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Estimates of mode-1 internal tide harmonic generation in the global ocean
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Recent theoretical and experimental work has demonstrated the generation of nonlinear
harmonics when internal waves propagate in nonuniform stratification. This effect is most
pronounced if the harmonic frequency is near resonance with a freely propagating mode.
It may play a significant role in the evolution of low-mode internal tides in the ocean,
possibly leading to the formation of strongly nonlinear waves. Here, global ocean stratifi-
cation profiles measured by ARGO floats are used to quantify the potential for nonlinear
harmonic generation for semidiurnal mode-1 internal tides. The results show that the first
harmonic, with double the wave number of the parent mode, is often expected to attain
an amplitude exceeding a fifth of the parent mode in equatorial regions. Potentially strong
harmonic responses were calculated most frequently for the Pacific and Indian Oceans. A
strong harmonic is not expected in the Atlantic, despite near-resonance conditions, because
weaker and more shallow pycnoclines do not provide a sufficient harmonic forcing. Hence
near resonance is found to be a necessary, but not sufficient, condition for harmonic
generation in measured ocean stratifications. A second criterion, based on pycnocline depth
and density change, is proposed as an additional condition for harmonic generation.

DOI: 10.1103/PhysRevFluids.8.124801

I. INTRODUCTION

Recent work has shown that internal waves propagating through nonuniform stratification gen-
erate double-frequency and double-wave-number harmonics. This effect has been demonstrated for
internal waves incident on a pycnocline in both the laboratory [1–3] and in numerical simulations
[4–6]. The harmonic effect was first shown theoretically for a sharp interface by Thorpe [7] and
was generalized to any nonuniform stratification profile using weakly nonlinear theory in [5]. This
work also demonstrated that the amplitude of the harmonic mode would be greatest in instances
of near resonance, in which the harmonic frequency was nearly equal to the frequency of a freely
propagating wave with the harmonic wave number. The harmonic mode arises due to self-interaction
of the parent internal wave with itself in regions where the density gradient is changing and is a
special case of resonant triads in nonuniform stratifications [8].

The weakly nonlinear theory of harmonic generation has recently been applied to mode-1 internal
tides in [9–13]. Mooring data from the South China Sea [14] has indicated the intermittent presence
of a double-frequency harmonic of the diurnal tide which could be associated with this effect.
Motivated by these observations, the authors of Ref. [9] used idealized ocean stratification profiles
based on MOODS data [15] to estimate the steady-state amplitude of the harmonic that would
theoretically be generated by the semidiurnal (mode-1) internal tide. The results suggested that
the harmonic mode could plausibly generate near surface currents with amplitudes on the order
of 0.1 m/s, a value roughly consistent with the South China Sea observations of [14]. (However,
mere consistency is not proof that this is the mechanism responsible for the observations, given the
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complicated environment found there.) Subsequent numerical simulations [10] with an idealized
ocean stratification profile also demonstrated the formation of the double-frequency harmonic
mode. In [11], the weakly nonlinear theory of [5] was extended to include rotation and the initial
growth dynamics of the mode-1 internal tide. Analytic results for idealized ocean stratification
profiles indicated that significant harmonic generation was expected due to near resonance of the
primary and harmonic modes in the absence of rotation but that increasing rotation would break
this resonance and prevent the growth of the harmonic mode. This suggested that the harmonic
generation mechanism was most likely to occur in equatorial oceans (latitudes less than ∼20
degrees). The timescale for growth of the harmonic mode was found to be on the order of a few
days, also consistent with the observations of [14].

In [12], the weakly nonlinear theory of [11] was extended to couple the parent and harmonic
mode amplitudes and better represent the dynamics of near-resonant harmonics using a separation
of timescales approach. It was shown that a steady-state harmonic amplitude does not generally
occur, but instead the parent and harmonic modes slowly oscillate in amplitude as they exchange
energy, reminiscent of the intermittent harmonics seen in the South China Sea data of [14]. The
accuracy of the weakly nonlinear theory was verified using numerical simulations. For idealized
ocean profiles in equatorial regions, the improved theory also indicated harmonic mode growth
timescales of a few days. The theoretical approach was further extended in [13] to include higher
harmonics, which could yield a transition to a strongly nonlinear solitary internal wave.

In the global ocean, the mode-1 semidiurnal internal tides have been observed to contain
∼36 pJ of energy, based on satellite observations [16]. Given the recent theoretical understanding
of nonlinear harmonic generation and the importance of mode-1 ocean internal tides, the present
work uses measured ARGO [17] stratification profiles to calculate the expected characteristics of
the mode-1 harmonic in the global ocean. Existing theory is applied for this purpose, with the caveat
that many important aspects of ocean dynamics (such as ocean currents and horizontal variations
in stratification and bathymetry along the propagation path) are neglected. The goal of this analysis
is to determine if realistic ocean stratification profiles could potentially yield nonlinear harmonic
generation. The results support the previously published speculation, which was based on idealized
stratification profiles, that this effect may indeed be significant in equatorial seas [11,12]. However,
profiles in the Atlantic do not appear likely to yield harmonic generation due to relatively weaker
and more shallow pycnoclines. The remainder of this paper is organized as follows. The weakly
nonlinear theory for harmonic generation is reviewed in Sec. II, followed by a description of the
ARGO ocean stratification profile data in Sec. III and the method used to calculate the harmonic
mode characteristics from these profiles in Sec. IV. The results of the harmonic mode calculations
using those profiles are presented in Sec. V and interpreted in terms of the weakly nonlinear theory
in Sec. VI.

II. WEAKLY NONLINEAR THEORY

The weakly nonlinear theory outlined here summarizes relevant results from [11,12]. Using the
previously developed theoretical framework for an inviscid Boussinesq fluid on an f -plane with
buoyancy frequency N (z) and rotation frequency f , the weakly nonlinear solution is constructed in
terms of the stream function ψ (x, z, t ), with u ≡ ∂zψ and w ≡ −∂xψ . The governing equations are
[18]

∂2
t ∇2ψ + N2∂2

x ψ + f 2∂2
z ψ = −∂t J (∇2ψ,ψ ) − g

ρo
∂xJ (ρ,ψ ) − f ∂zJ (v, ψ ), (1)

∂tρ + J (ρ,ψ ) + ρ

g
N2∂xψ = 0, (2)

∂tv + J (v, ψ ) + f ∂zψ = 0, (3)

where ∇2 ≡ ∂2
x + ∂2

z , and the Jacobian is J (a, b) ≡ (∂xa)(∂zb) − (∂xb)(∂za). The mean fluid density
is ρo, and ρ is the density perturbation from the mean stratification due to the internal wave motion.
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Gravity is aligned with the vertical (z) axis. Viscosity and diffusion are neglected. If the Jacobian
terms are neglected, these equations reduce to the standard linear internal wave equations.

Following the approach of [11], the solution is decomposed into a linear “parent mode” solution
ψo with frequency ω and horizontal wave number k, and a (smaller amplitude) harmonic perturba-
tion δψ , as

ψ (x, z, t ) = [aoψo(z)ei(kx−ωt ) + c.c.] + δψ (x, z, t ), (4)

where ψ and δψ are real, ψo is complex, and c.c. denotes complex conjugate. The constant ao

gives the amplitude of the parent mode, while ψo is a normalized solution of the linear internal
wave equation. The density perturbation ρ and horizontal (meridional) velocity component v are
similarly decomposed. Inserting Eq. (4) into Eq. (1), the parent mode obeys the standard linear
equation:

∂2
z ψo + k2 N2 − ω2

ω2 − f 2
ψo = 0. (5)

As shown in [11], the harmonic perturbation δψ obeys

∂2
t ∇2δψ + N2∂2

x δψ + f 2∂2
z δψ = −k3

ω

(2ω)2 − f 2

ω2 − f 2
(∂zN

2)
[
a2

oψ
2
o e2i(kx−ωt ) + c.c.

]
(6)

to lowest order in ψo. Only the harmonic part of the forcing derived in [11] has been retained
on the right-hand side of Eq. (6); the mean-flow part of the solution is not considered here. In
uniform stratification (∂zN2 = 0), there is no harmonic forcing for δψ . Equation (6) shows that
any internal wave propagating in vertically varying stratification (non-zero ∂zN2), such as an ocean
environment with a pycnocline, generates harmonics. These may be bound harmonics of the incident
wave or freely propagating waves. Mathematically, Eq. (6) is analogous to a system of forced simple
harmonic oscillators with forcing frequency 2ω and wave number 2k.

The steady-state, forced (or bound) harmonic solution of Eq. (6) is found by substituting δψ =
δψs(z) exp[2i(kx − ωt )] + c.c. for a double-frequency (2ω), double-wave-number (2k) harmonic
into Eq. (6), as shown in [11]:

∂2
z δψs + (2k)2 N2 − (2ω)2

(2ω)2 − f 2
δψs = k3

ω

∂zN2

(ω2 − f 2)
a2

oψ
2
o . (7)

This equation is the generalization of the steady-state harmonic solution of [5] for a rotating fluid
(nonzero f ). Note the structure of the left-hand side of Eq. (7) mimics that of the linear equation for
ψo Eq. (5). If the harmonic forcing frequency (2ω) and wave number (2k) are sufficiently close
to those of a freely propagating solution of Eq. (5), resonance occurs (like a forced harmonic
oscillator) and the harmonic mode amplitude is significant. Such conditions are a special case
of triadic resonances in nonuniform stratifications [8], with the parent wave ψo comprising two
components of the triad and the harmonic wave δψs being the third. An analytic solution for the
steady-state harmonic was found for a three-layer fluid in [11].

Baker and Sutherland [12] showed that for a low-mode parent wave in near-resonant conditions,
the harmonic mode amplitude will undergo a slow oscillation on a timescale much longer than ω−1.
This is represented mathematically by allowing the harmonic amplitude to vary slowly in time. By
assuming a separation of timescales [12], constructed solutions for the harmonic using orthogonal
basis functions are defined here as

δψ ≡ e2i(kx−ωt )
∑

j

a j (t )ψ j (2k, z) + c.c., (8)
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where (k, ω) are the wave number and frequency of the parent mode, and a j is the amplitude of
the dimensionless orthonormal basis functions ψ j (k). Here the index j denotes the jth mode of the
linear solution for the horizontal wave number k:

∂2
z ψ j + k2

N2 − ω2
j

ω2
j − f 2

ψ j = 0, (9)

∫ 0

−H
ψiψ j (N

2 − f 2)dz = δi jHω2
j . (10)

Here ω j (k) is the frequency of mode j with horizontal wave number k, and H is the depth of the
water column. By definition, the parent mode frequency is ω = ω1(k) for a mode-1 parent wave.
Following [12], substituting Eq. (8) into Eq. (6), utilizing the orthonormality of the basis functions
Eq. (10), and neglecting the second time derivative of aj (assumed small) yields

da j

dt
− iε jωa j = −ia2

oMj, (11)

ε j ≡ (2ω)2 − ω2
j (2k)

(2ω)2
, (12)

Mj ≡ k

Hω2
j (2k)

(2ω)2 − f 2

4(ω2 − f 2)

ω2
j (2k) − f 2

4ω2

∫ 0

−H
ψ2

o (k)ψ j (2k)∂zN
2dz, (13)

where it is assumed, as in [12], that a j grows slowly compared to the oscillation timescale 1/ω. Note
that the first mode with wave number k is just the parent mode [ψo ≡ ψ1(k)] with frequency ω, and
that the stream functions ψ j must be normalized as in Eq. (10). For realistic stratification profiles,
it was found in [12] that the value of the dimensionless integral equivalent to Eq. (13) (M1H/k in
the present notation) is typically of order unity, and similar values were found for the ARGO data
considered here (not shown). Assuming a pure parent mode as the initial condition [aj (t = 0) = 0
for j �= 0], the growth of the harmonic perturbation amplitudes can be calculated. The solution takes
the form

a j (t ) = a2
oMj

ωε j
(1 − eiε jωt ). (14)

Here j is the index (mode number) of the wave-number 2k mode with frequency closest to 2ω,
yielding the smallest value of ε j . The harmonic mode amplitude scales as 1/ε j , and its amplitude
oscillates slowly with frequency ε jω. From Eq. (14), the ratio of the magnitude of the (oscillatory)
harmonic mode to the parent mode amplitude is aoMj/ωε j . Note that although the slowly varying
amplitude theory also permits a steady solution [12], it differs from the steady-state bound harmonic
solution of [11]. Hence both approaches are used here to provide independent estimates of the
possible harmonic effect.

III. OCEANIC STRATIFICATION DATA

This analysis uses approximately 390 000 ARGO stratification profiles collected during the
period from 2009 to 2017 and retrieved online from [17]. The present analysis is limited to latitudes
less than 60 degrees, since rotation is expected to inhibit the harmonic effect at latitudes exceeding
∼10–20 degrees [11,12]. Each ARGO data profile typically extends to between 40% and 60% of
the full ocean depth. Most profiles include a well-defined pycnocline within the measured portion
of the water column, which is the most significant segment of the water column for this analysis,
since the largest gradients of N typically occur there. In order to produce a complete stratification
profile for stream-function calculations, values of N in the unmeasured part of the water column are
estimated by taking the deepest 5% of the measured values and assigning their mean value to the
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FIG. 1. The mean value of the dimensionless depth of the pycnocline base, h/H , of the ARGO profiles at
each location.

unmeasured portion of the water column (i.e., constant buoyancy frequency). This extrapolation
method is chosen to avoid adding any nonzero gradients to the water column, since nonzero
values of ∂zN drive the harmonic generation mechanism. Results were not found to be sensitive
to variations in the method for assigning the deep ocean stratification value in a number of test
cases.

Given that the weakly nonlinear interaction is associated with gradients in N2, the characteristics
of the pycnocline are of primary relevance to the present analysis. The pycnocline is defined here
as the region of increased N in the vicinity of the maximum value of N , denoted Nm, in the
measured profile. To formulate a quantitative definition, the pycnocline stratification is compared to
the buoyancy frequency in the deep ocean, defined here as the mean of the values in the lower
two-thirds of the water column. This threshold was selected because nearly all ARGO profiles
include measurements to at least this depth. Hence the deep buoyancy frequency, denoted No, is
computed using a portion of the water column that includes both measured and extrapolated values
of N . The value of No is typically between 0 and 2 cph. Comparing this to the maximum buoyancy
frequency Nm, the pycnocline is defined here as the range of depths around the maximum for which
N2 is greater than a threshold value given by (N2

m + 2N2
o )/3. In other words, the density gradient

in the pycnocline exceeds the deep ocean mean density gradient by at least 1/3 of the difference
between the maximum and deep ocean values of N2. The depths at which N2 first crosses this
threshold value above and below the depth of the maximum define the top and bottom of the
pycnocline. These depths nominally correspond to the depths −h + δ and −h in the three-layer
idealized model of [11]. Finally, the density change �ρ across the pycnocline is computed by
integrating N2 between the two bounding depths and applying the definition of N2 (proportional
to the density gradient). Note that these definitions of pycnocline characteristics are not used for the
calculations of the nonlinear harmonic effect; they are for interpretative purposes only.

Figure 1 presents a global map of the mean depth of the base of the pycnocline h relative to the
water depth H as computed from the measured profiles by the method described above. The map
was produced by spatially binning the profiles into 0.2-degree by 0.2-degree boxes in latitude and
longitude, and averaging the pycnocline depth h for each profile within the box. In most locations,
the dimensionless pycnocline depth h/H was less than 0.1. In equatorial regions (here defined as
latitudes less than 15 degrees) it was usually less than 0.05, with the shallowest pycnoclines found
in the Atlantic and Eastern Pacific. The deepest pycnoclines were generally found in the Southern
Ocean and in the North Atlantic. These observations are generally consistent with other studies
of the upper ocean pycnocline characteristics [19]. The pycnocline buoyancy change g�ρ/ρo,
normalized by H (N2

o − ω2), is presented in Fig. 2 on a logarithmic (base-10) color scale. The reason
for this specific normalization will be made clear in Sec. VI. In the equatorial waters of the Pacific

124801-5



SCOTT WUNSCH AND F. JOSEPH MARCELLINO

FIG. 2. The mean value of the dimensionless density change g�ρ/[ρoH (N2
o − ω2)] across the pycnocline

computed from ARGO data.

and Indian Oceans, this normalized density change is often ∼3 or more. It is ∼1 or less in most of
the Atlantic, and also at mid-latitudes. Larger values also appear in the North Atlantic and Southern
Ocean.

IV. NUMERICAL CALCULATION OF MODES

The values of buoyancy frequency from each individual ARGO vertical profile (including the
extrapolation to the sea floor) are used to form the basis of the numerical grid for calculating
the internal wave modes. To improve the conditioning of the matrix inversion needed for this
calculation, linear interpolation is used to fill in three additional data points, spaced evenly between
each measured data point (i.e., depth z j), producing a discrete set of buoyancy frequency values Nj

at depths z j . Because the ARGO profiles do not extend to the sea floor, the lower part of the water
column is gridded with the same vertical resolution as the measured ARGO data and assigned the
deep ocean buoyancy frequency No as described in the previous section. The resulting discretized
profile of N values typically had ∼2000 data points, with a spatial resolution of a few meters in
depth.

For a measured oceanic profile, the parent mode is calculated by discretizing Eq. (5) using
a Taylor expansion to second order, using the stratification profile Nj generated from the mea-
sured data as described above. The frequency of the semidiurnal (∼12-hour period) internal tide
(ω � 1.4 × 10−4 s−1) is used, and the horizontal wave number k and lowest mode ψo are calculated
numerically using MATLAB’s matrix eigenfunction solver. Because harmonic generation is a nonlin-
ear effect, it depends on the parent mode amplitude ao. Here, ao for each profile is set by choosing a
representative value for the maximum horizontal current, defined as Uo = max(|ao∂zψo|), of 1 cm/s.
For almost all profiles, the maximum horizontal current occurs at the sea surface. This choice is
motivated by the typical amplitude of currents associated with internal tides being on the order
of centimeters per second [16], making the choice of 1 cm/s a conservative value. The expected
harmonic response to a parent mode with a maximum horizontal current greater than 1 cm/s would
increase with the square of the current. Although the amplitudes of oceanic internal tides vary, the
use of a constant amplitude ao here focuses attention on the potential for harmonic generation due
to geographic changes in ocean stratification, without introducing additional variations associated
with differing parent mode amplitudes.

Given the parent mode solution ψo and wave number k, the steady-state harmonic mode δψs is
computed by discretizing Eq. (7) on the same grid used for the parent mode and performing matrix
inversion to solve for δψs. To evaluate the resonance parameter ε [Eq. (12)] and the unsteady theory
of [12], the modes and frequencies for wave number 2k are computed numerically from Eq. (9) by
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FIG. 3. Global map of the mean value of the resonance parameter 1/ε (logarithmic color scale). The
smallest values of |ε| (yellow) are found near the equator.

again using the MATLAB matrix eigenfunction solver. Given these modes, the harmonic response
aoM1/ωε for the unsteady theory of [12] is computed using Eq. (13).

V. RESULTS

Using the numerically calculated parent mode horizontal wave number k for each profile, the
harmonic frequency ω1(2k) corresponding to wave number 2k is determined and the mode-1
resonance parameter ε [Eq. (12)] from [12] is computed. The values of ε from each individual
profile are spatially binned into 0.2 degree boxes (as with the stratification profile parameters in
Figs. 1 and 2) and are presented in Fig. 3. The color scale shows 1/ε and is logarithmic (base
10), with yellow indicating values of ε smaller than 0.01. It is clear that ε depends almost solely on
latitude, with the resonance parameter moving away from zero with increasing latitude (rotation) for
the ARGO profiles. Within a few degrees of the equator, values of ε are typically between 0.01 and
0.05, indicating near resonance between the mode-1 semidiurnal internal tide and its first harmonic.
It increases to ∼0.1 at latitudes of ∼30 degrees and approaches ∼1 at ∼60 degrees. The work of
[12] indicates that ε � 1 is a necessary condition for strong harmonic generation, and Fig. 3 shows
that this condition holds in equatorial waters globally.

Using the results from weakly nonlinear theory in Sec. II, two measures of the potential harmonic
effect are calculated from the parent mode stream functions for the representative horizontal current
value Uo of 1 cm/s described above. For the steady-state bound harmonic amplitude δψs [Eq. (7)]
from [11], Fig. 4 presents results for the integrated amplitude ratio R, defined by [12] as

R2 ≡
∫ 0
−H |δψs|2dz∫ 0
−H |aoψo|2dz

. (15)

Note that R2 can be interpreted as a ratio of kinetic energy in the harmonic mode to that of the parent
mode. Since the vertical velocity is given by the wave number multiplied by the stream function,
4R2 corresponds to the ratio of the total kinetic energy in the vertical component of velocity of
the harmonic to that of the parent mode. Mean values of R, computed from the measured ARGO
profiles and geographically binned as in Fig. 3, are shown in Fig. 4. Unlike the resonance parameter
ε, the actual harmonic response is not solely determined by latitude. A value of R greater than
0.1 indicates that the steady-state harmonic integrated amplitude exceeds 10% of the parent wave
integrated amplitude for the assumed current of Uo = 1 cm/s. This indicates potential for a harmonic
response to exceed the limitations of weakly nonlinear theory and possibly produce a more strongly
nonlinear wave. For larger values of Uo, the value of R would be proportionally larger. (For example,
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FIG. 4. The mean value of the ratio R of the steady-state forced harmonic magnitude to the parent mode
magnitude. The largest amplitudes (yellow) are generally found in the equatorial waters of the Pacific and
Indian Oceans.

if R = 0.1 for Uo = 1 cm/s, the corresponding value for Uo = 5 cm/s would be R = 0.5.) While
values of R greater than 0.1 are only found near the equator, R remains small in the equatorial
Atlantic, despite near resonance (small ε). If ε � 1 were a sufficient condition for strong harmonic
generation, all equatorial waters would exhibit the effect, but Fig. 4 indicates that this is not the
case.

An alternate measure of the steady-state bound harmonic amplitude is the maximum horizontal
current associated with the harmonic mode, given by Uh = max(|∂zδψ |). The mean ratio of
harmonic to parent current Uh/Uo was also computed, and the results closely mirrored those of
Fig. 4 for R. For the measured ARGO profiles, the computed values of R and Uh/Uo never differed
by more than a few percent.

For the unsteady harmonic amplitude theory of [12], Eq. (14) describes the evolution of the
harmonic mode. The harmonic amplitude is given by aoM1/ωε, where M1 is given by Eq. (13).
This ratio is presented in Fig. 5 for the assumed value of ao corresponding to Uo = 1 cm/s. These
results qualitatively match Fig. 4, but this method predicts a somewhat larger harmonic amplitude
(typically by a factor of up to 2, depending on the individual profile) than the steady-state bound
harmonic theory. The qualitative similarity of the results from the two different approaches adds

FIG. 5. The mean value of the ratio aoM/ωε from the unsteady theory of Ref. [12].
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FIG. 6. The median time τ for the harmonic mode to reach an amplitude of 0.05ao in the unsteady theory
of Ref. [12].

confidence to the observation that strong harmonics may occur only near the equator but are not
expected in the Atlantic.

The timescale for a harmonic to grow to significant amplitude can be estimated from the unsteady
theory of [12] using Eq. (14). The time τ to grow to an amplitude of 5% of the parent mode (0.05ao)
is given by

cos (εωτ ) = 1 − 1

2

(
0.05ωε

aoM

)2

. (16)

This timescale is presented in Fig. 6 using the same geographic binning as the previous results. The
color scale shows the median of the values of τ in days for the profiles in each geographic bin.
The median of the data is used rather than the mean here, because some profiles have harmonic
amplitudes less than 0.05ao, implying a τ of infinity. The typical timescale is a few days in the
equatorial Pacific and Indian Oceans, consistent with the estimates of [12] for idealized profiles in
near-resonance conditions.

The absence of a significant harmonic amplitude computed (by either of the measures presented)
from the ARGO profiles in the equatorial Atlantic is an unexpected result of this analysis, given the
similar values of ε (Fig. 3) across all equatorial oceans. This indicates that near resonance alone
is not sufficient to generate a nonlinear harmonic mode. A possible theoretical explanation for this
difference is presented in the next section.

VI. INTERPRETATION USING WEAKLY NONLINEAR THEORY

The absence of nonlinear harmonics in the equatorial Atlantic, despite near resonance with the
semidiurnal internal tide, can be understood in terms of weakly nonlinear theory. A key difference
between the Atlantic and the other oceans is the relative weakness of the density jump at the
pycnocline, as seen in Fig. 2. This likely implies smaller buoyancy frequency gradients ∂zN2 and
hence weaker harmonic forcing due to the appearance of this factor in Eqs. (7) (steady state) and
(13) (slowly varying amplitude). However, the weakly nonlinear theory below suggests this may
not be the only effect. The amplitude of the parent mode ψ2

o also appears in these equations, and
the magnitude of this factor at the pycnocline (where ∂zN2 is largest) may also contribute to the
difference in the estimated harmonic effect between the Atlantic and the other ocean basins. The
significance of these effects is explored below using an idealized theory.

To illustrate the impact of the pycnocline characteristics on the parent mode, the three-layer
piecewise linear solution of [11] is reduced to a two-layer solution using the limit method of
[20]. The stratification is No below the pycnocline (z < −h) and zero above it. The pycnocline is
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FIG. 7. Example parent mode solutions (right) for a two-layer stratification profile (left) with three different
values of the dimensionless pycnocline density jump parameter β [Eq. (18)].

represented by a density jump �ρ at z = −h. The parameters h and �ρ in this model are intended
to be analogous to the quantities shown in Figs. 1 and 2. The parent mode ψo is given by

ψo = ao

{
− sin q(H−h)

sinh qmh sinh qmz −h < z < 0

sin[q(H + z)] −H < z < −h

)

q2 = k2 N2
o − ω2

ω2 − f 2

q2
m = k2 ω2

ω2 − f 2
, (17)

and the dispersion relation is

tan q(H − h) = − q tanh qmh

qm − βq2H tanh qmh

β ≡ g�ρ

ρoH
(
N2

o − ω2
) . (18)

Here β is the dimensionless density jump across the pycnocline plotted in Fig. 2. This solution is
equivalent to the result in [11] in the limit of a thin pycnocline and reduces to the result in [9] in the
absence of rotation ( f = 0).

The two-layer solution for ψo is presented in the right panel of Fig. 7 using three different
values of β with a pycnocline depth of h = 0.1H and deep stratification No = 2 cph. Corresponding
potential density profiles ρpot/ρo (defined from the stratification profile using N2 = − g

ρo

dρpot

dz ) are
shown in the left panel, illustrating the increase in pycnocline stratification with β. As βh/H
increases from 0.05 to 0.5, the maximum of ψo transitions from the center of the water column
(z ∼ −H/2) to the pycnocline z ∼ −h and the wave number kH decreases from 0.12 to 0.06. Hence
the pycnocline parameter β divides the mode-1 parent solutions into two qualitatively different
types. The first type occurs for a weak and shallow pycnocline (small β and h � H). In this case,
the right-hand side of the dispersion relation [Eq. (18)] is approximately zero, and the dispersion
relation yields qH � π for mode 1. In this case, the maximum value of ψo occurs near the middle
of the water column, at z ∼ −H/2. The black curve in Fig. 7 is an example of this type of solution.
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FIG. 8. Example Argo measured density profiles (left) and corresponding parent mode solutions (right)
from several locations in the equatorial Atlantic (top) and Pacific (bottom). The pycnocline density jump
parameter β [Eq. (18)] and depth h/H are indicated for each profile.

The amplitude of ψo at the pycnocline is small (compared to its maximum), yielding a relatively
weak forcing of the harmonic mode.

In the second type of parent mode solution, the dispersion relation is more substantially altered by
the presence of the pycnocline. In this case, β is large enough to cause the denominator of Eq. (18)
to approach zero:

βq2H tanh qmh ∼ qm. (19)

For solutions of this type, a wave number of qH ∼ π/2 is required to find a solution to Eq. (18).
This moves the maximum value of ψo toward the pycnocline depth z ∼ −h. This is seen in Fig. 7 for
βh/H = 0.5 (magenta curve). Assuming qmh << 1 and qH ∼ π/2, the pycnocline density jump
[Eq. (19)], which yields the transition between ψo peaking near the middle of the water column
(z ∼ −H/2) and peaking near the pycnocline, can be expressed as

βh

H
∼ 4

π2
. (20)

Equation (20) roughly separates the two qualitatively distinct types of mode-1 parent solutions. The
change in the shape of ψo seen in Fig. 7 occurs between βh/H ∼ 0.1 and βh/H ∼ 0.5, consistent
with the rough estimate of Eq. (20). This shift in the peak of ψo toward the pycnocline results
in stronger harmonic forcing, since ψo is larger in amplitude at the pycnocline depth where the
gradients of N2 are found. The transition occurs gradually for βh/H in the range of 0.1–0.5, and for
realistic ocean stratifications may depend on the details of the profile N (z).

Several example ARGO stratification profiles N (z) are presented in Fig. 8 (only the upper
quarter of the water column is shown), along with the corresponding stream functions ψo calculated
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FIG. 9. Dependence of the harmonic amplitude ratio R on the dimensionless pycnocline depth h/H and
density jump β for four latitudes θL in the two-layer stratification profile. The color scale is logarithmic (base
10). The dashed white line is βh/H = 0.15.

numerically from each profile. The profiles were drawn from data collected in the Atlantic (top)
and Pacific (bottom) with latitudes of 10 degrees or less. Matching colors indicate which stream
function was calculated from which profile. The values of β and h/H are given in the legend,
and the profiles were selected to be among the larger values of βh/H for each ocean basin. The
Atlantic profiles shown have βh/H between 0.05 and 0.1, and stream functions which peak near the
middle of the water column (z ∼ −0.5H). The Pacific profiles shown have βh/H ∼ 0.5, and stream
functions which peak closer to the pycnocline (z ∼ −0.2H). Although the ARGO profiles have more
structure than the simple two-layer model, the distinction between stream functions which peak near
the center of the water column and those which peak near the pycnocline, and the significance of
βh/H as a governing parameter in this distinction, appears to apply to the ARGO data.

Stream functions with shallow maxima are generally found in the equatorial waters of the Pacific,
but not the Atlantic. The more shallow maximum of ψo in the Pacific overlaps the depth band with
gradients of N2 and hence is expected to produce a stronger harmonic forcing. This is consistent
with the stronger estimated harmonic response (Figs. 4 and 5) seen in the Pacific but not in the
Atlantic. Note that the maximum of N has a similar value and occurs at a comparable dimensionless
depth (a few percent of the water depth) in the examples shown for both oceans in Fig. 8. The shift
in the stream function appears to be an important factor in the increased harmonic response.

Using the steady-state harmonic solution of [11], the theoretical harmonic mode amplitude ratio
R is computed as a function of β. Although the solution of [11] uses a three-layer profile, a very
thin pycnocline thickness was chosen here to approximate the two-layer case. The results for the
harmonic amplitude ratio R for the chosen parent mode amplitude of Uo = 1 cm/s are presented in
Fig. 9 as a function of pycnocline density parameter β and depth h/H . Results are shown for four

124801-12



ESTIMATES OF MODE-1 INTERNAL TIDE HARMONIC …

FIG. 10. The steady-state harmonic amplitude ratio R as a function of the dimensionless pycnocline depth
h/H and density jump β = g�ρ/ρo(N2

o − ω2)H for latitudes less than 15 degrees using the full ARGO data
set (upper left) and using three ocean basins individually. The dashed black line is βh/H = 0.15.

latitudes from 5 to 20 degrees. Results in the upper-left panel of Fig. 9 mimic those in Ref. [9] (Fig. 3
therein) in which rotation was neglected. They also correspond to those in Ref. [11] (Fig. 1 therein)
for a finite-thickness pycnocline. The dashed white line corresponds to βh/H ∼ 0.15, similar to the
transition value suggested by Fig. 7 and Eq. (20). The largest amplitude ratios are found to the right
of the white dashed line at all latitudes. Figure 9 demonstrates that in weakly nonlinear theory for
a two-layer profile, steady-state harmonics of amplitude greater than 10% of the parent amplitude
(for this ocean-inspired choice of ao) occur only at low latitudes (where near resonance occurs) and
only when βh/H exceeds a value on the order of ∼0.1.

The steady-state harmonic amplitude ratio R and the unsteady amplitude aoM/ωε are computed
from the ARGO data (Figs. 4 and 5) as a function of β and h/H . The results are presented in
Figs. 10 and 11, respectively, in a manner analogous to Fig. 9. Here, all profiles from latitudes
below 15 degrees were included, and the stratification profile parameters h/H and β for each profile
were computed as described in Sec. III above. The upper-left panel of each figure presents the data
for all oceans, while the three remaining panels present data from the Atlantic, Indian, and Pacific
ocean basins separately. A transition value of βh/H = 0.15 is indicated by the black dashed lines, as
in Fig. 9. As with the two-layer analytic solution (Fig. 9), both steady-state and unsteady harmonic
amplitudes exceeding 20% of the parent amplitude (green/yellow on the plots) are mostly found
in profiles with β exceeding this value. Comparing the three ocean basins, the Atlantic lacks the
combination of deeper pycnoclines (h/H > 0.05) and larger density changes (βh/H > 0.15) found
elsewhere. The value of β needed for a stronger harmonic is larger for shallow pycnoclines, and
only a small fraction of the Atlantic profiles exceed this value. In contrast, deeper pycnoclines with
β exceeding the transition value are more common in the Pacific and Indian basins, accounting for
the higher likelihood of a stronger harmonic response calculated there.
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FIG. 11. The ratio aoM/ωε from the unsteady theory of [12] as a function of the dimensionless pycnocline
depth h/H and density jump β = g�ρ/ρo(N2

o − ω2)H for latitudes less than 15 degrees using the full ARGO
data set (upper left) and using three ocean basins individually. The dashed black line is βh/H = 0.15.

VII. DISCUSSION

In this work, ARGO data are analyzed to estimate the theoretical potential for mode-1 semidi-
urnal internal tides to form nonlinear harmonics. The possibility of a significant (exceeding ∼10%
of parent mode amplitude) response is found near the equator, except in the Atlantic. As previously
suggested [12], near resonance between the frequency of the lowest mode with wave number 2k and
double the frequency of the lowest mode with wave number k appears to be a necessary condition
for a harmonic response. This condition, defined by ε � 0.1 [Eq. (12)], is met globally for latitudes
below ∼15 degrees. However, a secondary condition of a sufficiently deep and strong pycnocline,
parameterized by the condition βh/H > ∼0.1–0.5 for the dimensionless pycnocline density change
β [Eq. (18)] is also found to be necessary for a harmonic response. This secondary condition is rarely
met by the ARGO profiles in the equatorial Atlantic but is regularly met in other ocean basins.

Harmonics of the semidiurnal internal tides have been observed in the South China Sea by [14],
although the generating mechanism for these data is not known. Unfortunately, ARGO data in the
South China Sea corresponding to these observations were not available for this study. Analysis
of MOODS [15] profiles by [9] yielded h/H ∼ 0.03 and β ∼ 0.7, which puts those observations
somewhat below the estimated range of transition values (βh/H ∼ 0.02). However, the parent mode
amplitude in [14] is larger than the value of Uo used here (∼10 cm/s, compared to 1 cm/s used here),
which would favor a stronger harmonic response than indicated by Fig. 9. These profile parameter
values appear to be consistent with the modest harmonic current amplitude (on the order of 10%
of the parent mode current) observed by [14]. Again, consistency is not proof that the nonlinear
harmonic generation mechanism considered here is the cause of the observed harmonics.

Future warming of the upper ocean mixed layer due to climate change will presumably increase
the typical density difference across the pycnocline. Every degree increase in temperature in the
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mixed layer increases �ρ/ρo by ∼2.4 × 10−4 and the dimensionless parameter β by ∼1, assuming
No ∼ 0.5 cph and H ∼ 3000 m as typical ocean values. If the pycnocline depth is unchanged, the
increasing gradients of N2 at the pycnocline would favor a stronger harmonic response. This could
make the internal tides propagating toward the equator more prone to nonlinear harmonic generation
as the climate warms.

The theoretical approaches used here exclude many effects which are present as internal waves
propagate across ocean basins, including horizontal variations in water depth, stratification, rotation,
and the presence of horizontal currents. In future work, modifications of the theory would permit
estimation of the importance of these effects. Investigation of the dynamics of energy exchange
between parent and harmonic modes using ARGO profile data, such as was performed in [12] for
idealized profiles, would also be worthwhile.
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