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A majority of numerical experiments of the Navier-Stokes equations, lacking physical
boundaries, have been conducted under periodic boundary conditions so far. In this paper,
in order to access the effect of periodicity imposed upon the flow properties, we take up
specifically two-dimensional incompressible flows and carry out numerical simulations on
the whole plane to compare with those under periodic boundaries, with or without adjusting
the Reynolds number. We solve the Navier-Stokes equations on a square domain using a
finite-difference scheme to simulate flows on R2. After checking the time evolution of
the Oseen vortex with the exact solution, we simulate merging of like-signed vortices to
compare it with that under periodic boundaries. Generally speaking, we find that flows
decay in norms faster on T 2 than on R2, even when the Reynolds number is adjusted.
We also simulate merging of three localized vortices that generates finer spatial structure
in order to study the decay law of the total enstrophy and spatial patterns in vorticity. In
this case, norms on T 2 decay in a manner very close to how those on R2 do, but still
marginally faster than those on R2. We also study the power law of the energy spectrum
on R2, comparing it with the predictions of, for example, Gilbert’s spiral model including
E (k) ∼ k−11/3, which sits at the Sulem-Frisch borderline.

DOI: 10.1103/PhysRevFluids.8.124607

I. INTRODUCTION

Many works have been published in studying fundamental aspects of fluid turbulence numeri-
cally over the past nearly 50 years since the advent of so-called pseudospectral methods. They allow
efficient numerical computations with exponential accuracy and, quite understandably, a majority
of their implementations were conducted under periodic boundary conditions after expanding flow
fields in Fourier series. Inevitably, the eigenvalues of the Stokes operator are discretized and have
the lowest value away from zero, which corresponds to the existence of the fundamental periodic
box. The flow fields in each box are affected by their periodic images via Poisson summation.

Also, in mathematical analysis of the Navier-Stokes equations, problems under periodic bound-
ary conditions are easier to handle than those on the whole space. However, the precise relationship
between the two is poorly understood and few papers discuss such matters.

In the case of three-dimensional (3D) turbulence there are works which study the domain size
under the same boundary conditions, for example, [1,2]. For two-dimensional turbulence, the roles
of boundary conditions and the domain shape were studied in [3]. Also, a relevant mathematical
problem was investigated in [4]. A kind of transfer of regularity results was proved therein for the
3D Navier-Stoke equations: A 2L-periodic solution on T 3, which is smooth on a finite-time interval,
converges to a smooth solution on the same time interval on R3 as L → ∞. Conversely, if a solution
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on R3 is smooth on a finite-time interval, then there exists a smooth periodic solution on the same
time interval for a sufficiently long L.

In this paper, to consider the relationship between the two different kinds of boundary conditions,
we take up the 2D Navier-Stokes equations of an incompressible fluid. We will focus on the forward
cascade of enstrophy. Clearly the inverse energy cascade is affected by the presence of the lowest
eigenvalue, that is, the eddies simply cannot grow larger than the size of the periodic box. While we
will not study the energy inverse cascade directly, it is of interest to see how the forward enstrophy
cascade is affected, because after all the transfer mechanisms of energy and enstrophy are just two
different facets of the same triadic interaction in wave-number space.

We carry out numerical experiments on a large but finite square designed to mimic the whole
plane R2. We then transfer the initial data onto the periodic domain T 2 and carry out corresponding
simulations in a parallel manner, with or without adjusting the Reynolds number on T 2. Hence,
when the Reynolds number is adjusted, any (qualitative) differences we observe should come from
the effect of periodic images and/or the discretized wave-number modes associated with the lowest
eigenvalue. We note that in [5] a systematic study was conducted to check the effect of periodic
boundaries by increasing L in a spirit similar to [4]. However, we believe that the computations in
periodic setting are fundamentally different from those conducted on the whole plane. Therefore,
it is worth checking whether the existence of the low-wave-number cutoff actually yields a benign
numerical artifact or something more serious. That is the rationale why we seek a direct comparison
of flows on R2 and on T 2.

The rest of this paper is organized as follows. In Sec. II we recall basic facts about the 2D
Navier-Stokes equations and phenomenological theory of 2D turbulence. In Sec. III we describe
numerical methods in some detail. In Sec. IV we present numerical results where we handle three
different kinds of initial data, with or without adjusting the Reynolds number on T 2. We begin by
confirming an exact solution of the Oseen vortex as a validation of our approach and proceed to
study the merger of two or three vortices. Section V is devoted to a summary and outlook.

II. FUNDAMENTALS

In term of vorticity ω the 2D incompressible Navier-Stokes equations read

∂ω

∂t
+ u · ∇ω = ν�ω,

∇ · u = 0, (1)

where ω(x, 0) = ω0(x) denotes the initial data, ν is the kinematic viscosity, u = −∇⊥�−1ω is the
incompressible velocity, and ∇⊥ = (∂y,−∂x ) is a skew derivative. We consider two different kinds
of boundary conditions: on the whole plane ω(x) → 0 as |x| → ∞ for x ∈ R2 and on the periodic
domain ω(x) = ω(x + 2πn) for x ∈ T 2, where n = (n1, n2) ∀ n1, n2 ∈ Z.

We recall scaling laws in phenomenological theory for a turbulent cascade in two dimensions,
highlighting the differences stemming from the boundary conditions. We will consider a forward
cascade of enstrophy in this paper. In homogeneous isotropic turbulence the following scaling laws
are known (possibly with a logarithmic correction) for the energy spectrum E (k) or alternatively for
the enstrophy spectrum Q(k) = k2E (k):

E (k) ∼ η2/3k−3, (2)

i.e., Q(k) ∼ η2/3k−1, when k lies in the intermediate range (i.e., the inertial subrange), referred to as
the Batchelor-Kraichnan-Leith (BKL) scaling [6–8]. Here η(t ) = − d

dt 〈ω2

2 〉 defines the dissipation
rate of enstrophy per unit area, with angular brackets denoting the ensemble average for theory (or
spatial averages for numerics).
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TABLE I. Scaling of 2D turbulence.

Boundary conditions Forward enstrophy cascade Inverse energy cascade

Isotropic turbulence E (k) ∼ η2/3k−3 E (k) ∼ ε2/3k−5/3

Whole plane E (k) ∼ (η′)2/3k−11/3 E (k) ∼ (ε ′)2/3k−7/3

As variants of Kolmogorov’s relationship for 3D turbulence, we have

〈δ‖u(r)[δω(r)]2〉 = −2ηr,

〈[δ‖u(r)]3〉 = 3
2εr,

where δ‖u(r) is the longitudinal velocity increment and δω(r) the vorticity increment (see, e.g., [9]).
They correspond to the Kolmogorov’s 4/5 law in three dimensions.

By and large, the scaling law (2) has been verified by direct numerical simulations under periodic
boundary conditions in many works, e.g., [10–12]. In contrast, for 2D turbulence on the whole plane
we ought to consider the total enstrophy and its dissipation rate η′(t ). Accordingly, the scaling law
would be altered, for k in the inertial subrange, as

E (k) ∼ η′2/3k−11/3, (3)

i.e., Q(k) ∼ η′2/3k−5/3, where η′(t ) = − d
dt

∫
R2

ω2

2 dx. This scaling law is related to the bound for the
2D Euler equations on R2, which will be referred to as the Sulem-Frisch (SF) scaling [13]. (N.B. The
correct exponent −11/3 was given in the Appendix in [14].) It states the following: If E (k) < Ck−s

for some s > 11/3, then 	ens(k) → 0 as k → ∞, where 	ens(k) denotes the enstrophy spectral
flux.

We recall that the scaling of the velocity structure function δu(r) ∼ ra and that of the correspond-
ing Fourier spectrum E (k) ∼ k−n are related by n = 2a + 1 provided 1 < n < 3 [15]. The scaling
of homogeneous 2D turbulence E (k) ∼ k−3 is already on the borderline, with δu(r) ∼ r1. Thus, the
scaling corresponding to n = 11/3 on the whole plane would be saturated and invisible on δu(r);
rather, it can appear on the vorticity increment δω(r) ∼ r1/3.

It is in order to recall some other phenomenological models for 2D turbulence. A model for
a localized vorticity gradient where vorticity is distributed like the Heaviside step function was
proposed in [16]. It predicts E (k) ∼ k−4 or equivalently Q(k) ∼ k−2.

In an attempt to interpolate between the BKL and the Saffman scaling laws, yet another model
was proposed and examined in [17], where vorticity is assumed to be wound up around a coherent
vortex. For a vortex with the azimuthal velocity uθ ∼ 1/rs−1, the spiral model predicts

E (k) ∼ (�t )2/(s+1)k−4+(s−1)/(s+1),

where � denotes total circulation and s (>0) a real parameter. In particular, for a point vortex (i.e.,
s = 2) we have E (k) ∼ k−11/3, which coincides with the SF bound.1 We summarize in Table I the
scaling laws of 2D turbulence for both boundary conditions, in which power-law behaviors for
inverse energy cascade are also included.

It is in order to comment on the possibility of anomalous dissipation of enstrophy, which has
been studied both mathematically and numerically. In some class of weak solutions of the 2D
Euler equations (see references cited for details), if vorticity is Hölder continuous δω(r) ∼ rb for
some b > 0, then enstrophy is conserved [18]. It is also conserved by any solution with finite

1This may be an accidental coincidence, because for the surface quasigeostrophic equation (i.e., with s = 3)
we have E (k) ∼ k−7/2, whereas dimensional analysis based on the dissipation of

∫
R2 θ 2dx gives rise to a

different scaling E (k) ∼ k−7/3.
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total enstrophy [19,20]. According to the argument in [21], enstrophy is conserved in the limit
of vanishing viscosity of 2D Navier-Stokes flows.

Incidentally, it is of interest to note that a system of three point vortices which collapses in finite
time2 does show anomalous dissipation of enstrophy [23]. Apparently, it is not known whether it is
necessary to consider such a wild class of solutions as point vortices to realize a dissipation anomaly
in two dimensions [18].

III. NUMERICAL METHODS

We will place numerical computations on R2 back to back with those on T 2 by the following
methods.

A. Whole plane R2

To simulate flows on R2 we use the simple method of domain truncation, which may be called
the large box method (see [24]). Instead of R2, consider a square domain [−L, L]2 of size 2L, which
is large in comparison with the characteristic length scale of the flow field in question. For x ∈ R2,
we solve (1), adopting a central finite-difference scheme. We use a fast Poisson solver for handling
the Biot-Savart relationship to estimate the velocity.

Here the Dirichlet boundary conditions are imposed at the edges of the box as

ω(x,±L) = ω(±L, y) = 0, −L � x, y � L,

because we handle well-localized vortices in a large box without the formation of boundary layers
whose vorticity is essentially zero at the box boundaries. This approach seems plausible and can be
checked a posteriori by watching vortices not close to the boundaries.3

Time marching is done by the fourth-order Runge-Kutta method with a typical time step
�t = 5×10−3. All the computations are done in double precision arithmetic. We refer the reader to
Appendix A for details of the numerical schemes.

B. Periodic domain T 2

For x ∈ T 2, we use a standard 2/3-dealiased Fourier pseudospectral method to solve (1). Time
marching is done in the same way as on R2, that is, by the fourth-order Runge-Kutta method with
�t = 5×10−3. In order to compare 2D Navier-Stokes flows on the whole plane R2 with those on
the 2D torus T 2 ≡ [−π, π ]2, it is necessary to transcribe the initial data on the whole plane onto
the periodic domain. We recall a method of transforming initial data from T 3 to R3 was given in
[4]. See also [27] for yet another example of such a construction.

Here we do something in the opposite direction, transforming the initial data on R2 to that on
T 2. We prepare initial conditions on T 2 by periodizing those on R2 by assuming that they are well
localized so that their boundary values are de facto zero (discussed below).

Assume we have a large square [−L, L]2 with a size L (>0), which mimics R2. The size L is
taken to be large in comparison with the scale of vortices.

We transform the spatial coordinates x ∈ R2 to x̃ ∈ T 2 by x̃ = π
L x and the vorticity by ω̃ = Kω

for a constant K (>0). Hereafter, variables on T 2 are denoted by a tilde. (In practice, numerically
we use [0, 2π ]2 as the domain on T 2.) Then the following obvious identity holds:∫

R2

ω2

2
dx dy =

(
L

πK

)2 ∫
T 2

ω̃2

2
dx̃ dỹ. (4)

2A system of point vortices lies outside the standard scope of weak solutions because u /∈ L2
loc [22].

3It is known that there are issues of assigning boundary conditions in vorticity on a bounded domain, when
boundary layers of vorticity are formed. See, e.g., [25,26] for the issues.

124607-4



NUMERICAL COMPARISON OF TWO-DIMENSIONAL …

We define the total enstrophy on R2 and the averaged enstrophy on T 2 by

Q(t ) ≡
∫
R2

ω2

2
dx dy,

q(t ) ≡ 1

(2π )2

∫
T 2

ω̃2

2
dx̃ dỹ,

respectively. Then they are related by Q(t ) = ( 2L
K )2q(t ).

For later use, we also introduce the total palinstrophy P(t ) on R2 and the averaged palinstrophy
p(t ) on T 2 as

P(t ) ≡
∫
R2

|∇ω|2
2

dx dy,

p(t ) ≡ 1

(2π )2

∫
T 2

|∇x̃ω̃|2
2

dx̃ dỹ,

where ∇x̃ = (∂x̃, ∂ỹ). By the obvious identity∫
R2

|∇ω|2
2

dx dy =
∫
T 2

|∇x̃ω|2
2

dx̃ dỹ,

we have P(t ) = ( 2π
K )2 p(t ).

The choice of K leaves room for arbitrariness, similar to the situations where some mathematical
existence theorems deploy extensive norms, e.g., the Sobolev norm, and others intensive norms,
e.g., the Hölder norm (see [28]). One way is to take K = 1 to keep pointwise vorticity unchanged,
thereby leaving the local timescale, set by nonlinearity, unaffected. [In fact, this is also equivalent to
having their averaged values matched q(t ) = 1

(2L)2 Q(t ).] Basically this option was adopted in [4,27].
To clarify the relationship between the transcription onto the periodic lattice and the Reynolds
similarity, let us define the Reynolds number by

Re =
∫
R2 |ω(x)|dx

ν
. (5)

Under the transcription, the L1-norm transforms as∫
R2

|ω(x)|dx =
(

L

π

)2 1

K

∫
T 2

|ω̃(x̃)|d x̃;

hence we have

Re =
∫
T 2 |ω̃(x)|d x̃

ν̃
, (6)

where ν̃ = ( π
L )2Kν is the scaled viscosity. This means that we should modify the kinematic viscosity

to ν̃, to comply with the Reynolds similarity, that is, to keep the Reynolds number unchanged on
T 2.

If the kinematic viscosity is unchanged ν̃ = ν, the Reynolds similarity holds only when we
choose K = ( L

π
)2. For K �= ( L

π
)2, we can still keep Re unchanged on T 2 by modifying the value

of the kinematic viscosity. We will take K = 1 throughout this paper and without loss of generality4

we choose K = 1 and ν̃ = ( π
L )2ν. Before presenting the numerical results, we emphasize that flows

under periodic boundary conditions are affected by periodic images (through Poisson summation),
while flows on the whole plane (i.e., a large box) are not. Our objective is to study the effects coming
from their differences.

4When K �= 1 we can obtain equivalent results on T 2 by rescaling time as t̃ = K−1t .
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TABLE II. Numerical parameters.

Boundary conditions

Whole plane R2 Periodic domain T 2

Vorticity configuration ν L N as in [−N, N]2 K Grid points

IC 1, Oseen vortex 2×10−2 20 1024 1 20482

IC 2, two vortices 5×10−3 20 1024 1 20482

IC 3, three vortices 2.5, 5×10−4 40 2048 1 40962

IV. NUMERICAL RESULTS

A. Justification of domain truncation

We first double-check that the domain truncation method reproduces the Oseen vortex properly.
Its initial condition (IC) is

ω0(r) = �

π l2
exp

(
− r2

l2

)
(IC 1),

where r = |x|, � = ∫
R2 ω0dx (=1, by definition) is velocity circulation, and l is the initial core

radius. The 2D Navier-Stokes equations have the following decaying vortex as an exact solution:

ω(r, t ) = �

π (4νt + l2)
exp

(
− r2

4νt + l2

)
(see, e.g., [29,30]). As the solution is radial, that is, depends only on r = |x| in polar coordinates,
the nonlinear term is identically annihilated u · ∇ω ≡ 0 and the Gaussian functional form emerges
from the heat kernel.

It is readily verified that the corresponding azimuthal velocity is given by

u(r, t ) = �

2πr

[
1 − exp

(
− r2

4νt + l2

)]
and the enstrophy of the Oseen vortex by

Q(t ) = 1

2

∫
R2

ω(r, t )2dS = �2

4π (4νt + l2)
.

On the other hand, its total kinetic energy is nonexistent, that is, divergent, as can be verified by

E (t ) = 1

2

∫ R

0
u(r, t )22π r dr ∼ �2

4π
log R → ∞ as R → ∞.

Hence it cannot serve as a check of numerical calculations for inviscid fluids.
For the domain truncation we consider initial data whose core radius l is small compared

with L, i.e., l � L. We use ν = 0.02, l = 2, and L = 20 numerically. The numerical parameters
are summarized in Table II, together with those for other initial data. We compare in Fig. 1
the numerically obtained ω(x, t ) for ν = 2×10−2 on R2 with the exact solution, where excellent
agreement is observed at several different times.

After transforming the initial data to T 2 by the method described above with K = 1, we solve
the 2D Navier-Stokes equations in vorticity form (1) on T 2, with or without adjusting the Reynolds
number. In this case of a linear problem, the choice of K is actually insignificant. Because the
boundary values are extremely small ω0(L) = exp[−(L/l )2]/4π = e−100/4π ≈ 3.0×10−45, they
do not conflict with periodic boundaries in practice. (Similar remarks hold true for IC 2 and 3 below.)

In Fig. 2 we show the time evolution of enstrophy, normalized by the initial values Q(0) =
1/16π ≈ 0.02 and q(0) = Q(0)/(2L)2 = 1.25×10−5. For the Oseen vortex we again confirm that
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FIG. 1. Comparison of time evolution of IC 1: the Oseen vortex, numerical results (curves), and exact
solutions (symbols). Time runs from top to bottom: t = 0, 10, and 50.

the numerical result agrees with the exact solution. For the periodic case enstrophy decays a bit
faster, when the Reynolds number is adjusted using scaled ν̃ = (π/L)2ν. A slight difference is
appreciable, which is due to the difference in boundary conditions, that is, the effect of the Poisson
summation of periodic images. On the other hand, when the Reynolds number is not adjusted, using
ν as is, the decay takes place much faster, actually exponentially in time (confirmed in the inset). We
conclude that domain truncation works fine for handling the 2D Navier-Stokes flows on the whole
plane. We also note that the periodic version of heat solutions in 2D is given by a two-dimensional
θ function (see Appendix B).

B. Merger of two vortices

To see how the flow fields are affected by the difference in the boundary conditions further, we
next consider a simple configuration of two vortices of the same sign. For the experiment on the
whole plane, we take the initial data as

ω0(x) = exp

(
− (x + a)2 + y2

l2

)
+ exp

(
− (x − a)2 + y2

l2

)
(IC 2),

where a = 5, l = 2, and ν = 5×10−3.
For the calculation on the whole plane R2, we use L = 20 and N = 1024 for a grid [−N, N]2.

For the calculation on the periodic domain T 2, we use accordingly 20482 grid points, with K = 1.
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FIG. 2. Plot of normalized enstrophy of IC 1: the Oseen vortex, Q(t )/Q(0) on R2 (solid curve), q(t )/q(0)
with ν̃ on T 2 (dotted curve), and q(t )/q(0) with ν on T 2 (dashed curve). The inset shows a semilogarithmic
plot of the last quantity. Also plotted is the analytical result Q(t )/Q(0) = 1

νt+1 (pluses).

124607-7



KOJI OHKITANI

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  50  100  150  200

Q
(t

)/
Q

(0
)

t

0.01

0.10

1.00

 0  100  200

FIG. 3. Evolution of normalized enstrophy of IC 2 for two merging vortices: Q(t )/Q(0) on R2 (solid
curve), q(t )/q(0) with ν̃ on T 2 (dashed curve), and q(t )/q(0) with ν on T 2 (dotted curve). The inset shows a
semilogarithmic plot of the last quantity.

In Fig. 3 we show the time evolution of enstrophy Q(t ) on R2 and that of q(t ) on T 2 for unscaled
ν = 5×10−3 and scaled ν̃ = ( π

L )2ν. They are normalized by initial values Q(0) = 6.28 and q(0) =
3.80×10−3, respectively. With scaled ν̃, the enstrophy decays a bit faster on T 2 than on R2. With
unscaled ν, the enstrophy decay is much faster on T 2, actually exponentially in time, as confirmed
in the inset. These features are qualitatively the same as in the case of the Oseen vortex.

On T 2 the Poincaré inequality is available because of the presence of the smallest eigenvalue of
the Stokes operator, the simplest of which reads ‖φ‖L2 � C‖∇φ‖L2 for ∃C (>0) for any φ(x) (see,
e.g., [31,32]). As a result an exponential decay is obtained as an upper bound. This is not the case
on R2 and for u0 ∈ L2(R2) we have instead [33,34] ‖∇u‖L2 � Ct−1/2, with a constant C, that is,
Q(t ) � C2/2t . The numerical results above are consistent with the analysis, as can be verified by
plotting (νt + 1)Q(t ) (figure omitted).

In Fig. 4 we show vorticity contours on R2 at several different times. We note that it takes a
long time t ≈ 200 to complete the merging process. As for the results on the periodic domain, we

x

y

t=0 t=40 t=80

t=120 t=160 t=200

FIG. 4. Time evolution of vorticity contours on R2 for IC 2. Six levels of contours are drawn between the
maximum and minimum of ω(x, y) on [−L, L]2 with L = 20.

124607-8



NUMERICAL COMPARISON OF TWO-DIMENSIONAL …

x

y

t=0 t=40 t=80

t=120 t=160 t=200

FIG. 5. Time evolution of vorticity contours on T 2 for IC 2, with the Reynolds number adjusted using
scaled ν̃. Six levels of contours are drawn between the maximum and minimum of ω̃(x, y) on [−π, π ]2.

show vorticity contours on T 2 at several different times using K = 1, with scaled ν̃ in Fig. 5 and
with unscaled ν in Fig. 6. When we adjust the Reynolds number, we observe a similarity in contour
patterns in Figs. 4 and 5, while they are not exactly the same. In Fig. 6 we notice that with unscaled
ν it takes a shorter time t ≈ 100 to the complete merging process, consistent with the much faster
decay.

As for the spectral properties, it turns out that the enstrophy spectra have excitations restricted in
the lower-wave-number range, with no power-law behavior observed. We refrain from describing
their details further.

x

y

t=0 t=20 t=40

t=60 t=80 t=100

FIG. 6. Time evolution of vorticity contours on T 2 for IC 2 using unscaled ν without adjusting the Reynolds
number. Six levels of contours are drawn between the maximum and minimum of ω̃(x, y) on [−π, π ]2.
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FIG. 7. Time evolution of normalized enstrophy for IC 3: Q(t )/Q(0) on R2 with ν = 2.5×10−4 (solid
curve) and q(t )/q(0) on T 2 with ν̃ = ν(π/L)2 (dotted curve) and with ν = (dashed curve). The inset shows a
close-up view of the former two.

C. Merging of three localized vortices

As noted above, the numerical experiments of merging two vortices turn out to be governed by
nearly linear dynamics. In this section we seek another initial datum that generates a structure with
finer spatial scales as we are interested in the scaling of 2D turbulence. To this end, following [35],
we consider the collision of three point vortices at a point [36,37] and adapt it to the numerical
simulations. The initial condition is obtained by regularization with a Gaussian filter.

Consider a system of three point vortices. Under stringent conditions on the strength of vortices
and their initial locations, they can be set to collapse at a point in finite time in a self-similar manner
(see Appendix C).5 An example of such an initial condition is a set of point vortices of strengths
π , π , and −π/2 located at (−5, 0), (5,0), and (5, 5

√
2), respectively. The initial condition is a

regularized version of such a system, that is,

ω0(x) = π exp

(
− (x − 5)2 + y2

l2

)
+ π exp

(
− (x + 5)2 + y2

l2

)

− π

2
exp

(
− (x − 5)2 + (y − 5

√
2)2

l2

)
(IC 3),

where l = 2.
To compare with our initial setting, IC 3, after rescaling with α = π/2 and β = 5 in Appendix C,

we have

t = β2

α
t ′ = 3

√
2π

52

π/2
= 150

√
2 ≈ 210,

as a rough estimate of collapse of three vortices. Needless to say, because of regularization of the
initial data and the presence of dissipativity, we would expect merging rather than a hard collapse.

We carry out simulations with lower viscosity and check the effect of the finite size of the box.
We consider the cases ν = 2.5 and 5×10−4 with L = 40 and N = 2048 on R2. On T 2, we compute
on a 40962 grid using K = 1, with or without adjusting the Reynolds number.

In Fig. 7 we show the evolution of the enstrophy on R2 and on T 2, with unscaled
ν = 2.5×10−4 and scaled ν̃ = ν(π/L)2. They are normalized by the initial values Q(0) = 69.7
and q(0) = 1.08×10−2. When the Reynolds number is adjusted, the enstrophy decay is remarkably

5Strictly speaking, this form of solution remains valid only on R2 as the system of equations of point vortices
is modified on T 2 (see, e.g., [38,39]). The existence of collapsing (and expanding) solutions on T 2 was proved
in [38].
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FIG. 8. Semilogarithmic plot of normalized palinstrophy for IC 3: P(t )/P(0) on R2 with ν = 2.5×10−4

(solid curve) and p(t )/p(0) on T 2 with ν̃ = ν(π/L)2 (dotted curve) and with ν (dashed curve). The inset
shows a close-up linear plot of the former two.

close for both boundary conditions, to the extent that they are virtually indistinguishable in the
main plot. However, in the magnified inset we do observe a marginally faster decay on T 2 than on
R2. [The same feature is also observed with ν = 5×10−4 and ν̃ = ν(π/L)2 (figure omitted).] On
the other hand, if the Reynolds number is not adjusted, that is, with unscaled ν, the decay on T 2

takes place much faster.
In Fig. 8 we compare the evolutions of the palinstrophies, which are normalized by initial values

P(0) = 35.0 and p(0) = 0.888. We observe prominent peaks in their growth on R2 and T 2 with
the Reynolds number adjusted using scaled ν̃ and even at the late stage they virtually collapse on

x

y

t=0 t=10 t=20

t=40 t=70 t=100

t=130 t=160 t=200

FIG. 9. Evolution of vorticity contours for IC 3 with ν = 2.5×10−4, on [−L, L]2 ⊂ R2 (L = 40), using
thresholds ω = 3, ±3/2n (n = 1, . . . , 6).
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FIG. 10. Enstrophy spectrum Q(k) for IC 3 on R2 at different times. The straight lines are the guide for the
BKL −1 (dashed curves), SF −5/3 (dotted curves), and Saffman −2 (dash-dotted curves) slopes.

each other. In the inset we show a close-up view of their linear plots, where we observe that decay
takes place with oscillations and marginally faster on T 2 than on R2. Finally, with unscaled ν, i.e.,
without adjustment of the Reynolds number, the palinstrophy decays straight away without showing
an initial increase.

In Fig. 9 we plot vorticity contours on R2 for ν = 2.5×10−4 at several different times. We can
see filaments with fine scales trailing behind the vortices up to t ≈ 200. To check that the result is
robust, we confirm the agreement with a computation using the parameters L = 20 and N = 2048,
thereby halving the mesh size (figure omitted). In order to characterize how small scales are excited,
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)
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FIG. 11. Enstrophy spectrum Q(k) for IC 3 averaged over t = 20, . . . , 50, on R2 for ν = 2.5×10−4 (solid
curve), ν = 5×10−4 (dashed curve), and guide slopes −1, −5/3, and −2 from above. The exponent looks close
to −1.
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FIG. 12. Enstrophy spectrum Q(k) for IC 3 averaged over t = 50, . . . , 80, on R2 for ν = 2.5×10−4 (solid
curve) ν = 5×10−4 (dashed curve), and guide slopes −1, −5/3, and −2 from above. The exponent looks close
to −5/3.

we introduce the Fourier power spectrum of enstrophy. Using the domain truncation method for
well-localized vortices, a surrogate for a Fourier integral is to consider a Fourier series assuming a
long periodicity. Numerically, we define the enstrophy spectrum Q(k), on both T 2 and R2, as

Q(k) = 1

2

∑
k�|k|<k+1

|ω̂(k, t )|2,

x

y

t=0 t=10 t=20

t=40 t=70 t=100

t=130 t=160 t=200

FIG. 13. Evolution of vorticity contours for IC 3, with scaled ν̃ on [−π, π ]2 ⊂ T 2, using thresholds
ω̃ = 3, ±3/2n (n = 1, . . . , 6).
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FIG. 14. Evolution of vorticity contours for IC 3 on [−π, π ]2 ⊂ T 2, using ν without adjusting the
Reynolds number. The thresholds are ω̃ = 3, ±3/2n (n = 1, . . . , 6).

where the Fourier coefficient ω̂(k, t ) is defined as

ω(x, t ) =
∑

k

ω̂(k, t )eik·x.

To Fourier analyze data on R2, we simply define ω̃(x) = ω(x) at each time in the definition in
Sec. III A, since we are interested only in the scaling.

In Fig. 10 we show the enstrophy spectrum for ν = 2.5×10−4 at different times along with three
guide slopes −1 (BKL), −5/3 (SF), and −2 (Saffman). Particularly in the early stage t < 70, a
power-law behavior is seen, although it has sizable fluctuations.

To suppress the fluctuations we take local time averages of Q(k) and study the averaged spectrum.
In Fig. 11 we show the spectrum averaged over 20 � t � 50, and the power-law appears to be
close to −1 (the BKL value). In Fig. 12 we show the average over 50 � t � 80, which shows
a bit steeper slope closer to −5/3. Because of the limited-wave-number range, we refrain from
determining the slope precisely, but the exponent lies somewhere between −1 and −5/3 in the
early stage of development. The latter exponent is to be compared with Gilbert’s spiral model as
we observe trailing filaments wound up around the central region. Next we consider the case of a
periodic domain. When the Reynolds number is adjusted with the use of scaled kinematic viscosity
ν̃, we observe in Fig. 13 that vorticity contours on T 2 are close to those on R2 in Fig. 9. Careful
observation reveals that for t � 130 the vortices go around with their phase offset from those on R2.
We also studied the enstrophy spectra, but again they are close to the ones on R2 (figure omitted). In
Fig. 14 we show vorticity contours on T 2 computed using ν without Reynolds number adjustment.
Already at t = 100 a well-defined vortex emerges which is accompanied by a remnant of filaments.
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FIG. 15. Enstrophy spectrum Q(k) for IC 3 on T 2 at different times, using ν without adjusting the Reynolds
number.

Accordingly, the enstrophy spectra in Fig. 15 show a rapid decay in k with no sign of power-law
behavior, which is consistent with the faster decay of enstrophy.

V. SUMMARY AND OUTLOOK

We have formalized numerical methods that can handle flows on R2 and put them into practice.
On one hand, we computed well-localized flows in a large box by domain truncation, with zero
Dirichlet boundary conditions. On the other hand, we computed them on a periodic lattice after
copying them with or without adjusting the Reynolds number. It should be stressed that the latter is
affected by periodic images (through Poisson summation), while the former is not.

In comparative experiments of the vortex merger, we found that merging takes place faster on T 2

than on R2, to the effect that the former decays a bit more quickly even when the Reynolds number
is adjusted on T 2.

We also simulated the collapse of three vortices, which leads to the generation of finer scales.
When the Reynolds number is adjusted, their decay in norms is remarkably close for both boundary
conditions. Nonetheless, the decay is marginally faster on T 2 than on R2. It is not known why they
are very close to each other in the IC 3 case of higher Reynolds numbers.

In physically oriented journals, numeral simulations under periodic boundaries, e.g., by pseu-
dospectral methods, have frequently been reported. Caveats are often cast regarding usage of
periodic flows for studying more realistic flows. The present results lend support for that at least
partially, so long as flow fields are spatially well localized. This also supports a view that nonlocal
interaction in the Navier-Stokes equations is not strong, e.g., “what happens to a given fluid element
is only weakly affected by distant fluid elements (through the pressure term)” [28].
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In these cases of significant nonlinear effects, we observed a power-law scaling of turbulence
Q(k) ∼ k−n for some exponent n. While the exponents remain inconclusive due to fluctuations,
they lie in 1 � n � 2. It is of interest to note that Q(k) ∼ k−5/3, i.e., E (k) ∼ k−11/3, appears in
Gilbert’s spiral model due to a point vortex. It also coincides with the SF borderline, beyond which
the enstrophy cascade is no longer sustainable on R2.

The very late stage of evolution of 2D Navier-Stokes flows under periodic boundaries are well
described by periodic heat solutions, that is, Riemann θ functions. The method of a self-similar
profile that works fine on R2 would not work on T 2, at least as it is. This is because the governing
equations for self-similar solutions are at variance with spatial periodicity. It is of interest to see if
and how we may characterize local self-similarity on T 2.

It is left to future work to study the scaling with ever smaller values of viscosity, hopefully
addressing the possibility of a dissipation anomaly on the whole plane. Also of interest is to compute
3D Navier-Stokes flows on R3 and compare them with those on T 3.
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APPENDIX A: NUMERICAL SCHEME

We give a brief description of the finite-difference scheme for handling (1) numerically on the
whole plane.

Consider a discretization of the vorticity (for i, j = −N, . . . , N hereafter) ωi, j = ω(xi, y j ), where
xi = hi and y j = h j. Here h = L

N is a spatial mesh for the size 2L and the number of grid points is
(2N + 1)2.

We then discretize the advection term as

u · ∇ω(xi, y j ) = ui, j
ωi+1, j − ωi−1, j

2h
+ vi, j

ωi, j+1 − ωi, j−1

2h
,

where the velocity is given by

ui, j = ψi, j+1 − ψi, j−1

2h
, vi, j = −ψi+1, j − ψi−1, j

2h
.

The stream function is given ψi, j = −�−1ωi, j by inverting the Laplacian via the Poisson solver
under zero Dirichlet boundary conditions ωi,±N = ω±N, j = 0 (−N � i, j � N) at the box edges.
Also, the dissipative term is discretized as

�ω(xi, y j ) = ωi+1, j − 2ωi, j + ωi−1, j

h2
+ ωi, j+1 − 2ωi, j + ωi, j−1

h2
.

APPENDIX B: POISSON SUMMATION FORMULA FOR HEAT SOLUTIONS

We recall formulas for heat solutions on T n = R2/(2πZ)n, n ∈ Z. Consider, for simplicity, ∂u
∂t =

�u, where u = u(x, t ), x ∈ T n.
The Poisson summation formula states (see, e.g., [40])

u = 1

(4πt )n/2

∑
l

exp

(
−|x + 2π l |2

4t

)
= 1

(2π )n

∑
k

exp[−t |k|2 + i(k, x)],
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where k = (k1, k2, . . . , kn), l = (l1, l2, . . . , ln), and (l, x) is an inner product. When n = 1 we have
u = 1

π
θ3(x, 4it

π
), because

u = 1√
4πt

∑
l

exp

(
−|x + π l|2

4t

)
= 1

π

∑
k

exp(−4k2t + 2ikx),

where θ3 denotes one of the conventional (π -periodic) elliptic theta functions

θ3(x, it ) = 1

π

∑
l

exp

(
−|x + π l|2

πt

)

[41,42]. For n � 2 multidimensional Riemann θ functions are defined by [41]

θ (x1, x2, . . . , xn) =
∑

k

exp[2π i(x, k) − (k, Tk)],

where T denotes an n×n symmetric matrix with a positive-definite real part. In particular, when
n = 2 we have

u = 1

4πt

∑
l

exp

(
−|x + 2π l |2

4t

)
= 1

(2π )2

∑
k

exp[−t |k|2 + 2π i(k, x)].

The right-hand side can be written 1
(2π )2 θ ( x1

2π
, x2

2π
), where T = tI, with I an identity matrix.

APPENDIX C: COLLAPSE OF THREE POINT VORTICES

For convenience, we recall a well-known result (see [36,37]). Consider a set of three point
vortices of strength (κ1, κ2, κ3) = (2, 2,−1) located initially at x1 = (−1, 0), x2 = (1, 0), and
x3 = (1,

√
2). The distance li j (t ) between the ith and jth vortices satisfies (for i, j = 1, 2, 3; i �= j)

d

dt
li j (t )2 = 2

π
Aκk

(
1

l2
jk

− 1

l2
ki

)
,

where A denotes the area of the triangle and (i, j, k) are cyclic indices. Actually, we can deduce

d

dt
li j (t )2 = − 1

3
√

2π
li j (0),

from which we find

li j (t )2 = li j (0)2

√
1 − t

3
√

2π
.

This shows a collapse at t = 3
√

2π .
When the vortex strength and initial locations differ from the above, we set κk = ακ ′

k and li j =
βl ′

i j and write

β2 d

dt
(l ′

i j )
2 = α

2

π
A′κ ′

k

(
1

(l ′
jk )2

− 1

(l ′
ki )

2

)

or

d

dt ′ (l ′
i j )

2 = 2

π
A′κ ′

k

(
1

(l ′
jk )2

− 1

(l ′
ki )

2

)
,

where t ′ = α
β2 t .
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