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Enhanced axial migration of a deformable capsule in pulsatile channel flows
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We present a numerical analysis of the lateral movement of a deformable spherical
capsule in a pulsatile channel flow, with a Newtonian fluid in an almost inertialess condition
and at a small confinement ratio a0/R = 0.4, where R and a are the channel and capsule
radius. We find that the speed of the axial migration of the capsule can be accelerated
by the flow pulsation at a specific frequency. The migration speed increases with the
oscillatory amplitude, while the most effective frequency remains basically unchanged and
independent of the amplitude. Our numerical results form a fundamental basis for further
studies on cellular flow mechanics, since pulsatile flows are physiologically relevant in
human circulation, potentially affecting the dynamics of deformable particles and red blood
cells, and can also be potentially exploited in cell focusing techniques.

DOI: 10.1103/PhysRevFluids.8.L061101

I. INTRODUCTION

High-throughput measurements of single-cell behavior under confined channel flow is of funda-
mental importance and technical requirement in bioengineering applications such as cellular-level
diagnoses for blood diseases. Although several attempts have addressed this issue and gained
insights into (soft) particle dynamics in microchannels [1–3], cell manipulation including label-free
cell alignment, sorting, and separation still face major challenges. Along with the aforementioned
experimental studies, recent numerical simulations revealed the mechanical background regarding
the lateral movement of particles, e.g., in Refs. [4–6]. The lateral movement of deformable spherical
particles in almost inertialess conditions was originally reported in Karnis et al. [7], and these results
have been the fundamental basis to describe the phenomena observed in microfluidics [8] but also
in in vivo microcirculations [9]. In particular, it was found that a deformable spherical particle tends
to move towards the channel axis and settles there. Hereafter we will refer to this phenomenon as
“axial migration.”

It is known that the presence of axial migration or nonaxial migration depends on particle shape
and initial orientation angles. A red blood cell (RBC) modeled as a biconcave capsule does not
always exhibit axial migration especially in the tank-treading slipper shape, obtained with high Ca
and high λ [5,10]. Furthermore, RBCs have a bistable flow mode, so-called rolling and tumbling
motions, which depend on the initial cell orientations [6]. Thus, the original spherical shape is
one of requirements for the axial migration in (almost) inertialess conditions. In a recent work,
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FIG. 1. Visualization of a spherical capsule with radius a0 in a tube with radius of R under a pulsatile flow
with velocity V ∞, which can be decomposed into the steady parabolic flow V ∞

0 and the oscillatory flow V ∞
osci in

the absence of any cells. The capsule, initially placed near the wall, exhibits axial migration.

the framework of the axial migration of a droplet has been extended by Santra and Chakraborty
[11] by including the effect of an electric field, and finding that as the strength of the electric
field increases, droplets can reach the centerline at a faster rate with reduced axial oscillations.
Furthermore, a deformation-dependent propulsion of soft particles, including biological cells, were
confirmed experimentally by Krauss et al. [12] and numerically by Schmidt et al. [13].

Despite these efforts, the effect of a pulsatile flow on the axial migration of capsules has not
been described and understood yet. The objective of this Letter is thus to clarify whether frequency-
dependent axial migration of the spherical capsule occurs in confined channel flows. More precisely,
can the time necessary for the axial migration be controlled by the channel pulsations? Is there an
optimal pulsation frequency to do that? As we will describe in the following, our investigation of the
capsule dynamic show that there indeed exists an optimal frequency to speed up the capsule axial
migration by up to 80% in the range of parameters investigated here.

II. PROBLEM STATEMENT AND METHODS

A. Problem statement and governing equations

To answer these fundamental questions, we perform a series of fully resolved numerical simu-
lations. We consider the motion of an initially spherical capsule with diameter d0 (=2a0 = 8 µm)
flowing in a circular channel of diameter D (=2R = 20 µm) (see Fig. 1). The capsule is made by an
elastic membrane, separating two Newtonian fluids, which satisfy the incompressible Navier-Stokes
equations, and have the same density ρ but different viscosity (inside) μ1 and (outside) μ0. The
membrane is modeled as an isotropic and hyperelastic material following the Skalak constitutive
(SK) law [14]. In particular, the strain energy w of the SK law is given by

w = Gs

4

(
I2
1 + 2I1 − 2I2 + CI2

2

)
, (1)

where Gs is the surface shear elastic modulus, C is a dimensionless material coefficient that
measures the resistance to the area dilation, I1(= λ2

1 + λ2
2 − 2) and I2(= λ2

1λ
2
2 − 1 = J2

s − 1) are the
first and second invariants of the Green-Lagrange strain tensor, λi (i = 1 and 2) are the two principal
in-plane stretch ratios, and Js = λ1λ2 is the Jacobian, which expresses the ratio of the deformed to
reference surface areas. The area dilation modulus of the SK law is Ks = Gs(1 + 2C) [15]. Bending
resistance is also considered [16], with a bending modulus kb = 5.0 × 10−19 J [17]. In this study,
the surface shear elastic modulus is determined to be Gs = 4 µN/m to mimic the value found in
human RBCs [18,19]. Assuming the area incompressibility of the membrane and also following a
previous study by Ref. [15], we set C = 102. These membrane parameters successfully captured the
characteristic stable deformation and dynamics of RBCs both in single- and multicellular interaction
problems [18,19].
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Neglecting inertial effects on the membrane deformation, the static local equilibrium equation of
the membrane is given by

∇s · T + q = 0, (2)

where ∇s [=(I − nn) · ∇] is the surface gradient operator, n is the unit normal outward vector in the
deformed state, q is the load on the membrane, and T is the in-plane elastic tension that is obtained
from the SK law (1).

The two fluids separated by the membrane are governed by the incompressible Navier-Stokes
equations,

ρ

(
∂v

∂t
+ v · ∇v

)
= ∇ · σ f + ρ f , (3)

∇ · v = 0, (4)

where

σ f = −pI + μ(∇v + ∇vT ). (5)

In the previous equations, σ f is the total stress tensor of the flow, p is the pressure, ρ is the fluid
density, f is the body force, and μ is the viscosity of the liquids, which is expressed using the
volume fraction of the inner fluid α (0 � α � 1) as

μ = {1 + (λ − 1)α}μ0. (6)

The dynamic condition requires that the load q is equal to the traction jump (σ f
out − σ

f
in) across the

membrane,

q = (
σ

f
out − σ

f
in

) · n, (7)

where the subscripts “out” and “in” represent the outer and internal regions of the capsule.
The flow in the channel is sustained by a uniform pressure gradient ∇p0, which can be related to

the maximum fluid velocity in the channel as ∇p0 = −4μ0V ∞
max/R2. The pulsation is instead given

by a superimposed sinusoidal function, such that the total pressure gradient is

∇p(t ) = ∇p0 + (∇pamp) sin (2π f t ). (8)

The problem is governed by six main nondimensional numbers: (i) the Reynolds number Re =
ρDV ∞

max/μ0; (ii) the capillary number Ca = μ0γ̇ma0/Gs, where γ̇m = V ∞
max/4R; (iii) the viscosity

ratio between the two fluids λ = μ1/μ0; (iv) the confinement ratio a0/R; (v) the nondimensional
pulsation frequency f ∗ = f /γ̇m; and (vi) the nondimensional pulsation amplitude ∇pamp/∇p0. In
this work, all simulations are performed in an almost inertialess condition, keeping the Reynolds
number low and fixed to the value Re = 0.2; also, we limit our main analysis to a confinement ratio
of 0.4. In Appendix A and Sec. III, we verify the sensitivity of the results to these two parameters
(see Figs. 6 and 7). Instead, here we comprehensively vary the amplitude and frequency of the
pulsation, the viscosity ratio, and the capillary number.

B. Numerical methods

The governing equations for the fluid are discretized by the lattice Boltzmann method (LBM)
based on the D3Q19 model [20]. We track the Lagrangian points of the membrane material points
x(X , t ) over time, where X is a material point on the membrane in the reference state. Based on the
virtual work principle, the above strong-form equation (2) can be rewritten in weak form as∫

S
û · qdS =

∫
S
ε̂ : TdS, (9)
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FIG. 2. Time history of (a) the radial position of the capsule centroid r/R and (b) time history of the Taylor
parameter D12 for different nondimensional frequencies f ∗. The inset images in panel (a) represent the capsule
initial state (r0/R = 0.55 at γ̇mt = 0) and the final stable state at the channel centerline (r/R ≈ 0 at γ̇mt = 50).
All the results are obtained with ∇pamp = ∇p0, Ca = 1.2, and λ = 1.

where û and ε̂ = (∇sû + ∇sû
T )/2 are the virtual displacement and virtual strain, respectively. The

finite element method (FEM) is used to solve Eq. (9) and obtain the load q acting on the membrane
[21]. The velocity at the membrane node is obtained by interpolating the velocities at the fluid
node using the immersed boundary method [22]. The membrane node is updated by Lagrangian
tracking with the no-slip condition. The explicit fourth-order Runge-Kutta method is used for the
time integration. The volume-of-fluid method [23] and front-tracking method [24] are employed
to update the viscosity in the fluid lattices. A volume constraint is implemented to counteract the
accumulation of small errors in the volume of the individual cells [25]: In our simulation, the volume
error is always maintained lower than 1.0 × 10−3%, as tested and validated in our previous study of
cell flow in circular channels [26]. For further details of the methods we refer to our previous work
[6,19].

Periodic boundary conditions are imposed in the flow direction [z direction; see also Figs. 1 and
2(b)]. No-slip conditions are employed for the walls (radial direction). The mesh size of the LBM
for the fluid was set to be 250 nm, and that of the finite elements describing the membrane was
approximately 250 nm (an unstructured mesh with 5120 elements was used for the FEM). Overall,
we use a resolution of 32 fluid lattices per diameter of the capsule. The chosen resolution has been
shown in the past to successfully represent single- and multicellular dynamics [5,18,19].

III. RESULTS AND DISCUSSION

First, we investigate the trajectory of the capsule centroids for different frequencies f ∗ = f /γ̇m.
The time history of the radial position of the capsule centroid r is shown in Fig. 2(a), together
with the capsule shape at the initial (γ̇mt = 0) and final states (γ̇mt = 50). The capsule, initially
spherical, migrates towards the channel centerline while deforming, finally reaching its equilibrium
position at the centerline, where it achieves an axial-symmetric shape. While the trajectory obtained
with the highest frequency investigated ( f ∗ = 5) well collapses on that obtained with a steady flow
(see Appendix A), when f ∗ is small enough, the trajectory paths depend on the pulsation frequency,
with the appearance of oscillations and with different axial migration speed.

The time history of the capsule deformation is shown in Fig. 2(b), quantified by the Taylor
parameter D12 = |a1 − a2|/(a1 + a2), where a1 and a2 are the lengths of the semimajor and
semiminor axes of the capsule. Note that we compute D12 from the eigenvalues of the inertia tensor
of an equivalent ellipsoid approximating the deformed capsule [27]. The capsule deformation is
maximized just after the flow onset when the capsule is subject to the high shear near the wall. As
time passes, D12 decreases and settles to a value which is around one order of magnitude smaller
than the maximum [i.e., O(D12) = 10−2] when reaching the channel axis.
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FIG. 3. Side views of the capsule during its axial migration for f ∗ = 0.5 and different oscillatory ampli-
tudes: (a) ∇pamp = ∇p0 and (b) ∇pamp = 4∇p0. The snapshots are taken at the time instants marked in (c),
showed over the time history of r/R. All the results are obtained with Ca = 1.2, and λ = 1.

The migration speed is also affected by the amplitude of the oscillation ∇pamp, as shown in Fig. 3,
where the side views of the capsule during its axial migration for different ∇pamp (=∇p0 and 4∇p0)
are shown in Figs. 3(a) and 3(b), respectively. The snapshots clearly show the capsule deformation
and position as a consequence of the change of the background flow directions and oscillatory
amplitudes. As ∇pamp increases, the capsule appears to migrate faster toward the channel centerline
[Fig. 3(c)].

To properly quantify the changes in axial migration, we define the migration time T ∗ as the time
needed by the capsule centroid to reach the centerline (within a distance of ∼6% of its radius to
account for the oscillations in the capsule trajectory). The ratio of the elapsed time T ∗ and that in a
steady flow is reported in Fig. 4(a) as a function of f ∗, for various pulsation amplitudes. The results
clearly suggest that there exists a specific frequency to minimize the migration time. A very minor
increase of the optimal frequency with the pulsation amplitude can be observed in the data. While
the optimal frequency is almost independent of the pulsation amplitude, the migration time can be
strongly reduced by its increase. Indeed, while the elapsed time is reduced by 18% at the lowest
amplitude investigated (∇pamp = ∇p0/4), it is reduced by 80% at the highest one (∇pamp = 4∇p0).
Interestingly, the optimal frequency that minimizes the migration time [O( f ∗) = 10−2] is one order
of magnitude smaller than the one which maximizes D12 (Fig. 8 in Appendix B), thus suggesting
that the axial migration time is unrelated to the maximum capsule deformation which happens in
the initial stage of the capsule motion.

The changes in the migration time are clearly reflected in the migration speed V∗ = V/V ∞
max,

reported in Fig. 4(b), which shows that when the migration time is minimum, the axial migration
speed reaches almost its maximum. Here, the migration speed V is defined as the ratio of the elapsed
time T and the traveled distance L (i.e., V = L/T ), defined as L = ∫ L

0 |dr| = ∫ L
0 dr · t̂ = ∫ T

0 vcdt ·
t̂ , where t̂ = r/|dr| is the unit tangential vector along the trajectory of the capsule centroid and vc is
the capsule centroid velocity.

The distance traveled by the capsule before completing the axial migration is reported in Fig. 4(c)
for the sake of completeness, showing that the optimal frequency to minimize the migration time
roughly corresponds to the minimization of the traveled distance too. Note that the distance traveled
during the migration L∗ depends not only on f ∗ but also on Ca (see Fig. 9 in Appendix C).
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FIG. 4. (a) The migration time T ∗, (b) the migration speed V∗, and (c) the distance traveled during the
migration L∗, normalized with those obtained in a steady flow (T ∗

steady, V∗
steady, and L∗

steady) as a function of f ∗

and for different ∇pamp. The results are obtained with Ca = 1.2, and λ = 1. The solid symbols in each panel
represent the case with the optimal frequency which minimizes the migration time.

In summary, so far we have shown that, for a fixed Ca and λ, there is an optimal frequency for the
channel pulsation, able to minimize the capsule migration time by maximizing the migration speed
and minimizing the traveled distance. To complete our investigation, the effects of Ca and λ on the
migration time T ∗ are shown in Fig. 5. In particular, the results in Fig. 5(a) show that the migration
time depends on Ca, thus suggesting that the optimal frequency f ∗ is also a function of Ca. On the

FIG. 5. The migration time (a) as a function of Ca at λ = 1 and f ∗ = 0.01 and (b) as a function of λ at
Ca = 1.2 and f ∗ = 0.01. The solid symbol in (a) represents the case with the optimal Ca(= 0.1).
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∇ ∇

FIG. 6. The ratio of the elapsed time T ∗ to that in steady flow T ∗
steady as a function of f ∗. The these results

are obtained with Ca = 1.2, ∇pamp/∇p0 = 1, and λ = 1. The solid symbols in each channel size ratio represent
the case with the optical frequency which minimizes migration time.

other hand, as shown in Fig. 5(b), the migration time remains almost independent of the viscosity
ratio for λ � 5.

We also investigate the effect of the radial channel size on the migration time. Figure 6 shows
the ratio of T ∗ to that in a steady flow T ∗

steady for two different channel size ratios D/d0 = 2.5,
3.75, and 5, corresponding to D(= 2R) = 20, 30, and 40 µm for d0(= 2a0) = 8 µm, as a function
of the pulsation frequency f ∗. For all cases, the initial position r0 is set to be the same above
(i.e., r0/R = 0.55). The results show that, independently of the channel size, the qualitative picture
discussed above remains unchanged. While the amount of the speedup of axial migration achieved
with a pulsation remains almost unaltered (around 50% for this case), the value of the optimal
frequency changes with D (the peak frequency reduces when D is increased).

IV. CONCLUSION

In conclusion, we have proved that the axial migration speed of an elastic capsule in a pipe flow
can be substantially accelerated by making the driving pressure gradient oscillating in time. We
found that the axial migration speed increases with the amplitude of the oscillation, while the most
effective frequency was revealed to be independent of the oscillatory amplitude. Also, we showed
that the optimal frequency depends on Ca, but is basically independent of the viscosity ratio λ,
overall proving that the changes in the axial migration are mostly due to the membrane elasticity.

The behavior of capsules under pulsatile channel flows has been investigated in some previous
works [28,29]. However, our study provides conclusive evidence of the acceleration of the axial
migration of a capsule by pulsatile flow. Although it may be expected that the capsule is trapped in
a state of resonance at the optimal frequency f ∗ to minimize the migration time [Fig. 4(a)], there is
currently no clear theoretical framework on the resonance frequency of capsule in confined channel
flows. Indeed, in our case the capsule configuration and its centroid are changing simultaneously,
making the problem more complicated than what was investigated in previous theoretical and
numerical studies which assumed small deformations (i.e., weakly nonlinear problem) of drops
[30,31] and bubbles [32].

Given that the migration speed can be controlled by oscillatory frequency as well as back-
ground flow strength (or amplitude), the results obtained here can be utilized for label-free
cell alignment/sorting/separation techniques, e.g., for circulating tumor cells in cancer patients
or precious hematopoietic cells such as colony-forming cells. Our numerical results obtained
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FIG. 7. Time history of the radial position of the capsule centroid r/R for (a) different channel lengths
(L = 10a0 and 20a0), (b) different Reynolds numbers Re (Re = 0.2 and 0.05), (c) different mesh resolutions
(250 and 125 µm/lattice). (d) Comparison of r/R obtained with a steady flow and with the highest frequency
investigated, f ∗ = 5. The results are obtained with Ca = 1.2, ∇pamp = ∇p0, and λ = 1.

physiologically relevant RBC properties in size a0 and membrane elasticity Gs form a fundamental
basis for further studies on cellular flow mechanics in confined environments.
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APPENDIX A: NUMERICAL VERIFICATION

In this Appendix, we provide additional verifications of the results provided in the main docu-
ment. In particular, we investigate the effect of the channel length L, the Reynolds number Re, and
the mesh resolutions on the trajectory of the capsule centroid, with the results reported in Figs. 7(a)–
7(c). The figures show that no differences are observable when changing these parameters, thus
suggesting that the domain is long enough, that the Reynolds number is small enough that our
investigation can be considered in an inertialess condition, and that the numerical resolution is
appropriate for the study. These results thus support the choice of parameters used for the rest of the
investigation (i.e., Re = 0.2, L = 10a0, and 250 µm/lattice).

Finally, we show in Fig. 7(d) that when the pulsation frequency is too large, the capsule does not
experience the oscillatory flow. Indeed, the trajectory under the maximum frequency f ∗ investigated
in this study well collapses on that obtained in a steady flow.
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∇ ∇

FIG. 8. The maximum D12 as a function of f ∗. The solid symbol represents the case with the frequency
which maximizes D12 after flow onsets. The results are obtained for Ca = 1.2, ∇pamp = ∇p0, and λ = 1.

APPENDIX B: THE MAXIMUM TAYLOR PARAMETER

The maximum Taylor parameter Dmax
12 , which can be observed just after the flow onset, is shown

as a function of f ∗ in Fig. 8, for Ca = 1.2 and ∇pamp = ∇p0. The result clearly shows that there is
a specific f ∗ which maximizes Dmax

12 , which is higher than the optimal f ∗ minimizing the migration
time [Fig. 4(a)]. Matsunaga et al. [33] reported that at high frequency, a neo-Hookean spherical
capsule undergoing oscillating sinusoidal shear flow cannot adapt to the flow changes and only
slightly deforms according to predictions based on the asymptotic theory [34,35]. Thus, the capsule
at low frequencies exhibits an overshoot phenomenon, in which the peak deformation is larger than
its value in steady shear flow and increases with the viscosity contrast λ and the mean value of Ca
[33]. Note that our estimated frequency f ∗ maximizing D12 is one order magnitude smaller than that
estimated by Ref. [33], a difference that can be associated to the different membrane constitutive
laws and flow profiles (i.e., simpler shear flow versus channel flow).

APPENDIX C: EFFECT OF Ca ON DISTANCE TRAVELED DURING THE MIGRATION

From Fig. 4(c), it seems that the amplitude of oscillation can decrease significantly the relaxation
process in some cases. To confirm whether this effect is robust with respect to Ca, we investigate the
distance traveled during the migration L∗ for different Ca (=0.05, 0.1, 0.2, and 0.4) with ∇pamp =

∇ ∇

FIG. 9. The distance traveled during the migration L∗, normalized with those obtained in a steady flow
L∗

steady as a function of Ca for ∇pamp = 4∇p0 and f ∗ = 0.5. The results are obtained with λ = 1.
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4∇p0 and f ∗ = 0.5, when L∗ tends to be longer that in the steady flow (i.e., 1 − L∗/L∗
steady < 0).

From the results in Fig. 9, we can observe that the travel distance L∗ is longer than in steady flow
only for high Ca (�1.2).
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