and structure of the emerging clusters. We
study these changes from a macroscopic point of view, with a mean field description of the density
of microrollers ρ(x, t ) in the (x, z) plane perpendicular to the interface, denoted P . ρ(x, t ) obeys a
conservation equation

∂ρ

∂t
+ ∇ · (uρ) = 0. (6)

The velocities in the flux term arise from the long-ranged hydrodynamic interactions between
microrollers in the plane P , e.g., ux(x, t ) = ∫

P μuτ
x (x − x′)ρ(x′, t )dx′. The nonlocal equation (6)

is solved numerically [39–41] and the rollers are initially uniformly distributed (ρ = ρ0) over a
thin strip of aspect ratio � = L/H = 9.4 near the interface. After some time, the system reaches a
quasisteady state where a main cluster emerges and translates at a steady speed (see Supplemental
Material Movies 3–7). Figure 4 shows a snapshot of the microroller density at the same dimension-
less time in the quasipermanent regime for various values of ξ together with the density ρ(xC, z)
and velocity profiles ux(xC, z) at the central cross section of the cluster. The cluster is delimited
by the isovalue ρ = 0.4ρ0 (red line). As in the discrete particle simulations, the velocity of the
cluster is fastest and backwards for ξ = 0, vanishes around ξ ≈ 1.1, where the cluster treadmills
in place, and increases forward beyond. The shape of the cluster evolves from a near-hemisphere
of aspect ratio � = 3.1 at ξ = 0, to a “pancake” shape (� = 8.4) at ξ = 1.1, and becomes circular
when ξ increases further (� = 2 and � = 1.4 for ξ = 5 and ξ = +∞). In addition to the shape, ξ

controls the particle distribution inside the cluster. The distribution is uniform at ξ = 0 (ρ ≈ ρ0)
and becomes more peaked as ξ increases, with a maximum ρmax ≈ 3.8ρ0 reached at ξ = +∞.
These changes in concentration, together with the boundary condition at the interface underneath,
determine the velocity profile within the cluster. At ξ = 0, the treadmilling motion is fastest near the
bottom interface, where the slip condition allows for large velocities. As ξ increases, the particles
concentrate at the center and the no-slip condition becomes stronger, which shifts the maximum
velocity upwards and generates a rigid-body motion near the core.

Discussion. In this Letter, we have shown that the viscosity ratio across interfaces controls both
the microscopic and macroscopic response of an active suspension. These fundamental findings are
also of technological importance. Our results suggest that the strategies for particle transport and
fluid pumping initially developed with microrollers above solid walls can readily be extended to
a variety of biological and microfluidic environments with different type of surfaces. Our results
could even generalize to solid boundaries with a finite slip length [42], which are found in many
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FIG. 4. Particle density distribution ρ(x, t ) obtained from (6) at t = 1418 (quasisteady state) in the (x, z)
plane for various ξ ∈ {0, 0.5, 1.5, 5, +∞}. Black arrows: flow field. Solid red line: ρ/ρ0 = 0.4. Red cross:
position of the center of mass (xC, zC ). Side panels: density (dotted blue line) and velocity (solid black line)
profiles at x = xC .

experimental systems, such as hydrophobic surfaces. In this work we considered particles lying
above the interface, i.e., with large contact angles. In some cases the particles wet the outer
fluid and get adsorbed at the interface. Adsorbed active particle layers can be used as active
surfactants to modulate interfacial properties in emulsions or films, or to pump and mix flows in
the surrounding fluids [3,43]. Up to now, the hydrodynamics of torque-driven particles straddling
fluid-fluid interfaces is still not well understood [44] and should deserve more attention given their
exciting applications.

I thank M. Driscoll, A. Donev, and S. Michelin for their critical reading of the manuscript as well
as for stimulating discussions. I acknowledge support from the French National Research Agency
(ANR), under award no. ANR-20-CE30-0006. I also thank the NVIDIA Academic Partnership
program for providing GPU hardware for performing some of the simulations reported here.
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