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We present a theoretical analysis of large-aspect-ratio turbulent vertical convection that
yields two relationships between heat flux and wall shear stress, measured respectively by
the Nusselt number (Nu) and shear Reynolds number (Reτ ), in terms of the Rayleigh (Ra)
and Prandtl numbers (Pr): Re2

τ Nu = f (Pr)Pr−1Ra in the high-Ra limit and Nu ≈ CPrεReτ

with ε = 1/3 for Pr � 1 and ε = 1 for Pr � 1, where f (Pr) is not a power law of Pr and
C is a constant. These relationships imply Nu ≈ [C2 f (Pr)]1/3Pr−(1−2ε)/3Ra1/3 and Reτ ≈
[ f (Pr)/C]1/3Pr−(1+ε)/3Ra1/3 for high Ra.
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In astrophysical, geophysical, and industrial fluid flows, fluid motions are often driven thermally
by temperature differences. There are two common model systems for thermally driven flows:
Rayleigh-Bénard convection in a fluid heated from below and cooled from above (see, e.g.,
Refs. [1–4]) and vertical convection in a fluid between two vertical walls as shown in Fig. 1. In
these two systems, the direction of gravity makes a different angle to the boundaries that have a tem-
perature difference. One important question in the study of thermally driven fluid flows is how the
heat transfer depends on the control parameters of the flow. Heat flux is commonly measured by the
Nusselt number (Nu) and the control parameters include the Rayleigh number Ra ≡ αg�H3/(νκ ),
which measures the strength of thermal forcing, and the Prandtl number of the fluid Pr ≡ ν/κ . Here,
H is the separation between the two boundaries with a temperature difference �; g is the acceleration
due to gravity; and α, ν, and κ are the thermal expansion coefficient, kinematic viscosity, and
thermal diffusivity of the fluid, respectively. A scaling theory has been developed by Grossmann
and Lohse [5–8] which has successfully accounted for Nu(Ra, Pr) for a wide range of Ra and Pr
in Rayleigh-Bénard convection. In this Letter, we study vertical convection, which is much less
studied than Rayleigh-Bénard convection. Besides fundamental interest, vertical convection has
many applications in engineering such as ventilation of buildings, thermal insulation in double-pane
windows, and cooling of electronic devices. It also plays a crucial role in ice-ocean interactions in
which fluid motion is driven by temperature difference as well as the salinity difference between the
melt water and the salty seawater [9,10]. For laminar vertical convection, analysis of the steady-state
boundary-layer equations gives Nu ∼ Ra1/4 [11–14] and the dependence of Nu on Pr in the low-
and high-Pr limits [14]. When the flow becomes turbulent, fluctuations cannot be neglected, and a
theoretical understanding of the dependence of Nu on the control parameters is yet to be attained.

Turbulent vertical convection has been investigated experimentally and by direct numerical
simulations (DNS). In most of these studies, Pr is kept fixed and a range of Ra is studied.
The dependence of Nu on Ra has often been reported in the form of a power law: Nu ∼ Raβ .
Experimental studies for a variety of fluids showed that β changes from 1/4, the value determined
for laminar flow, to 1/3 when the flow becomes turbulent [15–18]. Results consistent with β = 1/3
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FIG. 1. A schematic diagram of vertical convection. The left vertical wall is heated while the right vertical
wall is cooled, and the temperature difference is � = Th − Tc.

have been found in DNS in three dimensions with periodic boundary conditions in the spanwise (y)
and streamwise (z) directions for Pr = 0.709 (air) and Ra between 105 and 107 [19,20], but other
values of β were reported in DNS at the same value of Pr, such as β = 1/3.2 for a similar range
of Ra [21] and β = 0.31 for a larger range of Ra up to 109 [22]. It was pointed out that the value
of β depends on the range of Ra and Nu(Ra) may not be a pure power law [22]. The dependence
on Pr has also been investigated for 1 � Pr � 100 and 106 � Ra � 109, and an effective power-law
dependence of Nu on both Ra (with β = 0.321) and Pr was reported [23]. Effective power-law
dependence Ra and Pr have also been reported for the wall shear stress and the maximum mean
vertical velocity of the convective flow [23]. For DNS in two dimensions with adiabatic boundary
condition in the horizontal boundaries, β has been found to be closer to 1/4 than 1/3 for Pr = 0.71
and 6 × 108 � Ra � 1010 [24,25], but a recent study at Pr = 10 and Ra up to 1014 shows that there
is a sharp transition from β = 1/4 to β = 1/3 when Ra � 5 × 1010 [26]. There have been different
theoretical attempts to understand turbulent vertical convection. One approach is to identify relevant
length, velocity, and temperature scales in different flow regions and develop scaling functions of
velocity and temperature in each region [27–30]. By matching the scaling functions of temperature
in an assumed overlap region of two flow regions, expressions for Nu(Ra) can be obtained and
different results have been reported [27,29]. Another study has tried to extend the scaling theory of
Grossmann and Lohse [5–8] for Rayleigh-Bénard convection to vertical convection but found that
this approach is not feasible [22].

In this Letter, we present a theoretical analysis that yields two relationships between heat flux
and wall shear stress and their dependence on Ra and Pr in the high-Ra limit. We test the theoretical
results for high Pr against the openly available DNS data for 1 � Pr � 100 and 106 � Ra � 109

[23] and find excellent agreement.
We consider a fluid confined between two vertical walls, with the left wall heated at a temperature

Th and the right wall cooled at a temperature Tc, and the temperature difference � is equal to
Th − Tc (see Fig. 1). With the Oberbeck-Boussinesq approximation, which neglects the variation
of temperature in the fluid for all purposes except for the determination of the buoyancy force, the
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governing equations are

∂u
∂t

+ u · ∇u = − 1

ρ
∇p + ν∇2u + αg(T − T0)ẑ (1)

∂T

∂t
+ u · ∇T = κ∇2T (2)

∇ · u = 0, (3)

where u(x, y, z, t ) = (u, v,w) is the velocity, p(x, y, z, t ) the pressure, T (x, y, z, t ) the temper-
ature, T0 the average temperature of the two vertical plates, and ρ the density of the fluid at
T = T0. The coordinate system is shown in Fig. 1 and ẑ is a unit vector along the vertical
direction. The velocity field satisfies the no-slip boundary condition at the two vertical plates.
The flow quantities are Reynolds decomposed into sums of time averages and fluctuations, e.g.,
u(x, y, z, t ) = U (x, y, z) + u′(x, y, z, t ) and T (x, y, z, t ) − T0 = �(x, y, z) + θ ′(x, y, z, t ). We focus
at the large-aspect-ratio limit, namely, Lz/H � 1 and Ly/H � 1, where Lz and Ly are the height
and width of the vertical walls. In this limit, all the mean flow quantities depend on x only. Using
the continuity equation Eq. (3) and the no-slip boundary condition, we obtain U = 0. Taking the
time average of Eqs. (1) and (2) leads to the mean momentum balance and mean thermal energy
balance equations [19],

d

dx
〈u′w′〉t = ν

d2

dx2
W + αg� (4)

d

dx
〈u′θ ′〉t = κ

d2

dx2
�, (5)

where 〈· · · 〉t denotes an average over time. In DNS where the computational domain is finite, the
same equations can be derived for the mean quantities averaged over time as well as over y and z
if periodic boundary conditions are enforced in the y and z directions [23]. Due to the symmetry of
the problem, the mean velocity and temperature profiles W (x) and �(x) are antisymmetric about
x = H/2, thus one only has to study Eqs. (4) and (5) for 0 � x � H/2. The boundary conditions are

W (0) = W (H/2) = �(H/2) = 0; �(0) = �/2. (6)

Integrating Eq. (5) with respect to x, one obtains

〈u′θ ′〉t − κ
d�

dx
= −κ

d�

dx

∣∣∣∣
x=0

, (7)

showing that the mean horizontal heat flux Q = ρc〈u′θ ′〉t − kd�/dx along the x direction is
independent of x [27]. Here, c and k are the specific heat capacity and thermal conductivity of
the fluid, respectively. Nu is defined as the ratio of actual heat flux to that when there was only
thermal conduction, thus

Nu ≡ Q

k�/H
= −d�

dx

∣∣∣∣
x=0

H

�
= H

2δT
, (8)

where δT is the thermal boundary layer thickness defined by δT ≡ k�/(2Q). Integrating Eq. (4)
with respect to x gives [27]

〈u′w′〉t = ν
dW

dx
+ αg

∫ x

0
�(x′)dx′ − ν

dW

dx

∣∣∣∣
x=0

. (9)

The wall shear stress is given by τw = ρνdW/dx|x=0 and is often measured by the dimensionless
shear Reynolds number Reτ ≡ uτ H/ν in terms of the friction velocity uτ ≡ √

νdW/dx|x=0. If W (x)
and �(x) could be solved, then their gradients at x = 0 or, equivalently, Reτ and Nu would be
obtained, but Eqs. (4) and (5) are not closed due to the presence of the second-order correlations
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〈u′w′〉t and 〈u′θ ′〉t . This is the well-known closure problem of turbulence in which there are more
unknowns than equations. Our first step to tackle this problem is to evaluate Eq. (9) at x = x0,
the location at which the magnitudes of the Reynolds shear stress and viscous stress are equal,
i.e., νdW /dx|x=x0 = 〈u′w′〉t (x0). Near the wall, the viscous stress ρνdW/dx dominates over the
Reynolds shear stress −ρ〈u′w′〉t , which is small and positive. As one moves away from the wall,
the viscous stress decreases while the Reynolds shear stress becomes negative and increases in
magnitude. Towards the centerline x = H/2, the viscous stress becomes negative and the magnitude
of the Reynolds shear stress dominates over that of the viscous stress. The magnitudes of the two
stresses are equal at x = x0. Evaluating Eq. (9) at x = x0 thus bypasses the difficulty of estimating
〈u′w′〉t and gives

ν
dW

dx

∣∣∣∣
x=0

= αg
∫ x0

0
�(x′)dx′. (10)

Equation (10) shows explicitly that the wall shear stress τw is generated by buoyancy and is equal
to the buoyancy force per unit area within the velocity boundary layer with x � x0. We define a
dimensionless temperature function �(ξ ) of ξ ≡ x/δT by

�(x = ξδT ) ≡ ��(ξ )/2 (11)

and rewrite Eq. (10) to yield a universal relation between Reτ and Nu:

Re2
τ NuPrRa−1 = 1

4

∫ ξ0

0
�(ξ )dξ ≡ I (Ra, Pr), (12)

where ξ0 = x0/δT . Using Eqs. (6) and (8), we obtain the boundary conditions for �:

�(0) = 1, �(Nu) = 0, �′(0) = −1. (13)

We evaluate �(ξ ) and ξ0 using the DNS data from Howland et al. [23,31] to study the Ra and
Pr dependence of the integral I . As shown in Fig. 2, �(ξ ) approaches an asymptotic form in the
high-Ra limit for each Pr, and the asymptotic form depends on Pr. In Fig. 3 it can be seen that ξ0

increases slowly with Ra for each Pr. Since �(ξ ) decreases to zero for large ξ , these results suggest
that the integral I tends to a Ra-independent function f (Pr) in the high-Ra limit. The available DNS
data cover 1 � Pr � 100, but we expect �(ξ ) to approach an asymptotic form for general Pr. For
Pr < 1, as the velocity boundary layer is nested within the thermal boundary layer, ξ0 has to be less
than 1 and thus cannot increase with Ra asymptotically. It is expected that ξ0 approaches a constant
in the high-Ra limit for Pr < 1 and I (Ra, Pr) → f (Pr) also for Pr < 1. Hence, we assume that

Re2
τ NuPrRa−1 = f (Pr) high-Ra limit. (14)

We estimate the values of f (Pr) from the DNS data [23] as follows. Among the 38 sets of data,
most data were taken at Pr = 10. Thus, we take f0 ≡ f (Pr = 10) as a reference and estimate the
values of f (Pr)/ f0 by the averages of the ratio of the data points Re2

τ NuPrRa−1 for each of the
other values of Pr to the data points at Pr = 10, taken at the seven common values of Ra. The errors
of the estimated f (Pr)/ f0 are measured by the standard deviations. Equation (14) implies that the
data points of Re2

τ Nu for different values of Pr, when multiplied by Pr f0/ f (Pr), would collapse into
a single curve of f0Ra for large Ra. This is confirmed in Fig. 4, and as shown in the right inset
of Fig. 4, f (Pr)/ f0 cannot be approximated by a power law. Using Eqs. (8) and (11), we rewrite
Eq. (7) as

〈u′θ ′〉t

ν�/H
= NuPr−1[1 + �′(ξ )]. (15)

Because of the boundary conditions, u′, θ ′, and ∂u′/∂x = −(∂v′/∂y + ∂w′/∂z) vanish at x = 0. As
a result, 〈u′θ ′〉t and its first- and second-order derivatives with respect to x vanish at x = 0, while
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FIG. 2. Plots of �(ξ ) vs x showing its dependence on Ra for Pr = 1, 10, 100 and its dependence on Pr at
the largest Ra (108 for Pr = 1, 2, 5 and 109 for Pr = 10, 100) using DNS data from Howland et al. [23].

FIG. 3. Dependence of ξ0 on Ra for Pr = 1 (circles), 2 (squares), 5 (diamonds), 10 (triangles), and 100
(inverted triangles).
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FIG. 4. Dependence of Re2
τ NuPr f0/ f (Pr) on Ra using the DNS data [23] for Pr = 1, 2, 5, 10, 100 with

same symbols as in Fig. 3. The dashed line is the best fit of the data points for Ra � 5 × 107 by the function
y = ax, and the fitted value of a gives f0 = 0.19. The inset on the left shows the compensated plots while the
inset on the right shows f (Pr)/ f0 vs Pr.

d3〈u′θ ′〉t/dx3|x=0 = 3〈(∂2u′/∂x2)(∂θ ′/∂x)〉t |x=0. Taking the third-order derivative of Eq. (15) with
respect to ξ at ξ = 0 gives

3H4

8ν�
Nu−3

〈
∂2u′

∂x2

∂θ ′

∂x

〉
t

∣∣∣∣
x=0

= NuPr−1�(4)(0). (16)

Next, we make a closure estimate of 〈(∂2u′/∂x2)(∂θ ′/∂x)〉t |x=0. Physically we expect it to be related
to the wall shear stress τw and the heat flux Q and, therefore depends on uτ and −d�/dx|x=0.
Near the wall, the molecular diffusivities are significant and we take the characteristic length scale
to be lc = ν/uτ for Pr � 1 and lc = κ/uτ for Pr � 1. Thus, we let 〈(∂2u′/∂x2)(∂θ ′/∂x)〉t |x=0 =
F (uτ ,−d�/dx|x=0, lc) and estimate the function F by dimensional analysis to obtain〈

∂2u′

∂x2

∂θ ′

∂x

〉
t

∣∣∣∣
x=0

≈ c0
uτ

l2
c

Nu�

H
. (17)

We have used Eq. (8) to write −d�/dx|x=0 = Nu�/H . Substituting Eq. (17) into Eq. (16), we
obtain

Nu ≈ CPrεReτ , ε =
{

1/3 Pr � 1
1 Pr � 1,

(18)

where C = {3c0/[8�(4)(0)]}1/3 is approximated as a constant, neglecting the possible weak Pr
dependence of �(4)(0). Equation (18) for Pr � 1 agrees with the numerical result Nu ∼ Pr1/3Reτ

found for 1 � Pr � 100 [23]. A relationship Nu ∝ [γ (Pr)Pr]1/3Reτ , where γ (Pr) is an undeter-
mined function of Pr, has been obtained for high Pr by assuming that the eddy diffusivity, defined
by −〈u′θ ′〉t/(∂�/∂x), can be approximated by a cubic function of x, γ (Pr)u3

τ x3/ν2, throughout the
thermal boundary layer [32] but the cubic-function approximation is valid only for a very small
region close to the wall and does not hold for the whole thermal boundary layer.

Solving Eqs. (14) and (18), we obtain

Nu ≈ [C2 f (Pr)]1/3Pr−(1−2ε)/3Ra1/3 (19)

Reτ ≈ [ f (Pr)/C]1/3Pr−(1+ε)/3Ra1/3 (20)

L022601-6



HEAT FLUX AND WALL SHEAR STRESS IN LARGE …

FIG. 5. Dependence of Nu[ f0/ f (Pr)]1/3Pr1/9 (top) and Reτ [ f0/ f (Pr)]1/3Pr4/9 (bottom) on Ra using the
DNS data [23] for Pr = 1, 2, 5, 10, 100 with the same symbols as in Fig. 3. The dashed lines are the best
fits of the theoretical prediction y ∝ x1/3 for data points taken at Ra � 5 × 107, and the fitted values of the
proportionality constants in the two fits give f0 = 0.19 and C = 0.043. The insets show the compensated plots.

in the high-Ra limit. These theoretical results imply that data points of Nu and Reτ taken at different
values of Pr can be collapsed into single curves of Ra1/3 dependence for large Ra when multiplied
by appropriate factors of f (Pr) and Pr. As shown in Fig. 5, the theoretical predictions for high Pr
are in excellent agreement with the available DNS data for 1 � Pr � 100 [23]. Data for low Pr and
high Ra are not yet available.

In summary, we have obtained theoretical results for the dependence of Nu and Reτ on Ra and Pr,
answering the question of how heat flux and wall shear stress depend on the control parameters for
large-aspect-ratio turbulent vertical convection in the high-Ra limit. Such a question is challenging
because of the underlying closure problem of turbulence in which Eqs. (4) and (5) for the mean
quantities, W (x) and �(x), contain additional unknowns of the second-order correlations, 〈u′w′〉t

and 〈u′θ ′〉t . Our theoretical analysis purposefully bypasses the difficulty of directly estimating
〈u′w′〉t , assumes the integral I (Ra, Pr) approaching a Ra-independent function in the high-Ra limit,
and makes a minimal closure estimate of the third-order derivative of 〈u′θ ′〉t at x = 0 instead of the
whole function. For finite Ra, the additional Ra dependence of I (Ra, Pr) [see Eq. (12)], which is
expected not in the form of a power law, would modify the Ra1/3 dependence of Nu and Reτ . This

L022601-7



EMILY S. C. CHING

could explain the variations of the effective power-law exponent β for Nu(Ra) observed in different
ranges of Ra in DNS [19–23]. The present work studies the limit of large aspect ratios, but our
theoretical result of Nu ∼ Ra1/3 in the high-Ra limit is also in agreement with the DNS result for a
two-dimensional cell with a unit aspect ratio in the turbulent regime [26].

The author thanks C. J. Howland for providing the DNS data and D. Lohse and O. Shishkina for
discussions. She also acknowledges support from the Hong Kong Research Grants Council (Grant
No. CUHK 14302419).
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