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Realistic rotating fluid under self-gravitation will be oblate due to the centrifugal force.
In our previous paper [Li and Kong, Phys. Rev. Fluids 7, 103502 (2022)], for the first time,
the problem of convective instabilities was formulated and tackled in rotationally flattened
spheroids. Using that method, this paper demonstrates how extraordinary nonsphericity
alters the linear onset of thermal inertial convection in internally heated Boussinesq fluid.
A significant discovery is that the globally most unstable mode could switch from a non-
axisymmetric quasigeostrophic wave to an equatorially symmetric zonal oscillation when
the rotational flattening effect gets very strong. This was the only form of global convection
not found so far.
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I. INTRODUCTION

Chandrasekhar [1] first formulated the problem of thermal instabilities in self-gravitating, inter-
nally heated, rapidly rotating Boussinesq fluid spheres and spherical shells under the assumption
that the convective mode at the onset of thermal instability is axisymmetric, which was later
demonstrated to not be the most unstable mode in the regime of asymptotically small Ekman num-
bers. Roberts [2] first extended the consideration of the problem to the general non-axisymmetric
case. But as pointed out by Busse [3], Roberts’s non-axisymmetric mode would not be physically
preferred at the onset of rotating convection because of the selected equatorial antisymmetry. Busse
corrected the view and determined the globally most unstable mode at the onset of convection should
be non-axisymmetric and equatorially symmetric in a rapidly rotating Boussinesq fluid sphere.
This understanding remained until Garcia et al. [4] discovered non-axisymmetric and equatorially
antisymmetric polar modes in rotating spherical fluid shells. More recently, Sánchez Umbría et al.
[5] found that an axisymmetric and equatorially antisymmetric torsional oscillation mode could be
the globally most unstable in an internally heated rotating fluid sphere, subject to the stress-free
velocity boundary condition.

All the abovementioned researchers and many others have adopted spherical approximation in
their modeling, but many gaseous giant planets and luminous stars rotate extremely fast and hence
are significantly flattened [6,7].

Based on an oblate spheroidal model of conduction state developed by Kong [8], the problem of
thermal instability in rotating oblate spheroidal fluid cavities was formulated and tackled by Li and
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Kong [9]. It is now time to investigate how the departure of a rapidly rotating, self-gravitating fluid
domain from sphericity may alter the symmetry of the onset of rotating convection. In this Letter,
we briefly report an outstanding example in which the physically preferred mode at the linear onset
of thermal convection surprisingly becomes an equatorially symmetric zonal oscillation, when the
nonsphericity exceeds a certain level. This is the last form of previously unknown global convection.

Because detailed derivations have already been shown in our previous two papers, Kong [8] and
Li and Kong [9], only the critical ideas of analyzing the nonspherical problem of thermal instabilities
are discussed in Sec. II. Analytical results and the corresponding numerical results are presented in
Sec. III. Section IV concludes this Letter.

II. THERMAL INSTABILITY IN SIGNIFICANTLY FLATTENED OBLATE SPHEROIDS

Consider a Boussinesq fluid with the constant thermal expansion coefficient α, constant thermal
diffusivity κ , and constant kinematic viscosity ν. The fluid is confined within an oblate spheroidal
cavity rotating about the symmetry axis at a constant angular velocity of � = �ẑ. The eccentricity
E =

√
R2

e − R2
p/Re is calculated from the equatorial radius Re and the polar radius Rp and hence

represents the oblateness. The Froude number Fr = 3�2/(4πGρ0) measures the importance of the
centrifugal force relative to the self-gravitation of the fluid. According to the classical Maclaurin
spheroid relation [10], the geometrical shape is determined by the Froude number such that the fluid
and the cavity can be in a rotational equilibrium state. Uniformly distributed heat sources internally
heat the fluid. When the heating is not sufficiently strong, the state ought to be stably stratified and
can be described by

ρ0� × (� × r) = −∇P0(r) + ρ0g0(r), (1)

∇ · g0(r) = −4πGρ0, (2)

∇2T0 + β = 0, (3)

in which g0, T0, and P0 are the equilibrium gravity, temperature, and pressure, respectively, and
the constant β represents the heat sources. By virtue of oblate spheroidal coordinates (0 � η �√

1 − E2, 0 � φ < 2π, −1 � τ � 1) with unit vectors (η̂, φ̂, τ̂), which admit the transformation
below to the familiar Cartesian coordinates

x = Re

√
(η2 + E2)(1 − τ 2) cos φ,

y = Re

√
(η2 + E2)(1 − τ 2) sin φ,

z = Reητ,

as elucidated in Kong [8], the conduction state can be solved from Eqs. (1)–(3), subject to an
equipotential boundary condition for gravitational plus centrifugal potential and the zero boundary
conditions for both the temperature and the pressure,

2Fr

3
=

√
1 − E2

E3
(3 − 2E2) sin−1 E − 3(1 − E2)

E2
, (4)

η̂ · g0 =γ Re
3η

2E3

√
η2 + E2√

η2 + E2τ 2
[E − 3Eτ 2 − E3(1 − τ 2) +

√
1 − E2(3τ 2 − 1) sin−1E], (5)

τ̂ · g0 =γ Re
3τ

2E3

√
1 − τ 2√

η2 + E2τ 2
[E5− E3+ E (E2 − 3)η2+

√
1 − E2(3η2 + E2) sin−1E], (6)

T0 = βR2
e

[1 − (η2 + E2)][1 − E2(1 − τ 2)]

6 − 4E2
, (7)

in which γ = 4πGρ0/3.
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When the heat sources get sufficiently strong, thermal instability drives convective motion that
slightly modifies the conduction state. The linearized dimensionless equations governing the weak
convection problem near onset are

∂u
∂t

+ 2ẑ × u = −∇p + St(2Fr − 3)�∇T0 + Ek∇2u, (8)

∇ · u = 0, (9)

∂�

∂t
+ u · ∇T0 = Ek

Pr
∇2�, (10)

where � represents the temperature fluctuation, p is the reduced pressure, and u is the velocity
of convection. We have employed Re as the length scale, �−1 as the timescale, and βR2

e as the
temperature unit. The three key nondimensional parameters, the stratification number St, the Prandtl
number Pr, and the Ekman number Ek, are defined as

St = αβγ R2
e

�2
, Pr = ν

κ
, Ek = ν

�R2
e

.

The equations are equipped with the no-slip and isothermal boundary conditions for velocity and
temperature fluctuation on the bounding surface S = {(η, φ, τ )|η = √

1 − E2}.
In the regime of asymptotically small Ekman numbers 0 < Ek � 1 and sufficiently small Prandtl

numbers, a global asymptotic analysis was carried out in Li and Kong [9], showing that the
convective motion at onset is marked by one dominant inertial mode in the oblate spheroidal cavity.
As explained therein, the primary interior flow is nondissipative, while the buoyancy force drives
thermal convection against viscous dissipation in the boundary layer.

The asymptotic solution can be expanded by

u = A{[̂u + umnk (η, φ, τ )] + ũ}ei2σ t + c.c. + · · · , (11)

p = A{[ p̂ + pmnk (η, φ, τ )] + p̃}ei2σ t + c.c. + · · · , (12)

� = A�0(η, φ, τ )ei2σ t + c.c. + · · · , (13)

St = St1 + · · · , (14)

σ = σmnk + σ1 + · · · , (15)

where i = √−1; σ denotes the half frequency; A represents the amplitude of convection; umnk ,
pmnk , and σmnk are the flow, pressure, and half eigenfrequency of the primary inertial mode (see
Zhang et al. [11] for the explicit formulas), respectively; the boundary flow ũ and the associated
pressure p̃ only exist in the thin boundary layer where |̃u| = O(|umnk|); and û and p̂ are the small
secondary interior perturbations caused by the boundary flow and vanish in the boundary layer. σ1

is the small correction to the half eigenfrequency of the inertial mode, which is determined with
St1 in the following analysis. c.c. denotes the complex conjugate of the previous term. The order m
denotes the azimuthal wave number. At the same time, n and k roughly outline the complexity of the
flow structure in the directions perpendicular to and parallel to the rotation axis. The temperature
�0, driven by a spheroidal inertial mode umnk , can be expanded by the radial spheroidal wave
functions of the first kind R(1)

ml (−iEklq, iη/E ) and the spheroidal angular functions S(1)
ml (−iEklq, τ ) of

the first kind, which are the eigenfunctions of the Helmholtz equation ∇2ψ + k2ψ = 0 in an oblate
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spheroidal domain [12], in the form

�0 = −
∑
l,q

R(1)
ml (−iEklq, iη/E )S(1)

ml (−iEklq, τ )

k2
lqEk/Pr + i2σmnk

× 2π

∫ 1

−1

∫ √
1−E2

0
(umnk · ∇T0)R(1)

ml (−iEklq, iη/E )S(1)
ml (−iEklq, τ )(η2 + E2τ 2)dηdτ, (16)

where klq are determined by zeros of R(1)
ml functions,

R(1)
ml (−iEklq, i

√
1 − E2/E ) = 0, (17)

with klq being ordered such that 0 < kl1 < kl2 < kl3 < · · · . The spheroidal wave functions
R(1)

ml (−iEklq, iη/E ) and S(1)
ml (−iEklq, τ ) have been normalized as∫ 2π

0

∫ 1

−1

∫ √
1−E2

0
R(1)

ml (−iEklq, iη/E )S(1)
ml (−iEklq, τ )

× R(1)
ml ′ (−iEkl ′q′ , iη/E )S(1)

ml ′ (−iEkl ′q′ , τ )(η2 + E2τ 2)dηdτdφ = δll ′δqq′ .

For any given Ekman number Ek that is asymptotically small, Prandtl number Pr that is suf-
ficiently small, and Froude number Fr that obeys the Maclaurin spheroid relation, the physically
preferred mode at the onset of convection (pmnk , umnk , �0) associated with the unknown values of
(m, n, k) is determined through the solvability condition of the next-order problem described by

i2σmnk û + 2ẑ × û + ∇ p̂ = St1(2Fr − 3)�0∇T0 + Ek∇2umnk − i2σ1umnk, (18)

∇ · û = 0, (19)

and the secondary flow û is subject to the boundary condition

η̂ · û = influxattheouteredgeoftheviscousboundarylayer̃u. (20)

The explicit expression of the boundary flow ũ, which can be obtained from solving standard
boundary layer equations (see the Appendix of Li and Kong [9]), enters Eqs. (18) and (19) through
Eq. (20). In this order, thermal effects are coupled with the nondissipative thermal-inertial mode,
driving convection against viscous dissipation. Since Eq. (18), whose right-hand side is related to
the leading-order solution (umnk,�0), is inhomogeneous, it requires a solvability condition whose
real part yields an expression for the stratification number St1. In contrast, the imaginary part can
be used to determine σ1.

The globally minimum critical stratification number Stc is determined by minimizing St1 over
different inertial modes umnk , giving rise to the most unstable mode umcnckc marked by the critical
wave numbers m = mc, n = nc, and k = kc along with the corresponding half eigenfrequency σc =
σmcnckc + σ1.

III. RESULTS AND NUMERICAL VERIFICATIONS

We try the parameters Ek = 10−4 and Pr = 5 × 10−3. The asymptotic solutions developed in this
paper are computed for several inertial modes in highly flattened spheroids. The eccentricity ranges
between 0.8 � E � 0.9. As shown in Fig. 1, the critical stratification numbers of the modes are
plotted against the oblateness E . A remarkable crossover is predicted at about E = 0.84. Below this
oblateness, the globally most unstable mode at the onset of rotating convection should still be the
(2,1,1) quasigeostrophic wave mode, which is consistent with the classical understanding that the
preferred mode at the onset of rotating convection in a globe is non-axisymmetric and equatorially
symmetric. But above this oblateness, surprisingly, the axisymmetric and equatorially symmetric
(0,1,2) oscillatory mode seems to become the physically preferred one. The explicit form of the
leading-order asymptotic solution can be presented as the primary inertial mode plus the tangential
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FIG. 1. The critical stratification numbers St1 of several inertial modes plotted as function of the E at
Ek = 10−4 and Pr = 5 × 10−3. Modes are distinguished by the set of wave numbers (m, n, k) in the legend.
The thick green curve depicts the (2,1,1) wave mode, and the thick blue curve draws the (0,1,2) zonal oscillatory
mode. The two thickened curves cross over at about E = 0.84.

components of the boundary layer flow,

uasym = [u012 + (φ̂ · ũ)φ̂ + (τ̂ · ũ)τ̂]ei2σ012t + c.c., (21)

in which the inertial mode has the components

σ012 =
√

3

7 − 4E2
, (22)

η̂ · u012 = i
√

η2 + E2√
η2 + E2τ 2

{
15σ012

4
(
1 − E2σ 2

012

) (1 − τ 2)η − 105σ012
(
1 − σ 2

012

)
16

(
1 − E2σ 2

012

)2 (η2 + E2)(1 − τ 2)2η

− 15σ012

2
(
1 − E2σ 2

012

)ητ 2 − 105σ012

4
(
1 − E2σ 2

012

)2 (1 − τ 2)
[
σ 2

012η
2 − (

1 − σ 2
012

)
(η2 + E2)

]
ητ 2

+ 35σ 3
012

2
(
1 − E2σ 2

012

)2 η3τ 4

}
, (23)

φ̂ · u012 =
√

(η2 + E2)(1 − τ 2)

1 − E2σ 2
012

[
−15

4
+ 105

(
1 − σ 2

012

)
16

(
1 − E2σ 2

012

) (η2 + E2)(1 − τ 2)

+ 105σ 2
012

4
(
1 − E2σ 2

012

) (ητ )2

]
, (24)

τ̂ · u012 = i
√

1 − τ 2√
η2 + E2τ 2

{
− 15σ012

4
(
1 − E2σ 2

012

) (η2 + E2)τ + 105σ012
(
1 − σ 2

012

)
16

(
1 − E2σ 2

012

)2 (η2 + E2)2(1 − τ 2)τ

− 15σ012

2
(
1 − E2σ 2

012

)η2τ + 105σ012

4
(
1 − E2σ 2

012

)2 (η2 + E2)
[
σ 2

012τ
2 + (

1 − σ 2
012

)
(1 − τ 2)

]
η2τ

+ 35σ 3
012

2
(
1 − E2σ 2

012

)2 η4τ 3

}
, (25)
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and the tangential components of the boundary layer flow are

τ̂ · ũ = − i
15(7 − 4E2)

28(1 − E2)

{√
3[1 − E2(1 − τ 2)]√

7 − 4E2
− τ

}
τ
√

1 − τ 2eγ +
012[(

√
1−E2−η)/

√
Ek]

− i
15(7 − 4E2)

28(1 − E2)

{√
3[1 − E2(1 − τ 2)]√

7 − 4E2
+ τ

}
τ
√

1 − τ 2eγ −
012[(

√
1−E2−η)/

√
Ek], (26)

φ̂ · ũ = + 15(7 − 4E2)

28(1 − E2)

{√
3[1 − E2(1 − τ 2)]√

7 − 4E2
− τ

}
τ
√

1 − τ 2eγ +
012[(

√
1−E2−η)/

√
Ek]

− 15(7 − 4E2)

28(1 − E2)

{√
3[1 − E2(1 − τ 2)]√

7 − 4E2
+ τ

}
τ
√

1 − τ 2eγ −
012[(

√
1−E2−η)/

√
Ek], (27)

where the γ ±
012 coefficients are respectively

γ +
012 = −

(
1 + i

σ012h2 + τh

|σ012h2 + τh|
)√

|σ012h2 + τh|, (28)

γ −
012 = −

(
1 + i

σ012h2 − τh

|σ012h2 − τh|
)√

|σ012h2 − τh|, (29)

and h =
√

1 − E2(1 − τ 2). Note that the boundary layer solution is known to break down at critical
latitudes [13]:

τ = ±σ012

√
1 − E2√

1 − σ 2
012E2

. (30)

The effects of the breakdown on asymptotic solution were shown to be negligible in spheres [14,15]
and spheroids [9].

To confirm the interesting theoretical prediction, numerical calculations are carried out using a
three-dimensional finite-element method [16]. The fully nonlinear convection equations,

∂unum

∂t
+ unum · ∇unum + 2ẑ × unum

= −∇pnum + St[Frẑ × (ẑ × r) − g0]�num + Ek∇2unum, (31)

∇ · unum = 0, (32)

∂�num

∂t
+ unum · ∇(T0 + �num ) = Ek

Pr
∇2�num, (33)

are directly solved in oblate spheroidal geometry D = {(x, y, z)|x2 + y2 + z2

1−E2 � 1}. When the
parameters Ek, Pr, and Fr and the corresponding tetrahedral finite-element mesh are prescribed,
calculations are always initially set to static unum(t = 0) = 0, but with small random perturbations in
temperature. The numerical onset of convection can be obtained by searching for the minimum St at
which a finite amplitude of convective motion can be properly excited and sustained. We have tried
doing the numerical simulations respectively at E = 0.8 (Fr = 0.2724) and E = 0.9 (Fr = 0.3304).
Typical azimuthal flows φ̂ · unum of the numerical solutions are presented in Fig. 2. The transition
from the (2,1,1) mode to the (0,1,2) mode is convincingly demonstrated. Also, the corresponding
asymptotic solutions are compared with the numerical solutions in Table I. Finally, nine consecutive
snapshots within one full period of the zonal oscillation are demonstrated in Fig. 3, in terms of the
azimuthal flow component φ̂ · unum. The meridional wave propagation from the equator towards the
polar regions can be seen.
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FIG. 2. Contours of the azimuthal component φ̂ · unum are shown in the equatorial plane (the left column)
and a meridional cross section (the right column). Solid contours mark positive values, and dashed contours
mark negative values. The upper row contains a typical snapshot for the case E = 0.8, while the bottom row
plots a typical snapshot for the case E = 0.9.

It is beneficial to consider the physical reason why the pattern of rapidly rotating convection
would switch from a non-axisymmetric quasigeostrophic wave to an equatorially symmetric zonal
oscillation. For a large Prandtl number, the viscous effect offsets the rotational Taylor-Proudman

TABLE I. Comparison of the global critical parameters of the numerical and asymptotic solutions. The
superscript “asym” denotes the result computed with the asymptotic solution, and “num” denotes a numerical
result.

Ek Pr Fr E (mc, nc, kc ) Stasym
c Stnum

c σ asym
c σ num

c

0.2724 0.8 (2,1,1) 7.75 7.85 −0.1152 −0.1017
10−4 5 × 10−3 0.3304 0.9 (0,1,2) 20.96 20.00 0.8837 0.8840
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FIG. 3. Panels (a)–(i) plot nine consecutive snapshots of the azimuthal flow φ̂ · unum within one cycle of the
zonal oscillation in a meridional cross section of the oblate spheroid of E = 0.9. Solid contours mark positive
values, and dashed contours mark negative values.

constraint so that convection can occur. For a moderate or small Prandtl number considered in
this Letter, it is mainly the inertial effect that offsets the constraint. Consequently, various patterns
become physically realizable.

IV. CONCLUDING REMARKS

For the first time, this research discovers that an equatorially symmetric zonal mode can be
physically preferred at the linear onset of thermal instability in a rapidly rotating self-gravitating
fluid. This phenomenon is a result of self-consistently considering the nonspherical geometry of the
rotating fluid. Therefore, the Froude number is indeed another important parameter for rotating
convection in planetary and astrophysical bodies, besides the well-known Ekman number and
Prandtl number. However, in the present study, the Ekman and Prandtl numbers are both fixed
for illustration. More comprehensive and systematic studies are necessary to understand situations
under more combinations of the three parameters. It can be expected that similar axisymmetry at
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the onset of rotating convection might exist for lower spheroidal oblateness, which would be more
realistic for geophysical and astrophysical objects.

In astrophysics, the convective envelopes of luminous stars are typically marked by a small
Prandtl number because radiative heat transfer can effectively cause large thermal diffusivity κ .
As a result, stellar convection might belong to the category of inertial convection. This research
reveals a new linear mechanism that could directly drive zonal flow and differential rotation in
stellar interiors.
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